Construction of fault diagnosis system for control rod drive mechanism based on knowledge graph and Bayesian inference

Knowledge graph technology has distinct advantages in terms of fault diagnosis. In this study, the control rod drive mechanism (CRDM) of the liquid fuel thorium molten salt reactor (TMSR-LF1) was taken as the research object, and a fault diagnosis system was proposed based on knowledge graph. The su...

Full description

Saved in:
Bibliographic Details
Published inNuclear science and techniques Vol. 34; no. 2; pp. 58 - 75
Main Authors Jiang, Xue-Jun, Zhou, Wen, Hou, Jie
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.02.2023
Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China
University of Chinese Academy of Sciences,Beijing 100049,China%Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China
Subjects
Online AccessGet full text
ISSN1001-8042
2210-3147
DOI10.1007/s41365-023-01173-8

Cover

Abstract Knowledge graph technology has distinct advantages in terms of fault diagnosis. In this study, the control rod drive mechanism (CRDM) of the liquid fuel thorium molten salt reactor (TMSR-LF1) was taken as the research object, and a fault diagnosis system was proposed based on knowledge graph. The subject–relation–object triples are defined based on CRDM unstructured data, including design specification, operation and maintenance manual, alarm list, and other forms of expert experience. In this study, we constructed a fault event ontology model to label the entity and relationship involved in the corpus of CRDM fault events. A three-layer robustly optimized bidirectional encoder representation from transformers (RBT3) pre-training approach combined with a text convolutional neural network (TextCNN) was introduced to facilitate the application of the constructed CRDM fault diagnosis graph database for fault query. The RBT3-TextCNN model along with the Jieba tool is proposed for extracting entities and recognizing the fault query intent simultaneously. Experiments on the dataset collected from TMSR-LF1 CRDM fault diagnosis unstructured data demonstrate that this model has the potential to improve the effect of intent recognition and entity extraction. Additionally, a fault alarm monitoring module was developed based on WebSocket protocol to deliver detailed information about the appeared fault to the operator automatically. Furthermore, the Bayesian inference method combined with the variable elimination algorithm was proposed to enable the development of a relatively intelligent and reliable fault diagnosis system. Finally, a CRDM fault diagnosis Web interface integrated with graph data visualization was constructed, making the CRDM fault diagnosis process intuitive and effective.
AbstractList Knowledge graph technology has distinct advantages in terms of fault diagnosis. In this study, the control rod drive mecha-nism (CRDM) of the liquid fuel thorium molten salt reactor (TMSR-LF1) was taken as the research object, and a fault diagnosis system was proposed based on knowledge graph. The subject–relation–object triples are defined based on CRDM unstructured data, including design specification, operation and maintenance manual, alarm list, and other forms of expert experience. In this study, we constructed a fault event ontology model to label the entity and relationship involved in the corpus of CRDM fault events. A three-layer robustly optimized bidirectional encoder representation from transformers (RBT3) pre-training approach combined with a text convolutional neural network (TextCNN) was introduced to facilitate the application of the constructed CRDM fault diagnosis graph database for fault query. The RBT3-TextCNN model along with the Jieba tool is proposed for extracting entities and recognizing the fault query intent simultaneously. Experiments on the dataset collected from TMSR-LF1 CRDM fault diagnosis unstructured data demonstrate that this model has the potential to improve the effect of intent recognition and entity extraction. Additionally, a fault alarm monitoring module was devel-oped based on WebSocket protocol to deliver detailed information about the appeared fault to the operator automatically. Furthermore, the Bayesian inference method combined with the variable elimination algorithm was proposed to enable the development of a relatively intelligent and reliable fault diagnosis system. Finally, a CRDM fault diagnosis Web interface integrated with graph data visualization was constructed, making the CRDM fault diagnosis process intuitive and effective.
Knowledge graph technology has distinct advantages in terms of fault diagnosis. In this study, the control rod drive mechanism (CRDM) of the liquid fuel thorium molten salt reactor (TMSR-LF1) was taken as the research object, and a fault diagnosis system was proposed based on knowledge graph. The subject–relation–object triples are defined based on CRDM unstructured data, including design specification, operation and maintenance manual, alarm list, and other forms of expert experience. In this study, we constructed a fault event ontology model to label the entity and relationship involved in the corpus of CRDM fault events. A three-layer robustly optimized bidirectional encoder representation from transformers (RBT3) pre-training approach combined with a text convolutional neural network (TextCNN) was introduced to facilitate the application of the constructed CRDM fault diagnosis graph database for fault query. The RBT3-TextCNN model along with the Jieba tool is proposed for extracting entities and recognizing the fault query intent simultaneously. Experiments on the dataset collected from TMSR-LF1 CRDM fault diagnosis unstructured data demonstrate that this model has the potential to improve the effect of intent recognition and entity extraction. Additionally, a fault alarm monitoring module was developed based on WebSocket protocol to deliver detailed information about the appeared fault to the operator automatically. Furthermore, the Bayesian inference method combined with the variable elimination algorithm was proposed to enable the development of a relatively intelligent and reliable fault diagnosis system. Finally, a CRDM fault diagnosis Web interface integrated with graph data visualization was constructed, making the CRDM fault diagnosis process intuitive and effective.
ArticleNumber 21
Author Jiang, Xue-Jun
Zhou, Wen
Hou, Jie
AuthorAffiliation Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China;University of Chinese Academy of Sciences,Beijing 100049,China%Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China
AuthorAffiliation_xml – name: Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China;University of Chinese Academy of Sciences,Beijing 100049,China%Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China
Author_xml – sequence: 1
  givenname: Xue-Jun
  orcidid: 0000-0002-8598-8593
  surname: Jiang
  fullname: Jiang, Xue-Jun
  organization: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Wen
  surname: Zhou
  fullname: Zhou, Wen
  organization: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Jie
  surname: Hou
  fullname: Hou, Jie
  email: houjie@sinap.ac.cn
  organization: Shanghai Institute of Applied Physics, Chinese Academy of Sciences
BookMark eNp9kE1LAzEQQINUsK3-AU85eVvNJGk3e9TiFwhe9Bym2WSbuk0k2Vb6741WEDx4mst7M8ObkFGIwRJyDuwSGKuvsgQxn1WMi4oB1KJSR2TMObBKgKxHZFwoqBST_IRMcl4zJuV81ozJbhFDHtLWDD4GGh11uO0H2nrsQsw-07zPg91QFxM1MQwp9jTFlrbJ7yzdWLPC4POGLjHblpYVbyF-9LbtLO0Svq8ohpbe4N5mj4H64GyywdhTcuywz_bsZ07J693ty-Khenq-f1xcP1VGcD5Uc3BKQFs72QAswdQNk0vVODQzgxwbCUrUYoYKnJXCcHBtg07MDYqlUqXJlFwc9n5gcBg6vY7bFMpFvVpnbXkJxniJUUB1AE2KOSfrtPEDfkUZEvpeA9NfofUhtC6e_g6tVVH5H_U9-Q2m_f-SOEi5wKGz6fezf6xPruaUDg
CitedBy_id crossref_primary_10_1016_j_heliyon_2025_e42191
crossref_primary_10_1016_j_net_2025_103588
crossref_primary_10_1016_j_jhydrol_2024_131155
crossref_primary_10_1007_s43684_024_00072_y
crossref_primary_10_3390_act13090339
crossref_primary_10_1007_s41365_024_01400_w
crossref_primary_10_1016_j_jmsy_2024_07_009
Cites_doi 10.1109/TASLP.2021.3124365
10.1016/j.anucene.2015.11.008
10.1007/s41365-021-00982-z
10.1109/TKDE.2019.2891680
10.1016/j.procir.2021.03.041
10.1109/TFUZZ.2016.2587325
10.3389/fncom.2014.00131
10.1016/j.oceaneng.2021.110398
10.3969/j.issn.1006-1355.2019.04.003
10.1017/S0269888919000109
10.1007/s41365-019-0708-x
10.1016/j.conengprac.2020.104637
10.7538/yzk.2016.50.08.1474
10.3389/fenrg.2022.837553
10.1007/s11265-021-01718-3
10.1016/j.cageo.2022.105082
10.1016/j.ress.2022.108525
10.1007/s41365-022-01034-w
10.3182/20131111-3-KR-2043.00032
10.1145/3447772
10.1109/ACCESS.2022.3150409
10.7538/yzk.2017.51.03.0485
10.1007/s10278-007-9065-0
10.1016/j.ijepes.2018.05.029
10.48550/arXiv.1810.04805
10.1109/HealthCom.2017.8210821
10.48550/arXiv.1408.5882
10.1109/PHM-Chongqing.2018.00142
10.48550/arXiv.1902.10909
10.1109/CAC48633.2019.8997001
10.1109/CSCWD49262.2021.9437847
10.1109/IECON48115.2021.9589078
10.1109/ICAICE51518.2020.00096
ContentType Journal Article
Copyright The Author(s), under exclusive licence to China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: The Author(s), under exclusive licence to China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s41365-023-01173-8
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2210-3147
EndPage 75
ExternalDocumentID hjs_e202302004
10_1007_s41365_023_01173_8
GroupedDBID --K
-EM
-SC
-S~
0R~
123
1B1
2B.
2C0
4.4
406
5VR
5XA
5XD
92H
92I
92R
93N
AAAVM
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AALRI
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAXDM
AAXUO
AAYQN
AAYTO
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABWVN
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACRPL
ACZOJ
ADHHG
ADINQ
ADKNI
ADMUD
ADNMO
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AFUIB
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
AVWKF
AXYYD
BGNMA
CAJEC
CCEZO
CEKLB
CHBEP
CS3
CW9
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EO9
FA0
FDB
FERAY
FIGPU
FINBP
FNLPD
FRP
FSGXE
GGCAI
GJIRD
HG6
HZ~
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M41
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
PT4
Q--
RIG
RLLFE
ROL
RSV
SDC
SDG
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TCJ
TGT
TSG
U1G
U5M
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z7Y
Z7Z
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
4A8
PSX
ID FETCH-LOGICAL-c322t-61f831d7f4911b1c7904b89fac5ca2a94183735a81fe43c21fd9af36ca3b88413
ISSN 1001-8042
IngestDate Thu May 29 03:54:31 EDT 2025
Wed Oct 01 02:20:41 EDT 2025
Thu Apr 24 23:02:54 EDT 2025
Fri Feb 21 02:45:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fault diagnosis
Web interface
RBT3-TextCNN
Bayesian inference
CRDM
Knowledge graph
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-61f831d7f4911b1c7904b89fac5ca2a94183735a81fe43c21fd9af36ca3b88413
ORCID 0000-0002-8598-8593
PageCount 18
ParticipantIDs wanfang_journals_hjs_e202302004
crossref_citationtrail_10_1007_s41365_023_01173_8
crossref_primary_10_1007_s41365_023_01173_8
springer_journals_10_1007_s41365_023_01173_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Nuclear science and techniques
PublicationTitleAbbrev NUCL SCI TECH
PublicationTitle_FL Nuclear Science and Techniques
PublicationYear 2023
Publisher Springer Nature Singapore
Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China
University of Chinese Academy of Sciences,Beijing 100049,China%Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China
Publisher_xml – name: Springer Nature Singapore
– name: University of Chinese Academy of Sciences,Beijing 100049,China%Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China
– name: Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China
References Alhassan, Rochman, Vasiliev (CR28) 2022; 33
CR16
CR15
Liu, Ma, Li, Yan, Ma (CR13) 2021; 93
Daniel, Natalya, Mark (CR19) 2007; 20
Kumar, Khamis, Fiorini (CR18) 2019
Liu, Ai, Ayodeji (CR6) 2019; 30
CR11
Qian, Ma (CR4) 2017; 51
Wang, Yang, Su (CR29) 2018; 103
Liu, Wang, Ma (CR14) 2022
Cui, Che, Liu (CR24) 2021; 29
Gu, Yang, Chen (CR32) 2019; 39
Wilhelm, Reimann, Gauchel (CR2) 2021; 99
Agrawal, Panigrahi, Subbarao (CR30) 2017; 25
CR8
Zhang, Li, Luo, Liu, Wang, Li (CR1) 2022; 244
Srinivasan, Scharnagle, Schilling (CR25) 2013; 46
CR9
Zhao, Zhang, Dong (CR7) 2016; 50
Wang, Yang, Seong (CR5) 2016; 88
Li, Li, Gu, Chen (CR3) 2020; 105
CR23
CR22
CR21
Li, Zhang, Tan (CR27) 2021; 32
CR20
Hogan, Blomqvist, Cochez (CR10) 2021; 54
Zhou, Han, Droguett (CR26) 2022; 224
Ma (CR17) 2022
Deng, Wang, Wang (CR12) 2022; 10
Bielza, Larranaga (CR33) 2014; 8
Zhao, Liu, Chen (CR31) 2019; 31
L Zhang (1173_CR1) 2022; 244
LR Daniel (1173_CR19) 2007; 20
Y Zhao (1173_CR7) 2016; 50
VRS Kumar (1173_CR18) 2019
YJ Gu (1173_CR32) 2019; 39
H Liu (1173_CR13) 2021; 93
JD Wang (1173_CR29) 2018; 103
C Bielza (1173_CR33) 2014; 8
HM Zhao (1173_CR31) 2019; 31
1173_CR23
W Li (1173_CR3) 2020; 105
1173_CR22
1173_CR21
V Agrawal (1173_CR30) 2017; 25
1173_CR20
Y Wilhelm (1173_CR2) 2021; 99
XZ Li (1173_CR27) 2021; 32
H Qian (1173_CR4) 2017; 51
1173_CR8
1173_CR9
L Srinivasan (1173_CR25) 2013; 46
XG Ma (1173_CR17) 2022
T Zhou (1173_CR26) 2022; 224
YM Cui (1173_CR24) 2021; 29
LQ Liu (1173_CR14) 2022
JF Deng (1173_CR12) 2022; 10
1173_CR11
E Alhassan (1173_CR28) 2022; 33
A Hogan (1173_CR10) 2021; 54
1173_CR16
YK Liu (1173_CR6) 2019; 30
1173_CR15
WL Wang (1173_CR5) 2016; 88
References_xml – ident: CR22
– volume: 29
  start-page: 3504
  year: 2021
  end-page: 3514
  ident: CR24
  article-title: Pre-training with whole word masking for Chinese BERT
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2021.3124365
– ident: CR16
– volume: 88
  start-page: 252
  year: 2016
  end-page: 264
  ident: CR5
  article-title: Development of a rule-based diagnostic platform on an object-oriented expert system shell
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2015.11.008
– volume: 32
  start-page: 143
  year: 2021
  ident: CR27
  article-title: Fast nuclide identification based on a sequential Bayesian method
  publication-title: Nucl. Sci. Tech.
  doi: 10.1007/s41365-021-00982-z
– volume: 31
  start-page: 2441
  issue: 12
  year: 2019
  end-page: 2445
  ident: CR31
  article-title: An extension to the noisy-or function to resolve the ‘Explaining Away’ deficiency for practical Bayesian network problems
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2891680
– volume: 99
  start-page: 278
  year: 2021
  end-page: 283
  ident: CR2
  article-title: Overview on hybrid approaches to fault detection and diagnosis: combining data-driven, physics-based and knowledge-based models
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.03.041
– volume: 25
  start-page: 934
  issue: 4
  year: 2017
  end-page: 944
  ident: CR30
  article-title: Intelligent decision support system for detection and root cause analysis of faults in coal mills
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2016.2587325
– volume: 8
  start-page: 1662
  year: 2014
  end-page: 5188
  ident: CR33
  article-title: Bayesian networks in neuroscience: a survey
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2014.00131
– volume: 244
  start-page: 110398
  year: 2022
  ident: CR1
  article-title: A novel method for diagnosis and de-noising of control rod drive mechanism within floating nuclear reactor
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.110398
– volume: 39
  start-page: 12
  issue: 4
  year: 2019
  end-page: 19
  ident: CR32
  article-title: Study on intelligent fault diagnosis of steam turbines using fault causality information
  publication-title: Noise Vib. Control.
  doi: 10.3969/j.issn.1006-1355.2019.04.003
– ident: CR8
– year: 2019
  ident: CR18
  article-title: Ontologies for industry 4.0
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S0269888919000109
– ident: CR23
– ident: CR21
– volume: 30
  start-page: 174
  year: 2019
  ident: CR6
  article-title: Enhanced graph-based fault diagnostic system for nuclear power plants
  publication-title: Nucl. Sci. Tech.
  doi: 10.1007/s41365-019-0708-x
– volume: 105
  start-page: 104637
  year: 2020
  ident: CR3
  article-title: Process fault diagnosis with model-and knowledge-based approaches: advances and opportunities
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104637
– volume: 50
  start-page: 1474
  issue: 8
  year: 2016
  ident: CR7
  article-title: Design and implementation of nuclear power plant fault diagnosis expert system based on DUCG
  publication-title: Atom. Energy Sci. Technol.
  doi: 10.7538/yzk.2016.50.08.1474
– year: 2022
  ident: CR14
  article-title: A concurrent fault diagnosis method of transformer based on graph convolutional network and knowledge graph
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2022.837553
– ident: CR15
– volume: 93
  start-page: 1433
  year: 2021
  end-page: 1455
  ident: CR13
  article-title: Machinery fault diagnosis based on deep learning for time series analysis and knowledge graphs
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-021-01718-3
– ident: CR11
– year: 2022
  ident: CR17
  article-title: Knowledge graph construction and application in geosciences: a review
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2022.105082
– ident: CR9
– volume: 224
  start-page: 108525
  year: 2022
  ident: CR26
  article-title: Towards trustworthy machine fault diagnosis: a probabilistic Bayesian deep learning framework
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108525
– volume: 33
  start-page: 50
  year: 2022
  ident: CR28
  article-title: Iterative Bayesian Monte Carlo for nuclear data evaluation
  publication-title: Nucl. Sci. Tech.
  doi: 10.1007/s41365-022-01034-w
– volume: 46
  start-page: 83
  issue: 29
  year: 2013
  end-page: 88
  ident: CR25
  article-title: Analysis of WebSockets as the new age protocol for remote robot tele-operation
  publication-title: IFAC Proc.
  doi: 10.3182/20131111-3-KR-2043.00032
– volume: 54
  start-page: 1
  issue: 4
  year: 2021
  end-page: 37
  ident: CR10
  article-title: Knowledge graphs
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3447772
– volume: 10
  start-page: 17656
  year: 2022
  end-page: 17673
  ident: CR12
  article-title: Research on event logic knowledge graph construction method of robot transmission system fault diagnosis
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2022.3150409
– volume: 51
  start-page: 485
  issue: 3
  year: 2017
  ident: CR4
  article-title: Research on belief rule base of intelligent diagnosis expert system based on event-triggering mechanism in nuclear power plant
  publication-title: Atomic Energy Sci. Technol.
  doi: 10.7538/yzk.2017.51.03.0485
– volume: 20
  start-page: 34
  year: 2007
  end-page: 46
  ident: CR19
  article-title: Protégé: a tool for managing and using terminology in radiology applications
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-007-9065-0
– ident: CR20
– volume: 103
  start-page: 67
  year: 2018
  end-page: 74
  ident: CR29
  article-title: Root-cause analysis of occurring alarms in thermal power plants based on Bayesian networks
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.05.029
– volume: 51
  start-page: 485
  issue: 3
  year: 2017
  ident: 1173_CR4
  publication-title: Atomic Energy Sci. Technol.
  doi: 10.7538/yzk.2017.51.03.0485
– volume: 31
  start-page: 2441
  issue: 12
  year: 2019
  ident: 1173_CR31
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2891680
– ident: 1173_CR22
  doi: 10.48550/arXiv.1810.04805
– ident: 1173_CR20
  doi: 10.1109/HealthCom.2017.8210821
– volume: 105
  start-page: 104637
  year: 2020
  ident: 1173_CR3
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104637
– volume: 103
  start-page: 67
  year: 2018
  ident: 1173_CR29
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2018.05.029
– volume: 39
  start-page: 12
  issue: 4
  year: 2019
  ident: 1173_CR32
  publication-title: Noise Vib. Control.
  doi: 10.3969/j.issn.1006-1355.2019.04.003
– volume: 10
  start-page: 17656
  year: 2022
  ident: 1173_CR12
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2022.3150409
– ident: 1173_CR23
  doi: 10.48550/arXiv.1408.5882
– volume: 99
  start-page: 278
  year: 2021
  ident: 1173_CR2
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.03.041
– ident: 1173_CR9
  doi: 10.1109/PHM-Chongqing.2018.00142
– volume: 54
  start-page: 1
  issue: 4
  year: 2021
  ident: 1173_CR10
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3447772
– volume: 93
  start-page: 1433
  year: 2021
  ident: 1173_CR13
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-021-01718-3
– year: 2022
  ident: 1173_CR17
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2022.105082
– ident: 1173_CR21
  doi: 10.48550/arXiv.1902.10909
– volume: 32
  start-page: 143
  year: 2021
  ident: 1173_CR27
  publication-title: Nucl. Sci. Tech.
  doi: 10.1007/s41365-021-00982-z
– year: 2019
  ident: 1173_CR18
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S0269888919000109
– volume: 88
  start-page: 252
  year: 2016
  ident: 1173_CR5
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2015.11.008
– volume: 30
  start-page: 174
  year: 2019
  ident: 1173_CR6
  publication-title: Nucl. Sci. Tech.
  doi: 10.1007/s41365-019-0708-x
– ident: 1173_CR8
  doi: 10.1109/CAC48633.2019.8997001
– ident: 1173_CR16
  doi: 10.1109/CSCWD49262.2021.9437847
– volume: 46
  start-page: 83
  issue: 29
  year: 2013
  ident: 1173_CR25
  publication-title: IFAC Proc.
  doi: 10.3182/20131111-3-KR-2043.00032
– volume: 20
  start-page: 34
  year: 2007
  ident: 1173_CR19
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-007-9065-0
– volume: 50
  start-page: 1474
  issue: 8
  year: 2016
  ident: 1173_CR7
  publication-title: Atom. Energy Sci. Technol.
  doi: 10.7538/yzk.2016.50.08.1474
– volume: 33
  start-page: 50
  year: 2022
  ident: 1173_CR28
  publication-title: Nucl. Sci. Tech.
  doi: 10.1007/s41365-022-01034-w
– volume: 29
  start-page: 3504
  year: 2021
  ident: 1173_CR24
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2021.3124365
– ident: 1173_CR15
  doi: 10.1109/IECON48115.2021.9589078
– year: 2022
  ident: 1173_CR14
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2022.837553
– volume: 8
  start-page: 1662
  year: 2014
  ident: 1173_CR33
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2014.00131
– volume: 224
  start-page: 108525
  year: 2022
  ident: 1173_CR26
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108525
– volume: 25
  start-page: 934
  issue: 4
  year: 2017
  ident: 1173_CR30
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2016.2587325
– volume: 244
  start-page: 110398
  year: 2022
  ident: 1173_CR1
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.110398
– ident: 1173_CR11
  doi: 10.1109/ICAICE51518.2020.00096
SSID ssj0044659
Score 2.3299136
Snippet Knowledge graph technology has distinct advantages in terms of fault diagnosis. In this study, the control rod drive mechanism (CRDM) of the liquid fuel...
Knowledge graph technology has distinct advantages in terms of fault diagnosis. In this study, the control rod drive mecha-nism (CRDM) of the liquid fuel...
SourceID wanfang
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 58
SubjectTerms Beam Physics
Nuclear Energy
Particle Acceleration and Detection
Particle and Nuclear Physics
Physics
Physics and Astronomy
Title Construction of fault diagnosis system for control rod drive mechanism based on knowledge graph and Bayesian inference
URI https://link.springer.com/article/10.1007/s41365-023-01173-8
https://d.wanfangdata.com.cn/periodical/hjs-e202302004
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2210-3147
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044659
  issn: 1001-8042
  databaseCode: AFBBN
  dateStart: 20160227
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqXSHBAcECYnn6gE8hKE7cxjk2VauqEnvalSouke3YtGhJEW2R4MfyWxg7jptq0fK4RGk8dRrPV8_E_mYGoTdaMK2ENDHX3MRMDnksZZrHdaHESGZa5K7y3PuL0fyKLZbD5WDws8da2u_kO_Xjt3El_6NVuAZ6tVGy_6DZ0ClcgHPQLxxBw3D8Kx3baptd_lfr9Rmxv97Z5VTLnltvfZpmxyTsKOkwX0b1V0sX-qxt0K-tkWEtWW13DcICW-TyWLuNhVJ81y7Qct2FBvb9WTIdkXFCSm5P-NjyJuCkmJDxjExnpJwQDk2c8JKU1DWBWE6mOeGFa2plwmrEcq9JNlvsm2gB9_x42Ddqog-rzT7wfdY6mvuPfskizTqWc7dkaZfCV2J9zIfovG7HfHUcKVtBXNv0LIfYGj_h2dbQS2pzkCVeXvTmcssW4wk7muz9yum6987dztxtAnnvA7TFXG5Yl5ZQsmWOGuiei9I8i_nBlgaG4-rTttL22ZPUpas9TcHqJCfodDwry4vOV7DZ6gq3H-9_qg_rcsGdN25z7Dp1-_Yu2qwxMBg9x-jyAbrv32jwuIXnQzTQzRm618tzeYbu-NF-hL71IYs3BjvI4gBZ3EIWA2SxhywGyGIHWRwgix1kMXQRIIsdZDFAFneQxQGyj9HVbHo5mce-9EeswMLs4hE1PKN1bhgYY0lVXiRM8sIINVQiFQUDS5RnQ8Gp0SxTKTV1IUw2UiKTnMPIPUEnzabRTxGGuUhrxWRNc8qokuDRGnhLlyotuEoTc45oN6qV8nnxbXmW6ypk9HaaqEATldNExc9RFL7zpc0Kc6v0205ZlZ89treKv_YKPUgfw-nZHyWeo7uHP94LdAKK1S_Be97JVx6CvwAOjb43
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+fault+diagnosis+system+for+control+rod+drive+mechanism+based+on+knowledge+graph+and+Bayesian+inference&rft.jtitle=%E6%A0%B8%E6%8A%80%E6%9C%AF%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Xue%3FJun+Jiang&rft.au=Wen+Zhou&rft.au=Jie+Hou&rft.date=2023-02-01&rft.pub=Shanghai+Institute+of+Applied+Physics%2CChinese+Academy+of+Sciences%2CShanghai+201800%2CChina&rft.issn=1001-8042&rft.volume=34&rft.issue=2&rft.spage=58&rft.epage=75&rft_id=info:doi/10.1007%2Fs41365-023-01173-8&rft.externalDocID=hjs_e202302004
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhjs-e%2Fhjs-e.jpg