Observational and numerical characterization of a recurrent arc-shaped front propagating along a coronal fan

Context. Recurrent, arc-shaped intensity disturbances were detected by extreme-ultraviolet channels in an active region. The fronts were observed to propagate along a coronal loop bundle rooted in a small area within a sunspot umbra. Previous works have linked these intensity disturbances to slow ma...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 667; p. A21
Main Authors Sieyra, M. V., Krishna Prasad, S., Stenborg, G., Khomenko, E., Van Doorsselaere, T., Costa, A., Esquivel, A., Riedl, J. M.
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.11.2022
Subjects
Online AccessGet full text
ISSN0004-6361
1432-0746
DOI10.1051/0004-6361/202244454

Cover

Abstract Context. Recurrent, arc-shaped intensity disturbances were detected by extreme-ultraviolet channels in an active region. The fronts were observed to propagate along a coronal loop bundle rooted in a small area within a sunspot umbra. Previous works have linked these intensity disturbances to slow magnetoacoustic waves that propagate from the lower atmosphere to the corona along the magnetic field. Aims. The slow magnetoacoustic waves propagate at the local cusp speed, which is equivalent to the sound speed in a low- β -regime plasma. However, the measured propagation speeds from the intensity images are usually smaller as they are subject to projection effects due to the inclination of the magnetic field with respect to the line of sight. We aim to understand the effect of projection by comparing observed speeds with those from a numerical model. Methods. Using multi-wavelength data, we determined the periods present in the observations at different heights of the solar atmosphere through Fourier analysis. We calculated the plane-of-sky speeds along one of the loops from the cross-correlation time-lags obtained as a function of distance along the loop. We performed a 2D ideal magnetohydrodynamic simulation of an active region embedded in a stratified atmosphere. We drove slow waves from the photosphere with a three-minute periodicity. Synthetic time–distance maps were generated from the forward-modelled intensities in coronal wavelengths and the projected propagation speeds were calculated. Results. The intensity disturbances show a dominant period between 2 and 3 min at different heights of the atmosphere. The apparent propagation speeds calculated for coronal channels exhibit an accelerated pattern with values increasing from 40 to 120 km s −1 as the distance along the loop rises. The propagation speeds obtained from the synthetic time–distance maps also exhibit accelerated profiles within a similar range of speeds. Conclusions. We conclude that the accelerated propagation in our observations is due to the projection effect.
AbstractList Context. Recurrent, arc-shaped intensity disturbances were detected by extreme-ultraviolet channels in an active region. The fronts were observed to propagate along a coronal loop bundle rooted in a small area within a sunspot umbra. Previous works have linked these intensity disturbances to slow magnetoacoustic waves that propagate from the lower atmosphere to the corona along the magnetic field. Aims. The slow magnetoacoustic waves propagate at the local cusp speed, which is equivalent to the sound speed in a low-β-regime plasma. However, the measured propagation speeds from the intensity images are usually smaller as they are subject to projection effects due to the inclination of the magnetic field with respect to the line of sight. We aim to understand the effect of projection by comparing observed speeds with those from a numerical model. Methods. Using multi-wavelength data, we determined the periods present in the observations at different heights of the solar atmosphere through Fourier analysis. We calculated the plane-of-sky speeds along one of the loops from the cross-correlation time-lags obtained as a function of distance along the loop. We performed a 2D ideal magnetohydrodynamic simulation of an active region embedded in a stratified atmosphere. We drove slow waves from the photosphere with a three-minute periodicity. Synthetic time–distance maps were generated from the forward-modelled intensities in coronal wavelengths and the projected propagation speeds were calculated. Results. The intensity disturbances show a dominant period between 2 and 3 min at different heights of the atmosphere. The apparent propagation speeds calculated for coronal channels exhibit an accelerated pattern with values increasing from 40 to 120 km s−1 as the distance along the loop rises. The propagation speeds obtained from the synthetic time–distance maps also exhibit accelerated profiles within a similar range of speeds. Conclusions. We conclude that the accelerated propagation in our observations is due to the projection effect.
Context. Recurrent, arc-shaped intensity disturbances were detected by extreme-ultraviolet channels in an active region. The fronts were observed to propagate along a coronal loop bundle rooted in a small area within a sunspot umbra. Previous works have linked these intensity disturbances to slow magnetoacoustic waves that propagate from the lower atmosphere to the corona along the magnetic field. Aims. The slow magnetoacoustic waves propagate at the local cusp speed, which is equivalent to the sound speed in a low- β -regime plasma. However, the measured propagation speeds from the intensity images are usually smaller as they are subject to projection effects due to the inclination of the magnetic field with respect to the line of sight. We aim to understand the effect of projection by comparing observed speeds with those from a numerical model. Methods. Using multi-wavelength data, we determined the periods present in the observations at different heights of the solar atmosphere through Fourier analysis. We calculated the plane-of-sky speeds along one of the loops from the cross-correlation time-lags obtained as a function of distance along the loop. We performed a 2D ideal magnetohydrodynamic simulation of an active region embedded in a stratified atmosphere. We drove slow waves from the photosphere with a three-minute periodicity. Synthetic time–distance maps were generated from the forward-modelled intensities in coronal wavelengths and the projected propagation speeds were calculated. Results. The intensity disturbances show a dominant period between 2 and 3 min at different heights of the atmosphere. The apparent propagation speeds calculated for coronal channels exhibit an accelerated pattern with values increasing from 40 to 120 km s −1 as the distance along the loop rises. The propagation speeds obtained from the synthetic time–distance maps also exhibit accelerated profiles within a similar range of speeds. Conclusions. We conclude that the accelerated propagation in our observations is due to the projection effect.
Author Costa, A.
Van Doorsselaere, T.
Krishna Prasad, S.
Stenborg, G.
Esquivel, A.
Sieyra, M. V.
Riedl, J. M.
Khomenko, E.
Author_xml – sequence: 1
  givenname: M. V.
  orcidid: 0000-0002-1536-8508
  surname: Sieyra
  fullname: Sieyra, M. V.
– sequence: 2
  givenname: S.
  orcidid: 0000-0002-0735-4501
  surname: Krishna Prasad
  fullname: Krishna Prasad, S.
– sequence: 3
  givenname: G.
  surname: Stenborg
  fullname: Stenborg, G.
– sequence: 4
  givenname: E.
  orcidid: 0000-0003-3812-620X
  surname: Khomenko
  fullname: Khomenko, E.
– sequence: 5
  givenname: T.
  orcidid: 0000-0001-9628-4113
  surname: Van Doorsselaere
  fullname: Van Doorsselaere, T.
– sequence: 6
  givenname: A.
  surname: Costa
  fullname: Costa, A.
– sequence: 7
  givenname: A.
  surname: Esquivel
  fullname: Esquivel, A.
– sequence: 8
  givenname: J. M.
  surname: Riedl
  fullname: Riedl, J. M.
BookMark eNp9kEtPwzAQhC1UJNrCL-BiiXOoX3GSI6p4SZV6gbO1dZw2VRqHdYIEvx6nRT1w4GJ7Vt-sxjMjk9a3jpBbzu45S_mCMaYSLTVfCCaEUipVF2TKlRQJy5SekOmZuCKzEPZRCp7LKWnWm-DwE_rat9BQaEvaDgeHtY3K7gDB9lF9HwHqKwoUnR0QXdtTQJuEHXSupBX6OOjQd7CNbLul0PjxpNbjcXUF7TW5rKAJ7ub3npP3p8e35UuyWj-_Lh9WiZVC9IlyRc4hBhQZ55uy4hvlqlLoMs-0K9MsL0qZqTTTLI9PsDk4rZ0EoQpI41DOyd1pb8zzMbjQm70fMIYIRmSSaZlrwSNVnCiLPgR0lbF1f_xnj1A3hjMzlmvG6sxYnTmXG73yj7fD-gD49a_rBxoGfos
CitedBy_id crossref_primary_10_12737_szf_101202401
crossref_primary_10_1007_s11207_024_02267_1
crossref_primary_10_12737_stp_101202401
Cites_doi 10.1088/0004-637X/799/1/6
10.1007/s11214-020-00770-y
10.1007/s11207-011-9776-8
10.1051/0004-6361/200912132
10.1088/0004-637X/697/2/1674
10.1088/0004-637X/719/1/357
10.1023/A:1005189508371
10.1016/j.ascom.2018.03.002
10.1051/0004-6361/201731916
10.1088/2041-8205/812/1/L15
10.1051/0004-6361/201424701
10.1007/s11207-011-9842-2
10.1006/jcph.1994.1159
10.3847/1538-4357/834/2/103
10.1088/0004-637X/746/2/119
10.1088/0004-637X/779/2/168
10.1051/0004-6361:20041507
10.1051/0004-6361/201218848
10.3847/1538-4357/836/1/18
10.1088/0004-637X/757/2/160
10.1088/0004-637X/756/1/35
10.1007/s11214-021-00849-0
10.1088/0004-637X/706/1/L76
10.1146/annurev-astro-032320-042940
10.3389/fspas.2016.00004
10.1088/0004-637X/797/2/131
10.1088/0004-637X/694/1/573
10.1007/s11207-014-0610-y
10.1006/jcph.1996.0181
10.3847/2041-8205/830/1/L17
10.1088/0004-637X/722/2/1013
10.1051/0004-6361/201220208
10.1002/9781119055006.ch23
10.1051/0004-6361:20020436
10.1023/A:1005225214520
10.1086/520108
10.1086/501450
10.1006/jcph.1996.0244
10.1088/0004-637X/746/2/183
10.1051/0004-6361/200912534
10.1007/s11207-011-9841-3
10.1088/0004-637X/697/2/1384
10.1006/jcph.2001.6887
10.1051/0004-6361/201220548
10.1051/0004-6361/201833048
10.1088/0004-637X/727/1/17
10.1093/mnras/staa1105
10.1088/0004-637X/728/2/84
10.3847/1538-4357/aaf1a9
10.1086/310491
10.1051/0004-6361:20020279
10.3847/1538-4357/ab2466
10.1088/0004-637X/694/1/411
10.3847/1538-4357/ac23c7
10.1086/311460
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1051/0004-6361/202244454
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10_1051_0004_6361_202244454
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
8FD
AAFNC
AEILP
H8D
L7M
ID FETCH-LOGICAL-c322t-4e981a0212711bdf1b4efd26d876ed5789d3745760889dac8ae66e3a249a56083
ISSN 0004-6361
IngestDate Sun Jun 29 16:22:58 EDT 2025
Wed Oct 01 04:31:45 EDT 2025
Thu Apr 24 23:06:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-4e981a0212711bdf1b4efd26d876ed5789d3745760889dac8ae66e3a249a56083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1536-8508
0000-0003-3812-620X
0000-0002-0735-4501
0000-0001-9628-4113
OpenAccessLink https://www.aanda.org/articles/aa/pdf/2022/11/aa44454-22.pdf
PQID 2730638621
PQPubID 1796397
ParticipantIDs proquest_journals_2730638621
crossref_citationtrail_10_1051_0004_6361_202244454
crossref_primary_10_1051_0004_6361_202244454
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2022
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Reznikova (R44) 2012; 746
Marsh (R32) 2006; 643
Yuan (R57) 2012; 543
Sheeley (R48) 2014; 797
DeForest (R14) 1998; 501
Vögler (R54) 2005; 429
Jess (R24) 2013; 779
Reznikova (R43) 2012; 756
Jess (R23) 2012; 746
Misra (R35) 2018; 23
González-Morales (R19) 2019; 870
Hu (R21) 2001; 173
Ofman (R38) 1997; 476
R1
Kobanov (R27) 2013; 554
Banerjee (R2) 2021; 217
Fedun (R15) 2011; 727
De Moortel (R12) 2015; 290
Fleck (R17) 1991; 250
Wang (R56) 2009; 503
Berghmans (R5) 1999; 186
Zurbriggen (R61) 2020; 494
Van Doorsselaere (R52) 2016; 3
Felipe (R16) 2010; 719
Botha (R7) 2011; 728
Krishna Prasad (R29) 2015; 812
Mumford (R36) 2015; 799
De Moortel (R10) 2012; 370
De Moortel (R11) 2002; 387
Berenger (R4) 1996; 127
Wang (R55) 2016; 216
Santamaria (R46) 2015; 577
Zhukov (R60) 2002; 386
De Pontieu (R13) 2010; 722
Khomenko (R26) 2018; 618
Marsh (R33) 2009; 706
Schou (R47) 2012; 275
Bogdan (R6) 2000; 192
R42
Sych (R50) 2009; 505
R49
Tomczyk (R51) 2009; 697
Yuan (R58) 2014; 561
Nakariakov (R37) 2020; 58
González-Morales (R18) 2018; 615
Jess (R22) 2012; 757
Chae (R8) 2017; 836
Krishna Prasad (R28) 2012; 281
Cho (R9) 2019; 879
Lemen (R31) 2012; 275
Khomenko (R25) 2009; 694
Riedl (R45) 2021; 922
Van Doorsselaere (R53) 2020; 216
Parchevsky (R39) 2007; 666
Zhao (R59) 2016; 830
Pesnell (R41) 2012; 275
Marsh (R34) 2009; 697
Parchevsky (R40) 2009; 694
Hu (R20) 1996; 129
Krishna Prasad (R30) 2017; 834
Berenger (R3) 1994; 114
References_xml – volume: 799
  start-page: 6
  year: 2015
  ident: R36
  publication-title: ApJ
  doi: 10.1088/0004-637X/799/1/6
– volume: 216
  start-page: 140
  year: 2020
  ident: R53
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-020-00770-y
– volume: 275
  start-page: 17
  year: 2012
  ident: R31
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-011-9776-8
– volume: 505
  start-page: 791
  year: 2009
  ident: R50
  publication-title: A&A
  doi: 10.1051/0004-6361/200912132
– volume: 697
  start-page: 1674
  year: 2009
  ident: R34
  publication-title: ApJ
  doi: 10.1088/0004-637X/697/2/1674
– volume: 719
  start-page: 357
  year: 2010
  ident: R16
  publication-title: ApJ
  doi: 10.1088/0004-637X/719/1/357
– volume: 186
  start-page: 207
  year: 1999
  ident: R5
  publication-title: Sol. Phys.
  doi: 10.1023/A:1005189508371
– volume: 23
  start-page: 83
  year: 2018
  ident: R35
  publication-title: Astron. Comput.
  doi: 10.1016/j.ascom.2018.03.002
– volume: 615
  start-page: A67
  year: 2018
  ident: R18
  publication-title: A&A
  doi: 10.1051/0004-6361/201731916
– volume: 812
  start-page: L15
  year: 2015
  ident: R29
  publication-title: ApJ
  doi: 10.1088/2041-8205/812/1/L15
– volume: 577
  start-page: A70
  year: 2015
  ident: R46
  publication-title: A&A
  doi: 10.1051/0004-6361/201424701
– volume: 275
  start-page: 229
  year: 2012
  ident: R47
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-011-9842-2
– ident: R42
– volume: 114
  start-page: 185
  year: 1994
  ident: R3
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1159
– volume: 834
  start-page: 103
  year: 2017
  ident: R30
  publication-title: ApJ
  doi: 10.3847/1538-4357/834/2/103
– volume: 746
  start-page: 119
  year: 2012
  ident: R44
  publication-title: ApJ
  doi: 10.1088/0004-637X/746/2/119
– ident: R49
– volume: 779
  start-page: 168
  year: 2013
  ident: R24
  publication-title: ApJ
  doi: 10.1088/0004-637X/779/2/168
– volume: 429
  start-page: 335
  year: 2005
  ident: R54
  publication-title: A&A
  doi: 10.1051/0004-6361:20041507
– volume: 543
  start-page: A9
  year: 2012
  ident: R57
  publication-title: A&A
  doi: 10.1051/0004-6361/201218848
– ident: R1
– volume: 836
  start-page: 18
  year: 2017
  ident: R8
  publication-title: ApJ
  doi: 10.3847/1538-4357/836/1/18
– volume: 757
  start-page: 160
  year: 2012
  ident: R22
  publication-title: ApJ
  doi: 10.1088/0004-637X/757/2/160
– volume: 756
  start-page: 35
  year: 2012
  ident: R43
  publication-title: ApJ
  doi: 10.1088/0004-637X/756/1/35
– volume: 217
  start-page: 76
  year: 2021
  ident: R2
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-021-00849-0
– volume: 706
  start-page: L76
  year: 2009
  ident: R33
  publication-title: ApJ
  doi: 10.1088/0004-637X/706/1/L76
– volume: 58
  start-page: 441
  year: 2020
  ident: R37
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-032320-042940
– volume: 370
  start-page: 3193
  year: 2012
  ident: R10
  publication-title: Phil. Trans. Roy. Soc. London Ser. A
– volume: 3
  start-page: 4
  year: 2016
  ident: R52
  publication-title: Front. Astron. Space Sci.
  doi: 10.3389/fspas.2016.00004
– volume: 797
  start-page: 131
  year: 2014
  ident: R48
  publication-title: ApJ
  doi: 10.1088/0004-637X/797/2/131
– volume: 694
  start-page: 573
  year: 2009
  ident: R40
  publication-title: ApJ
  doi: 10.1088/0004-637X/694/1/573
– volume: 290
  start-page: 399
  year: 2015
  ident: R12
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-014-0610-y
– volume: 127
  start-page: 363
  year: 1996
  ident: R4
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0181
– volume: 830
  start-page: L17
  year: 2016
  ident: R59
  publication-title: ApJ
  doi: 10.3847/2041-8205/830/1/L17
– volume: 722
  start-page: 1013
  year: 2010
  ident: R13
  publication-title: ApJ
  doi: 10.1088/0004-637X/722/2/1013
– volume: 561
  start-page: A19
  year: 2014
  ident: R58
  publication-title: A&A
  doi: 10.1051/0004-6361/201220208
– volume: 216
  start-page: 395
  year: 2016
  ident: R55
  publication-title: Geophys. Union Geophys. Monograph Ser.
  doi: 10.1002/9781119055006.ch23
– volume: 387
  start-page: L13
  year: 2002
  ident: R11
  publication-title: A&A
  doi: 10.1051/0004-6361:20020436
– volume: 192
  start-page: 373
  year: 2000
  ident: R6
  publication-title: Sol. Phys.
  doi: 10.1023/A:1005225214520
– volume: 666
  start-page: 547
  year: 2007
  ident: R39
  publication-title: ApJ
  doi: 10.1086/520108
– volume: 643
  start-page: 540
  year: 2006
  ident: R32
  publication-title: ApJ
  doi: 10.1086/501450
– volume: 129
  start-page: 201
  year: 1996
  ident: R20
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0244
– volume: 746
  start-page: 183
  year: 2012
  ident: R23
  publication-title: ApJ
  doi: 10.1088/0004-637X/746/2/183
– volume: 503
  start-page: L25
  year: 2009
  ident: R56
  publication-title: A&A
  doi: 10.1051/0004-6361/200912534
– volume: 275
  start-page: 3
  year: 2012
  ident: R41
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-011-9841-3
– volume: 281
  start-page: 67
  year: 2012
  ident: R28
  publication-title: Sol. Phys.
– volume: 697
  start-page: 1384
  year: 2009
  ident: R51
  publication-title: ApJ
  doi: 10.1088/0004-637X/697/2/1384
– volume: 173
  start-page: 455
  year: 2001
  ident: R21
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6887
– volume: 554
  start-page: A146
  year: 2013
  ident: R27
  publication-title: A&A
  doi: 10.1051/0004-6361/201220548
– volume: 618
  start-page: A87
  year: 2018
  ident: R26
  publication-title: A&A
  doi: 10.1051/0004-6361/201833048
– volume: 727
  start-page: 17
  year: 2011
  ident: R15
  publication-title: ApJ
  doi: 10.1088/0004-637X/727/1/17
– volume: 494
  start-page: 5270
  year: 2020
  ident: R61
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1105
– volume: 728
  start-page: 84
  year: 2011
  ident: R7
  publication-title: ApJ
  doi: 10.1088/0004-637X/728/2/84
– volume: 870
  start-page: 94
  year: 2019
  ident: R19
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaf1a9
– volume: 476
  start-page: L51
  year: 1997
  ident: R38
  publication-title: ApJ
  doi: 10.1086/310491
– volume: 386
  start-page: 653
  year: 2002
  ident: R60
  publication-title: A&A
  doi: 10.1051/0004-6361:20020279
– volume: 879
  start-page: 67
  year: 2019
  ident: R9
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab2466
– volume: 694
  start-page: 411
  year: 2009
  ident: R25
  publication-title: ApJ
  doi: 10.1088/0004-637X/694/1/411
– volume: 250
  start-page: 235
  year: 1991
  ident: R17
  publication-title: A&A
– volume: 922
  start-page: 225
  year: 2021
  ident: R45
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac23c7
– volume: 501
  start-page: L217
  year: 1998
  ident: R14
  publication-title: ApJ
  doi: 10.1086/311460
SSID ssj0002183
Score 2.4247503
Snippet Context. Recurrent, arc-shaped intensity disturbances were detected by extreme-ultraviolet channels in an active region. The fronts were observed to propagate...
Context. Recurrent, arc-shaped intensity disturbances were detected by extreme-ultraviolet channels in an active region. The fronts were observed to propagate...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage A21
SubjectTerms Channels
Coronal loops
Cross correlation
Disturbances
Fluid flow
Fourier analysis
Lower atmosphere
Magnetic fields
Magnetoacoustic waves
Magnetohydrodynamic simulation
Mathematical models
Numerical methods
Numerical models
Photosphere
Propagation
Solar atmosphere
Sound propagation
Sunspots
Wave propagation
Title Observational and numerical characterization of a recurrent arc-shaped front propagating along a coronal fan
URI https://www.proquest.com/docview/2730638621
Volume 667
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAHI
  databaseName: EDP Open
  customDbUrl:
  eissn: 1432-0746
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002183
  issn: 0004-6361
  databaseCode: GI~
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.edp-open.org/
  providerName: EDP
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELbKEBIvCAZog4H8gHgpyebY8dLHCo0NpAFSN7S3yHZsDVHSaW0f2AM_hF_Lne246UAT4yVK3eQi5b6cz-e77wh5VRWiVEYIpEI0mdDcZNq5InNOFZoJZvc8A9_xR3l0Kj6clWeDwa9e1tJyoXNz9de6kv_RKoyBXrFK9haaTUJhAM5Bv3AEDcPxn3T8SaeYaiz5b5dhB2aKFb2RifkqeYVqeInhdU_IBADP5ufqAhxOhyQGmKkFxkX5NGg1xRZEamiQ3wBLHCOGOrraOQbQZ98Dd5PCXyFC4kO4gUGrF2KYfLU_fDuj4XE-_JInG4_N7VuFlEnzALRJ-m8Crjyg09uhw9Ud58gX8c1Hdw_yfsAC1rosBSw6IywyyQMHe26D3RUck2BjNDIaZhkadUTTOg6V1H-YfLAqIUcyCMUKF_RLhAjk1OsU29emvpSQ6LfiS4Zb8aJGMXUScofcLfalxO4Yh-9_plkeXcuwtArP7RitSrabxnaTkHWvZ33S957MyUPyIC5B6Djg6REZ2HaTbCWd0td03NPoJrn3OZw9JtM1wFFQPk2Ao9cBR2eOKpoAR1eAox5wtAc46gEHl0fAUQDcE3L67uDk7VEW23VkBmaFRSbsqGLKtwxgTDeOaWFdU8gGJlzbwMwwavi-gPUtZtY1ylTKSmm5KsRIgd9d8adko521dotQpkZ7ruQliNOCaaMLyY2rtG0MvGGut0nRvc7aRC57bKkyrW9Q5DZ5k266CFQuN1--0-mpjt_8vAZnH318WbBnt5P2nNxffQs7ZGNxubQvwJ1d6JceV78BuXOZVw
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observational+and+numerical+characterization+of+a+recurrent+arc-shaped+front+propagating+along+a+coronal+fan&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Sieyra%2C+M.+V.&rft.au=Krishna+Prasad%2C+S.&rft.au=Stenborg%2C+G.&rft.au=Khomenko%2C+E.&rft.date=2022-11-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=667&rft.spage=A21&rft_id=info:doi/10.1051%2F0004-6361%2F202244454&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202244454
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon