Misclassification Cost Minimizing Fitness Functions for Genetic Algorithm-Based Artificial Neural Network Classifiers

We study three different approaches to formulate a misclassification cost minimizing genetic algorithm (GA) fitness function for a GA-neural network classifier. These three different approaches include a fitness function that directly minimizes total misclassification cost, a fitness function that u...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of the Operational Research Society Vol. 60; no. 8; pp. 1123 - 1134
Main Author Pendharkar, P.
Format Journal Article
LanguageEnglish
Published London Palgrave Macmillan 01.08.2009
Palgrave Macmillan UK
Subjects
Online AccessGet full text
ISSN0160-5682
1476-9360
DOI10.1057/palgrave.jors.2602641

Cover

Abstract We study three different approaches to formulate a misclassification cost minimizing genetic algorithm (GA) fitness function for a GA-neural network classifier. These three different approaches include a fitness function that directly minimizes total misclassification cost, a fitness function that uses posterior probability for minimizing total misclassification cost and a hybrid fitness function that uses an average value of the first two fitness functions to minimize total misclassification cost. Using simulated data sets representing three different distributions and four different misclassification cost matrices, we test the performance of the three fitness functions on a two-group classification problem. Our results indicate that the posterior probability-based misclassification cost minimizing function and the hybrid fitness function are less prone to training data over fitting, but direct misclassification cost minimizing fitness function provides the lowest overall misclassification cost in training tests. For holdout sample tests, when cost asymmetries are low (less than or equal to a ratio of 1: 2), the hybrid misclassification cost minimizing fitness function yields the best results; however, when cost asymmetries are high (equal or greater than a ratio of 1:4), the total misclassification cost minimizing function provides the best results. We validate our findings using a real-world data on a bankruptcy prediction problem.
AbstractList We study three different approaches to formulate a misclassification cost minimizing genetic algorithm (GA) fitness function for a GA-neural network classifier. These three different approaches include a fitness function that directly minimizes total misclassification cost, a fitness function that uses posterior probability for minimizing total misclassification cost and a hybrid fitness function that uses an average value of the first two fitness functions to minimize total misclassification cost. Using simulated data sets representing three different distributions and four different misclassification cost matrices, we test the performance of the three fitness functions on a two-group classification problem. Our results indicate that the posterior probability-based misclassification cost minimizing function and the hybrid fitness function are less prone to training data over fitting, but direct misclassification cost minimizing fitness function provides the lowest overall misclassification cost in training tests. For holdout sample tests, when cost asymmetries are low (less than or equal to a ratio of 1:2), the hybrid misclassification cost minimizing fitness function yields the best results; however, when cost asymmetries are high (equal or greater than a ratio of 1:4), the total misclassification cost minimizing function provides the best results. We validate our findings using a real-world data on a bankruptcy prediction problem.
Author Pendharkar, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Pendharkar
  fullname: Pendharkar, P.
BookMark eNqFkM9OwkAQhzcGEwF9BJJ9geL-67aNJ2wETUAvem62ZVsXyy7ZWTT69LaAHrx4msPMNzO_b4QG1lmN0ISSKSVxcr1TbePVu55unIcpk4RJQc_QkIpERhmXZICGhEoSxTJlF2gEsCGEZIRmQ7RfGahaBWBqU6lgnMW5g4BXxpqt-TK2wXMTrAbA872t-gHAtfN4oa0OpsKztnHehNdtdKtAr_HMh36VUS1-1Ht_KOHD-Tecn85oD5fovFYt6KtTHaOX-d1zfh8tnxYP-WwZVZyxEMU0YSRNhaQiY1lS66pWMS1TIVQsCV_HvFSiZDzhXKVUxZxnmrCyS58JrVXGxyg-7q28A_C6LnbebJX_LCgpenfFj7uid1ec3HXczR-uMuFgJ3hl2n9peaShu2Yb7bv23tsu6L_g5AhuIDj_-6sgjMiUp_wb37qbLQ
CitedBy_id crossref_primary_10_1007_s10115_024_02070_1
crossref_primary_10_1016_j_eswa_2013_03_009
crossref_primary_10_1016_j_knosys_2013_12_006
crossref_primary_10_3390_w14172615
crossref_primary_10_1111_exsy_12114
crossref_primary_10_1111_exsy_13203
crossref_primary_10_1155_2024_8082372
crossref_primary_10_1016_j_dss_2011_10_007
crossref_primary_10_1016_j_econmod_2013_05_007
crossref_primary_10_1111_exsy_13485
crossref_primary_10_1186_s40537_024_01012_6
crossref_primary_10_1016_j_ejor_2020_01_052
Cites_doi 10.1016/0378-4266(94)90007-8
10.1002/nav.20154
10.1111/j.1540-5915.1998.tb00880.x
10.1016/S0377-2217(01)00085-6
10.2307/2490395
10.1287/ijoc.11.3.278
10.1016/j.neunet.2005.03.010
10.1016/j.dss.2004.07.001
10.1016/S0305-0548(02)00229-0
10.1287/mnsc.38.7.926
10.1007/BF02293687
10.1002/isaf.203
10.1111/j.1540-5915.1999.tb00902.x
10.1109/69.634747
10.1287/isre.11.2.137.11777
10.1111/j.1540-6261.1968.tb00843.x
10.1287/ijoc.9.4.385
10.1287/isre.4.2.111
10.1016/S0167-9236(00)00077-4
10.1016/0167-9236(87)90035-2
10.1613/jair.120
10.1016/0378-4266(77)90017-6
10.1111/j.1467-8640.1989.tb00317.x
10.1109/34.310684
10.1016/0167-9236(86)90001-1
10.1287/isre.8.1.51
10.1016/S0020-7373(87)80053-6
10.1109/5.784219
10.1016/S0305-0483(01)00031-7
ContentType Journal Article
Copyright Copyright 2009 Operational Research Society Ltd
Palgrave Macmillan 2008
Copyright_xml – notice: Copyright 2009 Operational Research Society Ltd
– notice: Palgrave Macmillan 2008
DBID AAYXX
CITATION
DOI 10.1057/palgrave.jors.2602641
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Computer Science
Business
EISSN 1476-9360
EndPage 1134
ExternalDocumentID 10_1057_palgrave_jors_2602641
40206838
GroupedDBID -~X
.DC
0BK
0R~
29L
30N
3R3
4.4
5GY
7RQ
7WY
7X7
88E
8FE
8FG
8FI
8FJ
8FL
8G5
8R4
8R5
AAAZS
AAGDL
AAHIA
AAIAL
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAXLS
AAYOK
AAYZH
ABAWQ
ABBHK
ABJCF
ABJNI
ABKVW
ABLIJ
ABLJU
ABLWH
ABMNI
ABPAQ
ABPPZ
ABUWG
ABXSQ
ABXUL
ABXYU
ABYYQ
ACGFO
ACHJO
ACHQT
ACIWK
ACNCT
ACREN
ACTIO
ACXJH
ADBBV
ADEPB
ADFRT
ADGDI
ADGTB
ADMHG
ADNFJ
ADULT
ADUMR
ADYSH
AEBJH
AECXW
AEISY
AENEX
AEUPB
AEXYK
AEYOC
AFAIT
AFKRA
AFRVT
AFTQD
AGAYW
AGDLA
AGKTX
AHAJD
AHDZW
AHSBF
AIYEW
AJRNO
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMKLP
AMPGV
AMTXH
APTMU
AQRUH
ARAPS
ASMEE
ASPBG
AVWKF
AWYRJ
AXYYD
AZQEC
BENPR
BEZIV
BGLVJ
BKKNO
BLEHA
BPHCQ
BVXVI
CAG
CBXGM
CCCUG
CCKSF
CCPQU
COF
CS3
CYVLN
DGEBU
DU5
DWQXO
EBS
EJD
F5P
FEFRA
FRNLG
FYUFA
GENNL
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUPYA
GUQSH
HCIFZ
HMCUK
IPSME
JAAYA
JAV
JBC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPL
JPPEU
JST
K60
K6V
K6~
K7-
KYCEM
L6V
M0C
M1P
M2O
M4Z
M7S
MS~
N8N
O9-
P2P
P62
PHGZM
PHGZT
PLIJB
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNANH
RNS
ROSJB
RPC
RSV
RTWRZ
SA0
SOJ
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UKHRP
WH7
XSW
ZGOLN
~02
3V.
AJPNJ
AQSKT
CSNOR
GROUPED_ABI_INFORM_COMPLETE
JSODD
M0N
PKN
SNX
VQA
1OL
3EH
AARHV
AAYXX
ABDPE
ACTTO
ADMLS
ADXEU
AEHZU
AEZBV
AFBWG
AFFNX
AGBKS
AGVKY
AGWUF
AGYFW
AI.
AKHJE
AKMBP
ALRRR
BGSSV
CITATION
CYRSC
DAOYK
HGD
HVGLF
H~9
IFELN
LJTGL
NHB
NUSFT
PJZUB
PPXIY
PQGLB
PUEGO
TAJZE
TASJS
VH1
ZCG
ID FETCH-LOGICAL-c322t-517208846149297fecfa51b844a5603d53ba4b23733a81a5339e02b64194eea93
ISSN 0160-5682
IngestDate Wed Oct 01 00:53:23 EDT 2025
Thu Apr 24 23:06:00 EDT 2025
Fri Feb 21 02:43:30 EST 2025
Thu Jun 19 15:20:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords misclassification cost
knowledge discovery
genetic algorithms
classification
data mining
neural networks
Language English
License http://www.springer.com/tdm
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-517208846149297fecfa51b844a5603d53ba4b23733a81a5339e02b64194eea93
PageCount 12
ParticipantIDs crossref_primary_10_1057_palgrave_jors_2602641
crossref_citationtrail_10_1057_palgrave_jors_2602641
springer_journals_10_1057_palgrave_jors_2602641
jstor_primary_40206838
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-08-01
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-01
  day: 01
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle The Journal of the Operational Research Society
PublicationTitleAbbrev J Oper Res Soc
PublicationYear 2009
Publisher Palgrave Macmillan
Palgrave Macmillan UK
Publisher_xml – name: Palgrave Macmillan
– name: Palgrave Macmillan UK
References CIT0030
CIT0010
CIT0032
CIT0031
Dopuch N (CIT0008) 1987; 62
CIT0011
Nunez M (CIT0025) 1991; 6
CIT0035
CIT0016
CIT0015
CIT0037
CIT0018
King RD (CIT0013) 1994
CIT0017
Quinlan JR (CIT0034) 1986; 1
CIT0019
Quinlan JR (CIT0036) 1993
CIT0041
CIT0040
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Hopwood W (CIT0012) 1989; 64
Anderson TW (CIT0004) 1958
CIT0003
CIT0002
CIT0024
CIT0005
CIT0026
CIT0029
CIT0006
CIT0028
CIT0009
Turney PD (CIT0039) 1995; 2
References_xml – ident: CIT0003
  doi: 10.1016/0378-4266(94)90007-8
– ident: CIT0031
  doi: 10.1002/nav.20154
– ident: CIT0006
  doi: 10.1111/j.1540-5915.1998.tb00880.x
– ident: CIT0029
  doi: 10.1016/S0377-2217(01)00085-6
– ident: CIT0026
  doi: 10.2307/2490395
– volume: 62
  start-page: 431
  year: 1987
  ident: CIT0008
  publication-title: Account Rev
– volume: 1
  start-page: 81
  year: 1986
  ident: CIT0034
  publication-title: Mach Learn
– ident: CIT0016
  doi: 10.1287/ijoc.11.3.278
– ident: CIT0010
  doi: 10.1016/j.neunet.2005.03.010
– volume-title: C 4.5: Programs for Machine Learning
  year: 1993
  ident: CIT0036
– ident: CIT0030
  doi: 10.1016/j.dss.2004.07.001
– volume: 64
  start-page: 28
  year: 1989
  ident: CIT0012
  publication-title: Account Rev
– ident: CIT0032
  doi: 10.1016/S0305-0548(02)00229-0
– ident: CIT0037
  doi: 10.1287/mnsc.38.7.926
– ident: CIT0040
  doi: 10.1007/BF02293687
– ident: CIT0024
  doi: 10.1002/isaf.203
– ident: CIT0005
  doi: 10.1111/j.1540-5915.1999.tb00902.x
– ident: CIT0018
  doi: 10.1109/69.634747
– ident: CIT0020
  doi: 10.1287/isre.11.2.137.11777
– volume: 6
  start-page: 231
  year: 1991
  ident: CIT0025
  publication-title: Mach Learn
– ident: CIT0001
  doi: 10.1111/j.1540-6261.1968.tb00843.x
– ident: CIT0023
  doi: 10.1287/ijoc.9.4.385
– ident: CIT0017
  doi: 10.1287/isre.4.2.111
– ident: CIT0015
  doi: 10.1016/S0167-9236(00)00077-4
– volume-title: Machine Intelligence and Inductive Learning
  year: 1994
  ident: CIT0013
– ident: CIT0022
  doi: 10.1016/0167-9236(87)90035-2
– volume: 2
  start-page: 369
  year: 1995
  ident: CIT0039
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.120
– ident: CIT0002
  doi: 10.1016/0378-4266(77)90017-6
– ident: CIT0011
  doi: 10.1111/j.1467-8640.1989.tb00317.x
– ident: CIT0009
  doi: 10.1109/34.310684
– ident: CIT0021
  doi: 10.1016/0167-9236(86)90001-1
– ident: CIT0019
  doi: 10.1287/isre.8.1.51
– ident: CIT0035
  doi: 10.1016/S0020-7373(87)80053-6
– volume-title: An Introduction to Multivariate Statistical Analysis
  year: 1958
  ident: CIT0004
– ident: CIT0041
  doi: 10.1109/5.784219
– ident: CIT0028
  doi: 10.1016/S0305-0483(01)00031-7
SSID ssj0009019
Score 1.9559728
Snippet We study three different approaches to formulate a misclassification cost minimizing genetic algorithm (GA) fitness function for a GA-neural network...
SourceID crossref
springer
jstor
SourceType Enrichment Source
Index Database
Publisher
StartPage 1123
SubjectTerms Artificial neural networks
Bankruptcy
Business and Management
Cost allocation
Cost functions
Data distribution
Datasets
Machine learning
Management
Mathematical functions
Minimization of cost
Operations Research/Decision Theory
Special Issue Paper
Total costs
Title Misclassification Cost Minimizing Fitness Functions for Genetic Algorithm-Based Artificial Neural Network Classifiers
URI https://www.jstor.org/stable/40206838
https://link.springer.com/article/10.1057/palgrave.jors.2602641
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1476-9360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009019
  issn: 0160-5682
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-9360
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0009019
  issn: 0160-5682
  databaseCode: 7X7
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1476-9360
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0009019
  issn: 0160-5682
  databaseCode: BENPR
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1476-9360
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0009019
  issn: 0160-5682
  databaseCode: 8FG
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1476-9360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009019
  issn: 0160-5682
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVEJwABqoCC_tgQOosmt7169jxUMRUoFDKyou1u5mTQ1pUtnOpSd-OrMv22mqQrk4zioeJ54vM-P1t98g9JoGXIKvpUfirPRoLoXHSAk3roKKNGdhSXQ7n6PPyeyEfjqNT0ej3wPW0rrlvri8dl3J_3gVxsCvapXsLTzbGYUB2Af_whY8DNt_8vFR1QhV_Sq6j3GkWDXtvpILOa8uNUeyanUsU-nLcN4UrRAMSi3Uuvixqqv27NxTyWyuBI8qqyihdC71i2aJ77vTWL68K2f7hWULRzb4ciFrN8HoaH2OG9rH4eX8jNW_DLn768bMQ97x3rrJyCTw4sQ0D_KlCaA0TbycmB4BLsLadwZJ2SBcQrFHBqk3DM3E5lZY3-xF7P9c1Y0fqeZZRjRrU0b7SnrrSIf6cXucFs5MocwU1swdtBNBXgjGaOdw9v77t164OdDNYbrf6laBxenBtd9no74xFNeth-y6djl-hB5YD-FDg6BdNJLLCbrr1jxM0EPX2wPbUD9B9wdClRO0a8cb_MbqlL99jNZb8MMKfriHH7bwwx38MMAPW_jhK_DDPfywgR-28MMD-D1BJx8_HL-bebaLhycgWbReDCUypDIKdSCU4mkpRcnikGeUMqi2yTwmnFEekZQQloUMbj9yGUQcLmVOpWQ52UPj5WopnyJMYTjJSxIFyZzyMOQhj1hKZckDnsHuFFF37QthJe5Vp5VFcaPvp8jvDrswGi9_O2BPO7b7tJqESTKSTdGB83Rh40Rzs6lntz33c3Sv_y--QOO2XsuXUBe3_JWF7h_ec8Ns
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Misclassification+cost+minimizing+fitness+functions+for+genetic+algorithm-based+artificial+neural+network+classifiers&rft.jtitle=The+Journal+of+the+Operational+Research+Society&rft.au=Pendharkar%2C+P&rft.date=2009-08-01&rft.issn=0160-5682&rft.eissn=1476-9360&rft.volume=60&rft.issue=8&rft.spage=1123&rft.epage=1134&rft_id=info:doi/10.1057%2Fpalgrave.jors.2602641&rft.externalDBID=n%2Fa&rft.externalDocID=10_1057_palgrave_jors_2602641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-5682&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-5682&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-5682&client=summon