Enhancing joint reconstruction and segmentation with non-convex Bregman iteration

All imaging modalities such as computed tomography, emission tomography and magnetic resonance imaging require a reconstruction approach to produce an image. A common image processing task for applications that utilise those modalities is image segmentation, typically performed posterior to the reco...

Full description

Saved in:
Bibliographic Details
Published inInverse problems Vol. 35; no. 5; pp. 55001 - 55034
Main Authors Corona, Veronica, Benning, Martin, Ehrhardt, Matthias J, Gladden, Lynn F, Mair, Richard, Reci, Andi, Sederman, Andrew J, Reichelt, Stefanie, Schönlieb, Carola-Bibiane
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.05.2019
Subjects
Online AccessGet full text
ISSN0266-5611
1361-6420
DOI10.1088/1361-6420/ab0b77

Cover

Abstract All imaging modalities such as computed tomography, emission tomography and magnetic resonance imaging require a reconstruction approach to produce an image. A common image processing task for applications that utilise those modalities is image segmentation, typically performed posterior to the reconstruction. Recently, the idea of tackling both problems jointly has been proposed. We explore a new approach that combines reconstruction and segmentation in a unified framework. We derive a variational model that consists of a total variation regularised reconstruction from undersampled measurements and a Chan-Vese-based segmentation. We extend the variational regularisation scheme to a Bregman iteration framework to improve the reconstruction and therefore the segmentation. We develop a novel alternating minimisation scheme that solves the non-convex optimisation problem with provable convergence guarantees. Our results for synthetic and real data show that both reconstruction and segmentation are improved compared to the classical sequential approach.
AbstractList All imaging modalities such as computed tomography, emission tomography and magnetic resonance imaging require a reconstruction approach to produce an image. A common image processing task for applications that utilise those modalities is image segmentation, typically performed posterior to the reconstruction. Recently, the idea of tackling both problems jointly has been proposed. We explore a new approach that combines reconstruction and segmentation in a unified framework. We derive a variational model that consists of a total variation regularised reconstruction from undersampled measurements and a Chan–Vese-based segmentation. We extend the variational regularisation scheme to a Bregman iteration framework to improve the reconstruction and therefore the segmentation. We develop a novel alternating minimisation scheme that solves the non-convex optimisation problem with provable convergence guarantees. Our results for synthetic and real data show that both reconstruction and segmentation are improved compared to the classical sequential approach.
Author Reichelt, Stefanie
Mair, Richard
Corona, Veronica
Sederman, Andrew J
Ehrhardt, Matthias J
Gladden, Lynn F
Benning, Martin
Reci, Andi
Schönlieb, Carola-Bibiane
Author_xml – sequence: 1
  givenname: Veronica
  orcidid: 0000-0003-2160-5482
  surname: Corona
  fullname: Corona, Veronica
  email: vc324@cam.ac.uk
  organization: University of Cambridge Department of Applied Mathematics and Theoretical Physics, United Kingdom
– sequence: 2
  givenname: Martin
  surname: Benning
  fullname: Benning, Martin
  organization: Queen Mary University of London School of Mathematical Sciences, United Kingdom
– sequence: 3
  givenname: Matthias J
  orcidid: 0000-0001-8523-353X
  surname: Ehrhardt
  fullname: Ehrhardt, Matthias J
  organization: University of Bath Institute for Mathematical Innovation, United Kingdom
– sequence: 4
  givenname: Lynn F
  surname: Gladden
  fullname: Gladden, Lynn F
  organization: University of Cambridge Department of Chemical Engineering and Biotechnology, United Kingdom
– sequence: 5
  givenname: Richard
  surname: Mair
  fullname: Mair, Richard
  organization: University of Cambridge Cancer Research UK Cambridge Institute, United Kingdom
– sequence: 6
  givenname: Andi
  surname: Reci
  fullname: Reci, Andi
  organization: University of Cambridge Department of Chemical Engineering and Biotechnology, United Kingdom
– sequence: 7
  givenname: Andrew J
  surname: Sederman
  fullname: Sederman, Andrew J
  organization: University of Cambridge Department of Chemical Engineering and Biotechnology, United Kingdom
– sequence: 8
  givenname: Stefanie
  surname: Reichelt
  fullname: Reichelt, Stefanie
  organization: University of Cambridge Cancer Research UK Cambridge Institute, United Kingdom
– sequence: 9
  givenname: Carola-Bibiane
  surname: Schönlieb
  fullname: Schönlieb, Carola-Bibiane
  organization: University of Cambridge Department of Applied Mathematics and Theoretical Physics, United Kingdom
BookMark eNp9kE1LAzEQhoNUsK3ePeYHuDaT3U2yRy31Awoi6DmkadJmaZOSpH78e7dd8SAocxiYed8ZnneEBj54g9AlkGsgQkygZFCwipKJWpAF5ydo-DMaoCGhjBU1AzhDo5RaQgAE8CF6nvm18tr5FW6D8xlHo4NPOe51dsFj5Zc4mdXW-KyOg3eX17j7XXSyN_OBb2O3VR67bOJRcY5Ordokc_Hdx-j1bvYyfSjmT_eP05t5oUtKc8EJA2p4U_OysswKxYXmpbCCioZrBraqiNWaCVN1pSsg2jR1uYAlpVbVqhwj0t_VMaQUjZW76LYqfkog8hCJPPDLA7_sI-ks7JdFux4rR-U2_xmveqMLO9mGffQd2d_yL4jMdus
CODEN INPEEY
CitedBy_id crossref_primary_10_1016_j_neucom_2024_129109
crossref_primary_10_1002_gamm_202100004
crossref_primary_10_1093_gji_ggab388
crossref_primary_10_1049_2023_6615953
crossref_primary_10_1088_2516_1091_acd973
crossref_primary_10_1080_17415977_2021_1999941
crossref_primary_10_1137_22M151546X
crossref_primary_10_1190_tle42070457_1
crossref_primary_10_1098_rsta_2020_0198
crossref_primary_10_1016_j_nonrwa_2023_103908
Cites_doi 10.1109/TIT.2006.871582
10.1016/0041-5553(67)90040-7
10.1137/09076934X
10.3934/ipi.2011.5.137
10.1016/j.jmr.2010.01.001
10.1007/s10107-013-0701-9
10.1137/16M1074503
10.1038/nm.3416
10.1137/S0036139993257132
10.1002/mrm.1910360327
10.1137/110856733
10.1137/15M1047325
10.1137/040605412
10.1016/j.ces.2011.11.014
10.1137/S0363012995281742
10.1109/TIT.2005.862083
10.1137/100817371
10.1007/978-3-319-58771-4_25
10.1080/17415977.2015.1124428
10.1007/s10851-010-0251-1
10.1016/j.jmr.2013.10.003
10.1017/S096249291600009X
10.1016/0167-2789(92)90242-F
10.1088/0266-5611/19/6/059
10.1214/07-AOS558
10.1016/j.jcp.2006.06.041
10.1002/mrm.21391
10.1137/040615286
10.4310/maa.2013.v20.n4.a1
10.1088/0266-5611/32/10/104002
10.1109/83.902291
10.1088/0266-5611/31/2/025003
10.1002/cpa.3160420503
10.1007/s11263-013-0621-4
10.1002/cpa.3160430805
10.1016/j.ces.2012.08.024
10.1103/PhysRevLett.108.264505
ContentType Journal Article
Copyright 2019 IOP Publishing Ltd
Copyright_xml – notice: 2019 IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.1088/1361-6420/ab0b77
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
DocumentTitleAlternate Enhancing joint reconstruction and segmentation with non-convex Bregman iteration
EISSN 1361-6420
ExternalDocumentID 10_1088_1361_6420_ab0b77
ipab0b77
GrantInformation_xml – fundername: Cancer Research UK
  funderid: https://doi.org/10.13039/501100000289
– fundername: Isaac Newton Trust
  funderid: https://doi.org/10.13039/501100004815
– fundername: Cantab Capital Institute for the Mathematics of Information
– fundername: Leverhulme Trust
  funderid: https://doi.org/10.13039/501100000275
– fundername: Cancer Cambridge Centre
– fundername: Leverhulme Trust Early Career Fellowship
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/M00483X/1; EP/N014588/1
  funderid: https://doi.org/10.13039/501100000266
GroupedDBID -~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHFT
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
KZ1
LAP
LMP
M45
N5L
N9A
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
TSCCA
UCJ
W28
XPP
ZMT
~02
AAYXX
ADACN
ADEQX
CITATION
ID FETCH-LOGICAL-c322t-70612e795734f6f8a78c738f82897c61f440fcc68e4e4ec410ce953b1d22fa5a3
IEDL.DBID O3W
ISSN 0266-5611
IngestDate Tue Jul 01 00:41:26 EDT 2025
Thu Apr 24 23:06:01 EDT 2025
Wed Aug 21 03:33:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-70612e795734f6f8a78c738f82897c61f440fcc68e4e4ec410ce953b1d22fa5a3
Notes IP-101859.R2
ORCID 0000-0003-2160-5482
0000-0001-8523-353X
OpenAccessLink https://iopscience.iop.org/article/10.1088/1361-6420/ab0b77
PageCount 34
ParticipantIDs crossref_primary_10_1088_1361_6420_ab0b77
crossref_citationtrail_10_1088_1361_6420_ab0b77
iop_journals_10_1088_1361_6420_ab0b77
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Inverse problems
PublicationTitleAbbrev IP
PublicationTitleAlternate Inverse Problems
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Ambrosio (ipab0b77bib016) 1990; 43
Lellmann (ipab0b77bib024) 2009
Lojasiewicz (ipab0b77bib040) 1963; 117
Strong (ipab0b77bib008) 2003; 19
Chan (ipab0b77bib020) 2001; 10
Chambolle (ipab0b77bib036) 2016; 25
Romanov (ipab0b77bib032) 2015; 24
Bregman (ipab0b77bib011) 1967
Chambolle (ipab0b77bib035) 2011; 40
Osher (ipab0b77bib010) 2005; 4
Chambolle (ipab0b77bib017) 1995; 55
Chalmers (ipab0b77bib043) 1994
Kiwiel (ipab0b77bib012) 1997; 35
Morozov (ipab0b77bib014) 1966; 7
Van de Sompel (ipab0b77bib031) 2008
Meyer (ipab0b77bib007) 2001; vol 22
Esther Klann (ipab0b77bib027) 2011; 5
Rodrigues (ipab0b77bib049) 2014; 20
Rudin (ipab0b77bib013) 1992; 60
Pock (ipab0b77bib038) 2009
Donoho (ipab0b77bib002) 2006; 52
Lellmann (ipab0b77bib023) 2013; 104
Ambrosio (ipab0b77bib021) 2000; vol 254
Storath (ipab0b77bib033) 2015; 31
Holland (ipab0b77bib045) 2012; 84
Burger (ipab0b77bib029) 2016; 32
Esser (ipab0b77bib037) 2010; 3
Caballero (ipab0b77bib034) 2014; 17
Benning (ipab0b77bib009) 2013; 20
Klann (ipab0b77bib028) 2011; 4
Chambolle (ipab0b77bib039) 2012; 5
Lustig (ipab0b77bib003) 2007; 58
Boysen (ipab0b77bib018) 2009; 37
Lauze (ipab0b77bib030) 2017
Deckwer (ipab0b77bib044) 1992; vol 200
Benning (ipab0b77bib041) 2017
Zeune (ipab0b77bib025) 2017; 10
Pock (ipab0b77bib019) 2009
Ehrhardt (ipab0b77bib005) 2016; 9
Tayler (ipab0b77bib048) 2012; 108
Candès (ipab0b77bib001) 2006; 52
Benning (ipab0b77bib006) 2014; 238
Mumford (ipab0b77bib015) 1989; 42
Holland (ipab0b77bib047) 2010; 203
Tayler (ipab0b77bib046) 2012; 71
Chan (ipab0b77bib022) 2006; 66
Ramlau (ipab0b77bib026) 2007; 221
Macovski (ipab0b77bib004) 1996; 36
Bolte (ipab0b77bib042) 2014; 146
References_xml – volume: 52
  start-page: 1289
  year: 2006
  ident: ipab0b77bib002
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– year: 1967
  ident: ipab0b77bib011
  article-title: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex optimization
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(67)90040-7
– volume: 3
  start-page: 1015
  year: 2010
  ident: ipab0b77bib037
  article-title: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/09076934X
– volume: 5
  start-page: 137
  year: 2011
  ident: ipab0b77bib027
  article-title: A Mumford–Shah level-set approach for the inversion and segmentation of SPECT/CT data
  publication-title: Inverse Problems Imaging
  doi: 10.3934/ipi.2011.5.137
– volume: 7
  start-page: 414
  year: 1966
  ident: ipab0b77bib014
  article-title: On the solution of functional equations by the method of regularization
  publication-title: Sov. Math.—Dokl.
– volume: 203
  start-page: 236
  year: 2010
  ident: ipab0b77bib047
  article-title: Reducing data acquisition times in phase-encoded velocity imaging using compressed sensing
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2010.01.001
– volume: 146
  start-page: 459
  year: 2014
  ident: ipab0b77bib042
  article-title: Proximal alternating minimization for nonconvex and nonsmooth problems
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0701-9
– volume: 10
  start-page: 111
  year: 2017
  ident: ipab0b77bib025
  article-title: Multiscale segmentation via Bregman distances and nonlinear spectral analysis
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/16M1074503
– volume: 20
  start-page: 93
  year: 2014
  ident: ipab0b77bib049
  article-title: Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13 c-labeled glucose
  publication-title: Nat. Med.
  doi: 10.1038/nm.3416
– volume: 55
  start-page: 827
  year: 1995
  ident: ipab0b77bib017
  article-title: Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139993257132
– volume: 36
  start-page: 494
  year: 1996
  ident: ipab0b77bib004
  article-title: Noise in MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910360327
– volume: 5
  start-page: 1113
  year: 2012
  ident: ipab0b77bib039
  article-title: A convex approach to minimal partitions
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/110856733
– volume: 9
  start-page: 1084
  year: 2016
  ident: ipab0b77bib005
  article-title: Multi-contrast MRI reconstruction with structure-guided total variation
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/15M1047325
– start-page: 150
  year: 2009
  ident: ipab0b77bib024
  article-title: Convex multi-class image labeling by simplex-constrained total variation
– start-page: 1133
  year: 2009
  ident: ipab0b77bib038
  article-title: An algorithm for minimizing the Mumford–Shah functional
– volume: 4
  start-page: 460
  year: 2005
  ident: ipab0b77bib010
  article-title: An iterative regularization method for total variation-based image restoration
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/040605412
– volume: 71
  start-page: 468
  year: 2012
  ident: ipab0b77bib046
  article-title: Applications of ultra-fast MRI to high voidage bubbly flow: measurement of bubble size distributions, interfacial area and hydrodynamics
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.11.014
– volume: 35
  start-page: 1142
  year: 1997
  ident: ipab0b77bib012
  article-title: Proximal minimization methods with generalized bregman functions
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012995281742
– volume: 52
  start-page: 489
  year: 2006
  ident: ipab0b77bib001
  article-title: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.862083
– volume: 4
  start-page: 1029
  year: 2011
  ident: ipab0b77bib028
  article-title: A Mumford–Shah-like method for limited data tomography with an application to electron tomography
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/100817371
– start-page: 308
  year: 2017
  ident: ipab0b77bib030
  article-title: Simultaneous reconstruction and segmentation of CT scans with shadowed data
  doi: 10.1007/978-3-319-58771-4_25
– volume: 17
  start-page: 106
  year: 2014
  ident: ipab0b77bib034
  article-title: Application-driven MRI: joint reconstruction and segmentation from undersampled MRI data
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: vol 200
  year: 1992
  ident: ipab0b77bib044
– start-page: 1035
  year: 2008
  ident: ipab0b77bib031
  article-title: Simultaneous reconstruction and segmentation algorithm for positron emission tomography and transmission tomography
– volume: 24
  start-page: 1432
  year: 2015
  ident: ipab0b77bib032
  article-title: Simultaneous tomographic reconstruction and segmentation with class priors
  publication-title: Inverse Problems Sci. Eng.
  doi: 10.1080/17415977.2015.1124428
– volume: 40
  start-page: 120
  year: 2011
  ident: ipab0b77bib035
  article-title: A first-order primal-dual algorithm for convex problems with applications to imaging
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-010-0251-1
– volume: 117
  start-page: 87
  year: 1963
  ident: ipab0b77bib040
  article-title: Une propriété topologique des sous-ensembles analytiques réels
  publication-title: Les Équ. Dérivées Part.
– volume: 238
  start-page: 26
  year: 2014
  ident: ipab0b77bib006
  article-title: Phase reconstruction from velocity-encoded MRI measurements–a survey of sparsity-promoting variational approaches
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2013.10.003
– volume: 25
  start-page: 161
  year: 2016
  ident: ipab0b77bib036
  article-title: An introduction to continuous optimization for imaging
  publication-title: Acta Numer.
  doi: 10.1017/S096249291600009X
– volume: 60
  start-page: 259
  year: 1992
  ident: ipab0b77bib013
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Physica D
  doi: 10.1016/0167-2789(92)90242-F
– volume: 19
  start-page: S165
  year: 2003
  ident: ipab0b77bib008
  article-title: Edge-preserving and scale-dependent properties of total variation regularization
  publication-title: Inverse problems
  doi: 10.1088/0266-5611/19/6/059
– volume: 37
  start-page: 157
  year: 2009
  ident: ipab0b77bib018
  article-title: Consistencies and rates of convergence of jump-penalized least squares estimators
  publication-title: Ann. Stat.
  doi: 10.1214/07-AOS558
– year: 2017
  ident: ipab0b77bib041
  article-title: Choose your path wisely: gradient descent in a Bregman distance framework
– volume: 221
  start-page: 539
  year: 2007
  ident: ipab0b77bib026
  article-title: A Mumford–Shah level-set approach for the inversion and segmentation of x-ray tomography data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.06.041
– volume: 58
  start-page: 1182
  year: 2007
  ident: ipab0b77bib003
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21391
– volume: 66
  start-page: 1632
  year: 2006
  ident: ipab0b77bib022
  article-title: Algorithms for finding global minimizers of image segmentation and denoising models
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/040615286
– volume: 20
  start-page: 295
  year: 2013
  ident: ipab0b77bib009
  article-title: Ground states and singular vectors of convex variational regularization methods
  publication-title: Methods Appl. Anal.
  doi: 10.4310/maa.2013.v20.n4.a1
– volume: 32
  year: 2016
  ident: ipab0b77bib029
  article-title: Simultaneous reconstruction and segmentation for dynamic SPECT imaging
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/32/10/104002
– volume: 10
  start-page: 266
  year: 2001
  ident: ipab0b77bib020
  article-title: Active contours without edges
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.902291
– start-page: 810
  year: 2009
  ident: ipab0b77bib019
  article-title: A convex relaxation approach for computing minimal partitions
– volume: vol 22
  year: 2001
  ident: ipab0b77bib007
– volume: 31
  year: 2015
  ident: ipab0b77bib033
  article-title: Joint image reconstruction and segmentation using the Potts model
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/31/2/025003
– volume: vol 254
  year: 2000
  ident: ipab0b77bib021
– volume: 42
  start-page: 577
  year: 1989
  ident: ipab0b77bib015
  article-title: Optimal approximations by piecewise smooth functions and associated variational problems
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160420503
– volume: 104
  start-page: 241
  year: 2013
  ident: ipab0b77bib023
  article-title: Discrete and continuous models for partitioning problems
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0621-4
– volume: 43
  start-page: 999
  year: 1990
  ident: ipab0b77bib016
  article-title: Approximation of functional depending on jumps by elliptic functional via t-convergence
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160430805
– volume: 84
  start-page: 735
  year: 2012
  ident: ipab0b77bib045
  article-title: Bubble size measurement using bayesian magnetic resonance
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2012.08.024
– start-page: 311
  year: 1994
  ident: ipab0b77bib043
  article-title: Cells and bubbles in sparged bioreactors
– volume: 108
  year: 2012
  ident: ipab0b77bib048
  article-title: Exploring the origins of turbulence in multiphase flow using compressed sensing MRI
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.264505
SSID ssj0011817
Score 2.383457
Snippet All imaging modalities such as computed tomography, emission tomography and magnetic resonance imaging require a reconstruction approach to produce an image. A...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 55001
SubjectTerms Bregman iteration
image reconstruction
image segmentation
iterative regularisation
magnetic resonance imaging
non-convex optimisation
total variation
Title Enhancing joint reconstruction and segmentation with non-convex Bregman iteration
URI https://iopscience.iop.org/article/10.1088/1361-6420/ab0b77
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bvOhB_Inzx8hBDx7imiVtUjypbExhTsHhbiVJ06loN9wO_vm-NLVMUJFeWvrahI--vu8lL18QOmZayVR1YqKkigkP04AozSPSSS2TEHKELvYhG9xG_RG_GYfjGjqv1sJMZ-Wv_wxOvVCwh7AsiJNtyiJKgDYHbaUDLUQdrTDg5S7zGrLHagoBQpfwAywRAZJAyznKn97wLSbVod2lENPbQOslN8QXviebqGbzLbS2pBgIV4NKZnW-je67-ZPTy8gn-GX6nC9wkd5WkrBY5Sme28lbub4ox27UFUPCT4pi8w98-Q53VY69tjJY7KBRr_tw1SflHgnEgCsuiHAUxYo4FIxnUSaVkEYwmblESpiIZpwHmTGRtBwOw2lgbBwyTdNOJ1OhYruoAc3aPYS1jTk4oTSax5zKQFOuIJvgMkgzp-HdRO0vlBJTCoi7fSxek2IiW8rE4Zo4XBOPaxOdVk_MvHjGH7YnAHxSetD8V7v9f9odoFXgNrGvTTxEDYDeHgF_WOgWql8P71rF1_IJI2S-VA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZokRAMiKcoTw8wMJjGsRM7I49W5dECEhXdIttxCgjSinbg53NJTFQkQChLolxi6-LLfWefv0PokGklE-VHREkVER4kHlGah8RPLJPgcoQu6pB1e2Gnz68GwcDVOS32wozG7td_AqclUXCpQpcQJ5uUhZQAbPaaSntaiOY4SWtoPmCAjWFA37LHahkB3JcoJ1lCAkCBunXKn97yzS_VoO0ZN9NeQcsOH-LTsjeraM5ma2hphjUQrroV1epkHd23sqecMyMb4pfRczbFRYhb0cJilSV4Yodvbo9RhvOZVwxBPykSzj_w2TvcVRku-ZVBYgP1262H8w5xdRKIAXOcEpHDFCuiQDCehqlUQhrBZJoHU8KENOXcS40JpeVwGE49Y6OAaZr4fqoCxTZRHZq1WwhrG3EwRGk0jziVnqZcQUTBpZekOY93AzW_tBQbRyKe17J4jYvFbCnjXK9xrte41GsDHVdPjEsCjT9kj0DxsbOiya9y2_-UO0ALdxft-Oayd72DFgHqRGWq4i6qw1ewewAnpnq_GDKfqazBSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+joint+reconstruction+and+segmentation+with+non-convex+Bregman+iteration&rft.jtitle=Inverse+problems&rft.au=Corona%2C+Veronica&rft.au=Benning%2C+Martin&rft.au=Ehrhardt%2C+Matthias+J&rft.au=Gladden%2C+Lynn+F&rft.date=2019-05-01&rft.issn=0266-5611&rft.eissn=1361-6420&rft.volume=35&rft.issue=5&rft.spage=55001&rft_id=info:doi/10.1088%2F1361-6420%2Fab0b77&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6420_ab0b77
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-5611&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-5611&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-5611&client=summon