Observational and numerical characterization of a recurrent arc-shaped front propagating along a coronal fan
Context. Recurrent, arc-shaped intensity disturbances were detected by extreme-ultraviolet channels in an active region. The fronts were observed to propagate along a coronal loop bundle rooted in a small area within a sunspot umbra. Previous works have linked these intensity disturbances to slow ma...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 667; p. A21 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
EDP Sciences
01.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0004-6361 1432-0746 |
DOI | 10.1051/0004-6361/202244454 |
Cover
Abstract | Context.
Recurrent, arc-shaped intensity disturbances were detected by extreme-ultraviolet channels in an active region. The fronts were observed to propagate along a coronal loop bundle rooted in a small area within a sunspot umbra. Previous works have linked these intensity disturbances to slow magnetoacoustic waves that propagate from the lower atmosphere to the corona along the magnetic field.
Aims.
The slow magnetoacoustic waves propagate at the local cusp speed, which is equivalent to the sound speed in a low-
β
-regime plasma. However, the measured propagation speeds from the intensity images are usually smaller as they are subject to projection effects due to the inclination of the magnetic field with respect to the line of sight. We aim to understand the effect of projection by comparing observed speeds with those from a numerical model.
Methods.
Using multi-wavelength data, we determined the periods present in the observations at different heights of the solar atmosphere through Fourier analysis. We calculated the plane-of-sky speeds along one of the loops from the cross-correlation time-lags obtained as a function of distance along the loop. We performed a 2D ideal magnetohydrodynamic simulation of an active region embedded in a stratified atmosphere. We drove slow waves from the photosphere with a three-minute periodicity. Synthetic time–distance maps were generated from the forward-modelled intensities in coronal wavelengths and the projected propagation speeds were calculated.
Results.
The intensity disturbances show a dominant period between 2 and 3 min at different heights of the atmosphere. The apparent propagation speeds calculated for coronal channels exhibit an accelerated pattern with values increasing from 40 to 120 km s
−1
as the distance along the loop rises. The propagation speeds obtained from the synthetic time–distance maps also exhibit accelerated profiles within a similar range of speeds.
Conclusions.
We conclude that the accelerated propagation in our observations is due to the projection effect. |
---|---|
AbstractList | Context. Recurrent, arc-shaped intensity disturbances were detected by extreme-ultraviolet channels in an active region. The fronts were observed to propagate along a coronal loop bundle rooted in a small area within a sunspot umbra. Previous works have linked these intensity disturbances to slow magnetoacoustic waves that propagate from the lower atmosphere to the corona along the magnetic field. Aims. The slow magnetoacoustic waves propagate at the local cusp speed, which is equivalent to the sound speed in a low-β-regime plasma. However, the measured propagation speeds from the intensity images are usually smaller as they are subject to projection effects due to the inclination of the magnetic field with respect to the line of sight. We aim to understand the effect of projection by comparing observed speeds with those from a numerical model. Methods. Using multi-wavelength data, we determined the periods present in the observations at different heights of the solar atmosphere through Fourier analysis. We calculated the plane-of-sky speeds along one of the loops from the cross-correlation time-lags obtained as a function of distance along the loop. We performed a 2D ideal magnetohydrodynamic simulation of an active region embedded in a stratified atmosphere. We drove slow waves from the photosphere with a three-minute periodicity. Synthetic time–distance maps were generated from the forward-modelled intensities in coronal wavelengths and the projected propagation speeds were calculated. Results. The intensity disturbances show a dominant period between 2 and 3 min at different heights of the atmosphere. The apparent propagation speeds calculated for coronal channels exhibit an accelerated pattern with values increasing from 40 to 120 km s−1 as the distance along the loop rises. The propagation speeds obtained from the synthetic time–distance maps also exhibit accelerated profiles within a similar range of speeds. Conclusions. We conclude that the accelerated propagation in our observations is due to the projection effect. Context. Recurrent, arc-shaped intensity disturbances were detected by extreme-ultraviolet channels in an active region. The fronts were observed to propagate along a coronal loop bundle rooted in a small area within a sunspot umbra. Previous works have linked these intensity disturbances to slow magnetoacoustic waves that propagate from the lower atmosphere to the corona along the magnetic field. Aims. The slow magnetoacoustic waves propagate at the local cusp speed, which is equivalent to the sound speed in a low- β -regime plasma. However, the measured propagation speeds from the intensity images are usually smaller as they are subject to projection effects due to the inclination of the magnetic field with respect to the line of sight. We aim to understand the effect of projection by comparing observed speeds with those from a numerical model. Methods. Using multi-wavelength data, we determined the periods present in the observations at different heights of the solar atmosphere through Fourier analysis. We calculated the plane-of-sky speeds along one of the loops from the cross-correlation time-lags obtained as a function of distance along the loop. We performed a 2D ideal magnetohydrodynamic simulation of an active region embedded in a stratified atmosphere. We drove slow waves from the photosphere with a three-minute periodicity. Synthetic time–distance maps were generated from the forward-modelled intensities in coronal wavelengths and the projected propagation speeds were calculated. Results. The intensity disturbances show a dominant period between 2 and 3 min at different heights of the atmosphere. The apparent propagation speeds calculated for coronal channels exhibit an accelerated pattern with values increasing from 40 to 120 km s −1 as the distance along the loop rises. The propagation speeds obtained from the synthetic time–distance maps also exhibit accelerated profiles within a similar range of speeds. Conclusions. We conclude that the accelerated propagation in our observations is due to the projection effect. |
Author | Costa, A. Van Doorsselaere, T. Krishna Prasad, S. Stenborg, G. Esquivel, A. Sieyra, M. V. Riedl, J. M. Khomenko, E. |
Author_xml | – sequence: 1 givenname: M. V. orcidid: 0000-0002-1536-8508 surname: Sieyra fullname: Sieyra, M. V. – sequence: 2 givenname: S. orcidid: 0000-0002-0735-4501 surname: Krishna Prasad fullname: Krishna Prasad, S. – sequence: 3 givenname: G. surname: Stenborg fullname: Stenborg, G. – sequence: 4 givenname: E. orcidid: 0000-0003-3812-620X surname: Khomenko fullname: Khomenko, E. – sequence: 5 givenname: T. orcidid: 0000-0001-9628-4113 surname: Van Doorsselaere fullname: Van Doorsselaere, T. – sequence: 6 givenname: A. surname: Costa fullname: Costa, A. – sequence: 7 givenname: A. surname: Esquivel fullname: Esquivel, A. – sequence: 8 givenname: J. M. surname: Riedl fullname: Riedl, J. M. |
BookMark | eNp9kEtPwzAQhC1UJNrCL-BiiXOoX3GSI6p4SZV6gbO1dZw2VRqHdYIEvx6nRT1w4GJ7Vt-sxjMjk9a3jpBbzu45S_mCMaYSLTVfCCaEUipVF2TKlRQJy5SekOmZuCKzEPZRCp7LKWnWm-DwE_rat9BQaEvaDgeHtY3K7gDB9lF9HwHqKwoUnR0QXdtTQJuEHXSupBX6OOjQd7CNbLul0PjxpNbjcXUF7TW5rKAJ7ub3npP3p8e35UuyWj-_Lh9WiZVC9IlyRc4hBhQZ55uy4hvlqlLoMs-0K9MsL0qZqTTTLI9PsDk4rZ0EoQpI41DOyd1pb8zzMbjQm70fMIYIRmSSaZlrwSNVnCiLPgR0lbF1f_xnj1A3hjMzlmvG6sxYnTmXG73yj7fD-gD49a_rBxoGfos |
CitedBy_id | crossref_primary_10_12737_szf_101202401 crossref_primary_10_1007_s11207_024_02267_1 crossref_primary_10_12737_stp_101202401 |
Cites_doi | 10.1088/0004-637X/799/1/6 10.1007/s11214-020-00770-y 10.1007/s11207-011-9776-8 10.1051/0004-6361/200912132 10.1088/0004-637X/697/2/1674 10.1088/0004-637X/719/1/357 10.1023/A:1005189508371 10.1016/j.ascom.2018.03.002 10.1051/0004-6361/201731916 10.1088/2041-8205/812/1/L15 10.1051/0004-6361/201424701 10.1007/s11207-011-9842-2 10.1006/jcph.1994.1159 10.3847/1538-4357/834/2/103 10.1088/0004-637X/746/2/119 10.1088/0004-637X/779/2/168 10.1051/0004-6361:20041507 10.1051/0004-6361/201218848 10.3847/1538-4357/836/1/18 10.1088/0004-637X/757/2/160 10.1088/0004-637X/756/1/35 10.1007/s11214-021-00849-0 10.1088/0004-637X/706/1/L76 10.1146/annurev-astro-032320-042940 10.3389/fspas.2016.00004 10.1088/0004-637X/797/2/131 10.1088/0004-637X/694/1/573 10.1007/s11207-014-0610-y 10.1006/jcph.1996.0181 10.3847/2041-8205/830/1/L17 10.1088/0004-637X/722/2/1013 10.1051/0004-6361/201220208 10.1002/9781119055006.ch23 10.1051/0004-6361:20020436 10.1023/A:1005225214520 10.1086/520108 10.1086/501450 10.1006/jcph.1996.0244 10.1088/0004-637X/746/2/183 10.1051/0004-6361/200912534 10.1007/s11207-011-9841-3 10.1088/0004-637X/697/2/1384 10.1006/jcph.2001.6887 10.1051/0004-6361/201220548 10.1051/0004-6361/201833048 10.1088/0004-637X/727/1/17 10.1093/mnras/staa1105 10.1088/0004-637X/728/2/84 10.3847/1538-4357/aaf1a9 10.1086/310491 10.1051/0004-6361:20020279 10.3847/1538-4357/ab2466 10.1088/0004-637X/694/1/411 10.3847/1538-4357/ac23c7 10.1086/311460 |
ContentType | Journal Article |
Copyright | 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1051/0004-6361/202244454 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 10_1051_0004_6361_202244454 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 8FD AAFNC AEILP H8D L7M |
ID | FETCH-LOGICAL-c322t-4e981a0212711bdf1b4efd26d876ed5789d3745760889dac8ae66e3a249a56083 |
ISSN | 0004-6361 |
IngestDate | Sun Jun 29 16:22:58 EDT 2025 Wed Oct 01 04:31:45 EDT 2025 Thu Apr 24 23:06:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c322t-4e981a0212711bdf1b4efd26d876ed5789d3745760889dac8ae66e3a249a56083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1536-8508 0000-0003-3812-620X 0000-0002-0735-4501 0000-0001-9628-4113 |
OpenAccessLink | https://www.aanda.org/articles/aa/pdf/2022/11/aa44454-22.pdf |
PQID | 2730638621 |
PQPubID | 1796397 |
ParticipantIDs | proquest_journals_2730638621 crossref_citationtrail_10_1051_0004_6361_202244454 crossref_primary_10_1051_0004_6361_202244454 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2022 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Reznikova (R44) 2012; 746 Marsh (R32) 2006; 643 Yuan (R57) 2012; 543 Sheeley (R48) 2014; 797 DeForest (R14) 1998; 501 Vögler (R54) 2005; 429 Jess (R24) 2013; 779 Reznikova (R43) 2012; 756 Jess (R23) 2012; 746 Misra (R35) 2018; 23 González-Morales (R19) 2019; 870 Hu (R21) 2001; 173 Ofman (R38) 1997; 476 R1 Kobanov (R27) 2013; 554 Banerjee (R2) 2021; 217 Fedun (R15) 2011; 727 De Moortel (R12) 2015; 290 Fleck (R17) 1991; 250 Wang (R56) 2009; 503 Berghmans (R5) 1999; 186 Zurbriggen (R61) 2020; 494 Van Doorsselaere (R52) 2016; 3 Felipe (R16) 2010; 719 Botha (R7) 2011; 728 Krishna Prasad (R29) 2015; 812 Mumford (R36) 2015; 799 De Moortel (R10) 2012; 370 De Moortel (R11) 2002; 387 Berenger (R4) 1996; 127 Wang (R55) 2016; 216 Santamaria (R46) 2015; 577 Zhukov (R60) 2002; 386 De Pontieu (R13) 2010; 722 Khomenko (R26) 2018; 618 Marsh (R33) 2009; 706 Schou (R47) 2012; 275 Bogdan (R6) 2000; 192 R42 Sych (R50) 2009; 505 R49 Tomczyk (R51) 2009; 697 Yuan (R58) 2014; 561 Nakariakov (R37) 2020; 58 González-Morales (R18) 2018; 615 Jess (R22) 2012; 757 Chae (R8) 2017; 836 Krishna Prasad (R28) 2012; 281 Cho (R9) 2019; 879 Lemen (R31) 2012; 275 Khomenko (R25) 2009; 694 Riedl (R45) 2021; 922 Van Doorsselaere (R53) 2020; 216 Parchevsky (R39) 2007; 666 Zhao (R59) 2016; 830 Pesnell (R41) 2012; 275 Marsh (R34) 2009; 697 Parchevsky (R40) 2009; 694 Hu (R20) 1996; 129 Krishna Prasad (R30) 2017; 834 Berenger (R3) 1994; 114 |
References_xml | – volume: 799 start-page: 6 year: 2015 ident: R36 publication-title: ApJ doi: 10.1088/0004-637X/799/1/6 – volume: 216 start-page: 140 year: 2020 ident: R53 publication-title: Space Sci. Rev. doi: 10.1007/s11214-020-00770-y – volume: 275 start-page: 17 year: 2012 ident: R31 publication-title: Sol. Phys. doi: 10.1007/s11207-011-9776-8 – volume: 505 start-page: 791 year: 2009 ident: R50 publication-title: A&A doi: 10.1051/0004-6361/200912132 – volume: 697 start-page: 1674 year: 2009 ident: R34 publication-title: ApJ doi: 10.1088/0004-637X/697/2/1674 – volume: 719 start-page: 357 year: 2010 ident: R16 publication-title: ApJ doi: 10.1088/0004-637X/719/1/357 – volume: 186 start-page: 207 year: 1999 ident: R5 publication-title: Sol. Phys. doi: 10.1023/A:1005189508371 – volume: 23 start-page: 83 year: 2018 ident: R35 publication-title: Astron. Comput. doi: 10.1016/j.ascom.2018.03.002 – volume: 615 start-page: A67 year: 2018 ident: R18 publication-title: A&A doi: 10.1051/0004-6361/201731916 – volume: 812 start-page: L15 year: 2015 ident: R29 publication-title: ApJ doi: 10.1088/2041-8205/812/1/L15 – volume: 577 start-page: A70 year: 2015 ident: R46 publication-title: A&A doi: 10.1051/0004-6361/201424701 – volume: 275 start-page: 229 year: 2012 ident: R47 publication-title: Sol. Phys. doi: 10.1007/s11207-011-9842-2 – ident: R42 – volume: 114 start-page: 185 year: 1994 ident: R3 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1159 – volume: 834 start-page: 103 year: 2017 ident: R30 publication-title: ApJ doi: 10.3847/1538-4357/834/2/103 – volume: 746 start-page: 119 year: 2012 ident: R44 publication-title: ApJ doi: 10.1088/0004-637X/746/2/119 – ident: R49 – volume: 779 start-page: 168 year: 2013 ident: R24 publication-title: ApJ doi: 10.1088/0004-637X/779/2/168 – volume: 429 start-page: 335 year: 2005 ident: R54 publication-title: A&A doi: 10.1051/0004-6361:20041507 – volume: 543 start-page: A9 year: 2012 ident: R57 publication-title: A&A doi: 10.1051/0004-6361/201218848 – ident: R1 – volume: 836 start-page: 18 year: 2017 ident: R8 publication-title: ApJ doi: 10.3847/1538-4357/836/1/18 – volume: 757 start-page: 160 year: 2012 ident: R22 publication-title: ApJ doi: 10.1088/0004-637X/757/2/160 – volume: 756 start-page: 35 year: 2012 ident: R43 publication-title: ApJ doi: 10.1088/0004-637X/756/1/35 – volume: 217 start-page: 76 year: 2021 ident: R2 publication-title: Space Sci. Rev. doi: 10.1007/s11214-021-00849-0 – volume: 706 start-page: L76 year: 2009 ident: R33 publication-title: ApJ doi: 10.1088/0004-637X/706/1/L76 – volume: 58 start-page: 441 year: 2020 ident: R37 publication-title: ARA&A doi: 10.1146/annurev-astro-032320-042940 – volume: 370 start-page: 3193 year: 2012 ident: R10 publication-title: Phil. Trans. Roy. Soc. London Ser. A – volume: 3 start-page: 4 year: 2016 ident: R52 publication-title: Front. Astron. Space Sci. doi: 10.3389/fspas.2016.00004 – volume: 797 start-page: 131 year: 2014 ident: R48 publication-title: ApJ doi: 10.1088/0004-637X/797/2/131 – volume: 694 start-page: 573 year: 2009 ident: R40 publication-title: ApJ doi: 10.1088/0004-637X/694/1/573 – volume: 290 start-page: 399 year: 2015 ident: R12 publication-title: Sol. Phys. doi: 10.1007/s11207-014-0610-y – volume: 127 start-page: 363 year: 1996 ident: R4 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0181 – volume: 830 start-page: L17 year: 2016 ident: R59 publication-title: ApJ doi: 10.3847/2041-8205/830/1/L17 – volume: 722 start-page: 1013 year: 2010 ident: R13 publication-title: ApJ doi: 10.1088/0004-637X/722/2/1013 – volume: 561 start-page: A19 year: 2014 ident: R58 publication-title: A&A doi: 10.1051/0004-6361/201220208 – volume: 216 start-page: 395 year: 2016 ident: R55 publication-title: Geophys. Union Geophys. Monograph Ser. doi: 10.1002/9781119055006.ch23 – volume: 387 start-page: L13 year: 2002 ident: R11 publication-title: A&A doi: 10.1051/0004-6361:20020436 – volume: 192 start-page: 373 year: 2000 ident: R6 publication-title: Sol. Phys. doi: 10.1023/A:1005225214520 – volume: 666 start-page: 547 year: 2007 ident: R39 publication-title: ApJ doi: 10.1086/520108 – volume: 643 start-page: 540 year: 2006 ident: R32 publication-title: ApJ doi: 10.1086/501450 – volume: 129 start-page: 201 year: 1996 ident: R20 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0244 – volume: 746 start-page: 183 year: 2012 ident: R23 publication-title: ApJ doi: 10.1088/0004-637X/746/2/183 – volume: 503 start-page: L25 year: 2009 ident: R56 publication-title: A&A doi: 10.1051/0004-6361/200912534 – volume: 275 start-page: 3 year: 2012 ident: R41 publication-title: Sol. Phys. doi: 10.1007/s11207-011-9841-3 – volume: 281 start-page: 67 year: 2012 ident: R28 publication-title: Sol. Phys. – volume: 697 start-page: 1384 year: 2009 ident: R51 publication-title: ApJ doi: 10.1088/0004-637X/697/2/1384 – volume: 173 start-page: 455 year: 2001 ident: R21 publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6887 – volume: 554 start-page: A146 year: 2013 ident: R27 publication-title: A&A doi: 10.1051/0004-6361/201220548 – volume: 618 start-page: A87 year: 2018 ident: R26 publication-title: A&A doi: 10.1051/0004-6361/201833048 – volume: 727 start-page: 17 year: 2011 ident: R15 publication-title: ApJ doi: 10.1088/0004-637X/727/1/17 – volume: 494 start-page: 5270 year: 2020 ident: R61 publication-title: MNRAS doi: 10.1093/mnras/staa1105 – volume: 728 start-page: 84 year: 2011 ident: R7 publication-title: ApJ doi: 10.1088/0004-637X/728/2/84 – volume: 870 start-page: 94 year: 2019 ident: R19 publication-title: ApJ doi: 10.3847/1538-4357/aaf1a9 – volume: 476 start-page: L51 year: 1997 ident: R38 publication-title: ApJ doi: 10.1086/310491 – volume: 386 start-page: 653 year: 2002 ident: R60 publication-title: A&A doi: 10.1051/0004-6361:20020279 – volume: 879 start-page: 67 year: 2019 ident: R9 publication-title: ApJ doi: 10.3847/1538-4357/ab2466 – volume: 694 start-page: 411 year: 2009 ident: R25 publication-title: ApJ doi: 10.1088/0004-637X/694/1/411 – volume: 250 start-page: 235 year: 1991 ident: R17 publication-title: A&A – volume: 922 start-page: 225 year: 2021 ident: R45 publication-title: ApJ doi: 10.3847/1538-4357/ac23c7 – volume: 501 start-page: L217 year: 1998 ident: R14 publication-title: ApJ doi: 10.1086/311460 |
SSID | ssj0002183 |
Score | 2.4247503 |
Snippet | Context.
Recurrent, arc-shaped intensity disturbances were detected by extreme-ultraviolet channels in an active region. The fronts were observed to propagate... Context. Recurrent, arc-shaped intensity disturbances were detected by extreme-ultraviolet channels in an active region. The fronts were observed to propagate... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | A21 |
SubjectTerms | Channels Coronal loops Cross correlation Disturbances Fluid flow Fourier analysis Lower atmosphere Magnetic fields Magnetoacoustic waves Magnetohydrodynamic simulation Mathematical models Numerical methods Numerical models Photosphere Propagation Solar atmosphere Sound propagation Sunspots Wave propagation |
Title | Observational and numerical characterization of a recurrent arc-shaped front propagating along a coronal fan |
URI | https://www.proquest.com/docview/2730638621 |
Volume | 667 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAHI databaseName: EDP Open customDbUrl: eissn: 1432-0746 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002183 issn: 0004-6361 databaseCode: GI~ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.edp-open.org/ providerName: EDP |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKEBIvCAZog4H8gHgpyebY8dLHCo0NpAFSN7S3yHZsDVHSaW0f2AM_hF_Lne246UAT4yVK3eQi5b6cz-e77wh5VRWiVEYIpEI0mdDcZNq5InNOFZoJZvc8A9_xR3l0Kj6clWeDwa9e1tJyoXNz9de6kv_RKoyBXrFK9haaTUJhAM5Bv3AEDcPxn3T8SaeYaiz5b5dhB2aKFb2RifkqeYVqeInhdU_IBADP5ufqAhxOhyQGmKkFxkX5NGg1xRZEamiQ3wBLHCOGOrraOQbQZ98Dd5PCXyFC4kO4gUGrF2KYfLU_fDuj4XE-_JInG4_N7VuFlEnzALRJ-m8Crjyg09uhw9Ud58gX8c1Hdw_yfsAC1rosBSw6IywyyQMHe26D3RUck2BjNDIaZhkadUTTOg6V1H-YfLAqIUcyCMUKF_RLhAjk1OsU29emvpSQ6LfiS4Zb8aJGMXUScofcLfalxO4Yh-9_plkeXcuwtArP7RitSrabxnaTkHWvZ33S957MyUPyIC5B6Djg6REZ2HaTbCWd0td03NPoJrn3OZw9JtM1wFFQPk2Ao9cBR2eOKpoAR1eAox5wtAc46gEHl0fAUQDcE3L67uDk7VEW23VkBmaFRSbsqGLKtwxgTDeOaWFdU8gGJlzbwMwwavi-gPUtZtY1ylTKSmm5KsRIgd9d8adko521dotQpkZ7ruQliNOCaaMLyY2rtG0MvGGut0nRvc7aRC57bKkyrW9Q5DZ5k266CFQuN1--0-mpjt_8vAZnH318WbBnt5P2nNxffQs7ZGNxubQvwJ1d6JceV78BuXOZVw |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observational+and+numerical+characterization+of+a+recurrent+arc-shaped+front+propagating+along+a+coronal+fan&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Sieyra%2C+M.+V.&rft.au=Krishna+Prasad%2C+S.&rft.au=Stenborg%2C+G.&rft.au=Khomenko%2C+E.&rft.date=2022-11-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=667&rft.spage=A21&rft_id=info:doi/10.1051%2F0004-6361%2F202244454&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202244454 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |