New Hybrid Graph Convolution Neural Network with Applications in Game Strategy
Deep convolutional neural networks (DCNNs) have enjoyed much success in many applications, such as computer vision, automated medical diagnosis, autonomous systems, etc. Another application of DCNNs is for game strategies, where the deep neural network architecture can be used to directly represent...
Saved in:
| Published in | Electronics (Basel) Vol. 12; no. 19; p. 4020 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.10.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics12194020 |
Cover
| Abstract | Deep convolutional neural networks (DCNNs) have enjoyed much success in many applications, such as computer vision, automated medical diagnosis, autonomous systems, etc. Another application of DCNNs is for game strategies, where the deep neural network architecture can be used to directly represent and learn strategies from expert players on different sides. Many game states can be expressed not only as a matrix data structure suitable for DCNN training but also as a graph data structure. Most of the available DCNN methods ignore the territory characteristics of both sides’ positions based on the game rules. Therefore, in this paper, we propose a hybrid approach to the graph neural network to extract the features of the model of game-playing strategies and fuse it into a DCNN. As a graph learning model, graph convolutional networks (GCNs) provide a scheme by which to extract the features in a graph structure, which can better extract the features in the relationship between the game-playing strategies. We validate the work and design a hybrid network to integrate GCNs and DCNNs in the game of Go and show that on the KGS Go dataset, the performance of the hybrid model outperforms the traditional DCNN model. The hybrid model demonstrates a good performance in extracting the game strategy of Go. |
|---|---|
| AbstractList | Deep convolutional neural networks (DCNNs) have enjoyed much success in many applications, such as computer vision, automated medical diagnosis, autonomous systems, etc. Another application of DCNNs is for game strategies, where the deep neural network architecture can be used to directly represent and learn strategies from expert players on different sides. Many game states can be expressed not only as a matrix data structure suitable for DCNN training but also as a graph data structure. Most of the available DCNN methods ignore the territory characteristics of both sides’ positions based on the game rules. Therefore, in this paper, we propose a hybrid approach to the graph neural network to extract the features of the model of game-playing strategies and fuse it into a DCNN. As a graph learning model, graph convolutional networks (GCNs) provide a scheme by which to extract the features in a graph structure, which can better extract the features in the relationship between the game-playing strategies. We validate the work and design a hybrid network to integrate GCNs and DCNNs in the game of Go and show that on the KGS Go dataset, the performance of the hybrid model outperforms the traditional DCNN model. The hybrid model demonstrates a good performance in extracting the game strategy of Go. |
| Author | Ang, Li-Minn Seng, Kah Phooi Xu, Hanyue |
| Author_xml | – sequence: 1 givenname: Hanyue surname: Xu fullname: Xu, Hanyue – sequence: 2 givenname: Kah Phooi surname: Seng fullname: Seng, Kah Phooi – sequence: 3 givenname: Li-Minn surname: Ang fullname: Ang, Li-Minn |
| BookMark | eNqNUMtOwzAQtFCRKKVfwMUS54IfaRIfqwpapKocgHPkOhvq4trBdojy96SUA0JIsJdZaWd2d-YcDayzgNAlJdecC3IDBlT0zmoVKKMiIYycoCEjmZgIJtjgW3-GxiHsSF-C8pyTIVqvocXLbuN1iRde1ls8d_bdmSZqZ_EaGi9ND7F1_hW3Om7xrK6NVvIwD1hbvJB7wI_Rywgv3QU6raQJMP7CEXq-u32aLyerh8X9fLaaKM5YnLCslDkDwkVFSsU3vOQyy0sQLGdKKQlSshSmFYcEeCk5zVKq0o1SdEoVgOAjlBz3NraWXSuNKWqv99J3BSXFIZbil1h62dVRVnv31kCIxc413vafFizP0oRlCeE9SxxZyrsQPFSF0vHTcO9Smz8u8B_a__z1AYtZjXU |
| CitedBy_id | crossref_primary_10_3390_electronics13153093 crossref_primary_10_1016_j_heliyon_2024_e41523 |
| Cites_doi | 10.1038/nature24270 10.1109/TCIAIG.2012.2186810 10.1109/ACCESS.2020.3013645 10.1126/science.aar6404 10.3756/artsci.20.139 10.1007/s11042-022-12153-2 10.1007/3-540-44668-0_49 10.29207/resti.v6i4.4222 10.3390/s22155735 10.1109/ACCESS.2020.3023739 10.1007/978-3-030-59719-1_35 10.1109/CVPR52688.2022.01804 10.2139/ssrn.3666956 10.1007/978-3-030-35817-4_5 10.1109/CSPA55076.2022.9782020 10.1109/TGRS.2020.3037361 10.1021/acs.jproteome.2c00234 10.1109/JSTARS.2020.3011333 10.1002/acm2.13746 10.5220/0010904200003116 10.1007/s11280-020-00824-9 10.1109/SMC52423.2021.9658625 10.1038/s41598-021-95680-6 10.1109/JLT.2021.3125974 10.1109/CIG.2014.6932863 10.1109/TAI.2021.3076021 10.1038/nature16961 10.1109/ITSC.2019.8917507 10.1109/CoG51982.2022.9893671 10.1145/1013560.1013562 10.1145/3219819.3219947 10.1088/1742-6596/2219/1/012008 |
| ContentType | Journal Article |
| Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC UNPAY |
| DOI | 10.3390/electronics12194020 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10.3390/electronics12194020 10_3390_electronics12194020 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c322t-27da82e039f0dc3b3d3a78de9282cccaeaa26e5f3e4e3da31761c6bcc151cee93 |
| IEDL.DBID | UNPAY |
| ISSN | 2079-9292 |
| IngestDate | Tue Aug 19 23:21:36 EDT 2025 Sat Jul 26 00:09:54 EDT 2025 Thu Oct 16 04:41:10 EDT 2025 Thu Apr 24 23:09:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-27da82e039f0dc3b3d3a78de9282cccaeaa26e5f3e4e3da31761c6bcc151cee93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/12/19/4020/pdf?version=1695549960 |
| PQID | 2876427403 |
| PQPubID | 2032404 |
| ParticipantIDs | unpaywall_primary_10_3390_electronics12194020 proquest_journals_2876427403 crossref_citationtrail_10_3390_electronics12194020 crossref_primary_10_3390_electronics12194020 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Xia (ref_21) 2021; 2 Browne (ref_5) 2012; 4 Hazra (ref_8) 2022; 81 Silver (ref_1) 2017; 550 ref_14 ref_35 ref_12 Wang (ref_13) 2020; 8 ref_34 Furukawa (ref_6) 2021; 20 ref_33 ref_10 Hou (ref_11) 2021; 11 ref_32 ref_31 ref_30 Wang (ref_40) 2021; 70 ref_19 Liu (ref_36) 2020; 59 ref_38 ref_15 ref_37 Silver (ref_3) 2018; 362 Li (ref_43) 2022; 40 Duan (ref_39) 2022; 23 ref_24 ref_46 Zhong (ref_23) 2020; 23 ref_45 ref_22 ref_44 ref_20 Liang (ref_42) 2022; 2219 McDonnell (ref_41) 2022; 22 Liang (ref_25) 2020; 13 ref_2 Neven (ref_4) 2004; 5 Li (ref_16) 2020; 8 ref_29 ref_28 ref_27 ref_26 ref_9 Kamatekar (ref_18) 2018; 9 Silver (ref_7) 2016; 529 Ichsan (ref_17) 2022; 6 |
| References_xml | – ident: ref_28 – volume: 550 start-page: 354 year: 2017 ident: ref_1 article-title: Mastering the game of Go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – volume: 4 start-page: 1 year: 2012 ident: ref_5 article-title: A Survey of Monte Carlo Tree Search Methods publication-title: IEEE Trans. Comput. Intell. AI Games doi: 10.1109/TCIAIG.2012.2186810 – volume: 8 start-page: 142446 year: 2020 ident: ref_13 article-title: How Decisions Are Made in Brains: Unpack “Black Box” of CNN With Ms. Pac-Man Video Game publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3013645 – ident: ref_24 – volume: 362 start-page: 1140 year: 2018 ident: ref_3 article-title: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play publication-title: Science doi: 10.1126/science.aar6404 – volume: 20 start-page: 139 year: 2021 ident: ref_6 article-title: A Study on Utility Based Game AI Considering Long-Term Goal Achievement publication-title: J. Soc. Art Sci. doi: 10.3756/artsci.20.139 – ident: ref_34 – volume: 81 start-page: 8963 year: 2022 ident: ref_8 article-title: Applications of game theory in deep learning: A survey publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-12153-2 – ident: ref_26 doi: 10.1007/3-540-44668-0_49 – volume: 6 start-page: 606 year: 2022 ident: ref_17 article-title: Increased Accuracy on Image Classification of Game Rock Paper Scissors using CNN publication-title: J. RESTI (Rekayasa Sist. Dan Teknol. Inf.) doi: 10.29207/resti.v6i4.4222 – ident: ref_37 doi: 10.3390/s22155735 – volume: 8 start-page: 203039 year: 2020 ident: ref_16 article-title: AlphaGo Policy Network: A DCNN Accelerator on FPGA publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3023739 – ident: ref_38 doi: 10.1007/978-3-030-59719-1_35 – ident: ref_14 – volume: 70 start-page: 2504811 year: 2021 ident: ref_40 article-title: Linking Attention-Based Multiscale CNN With Dynamical GCN for Driving Fatigue Detection publication-title: IEEE Trans. Instrum. Meas. – ident: ref_44 – volume: 9 start-page: 179 year: 2018 ident: ref_18 article-title: Domination, Easymove Game Represented in Graph publication-title: Int. J. Math. Arch. – ident: ref_31 doi: 10.1109/CVPR52688.2022.01804 – ident: ref_9 doi: 10.2139/ssrn.3666956 – ident: ref_22 doi: 10.1007/978-3-030-35817-4_5 – ident: ref_10 doi: 10.1109/CSPA55076.2022.9782020 – volume: 59 start-page: 8657 year: 2020 ident: ref_36 article-title: CNN-Enhanced Graph Convolutional Network with Pixel- and Superpixel-Level Feature Fusion for Hyperspectral Image Classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3037361 – volume: 22 start-page: 323 year: 2022 ident: ref_41 article-title: Application of a Novel Hybrid CNN-GNN for Peptide Ion Encoding publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.2c00234 – ident: ref_29 – ident: ref_33 – volume: 13 start-page: 4325 year: 2020 ident: ref_25 article-title: A Deep Neural Network Combined CNN and GCN for Remote Sensing Scene Classification publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.3011333 – ident: ref_27 – volume: 23 start-page: e13746 year: 2022 ident: ref_39 article-title: Semi-supervised classification of fundus images combined with CNN and GCN publication-title: J. Appl. Clin. Med. Phys. doi: 10.1002/acm2.13746 – ident: ref_2 – ident: ref_32 doi: 10.5220/0010904200003116 – volume: 23 start-page: 3125 year: 2020 ident: ref_23 article-title: Hybrid graph convolutional networks with multi-head attention for location recommendation publication-title: World Wide Web doi: 10.1007/s11280-020-00824-9 – ident: ref_46 – ident: ref_19 doi: 10.1109/SMC52423.2021.9658625 – volume: 11 start-page: 16071 year: 2021 ident: ref_11 article-title: Explainable DCNN based chest X-ray image analysis and classification for COVID-19 pneumonia detection publication-title: Sci. Rep. doi: 10.1038/s41598-021-95680-6 – volume: 40 start-page: 935 year: 2022 ident: ref_43 article-title: GNN-Based Hierarchical Deep Reinforcement Learning for NFV-Oriented Online Resource Orchestration in Elastic Optical DCIs publication-title: J. Light. Technol. doi: 10.1109/JLT.2021.3125974 – ident: ref_15 – ident: ref_20 doi: 10.1109/CIG.2014.6932863 – volume: 2 start-page: 109 year: 2021 ident: ref_21 article-title: Graph Learning: A Survey publication-title: IEEE Trans. Artif. Intell. doi: 10.1109/TAI.2021.3076021 – ident: ref_45 – volume: 529 start-page: 484 year: 2016 ident: ref_7 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – ident: ref_12 doi: 10.1109/ITSC.2019.8917507 – ident: ref_35 doi: 10.1109/CoG51982.2022.9893671 – volume: 5 start-page: 403 year: 2004 ident: ref_4 article-title: Finite state machines for strings over infinite alphabets publication-title: ACM Trans. Comput. Log. doi: 10.1145/1013560.1013562 – ident: ref_30 doi: 10.1145/3219819.3219947 – volume: 2219 start-page: 012008 year: 2022 ident: ref_42 article-title: GLSTM-DTA: Application of Prediction Improvement Model Based on GNN and LSTM publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2219/1/012008 |
| SSID | ssj0000913830 |
| Score | 2.2784655 |
| Snippet | Deep convolutional neural networks (DCNNs) have enjoyed much success in many applications, such as computer vision, automated medical diagnosis, autonomous... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4020 |
| SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Camps Computer architecture Computer vision Data structures Decision making Deep learning Field programmable gate arrays Games Graph neural networks Graph representations Machine learning Medical research Methods Neural networks Strategy |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qe1AP4hOrVXLwaOjupt3HQaSWPhBcRCz0tuQJQt1W2yr99066u20FKd6TOcwkM9_k8X0AN75gnJlAUi49gw0KMxTBkU-FEtpvcCdUS57Zp9jvDxqPw-awBHHxF8Y-qyxy4jJRq7G0Z-R1RPYIlQO0dj_5oFY1yt6uFhIaPJdWUHdLirEdqHiWGasMlYdO_PyyOnWxLJghczL6IYb9fn2tNjPFGZFtp36XqDXu3J2nE7745qPRRgnqHsJBjh1JKwv2EZR0egz7G4yCJxBj0iL9hf2GRXqWi5q0x-lXvryIZeJAA3H29JvYM1jS2rjBJm8p6fF3TXLO2sUpDLqd13af5pIJVOLOnFEvUDz0tMMi4yjJBFOMB6HSEXZWEoOlOfd83TRMNzRTHMGD70pfSImFH8tlxM6gnI5TfQ5EcO1qE4bcFdg-ByZSoYPJkBnpcnSxroJXeCmROZ-4lbUYJdhXWNcmf7i2CrerSZOMTmP78Frh_iTfW9NkvRKqQFch-Y-5i-3mLmHPislnT_VqUJ59zvUVQo6ZuM7X0Q8efNtt priority: 102 providerName: ProQuest |
| Title | New Hybrid Graph Convolution Neural Network with Applications in Game Strategy |
| URI | https://www.proquest.com/docview/2876427403 https://www.mdpi.com/2079-9292/12/19/4020/pdf?version=1695549960 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH5oe1AP7mJdyhw8Gptkmklykrq0RTSIWtBTmBWKNRZtlfrrfWNSrSKiCIG5zAwJb_0mb74HsMME5dSE0uHSNwhQqHEwOWKOUEKzOncj9cYze5awdqd-ch1cT9zit2WVCMW7b07ad8PYwfjt1zx84prFOrW-MvtPxVmSx-LAAhyGoL3MAhxLUO4k540b21NuvDonG6KI7msfvWUePbRVu-HngPSRZc4Msz4fPfNebyLgNBeAj181rzO53RsOxJ58-cLi-J9vWYT5IhsljVx9lmBKZ8swN8FRuAIJukHSHtmLXaRl2a3J4X32VCgssdweuEGSF5MTe6pLGhP_xEk3Iy1-p0nBgjtahU7z-Oqw7RRNGByJtj5w_FDxyNcujY2rJBVUUR5GSseI1SSKX3PuMx0YquuaKo7pCPMkE1JiKoEBOKZrUMruM70ORHDtaRNF3BMIyEMTq8hF90qN9HjgRboC_lgSqSwYym2jjF6KSMWKL_1GfBXYfV_Uzwk6fp6-NRZxWljrY4qoEWFYiJpaAedd7L_ZbuOP8zdh1varz6sBt6A0eBjqbcxqBqIK01GzVYVy4-js9BLHg-Pk_KJaqPMrDwv63Q |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4QPaAH4zPicw96s6Htlj4OxCiC-KAxRhJudbu7TUywoICGP-dvc5ZuARNDvHhvJ-nsdGa-3Z3vAzhxY8po4nGDcTtBgEITA5sj14hFLF2Hmb6Y8My2QrfZdm47lU4BvvJZGHWtMs-Jk0QtelztkZexs8dW2UNr5_03Q6lGqdPVXEKDaWkFUZ1QjOnBjjs5_kQIN6jeXOF6n9p2o_5UaxpaZcDgGMxDw_YE821p0iAxBacxFZR5vpABghGO3ycZs11ZSah0JBUM661rcTfmHGslVhhFxoQlYNmhToDgb_myHj48Tnd5FOumT82M7ojSwCzP1G0GFmYLBd9-lsRZn1scpX02_mTd7lzJa6zDmu5VyUUWXBtQkOkmrM4xGG5BiEmSNMdq7ItcK-5rUuulHzqciWL-QANhdtWcqD1fcjF3Yk5eUnLNXiXRHLnjbWj_i_N2YCntpXIXSMykJRPfZ1aMcN1LAuGbmHxpwi2GSypLYOdeirjmL1cyGt0IcYxybfSLa0twNn2pn9F3LH78IHd_pP_lQTSLvBIY0yX5i7m9xeaOodh8at1H9zfh3T6sKCH77JrgASwN30fyENudYXykY4rA83-H8TeM_hqw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4QTHwcjM-Iou5Bbza0XejjYAwBeYgSD5Jwq9t9JCZYUEDCX_PXOUtbwMQQL9zbSTr7dV478w3AlRNSRpXLDcZthQkKVQYGR44RilA6RWZ6YsYz-9R2Gp3iQ7fUzcB3Oguj2ypTmzgz1KLPdY28gJE9hsouSiuopC3iuVq7G3wYeoOUvmlN12nEEGnJ6QTTt-Fts4pnfW3btfuXSsNINgwYHIE8MmxXMM-WJvWVKTgNqaDM9YT0MRHh-G2SMduRJUVlUVLB0Nc6FndCztFPonfRRExo_jdczeKup9Rr9Xl9R_NtetSMiY4o9c3CYq_N0EI7oRO3385wEeFujaMBm05Yr7fk7Gp7sJtEqaQcw2ofMjI6gJ0l7sJDaKN5JI2pHvgidc16TSr96CsBMtGcHyigHTeZE13tJeWlu3LyFpE6e5ckYcedHkFnLao7hmzUj-QJkJBJSyrPY1aIibqrfOGZaHap4hYrWZ7MgZ1qKeAJc7leoNELMIPRqg3-UG0ObuYvDWLijtWP51P1B8lfPAwWmMuBMT-S_4g7XS3uEjYRvMFjs906g229wT7uD8xDdvQ5lucY54zCixmgCLyuG8E_8jYYSg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA-yHdSDb3E6JQePdn1kTduTjOE2BIsHB_NU8gRxdsN1k_nX-2VttykiilDoJQkt3_OXfPl9CF1SThjRgbCY8DQAFKItSI6oxSVXtMmcUC54Zu9i2us3bwf-YO0WvymrBCj-tHDSnhNEFsRvz3bhiWyDdeyx1NezYi_JpZFvAA4F0F6lPrwrqNqP71uPpqdcOTsnGyKA7u1Vb5mJC7ZqFvwckFZZ5uY0HbP5GxsO1wJOZxex8lPzOpPnxjTjDfH-hcXxP_-yh3aKbBS3cvXZRxsqPUDbaxyFhygGN4h7c3OxC3cNuzVuj9JZobDYcHvAAnFeTI7Nri5urZ2J46cUd9mLwgUL7vwI9Ts3D-2eVTRhsATYemZ5gWShpxwSaUcKwokkLAiligCrCRC_YsyjytdENRWRDNIR6grKhYBUAgJwRI5RJR2l6gRhzpSrdBgylwMgD3QkQwfcK9HCZb4bqhrySkkkomAoN40yhgkgFSO-5Bvx1dDVctI4J-j4eXi9FHFSWOskAdQIMCwATa0hayn23yx3-sfxZ2jL9KvPqwHrqJK9TtU5ZDUZvygU9wO1Q_bJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Hybrid+Graph+Convolution+Neural+Network+with+Applications+in+Game+Strategy&rft.jtitle=Electronics+%28Basel%29&rft.au=Xu%2C+Hanyue&rft.au=Seng%2C+Kah+Phooi&rft.au=Ang%2C+Li-Minn&rft.date=2023-10-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=19&rft.spage=4020&rft_id=info:doi/10.3390%2Felectronics12194020&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics12194020 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |