Motion artifact–controlled micro–brain sensors between hair follicles for persistent augmented reality brain–computer interfaces

Modern brain–computer interfaces (BCI), utilizing electroencephalograms for bidirectional human–machine communication, face significant limitations from movement-vulnerable rigid sensors, inconsistent skin–electrode impedance, and bulky electronics, diminishing the system’s continuous use and portab...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 122; no. 15; p. e2419304122
Main Authors Kim, Hodam, Kim, Ju Hyeon, Lee, Yoon Jae, Lee, Jimin, Han, Hyojeong, Yi, Hoon, Kim, Hyeonseok, Kim, Hojoong, Kang, Tae Woog, Chung, Suyeong, Ban, Seunghyeb, Lee, Byeongjun, Lee, Haran, Im, Chang-Hwan, Cho, Seong J., Sohn, Jung Woo, Yu, Ki Jun, Kang, Tae June, Yeo, Woon-Hong
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 15.04.2025
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2419304122

Cover

Abstract Modern brain–computer interfaces (BCI), utilizing electroencephalograms for bidirectional human–machine communication, face significant limitations from movement-vulnerable rigid sensors, inconsistent skin–electrode impedance, and bulky electronics, diminishing the system’s continuous use and portability. Here, we introduce motion artifact–controlled micro–brain sensors between hair strands, enabling ultralow impedance density on skin contact for long-term usable, persistent BCI with augmented reality (AR). An array of low-profile microstructured electrodes with a highly conductive polymer is seamlessly inserted into the space between hair follicles, offering high-fidelity neural signal capture for up to 12 h while maintaining the lowest contact impedance density (0.03 kΩ·cm −2 ) among reported articles. Implemented wireless BCI, detecting steady-state visually evoked potentials, offers 96.4% accuracy in signal classification with a train-free algorithm even during the subject’s excessive motions, including standing, walking, and running. A demonstration captures this system’s capability, showing AR-based video calling with hands-free controls using brain signals, transforming digital communication. Collectively, this research highlights the pivotal role of integrated sensors and flexible electronics technology in advancing BCI’s applications for interactive digital environments.
AbstractList Modern brain–computer interfaces (BCI), utilizing electroencephalograms for bidirectional human–machine communication, face significant limitations from movement-vulnerable rigid sensors, inconsistent skin–electrode impedance, and bulky electronics, diminishing the system’s continuous use and portability. Here, we introduce motion artifact–controlled micro–brain sensors between hair strands, enabling ultralow impedance density on skin contact for long-term usable, persistent BCI with augmented reality (AR). An array of low-profile microstructured electrodes with a highly conductive polymer is seamlessly inserted into the space between hair follicles, offering high-fidelity neural signal capture for up to 12 h while maintaining the lowest contact impedance density (0.03 kΩ·cm −2 ) among reported articles. Implemented wireless BCI, detecting steady-state visually evoked potentials, offers 96.4% accuracy in signal classification with a train-free algorithm even during the subject’s excessive motions, including standing, walking, and running. A demonstration captures this system’s capability, showing AR-based video calling with hands-free controls using brain signals, transforming digital communication. Collectively, this research highlights the pivotal role of integrated sensors and flexible electronics technology in advancing BCI’s applications for interactive digital environments.
Modern brain-computer interfaces (BCI), utilizing electroencephalograms for bidirectional human-machine communication, face significant limitations from movement-vulnerable rigid sensors, inconsistent skin-electrode impedance, and bulky electronics, diminishing the system's continuous use and portability. Here, we introduce motion artifact-controlled micro-brain sensors between hair strands, enabling ultralow impedance density on skin contact for long-term usable, persistent BCI with augmented reality (AR). An array of low-profile microstructured electrodes with a highly conductive polymer is seamlessly inserted into the space between hair follicles, offering high-fidelity neural signal capture for up to 12 h while maintaining the lowest contact impedance density (0.03 kΩ·cm-2) among reported articles. Implemented wireless BCI, detecting steady-state visually evoked potentials, offers 96.4% accuracy in signal classification with a train-free algorithm even during the subject's excessive motions, including standing, walking, and running. A demonstration captures this system's capability, showing AR-based video calling with hands-free controls using brain signals, transforming digital communication. Collectively, this research highlights the pivotal role of integrated sensors and flexible electronics technology in advancing BCI's applications for interactive digital environments.Modern brain-computer interfaces (BCI), utilizing electroencephalograms for bidirectional human-machine communication, face significant limitations from movement-vulnerable rigid sensors, inconsistent skin-electrode impedance, and bulky electronics, diminishing the system's continuous use and portability. Here, we introduce motion artifact-controlled micro-brain sensors between hair strands, enabling ultralow impedance density on skin contact for long-term usable, persistent BCI with augmented reality (AR). An array of low-profile microstructured electrodes with a highly conductive polymer is seamlessly inserted into the space between hair follicles, offering high-fidelity neural signal capture for up to 12 h while maintaining the lowest contact impedance density (0.03 kΩ·cm-2) among reported articles. Implemented wireless BCI, detecting steady-state visually evoked potentials, offers 96.4% accuracy in signal classification with a train-free algorithm even during the subject's excessive motions, including standing, walking, and running. A demonstration captures this system's capability, showing AR-based video calling with hands-free controls using brain signals, transforming digital communication. Collectively, this research highlights the pivotal role of integrated sensors and flexible electronics technology in advancing BCI's applications for interactive digital environments.
Modern brain-computer interfaces (BCI), utilizing electroencephalograms for bidirectional human-machine communication, face significant limitations from movement-vulnerable rigid sensors, inconsistent skin-electrode impedance, and bulky electronics, diminishing the system's continuous use and portability. Here, we introduce motion artifact-controlled micro-brain sensors between hair strands, enabling ultralow impedance density on skin contact for long-term usable, persistent BCI with augmented reality (AR). An array of low-profile microstructured electrodes with a highly conductive polymer is seamlessly inserted into the space between hair follicles, offering high-fidelity neural signal capture for up to 12 h while maintaining the lowest contact impedance density (0.03 kΩ·cm ) among reported articles. Implemented wireless BCI, detecting steady-state visually evoked potentials, offers 96.4% accuracy in signal classification with a train-free algorithm even during the subject's excessive motions, including standing, walking, and running. A demonstration captures this system's capability, showing AR-based video calling with hands-free controls using brain signals, transforming digital communication. Collectively, this research highlights the pivotal role of integrated sensors and flexible electronics technology in advancing BCI's applications for interactive digital environments.
Modern brain–computer interfaces (BCI), utilizing electroencephalograms for bidirectional human–machine communication, face significant limitations from movement-vulnerable rigid sensors, inconsistent skin–electrode impedance, and bulky electronics, diminishing the system's continuous use and portability. Here, we introduce motion artifact–controlled micro–brain sensors between hair strands, enabling ultralow impedance density on skin contact for long-term usable, persistent BCI with augmented reality (AR). An array of low-profile microstructured electrodes with a highly conductive polymer is seamlessly inserted into the space between hair follicles, offering high-fidelity neural signal capture for up to 12 h while maintaining the lowest contact impedance density (0.03 kΩ·cm−2) among reported articles. Implemented wireless BCI, detecting steady-state visually evoked potentials, offers 96.4% accuracy in signal classification with a train-free algorithm even during the subject's excessive motions, including standing, walking, and running. A demonstration captures this system's capability, showing AR-based video calling with hands-free controls using brain signals, transforming digital communication. Collectively, this research highlights the pivotal role of integrated sensors and flexible electronics technology in advancing BCI's applications for interactive digital environments.
Author Im, Chang-Hwan
Kim, Hojoong
Lee, Byeongjun
Sohn, Jung Woo
Kim, Ju Hyeon
Lee, Jimin
Cho, Seong J.
Yeo, Woon-Hong
Chung, Suyeong
Han, Hyojeong
Kang, Tae June
Kim, Hodam
Lee, Yoon Jae
Yu, Ki Jun
Kang, Tae Woog
Ban, Seunghyeb
Lee, Haran
Kim, Hyeonseok
Yi, Hoon
Author_xml – sequence: 1
  givenname: Hodam
  orcidid: 0000-0003-0439-6236
  surname: Kim
  fullname: Kim, Hodam
– sequence: 2
  givenname: Ju Hyeon
  orcidid: 0000-0001-7703-0468
  surname: Kim
  fullname: Kim, Ju Hyeon
– sequence: 3
  givenname: Yoon Jae
  orcidid: 0000-0002-4159-5966
  surname: Lee
  fullname: Lee, Yoon Jae
– sequence: 4
  givenname: Jimin
  surname: Lee
  fullname: Lee, Jimin
– sequence: 5
  givenname: Hyojeong
  orcidid: 0009-0006-4437-7274
  surname: Han
  fullname: Han, Hyojeong
– sequence: 6
  givenname: Hoon
  surname: Yi
  fullname: Yi, Hoon
– sequence: 7
  givenname: Hyeonseok
  surname: Kim
  fullname: Kim, Hyeonseok
– sequence: 8
  givenname: Hojoong
  surname: Kim
  fullname: Kim, Hojoong
– sequence: 9
  givenname: Tae Woog
  surname: Kang
  fullname: Kang, Tae Woog
– sequence: 10
  givenname: Suyeong
  orcidid: 0009-0008-5801-4647
  surname: Chung
  fullname: Chung, Suyeong
– sequence: 11
  givenname: Seunghyeb
  surname: Ban
  fullname: Ban, Seunghyeb
– sequence: 12
  givenname: Byeongjun
  surname: Lee
  fullname: Lee, Byeongjun
– sequence: 13
  givenname: Haran
  surname: Lee
  fullname: Lee, Haran
– sequence: 14
  givenname: Chang-Hwan
  orcidid: 0000-0003-3795-3318
  surname: Im
  fullname: Im, Chang-Hwan
– sequence: 15
  givenname: Seong J.
  orcidid: 0000-0002-3528-2808
  surname: Cho
  fullname: Cho, Seong J.
– sequence: 16
  givenname: Jung Woo
  surname: Sohn
  fullname: Sohn, Jung Woo
– sequence: 17
  givenname: Ki Jun
  surname: Yu
  fullname: Yu, Ki Jun
– sequence: 18
  givenname: Tae June
  surname: Kang
  fullname: Kang, Tae June
– sequence: 19
  givenname: Woon-Hong
  orcidid: 0000-0002-5526-3882
  surname: Yeo
  fullname: Yeo, Woon-Hong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40193612$$D View this record in MEDLINE/PubMed
BookMark eNpdkctuFTEMhiPUip4W1uxQJDZspnUuc8kSVVCQirqB9ciT40CqmWRIMkLdseIFeEOepOkFkFjZsj__tvwfs4MQAzH2QsCpgF6drQHzqdTCKNBCyidsJ8CIptMGDtgOQPbNoKU-Ysc5XwOAaQd4yo401IlOyB37-TEWHwPHVLxDW37_-GVjKCnOM-354m2KtTQl9IFnCjmmzCcq34kC_4o-cVdJb2fKNUt8pZR9LhQKx-3LUmNVSYSzLzf8XuV-wbJuhRL3tZ3qVsrP2KHDOdPzx3jCPr97--n8fXN5dfHh_M1lY5WUpVFOKWvACbBmshYHgyjRDV2vkHCyznZdLzQ6ammvTA_7QSk9tMJOpkWh1Ql7_aC7pvhto1zGxWdL84yB4pZHJYa-ld0g-oq--g-9jlsK9bpKGdUr6LSq1MtHapsW2o9r8gumm_HPhytw9gDUT-acyP1FBIx3Ho53Ho7_PFS3_xiVcA
Cites_doi 10.1002/advs.202305871
10.1016/j.jconrel.2005.02.002
10.3389/fninf.2022.997068
10.1007/s40820-022-00870-0
10.3390/polym13081180
10.1088/1741-2560/3/1/007
10.1007/s13346-021-01045-x
10.3389/fneng.2012.00008
10.1126/sciadv.adg9671
10.1021/ja806389b
10.1016/j.sna.2004.02.029
10.3390/polym12061398
10.1109/TNSRE.2018.2811752
10.1038/s41378-021-00259-w
10.1002/admt.202301606
10.3389/fnhum.2015.00708
10.3390/pharmaceutics14081551
10.1002/adma.202302127
10.1016/j.jmbbm.2018.05.024
10.3390/s24020545
10.4012/dmj.2018-163
10.3390/bios13010101
10.1088/1741-2552/ab2b61
10.1016/j.snb.2018.08.054
10.1002/advs.202101129
10.1039/c2jm32188b
10.3390/ma12244057
10.1038/s41377-021-00658-8
10.1021/acsabm.9b00809
10.1038/s41598-020-73684-y
10.1016/j.snb.2017.01.052
10.1038/s41598-018-32283-8
10.1016/j.jmbbm.2014.09.015
10.3390/polym13162815
10.1049/mnl.2017.0098
10.1063/5.0047237
10.1038/s41467-022-34406-2
10.1021/acs.analchem.0c04944
10.3389/fninf.2021.750839
10.1016/j.mee.2016.02.062
10.1016/j.jelekin.2017.02.007
10.1007/s00542-012-1638-2
10.3390/s22082999
10.1109/TNSRE.2022.3228124
10.1002/admt.202100613
10.1002/pat.5193
10.1097/DSS.0000000000001086
10.1038/s41597-021-01094-4
10.1016/j.snb.2018.08.155
10.1016/j.sna.2019.05.017
10.3390/macromol4020019
10.1177/1090820X12468314
10.3390/bios8020031
10.7567/JJAP.54.06FP14
10.1177/1071181312561240
10.1518/001872096778827288
10.1109/JSEN.2023.3312380
10.1038/ncomms2253
10.3390/informatics9010013
10.1038/s41528-023-00279-8
10.1016/j.bios.2022.114333
10.3389/fnhum.2018.00014
10.1016/j.sna.2011.12.017
10.1016/j.jbiomech.2003.12.010
10.1038/s41467-020-18503-8
10.1038/s41378-020-00206-1
10.1021/acsmacrolett.7b00137
10.1109/TBME.2019.2920711
ContentType Journal Article
Copyright Copyright National Academy of Sciences 2025
Copyright_xml – notice: Copyright National Academy of Sciences 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
DOI 10.1073/pnas.2419304122
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 40193612
10_1073_pnas_2419304122
Genre Journal Article
GrantInformation_xml – fundername: NSF (NSF)
  grantid: ECCS-2025462
– fundername: Korea Institute for Advancement of Technology (KIAT)
  grantid: P0017303
GroupedDBID ---
-DZ
-~X
.55
0R~
123
2FS
2WC
4.4
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYXX
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFHIN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CITATION
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
JLS
JSG
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
WH7
WOQ
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AFOSN
CGR
CUY
CVF
ECM
EIF
NPM
UMC
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c322t-3f33c90f10c9bcca89aa2af8673aeabcfc66714afe5ed3970d8334851cb95a143
ISSN 0027-8424
1091-6490
IngestDate Fri Sep 05 17:42:52 EDT 2025
Mon Jun 30 09:47:33 EDT 2025
Sat May 17 01:30:19 EDT 2025
Wed Oct 01 06:35:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords conducting polymer
electroencephalography
augmented reality
brain–computer interfaces
micro–brain sensors
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-3f33c90f10c9bcca89aa2af8673aeabcfc66714afe5ed3970d8334851cb95a143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4159-5966
0000-0002-5526-3882
0000-0003-0439-6236
0000-0003-3795-3318
0009-0008-5801-4647
0009-0006-4437-7274
0000-0001-7703-0468
0000-0002-3528-2808
OpenAccessLink https://doi.org/10.1073/pnas.2419304122
PMID 40193612
PQID 3193730643
PQPubID 42026
ParticipantIDs proquest_miscellaneous_3187526817
proquest_journals_3193730643
pubmed_primary_40193612
crossref_primary_10_1073_pnas_2419304122
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-15
2025-Apr-15
20250415
PublicationDateYYYYMMDD 2025-04-15
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2025
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Asakawa D. S. (e_1_3_4_56_2) 2017; 34
Singh O. P. (e_1_3_4_38_2) 2023; 9
Craig R. G. (e_1_3_4_28_2) 1980
e_1_3_4_61_2
Maity S. (e_1_3_4_22_2) 2021; 32
Gao K.-P. (e_1_3_4_9_2) 2019; 67
Hou Y. (e_1_3_4_40_2) 2021; 7
Kim H. (e_1_3_4_69_2) 2021; 15
Li J. (e_1_3_4_11_2) 2022; 14
Ortega-Castillejos D. K. A. (e_1_3_4_21_2) 2017; 43
e_1_3_4_27_2
e_1_3_4_25_2
Park S. (e_1_3_4_4_2) 2022; 31
Ji H. (e_1_3_4_65_2) 2023; 7
Liu J. (e_1_3_4_6_2) 2019; 294
Lazarou I. (e_1_3_4_5_2) 2018; 12
Bayarsaikhan E. (e_1_3_4_34_2) 2021; 13
Lo Presti A. (e_1_3_4_46_2) 2023; 35
Arai M. (e_1_3_4_17_2) 2015; 54
Martin B. J. (e_1_3_4_58_2) 1996; 38
Salvo P. (e_1_3_4_15_2) 2012; 174
e_1_3_4_30_2
Wang R. (e_1_3_4_16_2) 2017; 244
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_36_2
Tintelott M. (e_1_3_4_52_2) 2022; 22
e_1_3_4_19_2
Xu J. (e_1_3_4_39_2) 2023; 23
Falland-Cheung L. (e_1_3_4_62_2) 2018; 84
Yang J. (e_1_3_4_49_2) 2004; 113
Xing X. (e_1_3_4_8_2) 2018; 8
Lee Y. H. (e_1_3_4_43_2) 2017; 6
Kilicarslan A. (e_1_3_4_59_2) 2019; 16
Morin M. (e_1_3_4_67_2) 2020; 10
Azizi Machekposhti S. (e_1_3_4_31_2) 2022; 14
Fiedler P. (e_1_3_4_10_2) 2018; 26
Lee Y.-E. (e_1_3_4_64_2) 2021; 8
Barszczewska-Rybarek I. M. (e_1_3_4_29_2) 2019; 12
Rossetti N. (e_1_3_4_48_2) 2019; 2
Jiang X. (e_1_3_4_53_2) 2020; 6
Venzac B. (e_1_3_4_35_2) 2021; 93
e_1_3_4_41_2
Nathan K. (e_1_3_4_63_2) 2016; 9
Liu Q. (e_1_3_4_44_2) 2023; 13
e_1_3_4_47_2
e_1_3_4_66_2
Kwon J. (e_1_3_4_68_2) 2022; 16
Kim J. H. (e_1_3_4_24_2) 2021; 6
Portillo-Lara R. (e_1_3_4_45_2) 2021; 5
Stavrinidis G. (e_1_3_4_18_2) 2016; 159
Xiong J. (e_1_3_4_1_2) 2021; 10
Park S. (e_1_3_4_70_2) 2024; 24
Vogel J. E. (e_1_3_4_20_2) 2013; 33
Mahmood M. (e_1_3_4_13_2) 2021; 8
Römgens A. (e_1_3_4_26_2) 2014; 40
e_1_3_4_50_2
Li G. (e_1_3_4_7_2) 2018; 277
Schneider T. R. (e_1_3_4_32_2) 2019; 38
Gerwig R. (e_1_3_4_51_2) 2012; 5
e_1_3_4_12_2
e_1_3_4_54_2
e_1_3_4_37_2
Chang C.-Y. (e_1_3_4_33_2) 2020; 12
Azofeifa J. D. (e_1_3_4_2_2) 2022; 9
Kim E.-G. (e_1_3_4_42_2) 2008; 130
Kudo Y. (e_1_3_4_14_2) 2017; 12
Štulík J. (e_1_3_4_23_2) 2018; 275
Jang H. (e_1_3_4_60_2) 2022; 13
Kim H. (e_1_3_4_3_2) 2024; 11
References_xml – volume: 11
  start-page: 2305871
  year: 2024
  ident: e_1_3_4_3_2
  article-title: AR-enabled persistent human-machine interfaces via a scalable soft electrode array
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202305871
– ident: e_1_3_4_30_2
  doi: 10.1016/j.jconrel.2005.02.002
– volume: 16
  start-page: 997068
  year: 2022
  ident: e_1_3_4_68_2
  article-title: Novel hybrid visual stimuli incorporating periodic motions into conventional flickering or pattern-reversal visual stimuli for steady-state visual evoked potential-based brain-computer interfaces
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2022.997068
– volume: 14
  start-page: 132
  year: 2022
  ident: e_1_3_4_11_2
  article-title: High-performance flexible microneedle array as a low-impedance surface biopotential dry electrode for wearable electrophysiological recording and polysomnography
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-022-00870-0
– volume: 13
  start-page: 1180
  year: 2021
  ident: e_1_3_4_34_2
  article-title: Effects of postcuring temperature on the mechanical properties and biocompatibility of three-dimensional printed dental resin material
  publication-title: Polymers
  doi: 10.3390/polym13081180
– ident: e_1_3_4_50_2
  doi: 10.1088/1741-2560/3/1/007
– ident: e_1_3_4_25_2
  doi: 10.1007/s13346-021-01045-x
– volume: 5
  start-page: 8
  year: 2012
  ident: e_1_3_4_51_2
  article-title: PEDOT–CNT composite microelectrodes for recording and electrostimulation applications: Fabrication, morphology, and electrical properties
  publication-title: Front. Neuroeng.
  doi: 10.3389/fneng.2012.00008
– ident: e_1_3_4_61_2
  doi: 10.1126/sciadv.adg9671
– volume: 130
  start-page: 16880
  year: 2008
  ident: e_1_3_4_42_2
  article-title: Electronic evolution of poly (3, 4-ethylenedioxythiophene)(PEDOT): From the isolated chain to the pristine and heavily doped crystals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja806389b
– volume: 113
  start-page: 204
  year: 2004
  ident: e_1_3_4_49_2
  article-title: Microporous conducting polymers on neural microelectrode arrays: II. Physical characterization
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2004.02.029
– volume: 12
  start-page: 1398
  year: 2020
  ident: e_1_3_4_33_2
  article-title: Toxic effects of urethane dimethacrylate on macrophages through caspase activation, mitochondrial dysfunction, and reactive oxygen species generation
  publication-title: Polymers
  doi: 10.3390/polym12061398
– volume: 26
  start-page: 750
  year: 2018
  ident: e_1_3_4_10_2
  article-title: Contact pressure and flexibility of multipin dry EEG electrodes
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2811752
– volume: 7
  start-page: 53
  year: 2021
  ident: e_1_3_4_40_2
  article-title: Miura-ori structured flexible microneedle array electrode for biosignal recording
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-021-00259-w
– volume: 9
  start-page: 2301606
  year: 2023
  ident: e_1_3_4_38_2
  article-title: Flexible, conductive fabric-backed, microneedle electrodes for electrophysiological monitoring
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202301606
– volume: 9
  start-page: 708
  year: 2016
  ident: e_1_3_4_63_2
  article-title: Negligible motion artifacts in scalp electroencephalography (EEG) during treadmill walking
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00708
– volume: 14
  start-page: 1551
  year: 2022
  ident: e_1_3_4_31_2
  article-title: Micromolding of amphotericin-B-loaded methoxyethylene–maleic anhydride copolymer microneedles
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics14081551
– volume: 35
  start-page: 2302127
  year: 2023
  ident: e_1_3_4_46_2
  article-title: Fundamentals of skin bioimpedances
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202302127
– volume: 84
  start-page: 188
  year: 2018
  ident: e_1_3_4_62_2
  article-title: Mechanical properties of the human scalp in tension
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2018.05.024
– volume: 24
  start-page: 545
  year: 2024
  ident: e_1_3_4_70_2
  article-title: In-car environment control using an SSVEP-based brain-computer interface with visual stimuli presented on head-up display: Performance comparison with a button-press interface
  publication-title: Sensors
  doi: 10.3390/s24020545
– volume: 38
  start-page: 579
  year: 2019
  ident: e_1_3_4_32_2
  article-title: Effects of dental composite resin monomers on dental pulp cells
  publication-title: Dental Mater. J.
  doi: 10.4012/dmj.2018-163
– volume: 13
  start-page: 101
  year: 2023
  ident: e_1_3_4_44_2
  article-title: The feature, performance, and prospect of advanced electrodes for electroencephalogram
  publication-title: Biosensors
  doi: 10.3390/bios13010101
– volume: 16
  start-page: 056027
  year: 2019
  ident: e_1_3_4_59_2
  article-title: Characterization and real-time removal of motion artifacts from EEG signals
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab2b61
– volume: 275
  start-page: 359
  year: 2018
  ident: e_1_3_4_23_2
  article-title: Comparison of organic thermistors based on PEDOT: PSS and PEDOT: Tos thin films under various thermal and humidity conditions
  publication-title: Sens. Actuators
  doi: 10.1016/j.snb.2018.08.054
– volume: 8
  start-page: 2101129
  year: 2021
  ident: e_1_3_4_13_2
  article-title: Wireless soft scalp electronics and virtual reality system for motor imagery-based brain-machine interfaces
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202101129
– ident: e_1_3_4_36_2
  doi: 10.1039/c2jm32188b
– volume: 12
  start-page: 4057
  year: 2019
  ident: e_1_3_4_29_2
  article-title: A guide through the dental dimethacrylate polymer network structural characterization and interpretation of physico-mechanical properties
  publication-title: Materials
  doi: 10.3390/ma12244057
– volume: 10
  start-page: 216
  year: 2021
  ident: e_1_3_4_1_2
  article-title: Augmented reality and virtual reality displays: Emerging technologies and future perspectives
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-021-00658-8
– volume-title: Restorative Dental Materials
  year: 1980
  ident: e_1_3_4_28_2
– volume: 2
  start-page: 5154
  year: 2019
  ident: e_1_3_4_48_2
  article-title: Poly (3, 4-ethylenedioxythiophene)(PEDOT) coatings for high-quality electromyography recording
  publication-title: ACS Appl. Bio. Mater.
  doi: 10.1021/acsabm.9b00809
– volume: 10
  start-page: 17218
  year: 2020
  ident: e_1_3_4_67_2
  article-title: Skin hydration dynamics investigated by electrical impedance techniques in vivo and in vitro
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-73684-y
– volume: 244
  start-page: 750
  year: 2017
  ident: e_1_3_4_16_2
  article-title: A microneedle electrode array on flexible substrate for long-term EEG monitoring
  publication-title: Sens. Actuators
  doi: 10.1016/j.snb.2017.01.052
– volume: 8
  start-page: 14708
  year: 2018
  ident: e_1_3_4_8_2
  article-title: A high-speed SSVEP-based BCI using dry EEG electrodes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32283-8
– volume: 40
  start-page: 397
  year: 2014
  ident: e_1_3_4_26_2
  article-title: Monitoring the penetration process of single microneedles with varying tip diameters
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2014.09.015
– ident: e_1_3_4_54_2
  doi: 10.3390/polym13162815
– volume: 12
  start-page: 545
  year: 2017
  ident: e_1_3_4_14_2
  article-title: Fatigue assessment by electroencephalogram measured with candle-like dry microneedle electrodes
  publication-title: Micro Nano Lett.
  doi: 10.1049/mnl.2017.0098
– volume: 5
  start-page: 031507
  year: 2021
  ident: e_1_3_4_45_2
  article-title: Mind the gap: State-of-the-art technologies and applications for EEG-based brain–computer interfaces
  publication-title: APL Bioeng.
  doi: 10.1063/5.0047237
– volume: 13
  start-page: 6604
  year: 2022
  ident: e_1_3_4_60_2
  article-title: Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by heterogeneous serpentine ribbons
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34406-2
– volume: 93
  start-page: 7180
  year: 2021
  ident: e_1_3_4_35_2
  article-title: PDMS curing inhibition on 3D-printed molds: Why? Also, how to avoid it?
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c04944
– volume: 15
  start-page: 750839
  year: 2021
  ident: e_1_3_4_69_2
  article-title: Influence of the number of channels and classification algorithm on the performance robustness to electrode shift in steady-state visual evoked potential-based brain-computer interfaces
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2021.750839
– volume: 159
  start-page: 114
  year: 2016
  ident: e_1_3_4_18_2
  article-title: SU-8 microneedles based dry electrodes for Electroencephalogram
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2016.02.062
– volume: 34
  start-page: 6
  year: 2017
  ident: e_1_3_4_56_2
  article-title: Fingertip forces and completion time for index finger and thumb touchscreen gestures
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2017.02.007
– ident: e_1_3_4_19_2
  doi: 10.1007/s00542-012-1638-2
– ident: e_1_3_4_37_2
– volume: 22
  start-page: 2999
  year: 2022
  ident: e_1_3_4_52_2
  article-title: Realization of a PEDOT: PSS/graphene oxide on-chip pseudo-reference electrode for integrated ISFETs
  publication-title: Sensors
  doi: 10.3390/s22082999
– volume: 31
  start-page: 544
  year: 2022
  ident: e_1_3_4_4_2
  article-title: Brain-controlled, AR-based Home automation system using SSVEP-based brain-computer interface and EOG-based eye tracker: A feasibility study for the elderly end User
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3228124
– volume: 6
  start-page: 2100613
  year: 2021
  ident: e_1_3_4_24_2
  article-title: Temperature gradient-driven multilevel and grayscale patterning of tosylate-doped poly (3, 4-ethylenedioxythiophene) films for flexible and functional electronics
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202100613
– volume: 32
  start-page: 1409
  year: 2021
  ident: e_1_3_4_22_2
  article-title: Poly (3, 4 ethylenedioxythiophene)-tosylate—Its synthesis, properties and various applications
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.5193
– volume: 43
  start-page: 672
  year: 2017
  ident: e_1_3_4_21_2
  article-title: Retrospective assessment of follicular unit density in Asian men with androgenetic alopecia
  publication-title: Dermatolog. Surg.
  doi: 10.1097/DSS.0000000000001086
– volume: 8
  start-page: 315
  year: 2021
  ident: e_1_3_4_64_2
  article-title: Mobile BCI dataset of scalp-and ear-EEGs with ERP and SSVEP paradigms while standing, walking, and running
  publication-title: Sci. Data
  doi: 10.1038/s41597-021-01094-4
– volume: 277
  start-page: 250
  year: 2018
  ident: e_1_3_4_7_2
  article-title: Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting
  publication-title: Sens. Actuators
  doi: 10.1016/j.snb.2018.08.155
– volume: 294
  start-page: 73
  year: 2019
  ident: e_1_3_4_6_2
  article-title: A novel dry-contact electrode for measuring electroencephalography signals
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2019.05.017
– ident: e_1_3_4_27_2
  doi: 10.3390/macromol4020019
– volume: 33
  start-page: 128
  year: 2013
  ident: e_1_3_4_20_2
  article-title: Hair restoration surgery: The state of the art
  publication-title: Aesthetic Surg. J.
  doi: 10.1177/1090820X12468314
– ident: e_1_3_4_47_2
  doi: 10.3390/bios8020031
– volume: 54
  start-page: 06FP14
  year: 2015
  ident: e_1_3_4_17_2
  article-title: Electroencephalogram measurement using polymer-based dry microneedle electrode
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.54.06FP14
– ident: e_1_3_4_57_2
  doi: 10.1177/1071181312561240
– volume: 38
  start-page: 654
  year: 1996
  ident: e_1_3_4_58_2
  article-title: Keyboard reaction force and finger flexor electromyograms during computer keyboard work
  publication-title: Hum. Factors
  doi: 10.1518/001872096778827288
– volume: 23
  start-page: 24196
  year: 2023
  ident: e_1_3_4_39_2
  article-title: Microneedle array electrode with Ag-PPS modification for superior bio-signal recording on skin
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3312380
– ident: e_1_3_4_41_2
  doi: 10.1038/ncomms2253
– volume: 9
  start-page: 13
  year: 2022
  ident: e_1_3_4_2_2
  article-title: Systematic review of multimodal human–computer interaction
  publication-title: Informatics
  doi: 10.3390/informatics9010013
– volume: 7
  start-page: 46
  year: 2023
  ident: e_1_3_4_65_2
  article-title: Skin-integrated, biocompatible, and stretchable silicon microneedle electrode for long-term EMG monitoring in motion scenario
  publication-title: npj Flexible Electron.
  doi: 10.1038/s41528-023-00279-8
– ident: e_1_3_4_12_2
  doi: 10.1016/j.bios.2022.114333
– volume: 12
  start-page: 14
  year: 2018
  ident: e_1_3_4_5_2
  article-title: EEG-based brain–computer interfaces for communication and rehabilitation of people with motor impairment: A novel approach of the 21st Century
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00014
– volume: 174
  start-page: 96
  year: 2012
  ident: e_1_3_4_15_2
  article-title: A 3D printed dry electrode for ECG/EEG recording
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2011.12.017
– ident: e_1_3_4_55_2
  doi: 10.1016/j.jbiomech.2003.12.010
– ident: e_1_3_4_66_2
  doi: 10.1038/s41467-020-18503-8
– volume: 6
  start-page: 96
  year: 2020
  ident: e_1_3_4_53_2
  article-title: Microneedle-based skin patch for blood-free rapid diagnostic testing
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-020-00206-1
– volume: 6
  start-page: 386
  year: 2017
  ident: e_1_3_4_43_2
  article-title: Highly ordered nanoconfinement effect from evaporation-induced self-assembly of block copolymers on in situ polymerized PEDOT: Tos
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.7b00137
– volume: 67
  start-page: 750
  year: 2019
  ident: e_1_3_4_9_2
  article-title: A novel bristle-shaped semi-dry electrode with low contact impedance and ease of use features for EEG signal measurements
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2920711
SSID ssj0009580
Score 2.501273
Snippet Modern brain–computer interfaces (BCI), utilizing electroencephalograms for bidirectional human–machine communication, face significant limitations from...
Modern brain-computer interfaces (BCI), utilizing electroencephalograms for bidirectional human-machine communication, face significant limitations from...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage e2419304122
SubjectTerms Algorithms
Augmented Reality
Brain - physiology
Brain-Computer Interfaces
Conducting polymers
Density
EEG
Electrodes
Electroencephalography - instrumentation
Electroencephalography - methods
Electronics
Evoked Potentials, Visual - physiology
Flexible components
Follicles
Hair
Hair Follicle - physiology
Human motion
Human-computer interface
Humans
Impedance
Interfaces
Motion
Polymers
Sensors
Signal classification
Title Motion artifact–controlled micro–brain sensors between hair follicles for persistent augmented reality brain–computer interfaces
URI https://www.ncbi.nlm.nih.gov/pubmed/40193612
https://www.proquest.com/docview/3193730643
https://www.proquest.com/docview/3187526817
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIqG9IJZnlwUZicOiyCWxGyc5rhBQVdpqD7tSOUW24wASTao-DuyJH8MPZSZxHq26EnCJIjtNlHxfxzPJNzOEvJUJD4QOcma49tk48i2LubEQquhoHCY849WH9suZnNyMp_NwPhj87qmWths9MrcH80r-B1UYA1wxS_YfkG1PCgOwD_jCFhCG7V9hfFnWfb5hBhMUmNOd_wAncoFCO6axAYS3hlAVe-o0mqxv6vvKy7EaN0riKqHhEl-bAeAoON9-rQp1YlpL7aRXZ2HG9X-oKkyscpRy9T3bq3YlXDe6g1nzovGiS1txtmTtMe9q1jVBdk2dJ2WmFntj0603-WnLfenQlxLufKrs3vAUu5T1X2XwEL_K1MmcI1ubX_BemBzXDURb-8x5n4hhz9xa8D8SgSXD-MHlAOwX9jAu1Hp0-EjAc7mo2AFxZiKkk3TvVuBupu6R-zySEvtkfJ4HvdLOsd8UjYrE-72rHZMHze93XZ874pnKr7l-RB66gIRe1Ow6IQNbPCYnDUz03NUlf_eE_KrpRg_QjfboRh3dqKMbRbrRlm6wt6Id3WhLN-roRnfpRju6PSU3nz5ef5gw18CDGVgnNkzkQpjEzwPfJBpMRZwoxVUey0goq7TJjZRRMFa5DW0GjrGfxZgYHgZGJ6ECT_4ZOSrKwr4gVEmtAwOmQwcaYvpM8dg3Oo-1UtoP43hIzptnmy7rOi1ppa-IRIqIpB0iQ3LWPPvU_ZnXKaxEIsJoXAzJm3YaTC1-P1OFLbd4DAT3XMZBNCTPa8zaazUYn94585Icd5w_I0eb1da-Aod2o19XfPoDteSl-Q
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motion+artifact-controlled+micro-brain+sensors+between+hair+follicles+for+persistent+augmented+reality+brain-computer+interfaces&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kim%2C+Hodam&rft.au=Kim%2C+Ju+Hyeon&rft.au=Lee%2C+Yoon+Jae&rft.au=Lee%2C+Jimin&rft.date=2025-04-15&rft.eissn=1091-6490&rft.volume=122&rft.issue=15&rft.spage=e2419304122&rft_id=info:doi/10.1073%2Fpnas.2419304122&rft_id=info%3Apmid%2F40193612&rft.externalDocID=40193612
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon