Robust Adaptive Fuzzy Control for Second-Order Euler-Lagrange Systems With Uncertainties and Disturbances via Nonlinear Negative-Imaginary Systems Theory
Ensuring robust and precise tracking control in the presence of uncertain multi-input-multi-output (MIMO) system dynamics and environmental variations is a significant challenge in the field of robust and adaptive control theory. While fuzzy control strategies have demonstrated good tracking perform...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 54; no. 9; pp. 5102 - 5114 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2168-2267 2168-2275 2168-2275 |
DOI | 10.1109/TCYB.2024.3365554 |
Cover
Abstract | Ensuring robust and precise tracking control in the presence of uncertain multi-input-multi-output (MIMO) system dynamics and environmental variations is a significant challenge in the field of robust and adaptive control theory. While fuzzy control strategies have demonstrated good tracking performance in normal conditions, designing and tuning fuzzy controllers can be a challenging task in highly uncertain environments. In this study, we investigate a novel approach that combines robust nonlinear negative-imaginary (NI) systems theory with a self-adaptive fuzzy control scheme and the Lyapunov synthesis to develop a robust adaptive negative-imaginary-fuzzy (RANIF) control scheme. We optimize the critical parameters of the proposed fuzzy system using a self-tuning technique with a proportional-derivative sliding manifold. Furthermore, unlike the existing adaptive fuzzy control methods, we propose a small number of membership functions and systematically derive the fuzzy rules by employing Lyapunov, nonlinear NI, and dissipativity theories, which simplify the tuning process, work out the matter of "explosion of complexity," and reduce computational complexity. We demonstrate the global stability of the closed-loop system using nonlinear NI theory. To evaluate the effectiveness of our proposed approach, we present simulation results for two examples involving uncertain MIMO second-order Euler-Lagrange systems. These systems, known for their capacity to represent a diverse range of practical physical systems, serve as suitable testbeds for our methodology. Our results show that RANIF outperforms other control methods, such as nonlinear strictly NI-Fuzzy, fuzzy-logic control, model predictive control, and conventional PID control, in terms of robustness to disturbances and inestimable faults, trajectory tracking performance, and computational complexity. |
---|---|
AbstractList | Ensuring robust and precise tracking control in the presence of uncertain multi-input-multi-output (MIMO) system dynamics and environmental variations is a significant challenge in the field of robust and adaptive control theory. While fuzzy control strategies have demonstrated good tracking performance in normal conditions, designing and tuning fuzzy controllers can be a challenging task in highly uncertain environments. In this study, we investigate a novel approach that combines robust nonlinear negative-imaginary (NI) systems theory with a self-adaptive fuzzy control scheme and the Lyapunov synthesis to develop a robust adaptive negative-imaginary-fuzzy (RANIF) control scheme. We optimize the critical parameters of the proposed fuzzy system using a self-tuning technique with a proportional-derivative sliding manifold. Furthermore, unlike the existing adaptive fuzzy control methods, we propose a small number of membership functions and systematically derive the fuzzy rules by employing Lyapunov, nonlinear NI, and dissipativity theories, which simplify the tuning process, work out the matter of "explosion of complexity," and reduce computational complexity. We demonstrate the global stability of the closed-loop system using nonlinear NI theory. To evaluate the effectiveness of our proposed approach, we present simulation results for two examples involving uncertain MIMO second-order Euler-Lagrange systems. These systems, known for their capacity to represent a diverse range of practical physical systems, serve as suitable testbeds for our methodology. Our results show that RANIF outperforms other control methods, such as nonlinear strictly NI-Fuzzy, fuzzy-logic control, model predictive control, and conventional PID control, in terms of robustness to disturbances and inestimable faults, trajectory tracking performance, and computational complexity. Ensuring robust and precise tracking control in the presence of uncertain multi-input-multi-output (MIMO) system dynamics and environmental variations is a significant challenge in the field of robust and adaptive control theory. While fuzzy control strategies have demonstrated good tracking performance in normal conditions, designing and tuning fuzzy controllers can be a challenging task in highly uncertain environments. In this study, we investigate a novel approach that combines robust nonlinear negative-imaginary (NI) systems theory with a self-adaptive fuzzy control scheme and the Lyapunov synthesis to develop a robust adaptive negative-imaginary-fuzzy (RANIF) control scheme. We optimize the critical parameters of the proposed fuzzy system using a self-tuning technique with a proportional-derivative sliding manifold. Furthermore, unlike the existing adaptive fuzzy control methods, we propose a small number of membership functions and systematically derive the fuzzy rules by employing Lyapunov, nonlinear NI, and dissipativity theories, which simplify the tuning process, work out the matter of "explosion of complexity," and reduce computational complexity. We demonstrate the global stability of the closed-loop system using nonlinear NI theory. To evaluate the effectiveness of our proposed approach, we present simulation results for two examples involving uncertain MIMO second-order Euler-Lagrange systems. These systems, known for their capacity to represent a diverse range of practical physical systems, serve as suitable testbeds for our methodology. Our results show that RANIF outperforms other control methods, such as nonlinear strictly NI-Fuzzy, fuzzy-logic control, model predictive control, and conventional PID control, in terms of robustness to disturbances and inestimable faults, trajectory tracking performance, and computational complexity.Ensuring robust and precise tracking control in the presence of uncertain multi-input-multi-output (MIMO) system dynamics and environmental variations is a significant challenge in the field of robust and adaptive control theory. While fuzzy control strategies have demonstrated good tracking performance in normal conditions, designing and tuning fuzzy controllers can be a challenging task in highly uncertain environments. In this study, we investigate a novel approach that combines robust nonlinear negative-imaginary (NI) systems theory with a self-adaptive fuzzy control scheme and the Lyapunov synthesis to develop a robust adaptive negative-imaginary-fuzzy (RANIF) control scheme. We optimize the critical parameters of the proposed fuzzy system using a self-tuning technique with a proportional-derivative sliding manifold. Furthermore, unlike the existing adaptive fuzzy control methods, we propose a small number of membership functions and systematically derive the fuzzy rules by employing Lyapunov, nonlinear NI, and dissipativity theories, which simplify the tuning process, work out the matter of "explosion of complexity," and reduce computational complexity. We demonstrate the global stability of the closed-loop system using nonlinear NI theory. To evaluate the effectiveness of our proposed approach, we present simulation results for two examples involving uncertain MIMO second-order Euler-Lagrange systems. These systems, known for their capacity to represent a diverse range of practical physical systems, serve as suitable testbeds for our methodology. Our results show that RANIF outperforms other control methods, such as nonlinear strictly NI-Fuzzy, fuzzy-logic control, model predictive control, and conventional PID control, in terms of robustness to disturbances and inestimable faults, trajectory tracking performance, and computational complexity. |
Author | Anavatti, Sreenatha G. Petersen, Ian R. Garratt, Matthew A. Tran, Vu Phi Mabrok, Mohamed A. |
Author_xml | – sequence: 1 givenname: Vu Phi orcidid: 0000-0003-4296-6914 surname: Tran fullname: Tran, Vu Phi email: phivus2@gmail.com organization: School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, Australia – sequence: 2 givenname: Mohamed A. orcidid: 0000-0003-3638-4424 surname: Mabrok fullname: Mabrok, Mohamed A. email: m.a.mabrok@gmail.com organization: Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Mathematics Program, Qatar University, Doha, Qatar – sequence: 3 givenname: Sreenatha G. orcidid: 0000-0002-4754-8191 surname: Anavatti fullname: Anavatti, Sreenatha G. email: s.anavatti@unsw.edu.au organization: School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, Australia – sequence: 4 givenname: Matthew A. orcidid: 0000-0003-0222-430X surname: Garratt fullname: Garratt, Matthew A. email: m.garratt@unsw.edu.au organization: School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, Australia – sequence: 5 givenname: Ian R. surname: Petersen fullname: Petersen, Ian R. email: i.r.petersen@gmail.com organization: Research School of Electrical Energy and Materials Engineering, ANU College of Engineering and Computer Science, The Australian National University, Canberra, ACT, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38427543$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u3CAUhVGVqEnTPEClqmLZjScYjLGX6TR_0iiRmomqriwM1xMqGyaAI03epG8brJmMqi7KBnT5zr1wzgd0YJ0FhD7lZJbnpD5bzn99m1FCixljJee8eIeOaV5WGaWCH-zPpThCpyH8JmlVqVRX79ERq4oEFewY_fnh2jFEfK7lOppnwJfjy8sGz52N3vW4cx7fg3JWZ3deg8cXYw8-W8iVl3YF-H4TIgwB_zTxET9YBT5KY6OBgKXV-LsJcfStTBcBPxuJb53tjQXp8S2s5DQwuxnkyljpN_tmy0dwfvMRHXayD3C620_Qw-XFcn6dLe6ububni0wxSmNWMqZqSauWElK0hWhJ2ymS65JrWtVUANNVTSgruFCiJrzVnep0zkWuKyVUxU7Q123ftXdPI4TYDCYo6HtpwY2hoTWbzBKsTOiXHTq2A-hm7c2QHt682ZmAfAso70Lw0O2RnDRTas2UWjOl1uxSSxrxj0aZmKyZEpCm_6_y81ZpAOCvSemrnNfsFZMPpp0 |
CODEN | ITCEB8 |
CitedBy_id | crossref_primary_10_3390_fractalfract8110662 crossref_primary_10_1016_j_swevo_2024_101615 crossref_primary_10_1002_rnc_7833 crossref_primary_10_1007_s10489_024_06219_x |
Cites_doi | 10.1109/TCYB.2020.2978003 10.3390/s22010243 10.1016/j.neucom.2016.02.037 10.1016/j.amc.2019.124774 10.1109/TSMC.2020.3030078 10.1109/TCYB.2021.3050475 10.1016/j.isatra.2019.08.063 10.1109/INDIANCC.2016.7441125 10.1109/TAES.2020.3048778 10.1016/j.automatica.2019.108799 10.1109/TIE.2021.3118556 10.1007/s11633-014-0818-1 10.1109/TAC.2022.3200962 10.1007/978-981-19-3394-3_38 10.1109/ICIInfS.2013.6731982 10.1109/TFUZZ.2003.814845 10.1109/TAC.2022.3226703 10.1109/TAC.2008.919567 10.1109/TCYB.2019.2902868 10.1109/TIE.2020.2988219 10.1109/TSMC.2018.2877042 10.1109/TAC.2014.2325692 10.1109/ICEEOT.2016.7754868 10.1109/TCSII.2022.3149886 10.1109/TFUZZ.2020.2973955 10.1109/TAC.2010.2103415 10.1016/j.ifacol.2017.08.839 10.1109/VPPC55846.2022.10003416 10.1109/TAES.2022.3211252 10.1109/TCYB.2018.2794972 10.1109/TIE.2021.3059540 10.1109/TCYB.2022.3175366 10.1109/CDC.2018.8619130 10.23919/CCC52363.2021.9549626 10.1109/SCES.2013.6547577 10.1109/TIE.2020.3026302 10.1016/j.ifacsc.2021.100156 10.1016/j.automatica.2023.111127 10.2514/1.C035160 10.1109/TSMC.2018.2867061 10.1109/tcyb.2023.3263352 10.1109/TFUZZ.2012.2201728 10.1109/TMECH.2016.2614672 10.1007/s00521-020-04977-6 10.1109/tcyb.2023.3234320 10.1007/s40435-022-00960-2 10.1088/1757-899X/263/5/052007 10.1016/j.ifacsc.2020.100117 10.1109/RAAD.2014.7002242 10.1109/TCYB.2022.3204275 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TCYB.2024.3365554 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 5114 |
ExternalDocumentID | 38427543 10_1109_TCYB_2024_3365554 10457559 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Internal funding from UNSW Canberra |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7X8 |
ID | FETCH-LOGICAL-c322t-633c9a28b2004b47b0bfc01d65d28927e3d89023457c7905bdfcfd1571d8c7c83 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Sun Sep 28 07:02:00 EDT 2025 Wed Feb 19 02:06:49 EST 2025 Thu Apr 24 23:06:10 EDT 2025 Wed Oct 01 01:36:47 EDT 2025 Wed Aug 27 03:03:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-633c9a28b2004b47b0bfc01d65d28927e3d89023457c7905bdfcfd1571d8c7c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4754-8191 0000-0003-0222-430X 0000-0003-3638-4424 0000-0003-4296-6914 |
PMID | 38427543 |
PQID | 2934275736 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2934275736 pubmed_primary_38427543 ieee_primary_10457559 crossref_primary_10_1109_TCYB_2024_3365554 crossref_citationtrail_10_1109_TCYB_2024_3365554 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref9 doi: 10.1109/TCYB.2020.2978003 – ident: ref31 doi: 10.3390/s22010243 – ident: ref44 doi: 10.1016/j.neucom.2016.02.037 – ident: ref27 doi: 10.1016/j.amc.2019.124774 – ident: ref5 doi: 10.1109/TSMC.2020.3030078 – ident: ref17 doi: 10.1109/TCYB.2021.3050475 – ident: ref14 doi: 10.1016/j.isatra.2019.08.063 – ident: ref37 doi: 10.1109/INDIANCC.2016.7441125 – ident: ref34 doi: 10.1109/TAES.2020.3048778 – ident: ref20 doi: 10.1016/j.automatica.2019.108799 – ident: ref11 doi: 10.1109/TIE.2021.3118556 – ident: ref46 doi: 10.1007/s11633-014-0818-1 – ident: ref30 doi: 10.1109/TAC.2022.3200962 – ident: ref36 doi: 10.1007/978-981-19-3394-3_38 – ident: ref48 doi: 10.1109/ICIInfS.2013.6731982 – ident: ref43 doi: 10.1109/TFUZZ.2003.814845 – ident: ref10 doi: 10.1109/TAC.2022.3226703 – ident: ref39 doi: 10.1109/TAC.2008.919567 – ident: ref41 doi: 10.1109/TCYB.2019.2902868 – ident: ref22 doi: 10.1109/TIE.2020.2988219 – ident: ref13 doi: 10.1109/TSMC.2018.2877042 – ident: ref40 doi: 10.1109/TAC.2014.2325692 – ident: ref47 doi: 10.1109/ICEEOT.2016.7754868 – ident: ref18 doi: 10.1109/TCSII.2022.3149886 – ident: ref8 doi: 10.1109/TFUZZ.2020.2973955 – ident: ref42 doi: 10.1109/TAC.2010.2103415 – ident: ref25 doi: 10.1016/j.ifacol.2017.08.839 – ident: ref29 doi: 10.1109/VPPC55846.2022.10003416 – ident: ref4 doi: 10.1109/TAES.2022.3211252 – ident: ref3 doi: 10.1109/TCYB.2018.2794972 – ident: ref12 doi: 10.1109/TIE.2021.3059540 – ident: ref1 doi: 10.1109/TCYB.2022.3175366 – ident: ref38 doi: 10.1109/CDC.2018.8619130 – ident: ref32 doi: 10.23919/CCC52363.2021.9549626 – ident: ref35 doi: 10.1109/SCES.2013.6547577 – ident: ref23 doi: 10.1109/TIE.2020.3026302 – ident: ref2 doi: 10.1016/j.ifacsc.2021.100156 – ident: ref24 doi: 10.1016/j.automatica.2023.111127 – ident: ref19 doi: 10.2514/1.C035160 – ident: ref49 doi: 10.1109/TSMC.2018.2867061 – ident: ref16 doi: 10.1109/tcyb.2023.3263352 – ident: ref50 doi: 10.1109/TFUZZ.2012.2201728 – ident: ref45 doi: 10.1109/TMECH.2016.2614672 – ident: ref6 doi: 10.1007/s00521-020-04977-6 – ident: ref15 doi: 10.1109/tcyb.2023.3234320 – ident: ref26 doi: 10.1007/s40435-022-00960-2 – ident: ref33 doi: 10.1088/1757-899X/263/5/052007 – ident: ref21 doi: 10.1016/j.ifacsc.2020.100117 – ident: ref28 doi: 10.1109/RAAD.2014.7002242 – ident: ref7 doi: 10.1109/TCYB.2022.3204275 |
SSID | ssj0000816898 |
Score | 2.426047 |
Snippet | Ensuring robust and precise tracking control in the presence of uncertain multi-input-multi-output (MIMO) system dynamics and environmental variations is a... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5102 |
SubjectTerms | Adaptation models Adaptive fuzzy control Adaptive systems Fuzzy control Fuzzy logic MIMO multi-input–multi-output (MIMO) nonlinear systems nonlinear strictly negative imaginary (NI) theory quadcopter unmanned aerial vehicle robust and adaptive nonlinear control Robustness uncertainties Uncertainty |
Title | Robust Adaptive Fuzzy Control for Second-Order Euler-Lagrange Systems With Uncertainties and Disturbances via Nonlinear Negative-Imaginary Systems Theory |
URI | https://ieeexplore.ieee.org/document/10457559 https://www.ncbi.nlm.nih.gov/pubmed/38427543 https://www.proquest.com/docview/2934275736 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RHlAvQKHQBYqMxAGQvHhjO46P7bargmCRoCvKKfIrpaJkq2yC1P0n_Nv6kV0BUhE3R_Ijib-xZ-yZbwBe5K7iRHONMy88mGlSYaWKCtNMy0JLyooYLvZhmh_P2LtTftoHq8dYGOdcdD5zw1CMd_l2brpwVOYlnHntgssN2BBCpmCt9YFKzCARc99mvoC9WiH6W8wRkW9Oxl8PvDWYsSGlOfd76BbcpgXLBGf0jy0p5li5Wd2M287kLkxXL5y8Tb4Pu1YPzfIvLsf__qJ7cKdXQNF-Qsw23HL1fdjuRXyBXvY81K8ewK9Pc90tWrRv1WVYFNGkWy6v0Dg5tyOv7aLPwZy2-GPg70RH3YVr8Ht11oSABdRzoaMv5-03NPOdR9-DwN-KVG3RocdX12gVR_15rtA0kXaoBk3dWaQjx29_hBxKqrlad5aoBHZgNjk6GR_jPpMDNn7BaHFOqZEqK3SQSc2EJroyZGRzbr3BlwlHbbjvpP5nmMAYpm1lKjviYmQLI0xBH8JmPa_dLiDKKWHWZkZyxURllLT-mbCKSG1yYgZAVpNZmp7mPGTbuCijuUNkGaBQBiiUPRQG8Hrd5DJxfPyr8k6Yxt8qphkcwPMVZEovoeHaRdVu3i1Kr1AFnAmaD-BRwtK69QqCj2_o9QlshcGTU9tT2Gybzu15LajVzyL6rwGDfAJm |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6CIcFegMEG5WokHgDJnRvbuTyOsqqDLkjQiu0p8i1jYqRTmiCt_2T_dr6kFSAN8eZItuPE37HPsc_5DsDr2JScSC5xZIUHM0lKLERaYhrJLJUZZakPFzvM4_GMfTziR12wuo-FMcZ45zPTd0V_l6_nqnVHZVbCmdUueHYTbnFrViQhXGt9pOJzSPjst5EtYKtYJN095oBku9Ph8XtrD0asT2nM7S66CbdpyqKEM_rHpuSzrFyvcPqNZ3QP8tWQg7_Jj37byL5a_sXm-N_fdB_udioo2guY2YIbpnoAW52QL9Cbjon67UO4_DKX7aJBe1qcu2URjdrl8gINg3s7svou-uoMao0_OwZPtN-emRpPxEntQhZQx4aOvp0239HMdu69DxyDKxKVRh8swtpaCv_WX6cC5YG2Q9QoNyeekBwf_HRZlER9se4skAlsw2y0Px2OcZfLASu7ZDQ4plRlIkqlk0rJEklkqchAx1xbky9KDNXuxpPan6EcZ5jUpSr1gCcDnapEpXQHNqp5ZR4DopwSpnWkMi5YUiqRaftMWEkyqWKiekBWk1mojujc5ds4K7zBQ7LCQaFwUCg6KPTg3brJeWD5-FflbTeNv1UMM9iDVyvIFFZG3cWLqMy8XRRWpXI4S2jcg0cBS-vWKwg-uabXl3BnPD2cFJOD_NNT2HQDCS5uz2CjqVvz3OpEjXzhJeEKN34Ftw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Adaptive+Fuzzy+Control+for+Second-Order+Euler-Lagrange+Systems+With+Uncertainties+and+Disturbances+via+Nonlinear+Negative-Imaginary+Systems+Theory&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Tran%2C+Vu+Phi&rft.au=Mabrok%2C+Mohamed+A&rft.au=Anavatti%2C+Sreenatha+G&rft.au=Garratt%2C+Matthew+A&rft.date=2024-09-01&rft.eissn=2168-2275&rft.volume=54&rft.issue=9&rft.spage=5102&rft_id=info:doi/10.1109%2FTCYB.2024.3365554&rft_id=info%3Apmid%2F38427543&rft.externalDocID=38427543 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |