Robust Adaptive Fuzzy Control for Second-Order Euler-Lagrange Systems With Uncertainties and Disturbances via Nonlinear Negative-Imaginary Systems Theory

Ensuring robust and precise tracking control in the presence of uncertain multi-input-multi-output (MIMO) system dynamics and environmental variations is a significant challenge in the field of robust and adaptive control theory. While fuzzy control strategies have demonstrated good tracking perform...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 54; no. 9; pp. 5102 - 5114
Main Authors Tran, Vu Phi, Mabrok, Mohamed A., Anavatti, Sreenatha G., Garratt, Matthew A., Petersen, Ian R.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2024
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2024.3365554

Cover

Abstract Ensuring robust and precise tracking control in the presence of uncertain multi-input-multi-output (MIMO) system dynamics and environmental variations is a significant challenge in the field of robust and adaptive control theory. While fuzzy control strategies have demonstrated good tracking performance in normal conditions, designing and tuning fuzzy controllers can be a challenging task in highly uncertain environments. In this study, we investigate a novel approach that combines robust nonlinear negative-imaginary (NI) systems theory with a self-adaptive fuzzy control scheme and the Lyapunov synthesis to develop a robust adaptive negative-imaginary-fuzzy (RANIF) control scheme. We optimize the critical parameters of the proposed fuzzy system using a self-tuning technique with a proportional-derivative sliding manifold. Furthermore, unlike the existing adaptive fuzzy control methods, we propose a small number of membership functions and systematically derive the fuzzy rules by employing Lyapunov, nonlinear NI, and dissipativity theories, which simplify the tuning process, work out the matter of "explosion of complexity," and reduce computational complexity. We demonstrate the global stability of the closed-loop system using nonlinear NI theory. To evaluate the effectiveness of our proposed approach, we present simulation results for two examples involving uncertain MIMO second-order Euler-Lagrange systems. These systems, known for their capacity to represent a diverse range of practical physical systems, serve as suitable testbeds for our methodology. Our results show that RANIF outperforms other control methods, such as nonlinear strictly NI-Fuzzy, fuzzy-logic control, model predictive control, and conventional PID control, in terms of robustness to disturbances and inestimable faults, trajectory tracking performance, and computational complexity.
AbstractList Ensuring robust and precise tracking control in the presence of uncertain multi-input-multi-output (MIMO) system dynamics and environmental variations is a significant challenge in the field of robust and adaptive control theory. While fuzzy control strategies have demonstrated good tracking performance in normal conditions, designing and tuning fuzzy controllers can be a challenging task in highly uncertain environments. In this study, we investigate a novel approach that combines robust nonlinear negative-imaginary (NI) systems theory with a self-adaptive fuzzy control scheme and the Lyapunov synthesis to develop a robust adaptive negative-imaginary-fuzzy (RANIF) control scheme. We optimize the critical parameters of the proposed fuzzy system using a self-tuning technique with a proportional-derivative sliding manifold. Furthermore, unlike the existing adaptive fuzzy control methods, we propose a small number of membership functions and systematically derive the fuzzy rules by employing Lyapunov, nonlinear NI, and dissipativity theories, which simplify the tuning process, work out the matter of "explosion of complexity," and reduce computational complexity. We demonstrate the global stability of the closed-loop system using nonlinear NI theory. To evaluate the effectiveness of our proposed approach, we present simulation results for two examples involving uncertain MIMO second-order Euler-Lagrange systems. These systems, known for their capacity to represent a diverse range of practical physical systems, serve as suitable testbeds for our methodology. Our results show that RANIF outperforms other control methods, such as nonlinear strictly NI-Fuzzy, fuzzy-logic control, model predictive control, and conventional PID control, in terms of robustness to disturbances and inestimable faults, trajectory tracking performance, and computational complexity.
Ensuring robust and precise tracking control in the presence of uncertain multi-input-multi-output (MIMO) system dynamics and environmental variations is a significant challenge in the field of robust and adaptive control theory. While fuzzy control strategies have demonstrated good tracking performance in normal conditions, designing and tuning fuzzy controllers can be a challenging task in highly uncertain environments. In this study, we investigate a novel approach that combines robust nonlinear negative-imaginary (NI) systems theory with a self-adaptive fuzzy control scheme and the Lyapunov synthesis to develop a robust adaptive negative-imaginary-fuzzy (RANIF) control scheme. We optimize the critical parameters of the proposed fuzzy system using a self-tuning technique with a proportional-derivative sliding manifold. Furthermore, unlike the existing adaptive fuzzy control methods, we propose a small number of membership functions and systematically derive the fuzzy rules by employing Lyapunov, nonlinear NI, and dissipativity theories, which simplify the tuning process, work out the matter of "explosion of complexity," and reduce computational complexity. We demonstrate the global stability of the closed-loop system using nonlinear NI theory. To evaluate the effectiveness of our proposed approach, we present simulation results for two examples involving uncertain MIMO second-order Euler-Lagrange systems. These systems, known for their capacity to represent a diverse range of practical physical systems, serve as suitable testbeds for our methodology. Our results show that RANIF outperforms other control methods, such as nonlinear strictly NI-Fuzzy, fuzzy-logic control, model predictive control, and conventional PID control, in terms of robustness to disturbances and inestimable faults, trajectory tracking performance, and computational complexity.Ensuring robust and precise tracking control in the presence of uncertain multi-input-multi-output (MIMO) system dynamics and environmental variations is a significant challenge in the field of robust and adaptive control theory. While fuzzy control strategies have demonstrated good tracking performance in normal conditions, designing and tuning fuzzy controllers can be a challenging task in highly uncertain environments. In this study, we investigate a novel approach that combines robust nonlinear negative-imaginary (NI) systems theory with a self-adaptive fuzzy control scheme and the Lyapunov synthesis to develop a robust adaptive negative-imaginary-fuzzy (RANIF) control scheme. We optimize the critical parameters of the proposed fuzzy system using a self-tuning technique with a proportional-derivative sliding manifold. Furthermore, unlike the existing adaptive fuzzy control methods, we propose a small number of membership functions and systematically derive the fuzzy rules by employing Lyapunov, nonlinear NI, and dissipativity theories, which simplify the tuning process, work out the matter of "explosion of complexity," and reduce computational complexity. We demonstrate the global stability of the closed-loop system using nonlinear NI theory. To evaluate the effectiveness of our proposed approach, we present simulation results for two examples involving uncertain MIMO second-order Euler-Lagrange systems. These systems, known for their capacity to represent a diverse range of practical physical systems, serve as suitable testbeds for our methodology. Our results show that RANIF outperforms other control methods, such as nonlinear strictly NI-Fuzzy, fuzzy-logic control, model predictive control, and conventional PID control, in terms of robustness to disturbances and inestimable faults, trajectory tracking performance, and computational complexity.
Author Anavatti, Sreenatha G.
Petersen, Ian R.
Garratt, Matthew A.
Tran, Vu Phi
Mabrok, Mohamed A.
Author_xml – sequence: 1
  givenname: Vu Phi
  orcidid: 0000-0003-4296-6914
  surname: Tran
  fullname: Tran, Vu Phi
  email: phivus2@gmail.com
  organization: School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, Australia
– sequence: 2
  givenname: Mohamed A.
  orcidid: 0000-0003-3638-4424
  surname: Mabrok
  fullname: Mabrok, Mohamed A.
  email: m.a.mabrok@gmail.com
  organization: Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Mathematics Program, Qatar University, Doha, Qatar
– sequence: 3
  givenname: Sreenatha G.
  orcidid: 0000-0002-4754-8191
  surname: Anavatti
  fullname: Anavatti, Sreenatha G.
  email: s.anavatti@unsw.edu.au
  organization: School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, Australia
– sequence: 4
  givenname: Matthew A.
  orcidid: 0000-0003-0222-430X
  surname: Garratt
  fullname: Garratt, Matthew A.
  email: m.garratt@unsw.edu.au
  organization: School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, Australia
– sequence: 5
  givenname: Ian R.
  surname: Petersen
  fullname: Petersen, Ian R.
  email: i.r.petersen@gmail.com
  organization: Research School of Electrical Energy and Materials Engineering, ANU College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38427543$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u3CAUhVGVqEnTPEClqmLZjScYjLGX6TR_0iiRmomqriwM1xMqGyaAI03epG8brJmMqi7KBnT5zr1wzgd0YJ0FhD7lZJbnpD5bzn99m1FCixljJee8eIeOaV5WGaWCH-zPpThCpyH8JmlVqVRX79ERq4oEFewY_fnh2jFEfK7lOppnwJfjy8sGz52N3vW4cx7fg3JWZ3deg8cXYw8-W8iVl3YF-H4TIgwB_zTxET9YBT5KY6OBgKXV-LsJcfStTBcBPxuJb53tjQXp8S2s5DQwuxnkyljpN_tmy0dwfvMRHXayD3C620_Qw-XFcn6dLe6ububni0wxSmNWMqZqSauWElK0hWhJ2ymS65JrWtVUANNVTSgruFCiJrzVnep0zkWuKyVUxU7Q123ftXdPI4TYDCYo6HtpwY2hoTWbzBKsTOiXHTq2A-hm7c2QHt682ZmAfAso70Lw0O2RnDRTas2UWjOl1uxSSxrxj0aZmKyZEpCm_6_y81ZpAOCvSemrnNfsFZMPpp0
CODEN ITCEB8
CitedBy_id crossref_primary_10_3390_fractalfract8110662
crossref_primary_10_1016_j_swevo_2024_101615
crossref_primary_10_1002_rnc_7833
crossref_primary_10_1007_s10489_024_06219_x
Cites_doi 10.1109/TCYB.2020.2978003
10.3390/s22010243
10.1016/j.neucom.2016.02.037
10.1016/j.amc.2019.124774
10.1109/TSMC.2020.3030078
10.1109/TCYB.2021.3050475
10.1016/j.isatra.2019.08.063
10.1109/INDIANCC.2016.7441125
10.1109/TAES.2020.3048778
10.1016/j.automatica.2019.108799
10.1109/TIE.2021.3118556
10.1007/s11633-014-0818-1
10.1109/TAC.2022.3200962
10.1007/978-981-19-3394-3_38
10.1109/ICIInfS.2013.6731982
10.1109/TFUZZ.2003.814845
10.1109/TAC.2022.3226703
10.1109/TAC.2008.919567
10.1109/TCYB.2019.2902868
10.1109/TIE.2020.2988219
10.1109/TSMC.2018.2877042
10.1109/TAC.2014.2325692
10.1109/ICEEOT.2016.7754868
10.1109/TCSII.2022.3149886
10.1109/TFUZZ.2020.2973955
10.1109/TAC.2010.2103415
10.1016/j.ifacol.2017.08.839
10.1109/VPPC55846.2022.10003416
10.1109/TAES.2022.3211252
10.1109/TCYB.2018.2794972
10.1109/TIE.2021.3059540
10.1109/TCYB.2022.3175366
10.1109/CDC.2018.8619130
10.23919/CCC52363.2021.9549626
10.1109/SCES.2013.6547577
10.1109/TIE.2020.3026302
10.1016/j.ifacsc.2021.100156
10.1016/j.automatica.2023.111127
10.2514/1.C035160
10.1109/TSMC.2018.2867061
10.1109/tcyb.2023.3263352
10.1109/TFUZZ.2012.2201728
10.1109/TMECH.2016.2614672
10.1007/s00521-020-04977-6
10.1109/tcyb.2023.3234320
10.1007/s40435-022-00960-2
10.1088/1757-899X/263/5/052007
10.1016/j.ifacsc.2020.100117
10.1109/RAAD.2014.7002242
10.1109/TCYB.2022.3204275
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TCYB.2024.3365554
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 5114
ExternalDocumentID 38427543
10_1109_TCYB_2024_3365554
10457559
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Internal funding from UNSW Canberra
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c322t-633c9a28b2004b47b0bfc01d65d28927e3d89023457c7905bdfcfd1571d8c7c83
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 07:02:00 EDT 2025
Wed Feb 19 02:06:49 EST 2025
Thu Apr 24 23:06:10 EDT 2025
Wed Oct 01 01:36:47 EDT 2025
Wed Aug 27 03:03:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-633c9a28b2004b47b0bfc01d65d28927e3d89023457c7905bdfcfd1571d8c7c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4754-8191
0000-0003-0222-430X
0000-0003-3638-4424
0000-0003-4296-6914
PMID 38427543
PQID 2934275736
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2934275736
pubmed_primary_38427543
ieee_primary_10457559
crossref_primary_10_1109_TCYB_2024_3365554
crossref_citationtrail_10_1109_TCYB_2024_3365554
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref9
  doi: 10.1109/TCYB.2020.2978003
– ident: ref31
  doi: 10.3390/s22010243
– ident: ref44
  doi: 10.1016/j.neucom.2016.02.037
– ident: ref27
  doi: 10.1016/j.amc.2019.124774
– ident: ref5
  doi: 10.1109/TSMC.2020.3030078
– ident: ref17
  doi: 10.1109/TCYB.2021.3050475
– ident: ref14
  doi: 10.1016/j.isatra.2019.08.063
– ident: ref37
  doi: 10.1109/INDIANCC.2016.7441125
– ident: ref34
  doi: 10.1109/TAES.2020.3048778
– ident: ref20
  doi: 10.1016/j.automatica.2019.108799
– ident: ref11
  doi: 10.1109/TIE.2021.3118556
– ident: ref46
  doi: 10.1007/s11633-014-0818-1
– ident: ref30
  doi: 10.1109/TAC.2022.3200962
– ident: ref36
  doi: 10.1007/978-981-19-3394-3_38
– ident: ref48
  doi: 10.1109/ICIInfS.2013.6731982
– ident: ref43
  doi: 10.1109/TFUZZ.2003.814845
– ident: ref10
  doi: 10.1109/TAC.2022.3226703
– ident: ref39
  doi: 10.1109/TAC.2008.919567
– ident: ref41
  doi: 10.1109/TCYB.2019.2902868
– ident: ref22
  doi: 10.1109/TIE.2020.2988219
– ident: ref13
  doi: 10.1109/TSMC.2018.2877042
– ident: ref40
  doi: 10.1109/TAC.2014.2325692
– ident: ref47
  doi: 10.1109/ICEEOT.2016.7754868
– ident: ref18
  doi: 10.1109/TCSII.2022.3149886
– ident: ref8
  doi: 10.1109/TFUZZ.2020.2973955
– ident: ref42
  doi: 10.1109/TAC.2010.2103415
– ident: ref25
  doi: 10.1016/j.ifacol.2017.08.839
– ident: ref29
  doi: 10.1109/VPPC55846.2022.10003416
– ident: ref4
  doi: 10.1109/TAES.2022.3211252
– ident: ref3
  doi: 10.1109/TCYB.2018.2794972
– ident: ref12
  doi: 10.1109/TIE.2021.3059540
– ident: ref1
  doi: 10.1109/TCYB.2022.3175366
– ident: ref38
  doi: 10.1109/CDC.2018.8619130
– ident: ref32
  doi: 10.23919/CCC52363.2021.9549626
– ident: ref35
  doi: 10.1109/SCES.2013.6547577
– ident: ref23
  doi: 10.1109/TIE.2020.3026302
– ident: ref2
  doi: 10.1016/j.ifacsc.2021.100156
– ident: ref24
  doi: 10.1016/j.automatica.2023.111127
– ident: ref19
  doi: 10.2514/1.C035160
– ident: ref49
  doi: 10.1109/TSMC.2018.2867061
– ident: ref16
  doi: 10.1109/tcyb.2023.3263352
– ident: ref50
  doi: 10.1109/TFUZZ.2012.2201728
– ident: ref45
  doi: 10.1109/TMECH.2016.2614672
– ident: ref6
  doi: 10.1007/s00521-020-04977-6
– ident: ref15
  doi: 10.1109/tcyb.2023.3234320
– ident: ref26
  doi: 10.1007/s40435-022-00960-2
– ident: ref33
  doi: 10.1088/1757-899X/263/5/052007
– ident: ref21
  doi: 10.1016/j.ifacsc.2020.100117
– ident: ref28
  doi: 10.1109/RAAD.2014.7002242
– ident: ref7
  doi: 10.1109/TCYB.2022.3204275
SSID ssj0000816898
Score 2.426047
Snippet Ensuring robust and precise tracking control in the presence of uncertain multi-input-multi-output (MIMO) system dynamics and environmental variations is a...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5102
SubjectTerms Adaptation models
Adaptive fuzzy control
Adaptive systems
Fuzzy control
Fuzzy logic
MIMO
multi-input–multi-output (MIMO) nonlinear systems
nonlinear strictly negative imaginary (NI) theory
quadcopter unmanned aerial vehicle
robust and adaptive nonlinear control
Robustness
uncertainties
Uncertainty
Title Robust Adaptive Fuzzy Control for Second-Order Euler-Lagrange Systems With Uncertainties and Disturbances via Nonlinear Negative-Imaginary Systems Theory
URI https://ieeexplore.ieee.org/document/10457559
https://www.ncbi.nlm.nih.gov/pubmed/38427543
https://www.proquest.com/docview/2934275736
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RHlAvQKHQBYqMxAGQvHhjO46P7bargmCRoCvKKfIrpaJkq2yC1P0n_Nv6kV0BUhE3R_Ijib-xZ-yZbwBe5K7iRHONMy88mGlSYaWKCtNMy0JLyooYLvZhmh_P2LtTftoHq8dYGOdcdD5zw1CMd_l2brpwVOYlnHntgssN2BBCpmCt9YFKzCARc99mvoC9WiH6W8wRkW9Oxl8PvDWYsSGlOfd76BbcpgXLBGf0jy0p5li5Wd2M287kLkxXL5y8Tb4Pu1YPzfIvLsf__qJ7cKdXQNF-Qsw23HL1fdjuRXyBXvY81K8ewK9Pc90tWrRv1WVYFNGkWy6v0Dg5tyOv7aLPwZy2-GPg70RH3YVr8Ht11oSABdRzoaMv5-03NPOdR9-DwN-KVG3RocdX12gVR_15rtA0kXaoBk3dWaQjx29_hBxKqrlad5aoBHZgNjk6GR_jPpMDNn7BaHFOqZEqK3SQSc2EJroyZGRzbr3BlwlHbbjvpP5nmMAYpm1lKjviYmQLI0xBH8JmPa_dLiDKKWHWZkZyxURllLT-mbCKSG1yYgZAVpNZmp7mPGTbuCijuUNkGaBQBiiUPRQG8Hrd5DJxfPyr8k6Yxt8qphkcwPMVZEovoeHaRdVu3i1Kr1AFnAmaD-BRwtK69QqCj2_o9QlshcGTU9tT2Gybzu15LajVzyL6rwGDfAJm
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6CIcFegMEG5WokHgDJnRvbuTyOsqqDLkjQiu0p8i1jYqRTmiCt_2T_dr6kFSAN8eZItuPE37HPsc_5DsDr2JScSC5xZIUHM0lKLERaYhrJLJUZZakPFzvM4_GMfTziR12wuo-FMcZ45zPTd0V_l6_nqnVHZVbCmdUueHYTbnFrViQhXGt9pOJzSPjst5EtYKtYJN095oBku9Ph8XtrD0asT2nM7S66CbdpyqKEM_rHpuSzrFyvcPqNZ3QP8tWQg7_Jj37byL5a_sXm-N_fdB_udioo2guY2YIbpnoAW52QL9Cbjon67UO4_DKX7aJBe1qcu2URjdrl8gINg3s7svou-uoMao0_OwZPtN-emRpPxEntQhZQx4aOvp0239HMdu69DxyDKxKVRh8swtpaCv_WX6cC5YG2Q9QoNyeekBwf_HRZlER9se4skAlsw2y0Px2OcZfLASu7ZDQ4plRlIkqlk0rJEklkqchAx1xbky9KDNXuxpPan6EcZ5jUpSr1gCcDnapEpXQHNqp5ZR4DopwSpnWkMi5YUiqRaftMWEkyqWKiekBWk1mojujc5ds4K7zBQ7LCQaFwUCg6KPTg3brJeWD5-FflbTeNv1UMM9iDVyvIFFZG3cWLqMy8XRRWpXI4S2jcg0cBS-vWKwg-uabXl3BnPD2cFJOD_NNT2HQDCS5uz2CjqVvz3OpEjXzhJeEKN34Ftw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Adaptive+Fuzzy+Control+for+Second-Order+Euler-Lagrange+Systems+With+Uncertainties+and+Disturbances+via+Nonlinear+Negative-Imaginary+Systems+Theory&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Tran%2C+Vu+Phi&rft.au=Mabrok%2C+Mohamed+A&rft.au=Anavatti%2C+Sreenatha+G&rft.au=Garratt%2C+Matthew+A&rft.date=2024-09-01&rft.eissn=2168-2275&rft.volume=54&rft.issue=9&rft.spage=5102&rft_id=info:doi/10.1109%2FTCYB.2024.3365554&rft_id=info%3Apmid%2F38427543&rft.externalDocID=38427543
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon