Misclassification Cost Minimizing Fitness Functions for Genetic Algorithm-Based Artificial Neural Network Classifiers
We study three different approaches to formulate a misclassification cost minimizing genetic algorithm (GA) fitness function for a GA-neural network classifier. These three different approaches include a fitness function that directly minimizes total misclassification cost, a fitness function that u...
        Saved in:
      
    
          | Published in | The Journal of the Operational Research Society Vol. 60; no. 8; pp. 1123 - 1134 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Palgrave Macmillan
    
        01.08.2009
     Palgrave Macmillan UK  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0160-5682 1476-9360  | 
| DOI | 10.1057/palgrave.jors.2602641 | 
Cover
| Abstract | We study three different approaches to formulate a misclassification cost minimizing genetic algorithm (GA) fitness function for a GA-neural network classifier. These three different approaches include a fitness function that directly minimizes total misclassification cost, a fitness function that uses posterior probability for minimizing total misclassification cost and a hybrid fitness function that uses an average value of the first two fitness functions to minimize total misclassification cost. Using simulated data sets representing three different distributions and four different misclassification cost matrices, we test the performance of the three fitness functions on a two-group classification problem. Our results indicate that the posterior probability-based misclassification cost minimizing function and the hybrid fitness function are less prone to training data over fitting, but direct misclassification cost minimizing fitness function provides the lowest overall misclassification cost in training tests. For holdout sample tests, when cost asymmetries are low (less than or equal to a ratio of 1: 2), the hybrid misclassification cost minimizing fitness function yields the best results; however, when cost asymmetries are high (equal or greater than a ratio of 1:4), the total misclassification cost minimizing function provides the best results. We validate our findings using a real-world data on a bankruptcy prediction problem. | 
    
|---|---|
| AbstractList | We study three different approaches to formulate a misclassification cost minimizing genetic algorithm (GA) fitness function for a GA-neural network classifier. These three different approaches include a fitness function that directly minimizes total misclassification cost, a fitness function that uses posterior probability for minimizing total misclassification cost and a hybrid fitness function that uses an average value of the first two fitness functions to minimize total misclassification cost. Using simulated data sets representing three different distributions and four different misclassification cost matrices, we test the performance of the three fitness functions on a two-group classification problem. Our results indicate that the posterior probability-based misclassification cost minimizing function and the hybrid fitness function are less prone to training data over fitting, but direct misclassification cost minimizing fitness function provides the lowest overall misclassification cost in training tests. For holdout sample tests, when cost asymmetries are low (less than or equal to a ratio of 1:2), the hybrid misclassification cost minimizing fitness function yields the best results; however, when cost asymmetries are high (equal or greater than a ratio of 1:4), the total misclassification cost minimizing function provides the best results. We validate our findings using a real-world data on a bankruptcy prediction problem. | 
    
| Author | Pendharkar, P. | 
    
| Author_xml | – sequence: 1 givenname: P. surname: Pendharkar fullname: Pendharkar, P.  | 
    
| BookMark | eNqFkM9OwkAQhzcGEwF9BJJ9geL-67aNJ2wETUAvem62ZVsXyy7ZWTT69LaAHrx4msPMNzO_b4QG1lmN0ISSKSVxcr1TbePVu55unIcpk4RJQc_QkIpERhmXZICGhEoSxTJlF2gEsCGEZIRmQ7RfGahaBWBqU6lgnMW5g4BXxpqt-TK2wXMTrAbA872t-gHAtfN4oa0OpsKztnHehNdtdKtAr_HMh36VUS1-1Ht_KOHD-Tecn85oD5fovFYt6KtTHaOX-d1zfh8tnxYP-WwZVZyxEMU0YSRNhaQiY1lS66pWMS1TIVQsCV_HvFSiZDzhXKVUxZxnmrCyS58JrVXGxyg-7q28A_C6LnbebJX_LCgpenfFj7uid1ec3HXczR-uMuFgJ3hl2n9peaShu2Yb7bv23tsu6L_g5AhuIDj_-6sgjMiUp_wb37qbLQ | 
    
| CitedBy_id | crossref_primary_10_1007_s10115_024_02070_1 crossref_primary_10_1016_j_eswa_2013_03_009 crossref_primary_10_1016_j_knosys_2013_12_006 crossref_primary_10_3390_w14172615 crossref_primary_10_1111_exsy_12114 crossref_primary_10_1111_exsy_13203 crossref_primary_10_1155_2024_8082372 crossref_primary_10_1016_j_dss_2011_10_007 crossref_primary_10_1016_j_econmod_2013_05_007 crossref_primary_10_1111_exsy_13485 crossref_primary_10_1186_s40537_024_01012_6 crossref_primary_10_1016_j_ejor_2020_01_052  | 
    
| Cites_doi | 10.1016/0378-4266(94)90007-8 10.1002/nav.20154 10.1111/j.1540-5915.1998.tb00880.x 10.1016/S0377-2217(01)00085-6 10.2307/2490395 10.1287/ijoc.11.3.278 10.1016/j.neunet.2005.03.010 10.1016/j.dss.2004.07.001 10.1016/S0305-0548(02)00229-0 10.1287/mnsc.38.7.926 10.1007/BF02293687 10.1002/isaf.203 10.1111/j.1540-5915.1999.tb00902.x 10.1109/69.634747 10.1287/isre.11.2.137.11777 10.1111/j.1540-6261.1968.tb00843.x 10.1287/ijoc.9.4.385 10.1287/isre.4.2.111 10.1016/S0167-9236(00)00077-4 10.1016/0167-9236(87)90035-2 10.1613/jair.120 10.1016/0378-4266(77)90017-6 10.1111/j.1467-8640.1989.tb00317.x 10.1109/34.310684 10.1016/0167-9236(86)90001-1 10.1287/isre.8.1.51 10.1016/S0020-7373(87)80053-6 10.1109/5.784219 10.1016/S0305-0483(01)00031-7  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright 2009 Operational Research Society Ltd Palgrave Macmillan 2008  | 
    
| Copyright_xml | – notice: Copyright 2009 Operational Research Society Ltd – notice: Palgrave Macmillan 2008  | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1057/palgrave.jors.2602641 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General) Computer Science Business  | 
    
| EISSN | 1476-9360 | 
    
| EndPage | 1134 | 
    
| ExternalDocumentID | 10_1057_palgrave_jors_2602641 40206838  | 
    
| GroupedDBID | -~X .DC 0BK 0R~ 29L 30N 3R3 4.4 5GY 7RQ 7WY 7X7 88E 8FE 8FG 8FI 8FJ 8FL 8G5 8R4 8R5 AAAZS AAGDL AAHIA AAIAL AAJMT AALDU AAMIU AAPUL AAQRR AAXLS AAYOK AAYZH ABAWQ ABBHK ABJCF ABJNI ABKVW ABLIJ ABLJU ABLWH ABMNI ABPAQ ABPPZ ABUWG ABXSQ ABXUL ABXYU ABYYQ ACGFO ACHJO ACHQT ACIWK ACNCT ACREN ACTIO ACXJH ADBBV ADEPB ADFRT ADGDI ADGTB ADMHG ADNFJ ADULT ADUMR ADYSH AEBJH AECXW AEISY AENEX AEUPB AEXYK AEYOC AFAIT AFKRA AFRVT AFTQD AGAYW AGDLA AGKTX AHAJD AHDZW AHSBF AIYEW AJRNO AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AMKLP AMPGV AMTXH APTMU AQRUH ARAPS ASMEE ASPBG AVWKF AWYRJ AXYYD AZQEC BENPR BEZIV BGLVJ BKKNO BLEHA BPHCQ BVXVI CAG CBXGM CCCUG CCKSF CCPQU COF CS3 CYVLN DGEBU DU5 DWQXO EBS EJD F5P FEFRA FRNLG FYUFA GENNL GNUQQ GROUPED_ABI_INFORM_RESEARCH GUPYA GUQSH HCIFZ HMCUK IPSME JAAYA JAV JBC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPL JPPEU JST K60 K6V K6~ K7- KYCEM L6V M0C M1P M2O M4Z M7S MS~ N8N O9- P2P P62 PHGZM PHGZT PLIJB PQBIZ PQBZA PQQKQ PROAC PSQYO PTHSS Q2X RNANH RNS ROSJB RPC RSV RTWRZ SA0 SOJ TBQAZ TDBHL TEN TFL TFT TFW TN5 TTHFI TUROJ U5U UKHRP WH7 XSW ZGOLN ~02 3V. AJPNJ AQSKT CSNOR GROUPED_ABI_INFORM_COMPLETE JSODD M0N PKN SNX VQA 1OL 3EH AARHV AAYXX ABDPE ACTTO ADMLS ADXEU AEHZU AEZBV AFBWG AFFNX AGBKS AGVKY AGWUF AGYFW AI. AKHJE AKMBP ALRRR BGSSV CITATION CYRSC DAOYK HGD HVGLF H~9 IFELN LJTGL NHB NUSFT PJZUB PPXIY PQGLB PUEGO TAJZE TASJS VH1 ZCG  | 
    
| ID | FETCH-LOGICAL-c322t-517208846149297fecfa51b844a5603d53ba4b23733a81a5339e02b64194eea93 | 
    
| ISSN | 0160-5682 | 
    
| IngestDate | Wed Oct 01 00:53:23 EDT 2025 Thu Apr 24 23:06:00 EDT 2025 Fri Feb 21 02:43:30 EST 2025 Thu Jun 19 15:20:15 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Keywords | misclassification cost knowledge discovery genetic algorithms classification data mining neural networks  | 
    
| Language | English | 
    
| License | http://www.springer.com/tdm | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c322t-517208846149297fecfa51b844a5603d53ba4b23733a81a5339e02b64194eea93 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | crossref_primary_10_1057_palgrave_jors_2602641 crossref_citationtrail_10_1057_palgrave_jors_2602641 springer_journals_10_1057_palgrave_jors_2602641 jstor_primary_40206838  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2009-08-01 | 
    
| PublicationDateYYYYMMDD | 2009-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London | 
    
| PublicationTitle | The Journal of the Operational Research Society | 
    
| PublicationTitleAbbrev | J Oper Res Soc | 
    
| PublicationYear | 2009 | 
    
| Publisher | Palgrave Macmillan Palgrave Macmillan UK  | 
    
| Publisher_xml | – name: Palgrave Macmillan – name: Palgrave Macmillan UK  | 
    
| References | CIT0030 CIT0010 CIT0032 CIT0031 Dopuch N (CIT0008) 1987; 62 CIT0011 Nunez M (CIT0025) 1991; 6 CIT0035 CIT0016 CIT0015 CIT0037 CIT0018 King RD (CIT0013) 1994 CIT0017 Quinlan JR (CIT0034) 1986; 1 CIT0019 Quinlan JR (CIT0036) 1993 CIT0041 CIT0040 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Hopwood W (CIT0012) 1989; 64 Anderson TW (CIT0004) 1958 CIT0003 CIT0002 CIT0024 CIT0005 CIT0026 CIT0029 CIT0006 CIT0028 CIT0009 Turney PD (CIT0039) 1995; 2  | 
    
| References_xml | – ident: CIT0003 doi: 10.1016/0378-4266(94)90007-8 – ident: CIT0031 doi: 10.1002/nav.20154 – ident: CIT0006 doi: 10.1111/j.1540-5915.1998.tb00880.x – ident: CIT0029 doi: 10.1016/S0377-2217(01)00085-6 – ident: CIT0026 doi: 10.2307/2490395 – volume: 62 start-page: 431 year: 1987 ident: CIT0008 publication-title: Account Rev – volume: 1 start-page: 81 year: 1986 ident: CIT0034 publication-title: Mach Learn – ident: CIT0016 doi: 10.1287/ijoc.11.3.278 – ident: CIT0010 doi: 10.1016/j.neunet.2005.03.010 – volume-title: C 4.5: Programs for Machine Learning year: 1993 ident: CIT0036 – ident: CIT0030 doi: 10.1016/j.dss.2004.07.001 – volume: 64 start-page: 28 year: 1989 ident: CIT0012 publication-title: Account Rev – ident: CIT0032 doi: 10.1016/S0305-0548(02)00229-0 – ident: CIT0037 doi: 10.1287/mnsc.38.7.926 – ident: CIT0040 doi: 10.1007/BF02293687 – ident: CIT0024 doi: 10.1002/isaf.203 – ident: CIT0005 doi: 10.1111/j.1540-5915.1999.tb00902.x – ident: CIT0018 doi: 10.1109/69.634747 – ident: CIT0020 doi: 10.1287/isre.11.2.137.11777 – volume: 6 start-page: 231 year: 1991 ident: CIT0025 publication-title: Mach Learn – ident: CIT0001 doi: 10.1111/j.1540-6261.1968.tb00843.x – ident: CIT0023 doi: 10.1287/ijoc.9.4.385 – ident: CIT0017 doi: 10.1287/isre.4.2.111 – ident: CIT0015 doi: 10.1016/S0167-9236(00)00077-4 – volume-title: Machine Intelligence and Inductive Learning year: 1994 ident: CIT0013 – ident: CIT0022 doi: 10.1016/0167-9236(87)90035-2 – volume: 2 start-page: 369 year: 1995 ident: CIT0039 publication-title: J Artif Intell Res doi: 10.1613/jair.120 – ident: CIT0002 doi: 10.1016/0378-4266(77)90017-6 – ident: CIT0011 doi: 10.1111/j.1467-8640.1989.tb00317.x – ident: CIT0009 doi: 10.1109/34.310684 – ident: CIT0021 doi: 10.1016/0167-9236(86)90001-1 – ident: CIT0019 doi: 10.1287/isre.8.1.51 – ident: CIT0035 doi: 10.1016/S0020-7373(87)80053-6 – volume-title: An Introduction to Multivariate Statistical Analysis year: 1958 ident: CIT0004 – ident: CIT0041 doi: 10.1109/5.784219 – ident: CIT0028 doi: 10.1016/S0305-0483(01)00031-7  | 
    
| SSID | ssj0009019 | 
    
| Score | 1.9559728 | 
    
| Snippet | We study three different approaches to formulate a misclassification cost minimizing genetic algorithm (GA) fitness function for a GA-neural network... | 
    
| SourceID | crossref springer jstor  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 1123 | 
    
| SubjectTerms | Artificial neural networks Bankruptcy Business and Management Cost allocation Cost functions Data distribution Datasets Machine learning Management Mathematical functions Minimization of cost Operations Research/Decision Theory Special Issue Paper Total costs  | 
    
| Title | Misclassification Cost Minimizing Fitness Functions for Genetic Algorithm-Based Artificial Neural Network Classifiers | 
    
| URI | https://www.jstor.org/stable/40206838 https://link.springer.com/article/10.1057/palgrave.jors.2602641  | 
    
| Volume | 60 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1476-9360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009019 issn: 0160-5682 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-9360 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0009019 issn: 0160-5682 databaseCode: 7X7 dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1476-9360 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0009019 issn: 0160-5682 databaseCode: BENPR dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1476-9360 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0009019 issn: 0160-5682 databaseCode: 8FG dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1476-9360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009019 issn: 0160-5682 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVEJwABqoCC_tgQOosmt7169jxUMRUoFDKyou1u5mTQ1pUtnOpSd-OrMv22mqQrk4zioeJ54vM-P1t98g9JoGXIKvpUfirPRoLoXHSAk3roKKNGdhSXQ7n6PPyeyEfjqNT0ej3wPW0rrlvri8dl3J_3gVxsCvapXsLTzbGYUB2Af_whY8DNt_8vFR1QhV_Sq6j3GkWDXtvpILOa8uNUeyanUsU-nLcN4UrRAMSi3Uuvixqqv27NxTyWyuBI8qqyihdC71i2aJ77vTWL68K2f7hWULRzb4ciFrN8HoaH2OG9rH4eX8jNW_DLn768bMQ97x3rrJyCTw4sQ0D_KlCaA0TbycmB4BLsLadwZJ2SBcQrFHBqk3DM3E5lZY3-xF7P9c1Y0fqeZZRjRrU0b7SnrrSIf6cXucFs5MocwU1swdtBNBXgjGaOdw9v77t164OdDNYbrf6laBxenBtd9no74xFNeth-y6djl-hB5YD-FDg6BdNJLLCbrr1jxM0EPX2wPbUD9B9wdClRO0a8cb_MbqlL99jNZb8MMKfriHH7bwwx38MMAPW_jhK_DDPfywgR-28MMD-D1BJx8_HL-bebaLhycgWbReDCUypDIKdSCU4mkpRcnikGeUMqi2yTwmnFEekZQQloUMbj9yGUQcLmVOpWQ52UPj5WopnyJMYTjJSxIFyZzyMOQhj1hKZckDnsHuFFF37QthJe5Vp5VFcaPvp8jvDrswGi9_O2BPO7b7tJqESTKSTdGB83Rh40Rzs6lntz33c3Sv_y--QOO2XsuXUBe3_JWF7h_ec8Ns | 
    
| linkProvider | Library Specific Holdings | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Misclassification+cost+minimizing+fitness+functions+for+genetic+algorithm-based+artificial+neural+network+classifiers&rft.jtitle=The+Journal+of+the+Operational+Research+Society&rft.au=Pendharkar%2C+P&rft.date=2009-08-01&rft.issn=0160-5682&rft.eissn=1476-9360&rft.volume=60&rft.issue=8&rft.spage=1123&rft.epage=1134&rft_id=info:doi/10.1057%2Fpalgrave.jors.2602641&rft.externalDBID=n%2Fa&rft.externalDocID=10_1057_palgrave_jors_2602641 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-5682&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-5682&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-5682&client=summon |