New Hybrid Graph Convolution Neural Network with Applications in Game Strategy

Deep convolutional neural networks (DCNNs) have enjoyed much success in many applications, such as computer vision, automated medical diagnosis, autonomous systems, etc. Another application of DCNNs is for game strategies, where the deep neural network architecture can be used to directly represent...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 12; no. 19; p. 4020
Main Authors Xu, Hanyue, Seng, Kah Phooi, Ang, Li-Minn
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics12194020

Cover

Abstract Deep convolutional neural networks (DCNNs) have enjoyed much success in many applications, such as computer vision, automated medical diagnosis, autonomous systems, etc. Another application of DCNNs is for game strategies, where the deep neural network architecture can be used to directly represent and learn strategies from expert players on different sides. Many game states can be expressed not only as a matrix data structure suitable for DCNN training but also as a graph data structure. Most of the available DCNN methods ignore the territory characteristics of both sides’ positions based on the game rules. Therefore, in this paper, we propose a hybrid approach to the graph neural network to extract the features of the model of game-playing strategies and fuse it into a DCNN. As a graph learning model, graph convolutional networks (GCNs) provide a scheme by which to extract the features in a graph structure, which can better extract the features in the relationship between the game-playing strategies. We validate the work and design a hybrid network to integrate GCNs and DCNNs in the game of Go and show that on the KGS Go dataset, the performance of the hybrid model outperforms the traditional DCNN model. The hybrid model demonstrates a good performance in extracting the game strategy of Go.
AbstractList Deep convolutional neural networks (DCNNs) have enjoyed much success in many applications, such as computer vision, automated medical diagnosis, autonomous systems, etc. Another application of DCNNs is for game strategies, where the deep neural network architecture can be used to directly represent and learn strategies from expert players on different sides. Many game states can be expressed not only as a matrix data structure suitable for DCNN training but also as a graph data structure. Most of the available DCNN methods ignore the territory characteristics of both sides’ positions based on the game rules. Therefore, in this paper, we propose a hybrid approach to the graph neural network to extract the features of the model of game-playing strategies and fuse it into a DCNN. As a graph learning model, graph convolutional networks (GCNs) provide a scheme by which to extract the features in a graph structure, which can better extract the features in the relationship between the game-playing strategies. We validate the work and design a hybrid network to integrate GCNs and DCNNs in the game of Go and show that on the KGS Go dataset, the performance of the hybrid model outperforms the traditional DCNN model. The hybrid model demonstrates a good performance in extracting the game strategy of Go.
Author Ang, Li-Minn
Seng, Kah Phooi
Xu, Hanyue
Author_xml – sequence: 1
  givenname: Hanyue
  surname: Xu
  fullname: Xu, Hanyue
– sequence: 2
  givenname: Kah Phooi
  surname: Seng
  fullname: Seng, Kah Phooi
– sequence: 3
  givenname: Li-Minn
  surname: Ang
  fullname: Ang, Li-Minn
BookMark eNqNUMtOwzAQtFCRKKVfwMUS54IfaRIfqwpapKocgHPkOhvq4trBdojy96SUA0JIsJdZaWd2d-YcDayzgNAlJdecC3IDBlT0zmoVKKMiIYycoCEjmZgIJtjgW3-GxiHsSF-C8pyTIVqvocXLbuN1iRde1ls8d_bdmSZqZ_EaGi9ND7F1_hW3Om7xrK6NVvIwD1hbvJB7wI_Rywgv3QU6raQJMP7CEXq-u32aLyerh8X9fLaaKM5YnLCslDkDwkVFSsU3vOQyy0sQLGdKKQlSshSmFYcEeCk5zVKq0o1SdEoVgOAjlBz3NraWXSuNKWqv99J3BSXFIZbil1h62dVRVnv31kCIxc413vafFizP0oRlCeE9SxxZyrsQPFSF0vHTcO9Smz8u8B_a__z1AYtZjXU
CitedBy_id crossref_primary_10_3390_electronics13153093
crossref_primary_10_1016_j_heliyon_2024_e41523
Cites_doi 10.1038/nature24270
10.1109/TCIAIG.2012.2186810
10.1109/ACCESS.2020.3013645
10.1126/science.aar6404
10.3756/artsci.20.139
10.1007/s11042-022-12153-2
10.1007/3-540-44668-0_49
10.29207/resti.v6i4.4222
10.3390/s22155735
10.1109/ACCESS.2020.3023739
10.1007/978-3-030-59719-1_35
10.1109/CVPR52688.2022.01804
10.2139/ssrn.3666956
10.1007/978-3-030-35817-4_5
10.1109/CSPA55076.2022.9782020
10.1109/TGRS.2020.3037361
10.1021/acs.jproteome.2c00234
10.1109/JSTARS.2020.3011333
10.1002/acm2.13746
10.5220/0010904200003116
10.1007/s11280-020-00824-9
10.1109/SMC52423.2021.9658625
10.1038/s41598-021-95680-6
10.1109/JLT.2021.3125974
10.1109/CIG.2014.6932863
10.1109/TAI.2021.3076021
10.1038/nature16961
10.1109/ITSC.2019.8917507
10.1109/CoG51982.2022.9893671
10.1145/1013560.1013562
10.1145/3219819.3219947
10.1088/1742-6596/2219/1/012008
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADTOC
UNPAY
DOI 10.3390/electronics12194020
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics12194020
10_3390_electronics12194020
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c322t-27da82e039f0dc3b3d3a78de9282cccaeaa26e5f3e4e3da31761c6bcc151cee93
IEDL.DBID UNPAY
ISSN 2079-9292
IngestDate Tue Aug 19 23:21:36 EDT 2025
Sat Jul 26 00:09:54 EDT 2025
Thu Oct 16 04:41:10 EDT 2025
Thu Apr 24 23:09:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-27da82e039f0dc3b3d3a78de9282cccaeaa26e5f3e4e3da31761c6bcc151cee93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2079-9292/12/19/4020/pdf?version=1695549960
PQID 2876427403
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics12194020
proquest_journals_2876427403
crossref_citationtrail_10_3390_electronics12194020
crossref_primary_10_3390_electronics12194020
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Xia (ref_21) 2021; 2
Browne (ref_5) 2012; 4
Hazra (ref_8) 2022; 81
Silver (ref_1) 2017; 550
ref_14
ref_35
ref_12
Wang (ref_13) 2020; 8
ref_34
Furukawa (ref_6) 2021; 20
ref_33
ref_10
Hou (ref_11) 2021; 11
ref_32
ref_31
ref_30
Wang (ref_40) 2021; 70
ref_19
Liu (ref_36) 2020; 59
ref_38
ref_15
ref_37
Silver (ref_3) 2018; 362
Li (ref_43) 2022; 40
Duan (ref_39) 2022; 23
ref_24
ref_46
Zhong (ref_23) 2020; 23
ref_45
ref_22
ref_44
ref_20
Liang (ref_42) 2022; 2219
McDonnell (ref_41) 2022; 22
Liang (ref_25) 2020; 13
ref_2
Neven (ref_4) 2004; 5
Li (ref_16) 2020; 8
ref_29
ref_28
ref_27
ref_26
ref_9
Kamatekar (ref_18) 2018; 9
Silver (ref_7) 2016; 529
Ichsan (ref_17) 2022; 6
References_xml – ident: ref_28
– volume: 550
  start-page: 354
  year: 2017
  ident: ref_1
  article-title: Mastering the game of Go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– volume: 4
  start-page: 1
  year: 2012
  ident: ref_5
  article-title: A Survey of Monte Carlo Tree Search Methods
  publication-title: IEEE Trans. Comput. Intell. AI Games
  doi: 10.1109/TCIAIG.2012.2186810
– volume: 8
  start-page: 142446
  year: 2020
  ident: ref_13
  article-title: How Decisions Are Made in Brains: Unpack “Black Box” of CNN With Ms. Pac-Man Video Game
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3013645
– ident: ref_24
– volume: 362
  start-page: 1140
  year: 2018
  ident: ref_3
  article-title: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play
  publication-title: Science
  doi: 10.1126/science.aar6404
– volume: 20
  start-page: 139
  year: 2021
  ident: ref_6
  article-title: A Study on Utility Based Game AI Considering Long-Term Goal Achievement
  publication-title: J. Soc. Art Sci.
  doi: 10.3756/artsci.20.139
– ident: ref_34
– volume: 81
  start-page: 8963
  year: 2022
  ident: ref_8
  article-title: Applications of game theory in deep learning: A survey
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12153-2
– ident: ref_26
  doi: 10.1007/3-540-44668-0_49
– volume: 6
  start-page: 606
  year: 2022
  ident: ref_17
  article-title: Increased Accuracy on Image Classification of Game Rock Paper Scissors using CNN
  publication-title: J. RESTI (Rekayasa Sist. Dan Teknol. Inf.)
  doi: 10.29207/resti.v6i4.4222
– ident: ref_37
  doi: 10.3390/s22155735
– volume: 8
  start-page: 203039
  year: 2020
  ident: ref_16
  article-title: AlphaGo Policy Network: A DCNN Accelerator on FPGA
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3023739
– ident: ref_38
  doi: 10.1007/978-3-030-59719-1_35
– ident: ref_14
– volume: 70
  start-page: 2504811
  year: 2021
  ident: ref_40
  article-title: Linking Attention-Based Multiscale CNN With Dynamical GCN for Driving Fatigue Detection
  publication-title: IEEE Trans. Instrum. Meas.
– ident: ref_44
– volume: 9
  start-page: 179
  year: 2018
  ident: ref_18
  article-title: Domination, Easymove Game Represented in Graph
  publication-title: Int. J. Math. Arch.
– ident: ref_31
  doi: 10.1109/CVPR52688.2022.01804
– ident: ref_9
  doi: 10.2139/ssrn.3666956
– ident: ref_22
  doi: 10.1007/978-3-030-35817-4_5
– ident: ref_10
  doi: 10.1109/CSPA55076.2022.9782020
– volume: 59
  start-page: 8657
  year: 2020
  ident: ref_36
  article-title: CNN-Enhanced Graph Convolutional Network with Pixel- and Superpixel-Level Feature Fusion for Hyperspectral Image Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3037361
– volume: 22
  start-page: 323
  year: 2022
  ident: ref_41
  article-title: Application of a Novel Hybrid CNN-GNN for Peptide Ion Encoding
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.2c00234
– ident: ref_29
– ident: ref_33
– volume: 13
  start-page: 4325
  year: 2020
  ident: ref_25
  article-title: A Deep Neural Network Combined CNN and GCN for Remote Sensing Scene Classification
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3011333
– ident: ref_27
– volume: 23
  start-page: e13746
  year: 2022
  ident: ref_39
  article-title: Semi-supervised classification of fundus images combined with CNN and GCN
  publication-title: J. Appl. Clin. Med. Phys.
  doi: 10.1002/acm2.13746
– ident: ref_2
– ident: ref_32
  doi: 10.5220/0010904200003116
– volume: 23
  start-page: 3125
  year: 2020
  ident: ref_23
  article-title: Hybrid graph convolutional networks with multi-head attention for location recommendation
  publication-title: World Wide Web
  doi: 10.1007/s11280-020-00824-9
– ident: ref_46
– ident: ref_19
  doi: 10.1109/SMC52423.2021.9658625
– volume: 11
  start-page: 16071
  year: 2021
  ident: ref_11
  article-title: Explainable DCNN based chest X-ray image analysis and classification for COVID-19 pneumonia detection
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-95680-6
– volume: 40
  start-page: 935
  year: 2022
  ident: ref_43
  article-title: GNN-Based Hierarchical Deep Reinforcement Learning for NFV-Oriented Online Resource Orchestration in Elastic Optical DCIs
  publication-title: J. Light. Technol.
  doi: 10.1109/JLT.2021.3125974
– ident: ref_15
– ident: ref_20
  doi: 10.1109/CIG.2014.6932863
– volume: 2
  start-page: 109
  year: 2021
  ident: ref_21
  article-title: Graph Learning: A Survey
  publication-title: IEEE Trans. Artif. Intell.
  doi: 10.1109/TAI.2021.3076021
– ident: ref_45
– volume: 529
  start-page: 484
  year: 2016
  ident: ref_7
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– ident: ref_12
  doi: 10.1109/ITSC.2019.8917507
– ident: ref_35
  doi: 10.1109/CoG51982.2022.9893671
– volume: 5
  start-page: 403
  year: 2004
  ident: ref_4
  article-title: Finite state machines for strings over infinite alphabets
  publication-title: ACM Trans. Comput. Log.
  doi: 10.1145/1013560.1013562
– ident: ref_30
  doi: 10.1145/3219819.3219947
– volume: 2219
  start-page: 012008
  year: 2022
  ident: ref_42
  article-title: GLSTM-DTA: Application of Prediction Improvement Model Based on GNN and LSTM
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2219/1/012008
SSID ssj0000913830
Score 2.2784655
Snippet Deep convolutional neural networks (DCNNs) have enjoyed much success in many applications, such as computer vision, automated medical diagnosis, autonomous...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4020
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Camps
Computer architecture
Computer vision
Data structures
Decision making
Deep learning
Field programmable gate arrays
Games
Graph neural networks
Graph representations
Machine learning
Medical research
Methods
Neural networks
Strategy
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qe1AP4hOrVXLwaOjupt3HQaSWPhBcRCz0tuQJQt1W2yr99066u20FKd6TOcwkM9_k8X0AN75gnJlAUi49gw0KMxTBkU-FEtpvcCdUS57Zp9jvDxqPw-awBHHxF8Y-qyxy4jJRq7G0Z-R1RPYIlQO0dj_5oFY1yt6uFhIaPJdWUHdLirEdqHiWGasMlYdO_PyyOnWxLJghczL6IYb9fn2tNjPFGZFtp36XqDXu3J2nE7745qPRRgnqHsJBjh1JKwv2EZR0egz7G4yCJxBj0iL9hf2GRXqWi5q0x-lXvryIZeJAA3H29JvYM1jS2rjBJm8p6fF3TXLO2sUpDLqd13af5pIJVOLOnFEvUDz0tMMi4yjJBFOMB6HSEXZWEoOlOfd83TRMNzRTHMGD70pfSImFH8tlxM6gnI5TfQ5EcO1qE4bcFdg-ByZSoYPJkBnpcnSxroJXeCmROZ-4lbUYJdhXWNcmf7i2CrerSZOMTmP78Frh_iTfW9NkvRKqQFch-Y-5i-3mLmHPislnT_VqUJ59zvUVQo6ZuM7X0Q8efNtt
  priority: 102
  providerName: ProQuest
Title New Hybrid Graph Convolution Neural Network with Applications in Game Strategy
URI https://www.proquest.com/docview/2876427403
https://www.mdpi.com/2079-9292/12/19/4020/pdf?version=1695549960
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH5oe1AP7mJdyhw8Gptkmklykrq0RTSIWtBTmBWKNRZtlfrrfWNSrSKiCIG5zAwJb_0mb74HsMME5dSE0uHSNwhQqHEwOWKOUEKzOncj9cYze5awdqd-ch1cT9zit2WVCMW7b07ad8PYwfjt1zx84prFOrW-MvtPxVmSx-LAAhyGoL3MAhxLUO4k540b21NuvDonG6KI7msfvWUePbRVu-HngPSRZc4Msz4fPfNebyLgNBeAj181rzO53RsOxJ58-cLi-J9vWYT5IhsljVx9lmBKZ8swN8FRuAIJukHSHtmLXaRl2a3J4X32VCgssdweuEGSF5MTe6pLGhP_xEk3Iy1-p0nBgjtahU7z-Oqw7RRNGByJtj5w_FDxyNcujY2rJBVUUR5GSseI1SSKX3PuMx0YquuaKo7pCPMkE1JiKoEBOKZrUMruM70ORHDtaRNF3BMIyEMTq8hF90qN9HjgRboC_lgSqSwYym2jjF6KSMWKL_1GfBXYfV_Uzwk6fp6-NRZxWljrY4qoEWFYiJpaAedd7L_ZbuOP8zdh1varz6sBt6A0eBjqbcxqBqIK01GzVYVy4-js9BLHg-Pk_KJaqPMrDwv63Q
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4QPaAH4zPicw96s6Htlj4OxCiC-KAxRhJudbu7TUywoICGP-dvc5ZuARNDvHhvJ-nsdGa-3Z3vAzhxY8po4nGDcTtBgEITA5sj14hFLF2Hmb6Y8My2QrfZdm47lU4BvvJZGHWtMs-Jk0QtelztkZexs8dW2UNr5_03Q6lGqdPVXEKDaWkFUZ1QjOnBjjs5_kQIN6jeXOF6n9p2o_5UaxpaZcDgGMxDw_YE821p0iAxBacxFZR5vpABghGO3ycZs11ZSah0JBUM661rcTfmHGslVhhFxoQlYNmhToDgb_myHj48Tnd5FOumT82M7ojSwCzP1G0GFmYLBd9-lsRZn1scpX02_mTd7lzJa6zDmu5VyUUWXBtQkOkmrM4xGG5BiEmSNMdq7ItcK-5rUuulHzqciWL-QANhdtWcqD1fcjF3Yk5eUnLNXiXRHLnjbWj_i_N2YCntpXIXSMykJRPfZ1aMcN1LAuGbmHxpwi2GSypLYOdeirjmL1cyGt0IcYxybfSLa0twNn2pn9F3LH78IHd_pP_lQTSLvBIY0yX5i7m9xeaOodh8at1H9zfh3T6sKCH77JrgASwN30fyENudYXykY4rA83-H8TeM_hqw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4QTHwcjM-Iou5Bbza0XejjYAwBeYgSD5Jwq9t9JCZYUEDCX_PXOUtbwMQQL9zbSTr7dV478w3AlRNSRpXLDcZthQkKVQYGR44RilA6RWZ6YsYz-9R2Gp3iQ7fUzcB3Oguj2ypTmzgz1KLPdY28gJE9hsouSiuopC3iuVq7G3wYeoOUvmlN12nEEGnJ6QTTt-Fts4pnfW3btfuXSsNINgwYHIE8MmxXMM-WJvWVKTgNqaDM9YT0MRHh-G2SMduRJUVlUVLB0Nc6FndCztFPonfRRExo_jdczeKup9Rr9Xl9R_NtetSMiY4o9c3CYq_N0EI7oRO3385wEeFujaMBm05Yr7fk7Gp7sJtEqaQcw2ofMjI6gJ0l7sJDaKN5JI2pHvgidc16TSr96CsBMtGcHyigHTeZE13tJeWlu3LyFpE6e5ckYcedHkFnLao7hmzUj-QJkJBJSyrPY1aIibqrfOGZaHap4hYrWZ7MgZ1qKeAJc7leoNELMIPRqg3-UG0ObuYvDWLijtWP51P1B8lfPAwWmMuBMT-S_4g7XS3uEjYRvMFjs906g229wT7uD8xDdvQ5lucY54zCixmgCLyuG8E_8jYYSg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA-yHdSDb3E6JQePdn1kTduTjOE2BIsHB_NU8gRxdsN1k_nX-2VttykiilDoJQkt3_OXfPl9CF1SThjRgbCY8DQAFKItSI6oxSVXtMmcUC54Zu9i2us3bwf-YO0WvymrBCj-tHDSnhNEFsRvz3bhiWyDdeyx1NezYi_JpZFvAA4F0F6lPrwrqNqP71uPpqdcOTsnGyKA7u1Vb5mJC7ZqFvwckFZZ5uY0HbP5GxsO1wJOZxex8lPzOpPnxjTjDfH-hcXxP_-yh3aKbBS3cvXZRxsqPUDbaxyFhygGN4h7c3OxC3cNuzVuj9JZobDYcHvAAnFeTI7Nri5urZ2J46cUd9mLwgUL7vwI9Ts3D-2eVTRhsATYemZ5gWShpxwSaUcKwokkLAiligCrCRC_YsyjytdENRWRDNIR6grKhYBUAgJwRI5RJR2l6gRhzpSrdBgylwMgD3QkQwfcK9HCZb4bqhrySkkkomAoN40yhgkgFSO-5Bvx1dDVctI4J-j4eXi9FHFSWOskAdQIMCwATa0hayn23yx3-sfxZ2jL9KvPqwHrqJK9TtU5ZDUZvygU9wO1Q_bJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Hybrid+Graph+Convolution+Neural+Network+with+Applications+in+Game+Strategy&rft.jtitle=Electronics+%28Basel%29&rft.au=Xu%2C+Hanyue&rft.au=Seng%2C+Kah+Phooi&rft.au=Ang%2C+Li-Minn&rft.date=2023-10-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=12&rft.issue=19&rft.spage=4020&rft_id=info:doi/10.3390%2Felectronics12194020&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics12194020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon