Detection of Walking Features Using Mobile Health and Deep Learning
This study identifies seven human subjects’ walking features by training a deep learning model with sensor data. Using the proposed Mobile Health Application developed for collecting sensor data from an Android device, we collected data from human subjects with a history of mild traumatic brain inju...
Saved in:
Published in | Applied sciences Vol. 12; no. 11; p. 5444 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app12115444 |
Cover
Abstract | This study identifies seven human subjects’ walking features by training a deep learning model with sensor data. Using the proposed Mobile Health Application developed for collecting sensor data from an Android device, we collected data from human subjects with a history of mild traumatic brain injury. The sensors measure acceleration in m/s2 with respect to: the X, Y, and Z directions using an accelerometer, the rate of rotation around a spatial axis with a gyroscope, and nine parameters of a rotation vector with rotation vector components along the X, Y, Z axes using a rotation vector software-based sensor. We made a deep learning model using Tensorflow and Keras to identify the walking features of the seven subjects. The data are classified into the following categories: Accelerometer (X, Y, Z); Gyroscope (X, Y, Z); Rotation (X, Y, Z); Rotation vector (nine parameters); and a combination of the preceding categories. Each dataset was then used for training and testing the accuracy of the deep learning model. According to the Keras evaluation function, the deep learning model trained with Rotation vector data shows 99.5% accuracy for classifying walking characteristics of subjects. In addition, the ability of the model to accurately classify the characteristics of subjects’ walking with all datasets combined is 99.9%. |
---|---|
AbstractList | This study identifies seven human subjects’ walking features by training a deep learning model with sensor data. Using the proposed Mobile Health Application developed for collecting sensor data from an Android device, we collected data from human subjects with a history of mild traumatic brain injury. The sensors measure acceleration in m/s2 with respect to: the X, Y, and Z directions using an accelerometer, the rate of rotation around a spatial axis with a gyroscope, and nine parameters of a rotation vector with rotation vector components along the X, Y, Z axes using a rotation vector software-based sensor. We made a deep learning model using Tensorflow and Keras to identify the walking features of the seven subjects. The data are classified into the following categories: Accelerometer (X, Y, Z); Gyroscope (X, Y, Z); Rotation (X, Y, Z); Rotation vector (nine parameters); and a combination of the preceding categories. Each dataset was then used for training and testing the accuracy of the deep learning model. According to the Keras evaluation function, the deep learning model trained with Rotation vector data shows 99.5% accuracy for classifying walking characteristics of subjects. In addition, the ability of the model to accurately classify the characteristics of subjects’ walking with all datasets combined is 99.9%. |
Author | Lee, Hyunhwa Lee, Sungchul |
Author_xml | – sequence: 1 givenname: Sungchul surname: Lee fullname: Lee, Sungchul – sequence: 2 givenname: Hyunhwa orcidid: 0000-0002-5625-3141 surname: Lee fullname: Lee, Hyunhwa |
BookMark | eNp9kEtLxDAQgIMoqOue_AMFj1rNq0l7lNV1hRUviscwTSbatTY1bRH_vV0r4sm5zOvjg5lDstuEBgk5ZvRciIJeQNsyzlgmpdwhB5xqlQrJ9O6fep_Mu25DxyiYyBk9IIsr7NH2VWiS4JMnqF-r5jlZIvRDxC557LbtXSirGpMVQt2_JNC45AqxTdYIsRn3R2TPQ93h_CfPyOPy-mGxStf3N7eLy3VqBed9yjPMRcFZbn3GhZROgHLeg9MW85xKq4pMcmmF8iwrQWaec1Bl6QqmPJZSzMjt5HUBNqaN1RvETxOgMt-DEJ8NxL6yNRohC6Gd1rQsrUStcg7USapdDrkXqhxdZ5NraFr4_IC6_hUyarb_NH_-OeInE97G8D5g15tNGGIzXmu40lJwKdSWOp0oG0PXRfT_Or8AkPKCOg |
Cites_doi | 10.1016/j.gaitpost.2018.04.034 10.1186/s12877-020-1486-3 10.4085/1062-6050-52.1.13 10.1109/IEMBS.2008.4649977 10.1016/j.amepre.2008.05.001 10.20944/preprints202001.0374.v1 10.1016/S0140-6736(74)91639-0 10.1007/s11682-012-9162-7 10.1007/s00221-014-4103-x 10.1089/tmj.2014.0025 10.1109/IEMBS.2006.260349 10.1109/EMBC.2013.6610578 10.1080/02699052.2016.1225982 10.3390/app12020850 10.3390/s140917235 10.1007/s00221-003-1472-y |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
DOI | 10.3390/app12115444 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_34937d770bbc4e7682a0d407d8a8f36b 10.3390/app12115444 10_3390_app12115444 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC PUEGO TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY |
ID | FETCH-LOGICAL-c322t-25e839218cf52344d3a6dffad7ce8804c695424c36f15ba45f22a6bbd916feb43 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:03:15 EDT 2025 Tue Aug 19 15:58:51 EDT 2025 Thu Sep 11 07:11:31 EDT 2025 Wed Oct 01 01:14:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c322t-25e839218cf52344d3a6dffad7ce8804c695424c36f15ba45f22a6bbd916feb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5625-3141 |
OpenAccessLink | https://doaj.org/article/34937d770bbc4e7682a0d407d8a8f36b |
PQID | 2674324364 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_34937d770bbc4e7682a0d407d8a8f36b unpaywall_primary_10_3390_app12115444 proquest_journals_2674324364 crossref_primary_10_3390_app12115444 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Lamont (ref_16) 2018; 63 ref_11 ref_10 Bruttini (ref_1) 2015; 233 Jones (ref_7) 2017; 52 ref_19 ref_18 ref_17 Rosenbaum (ref_14) 2012; 6 Jurgens (ref_4) 2003; 151 Cancela (ref_15) 2014; 14 Juen (ref_13) 2014; 20 Lee (ref_2) 2018; 3 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 Montecchi (ref_3) 2013; 49 Degani (ref_6) 2016; 31 ref_26 Bond (ref_28) 1979; 1 ref_9 Teasdale (ref_27) 1974; 13 ref_8 ref_5 Patrick (ref_12) 2008; 35 |
References_xml | – volume: 63 start-page: 104 year: 2018 ident: ref_16 article-title: Accuracy of wearable physical activity trackers in people with Parkinson’s disease publication-title: Gait Posture doi: 10.1016/j.gaitpost.2018.04.034 – ident: ref_24 – ident: ref_26 – ident: ref_11 doi: 10.1186/s12877-020-1486-3 – volume: 52 start-page: 245 year: 2017 ident: ref_7 article-title: Evaluation of Nintendo Wii Balance Board as a Tool for Measuring Postural Stability After Sport-Related Concussion publication-title: J. Athl. Train. doi: 10.4085/1062-6050-52.1.13 – ident: ref_10 doi: 10.1109/IEMBS.2008.4649977 – volume: 35 start-page: 177 year: 2008 ident: ref_12 article-title: Health and the mobile phone publication-title: Am. J. Prev. Med. doi: 10.1016/j.amepre.2008.05.001 – ident: ref_5 doi: 10.20944/preprints202001.0374.v1 – ident: ref_18 – ident: ref_23 – ident: ref_21 – volume: 13 start-page: 81 year: 1974 ident: ref_27 article-title: Assessment of coma and impaired consciousness. A practical scale publication-title: Lancet doi: 10.1016/S0140-6736(74)91639-0 – volume: 6 start-page: 255 year: 2012 ident: ref_14 article-title: Embracing chaos: The scope and importance of clinical and pathological heterogeneity in mTBI publication-title: Brain Imaging Behav. doi: 10.1007/s11682-012-9162-7 – volume: 3 start-page: 175 year: 2018 ident: ref_2 article-title: Proof-of-Concept Testing of a Real-Time mHealth Measure to Estimate Postural Control During Walking: A Potential Application for Mild Traumatic Brain Injuries publication-title: Asian/Pac. Isl. Nurs. J. – volume: 49 start-page: 341 year: 2013 ident: ref_3 article-title: Trunk recovery scale: A new tool to measure posture control in patients with severe acquired brain injury. A study of the psychometric properties publication-title: Eur. J. Phys. Rehabil. Med. – volume: 233 start-page: 197 year: 2015 ident: ref_1 article-title: Temporal disruption of upper-limb anticipatory postural adjustments in cerebellar ataxic patients publication-title: Exp. Brain Res. doi: 10.1007/s00221-014-4103-x – volume: 20 start-page: 1035 year: 2014 ident: ref_13 article-title: Health monitors for chronic disease by gait analysis with mobile phones publication-title: Telemed. J. E-Health doi: 10.1089/tmj.2014.0025 – ident: ref_25 – ident: ref_8 doi: 10.1109/IEMBS.2006.260349 – ident: ref_9 doi: 10.1109/EMBC.2013.6610578 – volume: 31 start-page: 49 year: 2016 ident: ref_6 article-title: The effects of mild traumatic brain injury on postural control publication-title: Brain Inj. doi: 10.1080/02699052.2016.1225982 – ident: ref_20 doi: 10.3390/app12020850 – volume: 14 start-page: 17235 year: 2014 ident: ref_15 article-title: Wearability assessment of a wearable system for Parkinson’s disease remote monitoring based on a body area network of sensors publication-title: Sensors doi: 10.3390/s140917235 – volume: 1 start-page: 155 year: 1979 ident: ref_28 article-title: The stages of recovery from severe head injury with special reference to late outcome publication-title: Int. Rehabil. Med. – ident: ref_17 – ident: ref_19 – volume: 151 start-page: 90 year: 2003 ident: ref_4 article-title: Vestibular optokinetic and cognitive contribution to the guidance of passive self-rotation toward instructed targets publication-title: Exp. Brain Res. doi: 10.1007/s00221-003-1472-y – ident: ref_22 |
SSID | ssj0000913810 |
Score | 2.2170198 |
Snippet | This study identifies seven human subjects’ walking features by training a deep learning model with sensor data. Using the proposed Mobile Health Application... |
SourceID | doaj unpaywall proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 5444 |
SubjectTerms | deep learning mild traumatic brain injuries mobile mobile health sensor Sensors Software Telemedicine Traumatic brain injury walking feature |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BGYAB8RSFgjyABENEYp_zmBAUCkKCCUS3yE-WKil9CPHvsVO3lIU1iqLoXv7ufPcdwBlXDjWkgkfGZCzCHIuo4JpHKDLJPT0L0023xUv6-IZPfd4PBbdxaKucx8QmUOta-Rr5FfXd8hRZitfDz8hvjfK3q2GFxiqsJdRZkp8U7z0saiye8zJP4tlYHnPZvb8V9pxmHBH_HEQNX_8fkLk-rYbi-0sMBkvnTW8btgJQJDczze7Aiql2YXOJPnAXdoJjjslFYI--3IPunZk07VUVqS15FwNfCyce6U1dZk2aFgHyXEsXDchsBomISpM7Y4YkkK1-7MNb7_61-xiFTQmRcg45iSg3HugkubIusUTUTKTaWqEzZZyDokoLjhQVS23CpUBuKRWplNqBQ2sksgNoVXVlDoEoy6QUCc-kztDKOFdYxLGVhVJaFJK14WwutnI4I8QoXSLhpVsuSbcNt16ki1c8i3XzoB59lMEpSoYOHOksi6VUaFziQ0WsXYapc5Fblso2dOYKKYNrjctfQ2jD-UJJ__3L0f-fOYYN6mcamtJKB1qT0dScOKQxkaeNOf0Anz_Q2g priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7C5pD20Dza0s2j6JBCe3DWlkaSfQp5EgINPXRpejJ6htLFuyTelObXR7K1YdNDKfRqZFlmNKPvk2Y-AexzE1CDUDxzTrIMS6yyilueoZKaR3kWZrtsiytxMcbLa369VMUf0yoDFf_RBWkaSHYWwqwcFXRUFCOOiKOZ9Yf3aS-pEJwJLot4zfCqiEdMA1gdX305-h7vlFu83ZflscDu46lw1DSLHT1biDq9_mcgc23ezNTvX2oyWVpvztdBLUbap5n8PJi3-sA8_CHi-D-_sgGvEhglR_3s2YQV12zByyWJwi3YTM5_Rz4mhepPr-Hk1LVdCldDpp58U5O4304impwH9k66NATyeapDxCF9nRNRjSWnzs1IEnS9eQPj87OvJxdZuo0hM8Hp24xyF8FUURofyCuiZUpY75WVxoUggEZUHCkaJnzBtULuKVVCaxsAqHca2VsYNNPGvQNiPNNaFVxqK9HrvDRY5bnXlTFWVZoNYX9hmnrWi27UgaxEC9ZLFhzCcTTbU5OolN09mN7e1MnxaoYBgFkpc60NukCuqMptYLG2VKVnQg9hd2H0OrnvXU1jaQZFJsI3PjxNhL-NZfsf2-3ACxoLKLp9nF0YtLdztxdgTavfp5n7CGTN7yI priority: 102 providerName: Unpaywall |
Title | Detection of Walking Features Using Mobile Health and Deep Learning |
URI | https://www.proquest.com/docview/2674324364 https://www.mdpi.com/2076-3417/12/11/5444/pdf?version=1653657112 https://doaj.org/article/34937d770bbc4e7682a0d407d8a8f36b |
UnpaywallVersion | publishedVersion |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB58HNSD-MRqLXtQ0EMwzc7mcbRqFcEiYlFPYZ9eSlpsi_jvnU2ixItePCYEssxkZr5vM_MtwJHQhBpiKQJrEx5gilmQCSMClIkSXp6Fm7LbYhDfDPH2WTw3jvryPWGVPHBluDOOVEBNkoRKabQEjiMZGmIhJpWp47Hy2ZfKWINMlTk463rpqmogjxOv9_-DvZqZQMQfJahU6v8BL1fmxUR-vMvRqFFp-huwXkNEdl4tbRMWbLEFaw3hwC3YrENyyk5q3ejTbbi4tLOysapgY8ee5MjvgjOP8ebEqVnZHMDuxoryAKumj5gsDLu0dsJqmdXXHRj2rx4vboL6jIRAUyjOgkhYD3G6qXZEKRENl7FxTppEWwpN1HEmMELNY9cVSqJwUSRjpQzBQmcV8l1YKsaF3QOmHVdKdkWiTIJOhanGLAydyrQ2MlO8BUdfZssnlRRGThTCWzdvWLcFPW_S70e8fnV5g7ya117N__JqC9pfDsnroJrmkR-YiJDH9I7jbyf9tpb9_1jLAaxGfuah3Hppw9LsbW4PCYnMVAcW0_51B5Z7V4P7h075CdLVcHB__vIJp_XdVQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07TxtBEB4RKAhFFEginJCwBUhJccp5d_YeRRQFHGOeFSh0l33SWHcG20L8qfzG7NzDmIaO9nQ6nWa_nf1mduYbgD1pAmtIlIycS0WEGeZRLq2MUKVakjyLsHW1xUUyusKTa3m9Av-6Xhgqq-x8Yu2obWUoR_6dU7U8R5Hgz8ltRFOj6Ha1G6HRwOLUPdyHkG3643gQ1nef8-Hvy8NR1E4ViEwA7yzi0hEp6GfGhyAM0QqVWO-VTY0LYEaT5BI5GpH4vtQKpedcJVrbQKS80yjCd1_BGgohSKs_Gx4tcjqksZn146YNUIg8plto0lCTiPjk4KvnAzwhtevzcqIe7tV4vHS-Dd_Cm5aYsl8NkjZhxZVbsLEkV7gFm60jmLKvrVr1t3dwOHCzupyrZJVnf9SYcu-MmOU8RPKsLklg55UO3oc1PU9MlZYNnJuwVtz15j1cvYgNP8BqWZVuG5jxQmvVl6m2KXodZwbzOPY6N8aqXIse7HVmKyaNAEcRAheybrFk3R4ckEkXr5Bqdv2gursp2k1YCAxkzKZprLVBFwItrmIbIlqbqcyLRPdgp1uQot3K0-IReD3YXyzSc__y8fnP7ML66PL8rDg7vjj9BK859VPUaZ0dWJ3dzd3nwHJm-ksNLQZ_XxrL_wHDZw3x |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RINFyQIW2aiiUPYBEDxbO7qwfB4SAEPFoI4RA5Wb2ySWyU5II8Rf7q9h11iFcuHG1LMua_Xb2m9mZbwC2uXKsIRE8MiZlEWaYRznXPEKRSu7lWZiuqy36yekNnt_y2wX43_TC-LLKxifWjlpXyufI96ivlqfIEtyzoSzists7GP6L_AQpf9PajNMQYcyC3q_lxkKTx4V5enTh3Gj_rOvWfofS3sn18WkUJg5EygF7HFFuPGHoZMq6AA1RM5Foa4VOlXFAR5XkHCkqltgOlwK5pVQkUmpHsqyRyNx3P8Bi6vtFW7B4dNK_vJplfLwCZ9aJp02CjOWxv6P2CmscEV8di_X0gFeU9-OkHIqnRzEYzJ1-vc-wEmgrOZzibBUWTLkGy3NihmuwGtzEiOwGLetfX-C4a8Z1sVdJKkv-ioHPzBPPOycuzid1wQL5U0nnm8i0I4qIUpOuMUMSpF_vv8LNu1jxG7TKqjTfgSjLpBQdnkqdopVxpjCPYytzpbTIJWvDdmO2YjiV5yhcWOOtW8xZtw1H3qSzV7ymdv2gergvwhYtGDqqptM0llKhcWEYFbF28a7ORGZZItuw0SxIETb6qHiBZRt2Zov01r-sv_2ZLVhyuC5-n_UvfsAn6pst6pzPBrTGDxOz6SjQWP4M2CJw995wfgZ_mhjL |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7C5pD20Dza0s2j6JBCe3DWlkaSfQp5EgINPXRpejJ6htLFuyTelObXR7K1YdNDKfRqZFlmNKPvk2Y-AexzE1CDUDxzTrIMS6yyilueoZKaR3kWZrtsiytxMcbLa369VMUf0yoDFf_RBWkaSHYWwqwcFXRUFCOOiKOZ9Yf3aS-pEJwJLot4zfCqiEdMA1gdX305-h7vlFu83ZflscDu46lw1DSLHT1biDq9_mcgc23ezNTvX2oyWVpvztdBLUbap5n8PJi3-sA8_CHi-D-_sgGvEhglR_3s2YQV12zByyWJwi3YTM5_Rz4mhepPr-Hk1LVdCldDpp58U5O4304impwH9k66NATyeapDxCF9nRNRjSWnzs1IEnS9eQPj87OvJxdZuo0hM8Hp24xyF8FUURofyCuiZUpY75WVxoUggEZUHCkaJnzBtULuKVVCaxsAqHca2VsYNNPGvQNiPNNaFVxqK9HrvDRY5bnXlTFWVZoNYX9hmnrWi27UgaxEC9ZLFhzCcTTbU5OolN09mN7e1MnxaoYBgFkpc60NukCuqMptYLG2VKVnQg9hd2H0OrnvXU1jaQZFJsI3PjxNhL-NZfsf2-3ACxoLKLp9nF0YtLdztxdgTavfp5n7CGTN7yI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Walking+Features+Using+Mobile+Health+and+Deep+Learning&rft.jtitle=Applied+sciences&rft.au=Sungchul+Lee&rft.au=Hyunhwa+Lee&rft.date=2022-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=11&rft.spage=5444&rft_id=info:doi/10.3390%2Fapp12115444&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_34937d770bbc4e7682a0d407d8a8f36b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |