Detection of Walking Features Using Mobile Health and Deep Learning

This study identifies seven human subjects’ walking features by training a deep learning model with sensor data. Using the proposed Mobile Health Application developed for collecting sensor data from an Android device, we collected data from human subjects with a history of mild traumatic brain inju...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 11; p. 5444
Main Authors Lee, Sungchul, Lee, Hyunhwa
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2022
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app12115444

Cover

Abstract This study identifies seven human subjects’ walking features by training a deep learning model with sensor data. Using the proposed Mobile Health Application developed for collecting sensor data from an Android device, we collected data from human subjects with a history of mild traumatic brain injury. The sensors measure acceleration in m/s2 with respect to: the X, Y, and Z directions using an accelerometer, the rate of rotation around a spatial axis with a gyroscope, and nine parameters of a rotation vector with rotation vector components along the X, Y, Z axes using a rotation vector software-based sensor. We made a deep learning model using Tensorflow and Keras to identify the walking features of the seven subjects. The data are classified into the following categories: Accelerometer (X, Y, Z); Gyroscope (X, Y, Z); Rotation (X, Y, Z); Rotation vector (nine parameters); and a combination of the preceding categories. Each dataset was then used for training and testing the accuracy of the deep learning model. According to the Keras evaluation function, the deep learning model trained with Rotation vector data shows 99.5% accuracy for classifying walking characteristics of subjects. In addition, the ability of the model to accurately classify the characteristics of subjects’ walking with all datasets combined is 99.9%.
AbstractList This study identifies seven human subjects’ walking features by training a deep learning model with sensor data. Using the proposed Mobile Health Application developed for collecting sensor data from an Android device, we collected data from human subjects with a history of mild traumatic brain injury. The sensors measure acceleration in m/s2 with respect to: the X, Y, and Z directions using an accelerometer, the rate of rotation around a spatial axis with a gyroscope, and nine parameters of a rotation vector with rotation vector components along the X, Y, Z axes using a rotation vector software-based sensor. We made a deep learning model using Tensorflow and Keras to identify the walking features of the seven subjects. The data are classified into the following categories: Accelerometer (X, Y, Z); Gyroscope (X, Y, Z); Rotation (X, Y, Z); Rotation vector (nine parameters); and a combination of the preceding categories. Each dataset was then used for training and testing the accuracy of the deep learning model. According to the Keras evaluation function, the deep learning model trained with Rotation vector data shows 99.5% accuracy for classifying walking characteristics of subjects. In addition, the ability of the model to accurately classify the characteristics of subjects’ walking with all datasets combined is 99.9%.
Author Lee, Hyunhwa
Lee, Sungchul
Author_xml – sequence: 1
  givenname: Sungchul
  surname: Lee
  fullname: Lee, Sungchul
– sequence: 2
  givenname: Hyunhwa
  orcidid: 0000-0002-5625-3141
  surname: Lee
  fullname: Lee, Hyunhwa
BookMark eNp9kEtLxDAQgIMoqOue_AMFj1rNq0l7lNV1hRUviscwTSbatTY1bRH_vV0r4sm5zOvjg5lDstuEBgk5ZvRciIJeQNsyzlgmpdwhB5xqlQrJ9O6fep_Mu25DxyiYyBk9IIsr7NH2VWiS4JMnqF-r5jlZIvRDxC557LbtXSirGpMVQt2_JNC45AqxTdYIsRn3R2TPQ93h_CfPyOPy-mGxStf3N7eLy3VqBed9yjPMRcFZbn3GhZROgHLeg9MW85xKq4pMcmmF8iwrQWaec1Bl6QqmPJZSzMjt5HUBNqaN1RvETxOgMt-DEJ8NxL6yNRohC6Gd1rQsrUStcg7USapdDrkXqhxdZ5NraFr4_IC6_hUyarb_NH_-OeInE97G8D5g15tNGGIzXmu40lJwKdSWOp0oG0PXRfT_Or8AkPKCOg
Cites_doi 10.1016/j.gaitpost.2018.04.034
10.1186/s12877-020-1486-3
10.4085/1062-6050-52.1.13
10.1109/IEMBS.2008.4649977
10.1016/j.amepre.2008.05.001
10.20944/preprints202001.0374.v1
10.1016/S0140-6736(74)91639-0
10.1007/s11682-012-9162-7
10.1007/s00221-014-4103-x
10.1089/tmj.2014.0025
10.1109/IEMBS.2006.260349
10.1109/EMBC.2013.6610578
10.1080/02699052.2016.1225982
10.3390/app12020850
10.3390/s140917235
10.1007/s00221-003-1472-y
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app12115444
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_34937d770bbc4e7682a0d407d8a8f36b
10.3390/app12115444
10_3390_app12115444
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
PUEGO
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c322t-25e839218cf52344d3a6dffad7ce8804c695424c36f15ba45f22a6bbd916feb43
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:03:15 EDT 2025
Tue Aug 19 15:58:51 EDT 2025
Thu Sep 11 07:11:31 EDT 2025
Wed Oct 01 01:14:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-25e839218cf52344d3a6dffad7ce8804c695424c36f15ba45f22a6bbd916feb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5625-3141
OpenAccessLink https://doaj.org/article/34937d770bbc4e7682a0d407d8a8f36b
PQID 2674324364
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_34937d770bbc4e7682a0d407d8a8f36b
unpaywall_primary_10_3390_app12115444
proquest_journals_2674324364
crossref_primary_10_3390_app12115444
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lamont (ref_16) 2018; 63
ref_11
ref_10
Bruttini (ref_1) 2015; 233
Jones (ref_7) 2017; 52
ref_19
ref_18
ref_17
Rosenbaum (ref_14) 2012; 6
Jurgens (ref_4) 2003; 151
Cancela (ref_15) 2014; 14
Juen (ref_13) 2014; 20
Lee (ref_2) 2018; 3
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
Montecchi (ref_3) 2013; 49
Degani (ref_6) 2016; 31
ref_26
Bond (ref_28) 1979; 1
ref_9
Teasdale (ref_27) 1974; 13
ref_8
ref_5
Patrick (ref_12) 2008; 35
References_xml – volume: 63
  start-page: 104
  year: 2018
  ident: ref_16
  article-title: Accuracy of wearable physical activity trackers in people with Parkinson’s disease
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.04.034
– ident: ref_24
– ident: ref_26
– ident: ref_11
  doi: 10.1186/s12877-020-1486-3
– volume: 52
  start-page: 245
  year: 2017
  ident: ref_7
  article-title: Evaluation of Nintendo Wii Balance Board as a Tool for Measuring Postural Stability After Sport-Related Concussion
  publication-title: J. Athl. Train.
  doi: 10.4085/1062-6050-52.1.13
– ident: ref_10
  doi: 10.1109/IEMBS.2008.4649977
– volume: 35
  start-page: 177
  year: 2008
  ident: ref_12
  article-title: Health and the mobile phone
  publication-title: Am. J. Prev. Med.
  doi: 10.1016/j.amepre.2008.05.001
– ident: ref_5
  doi: 10.20944/preprints202001.0374.v1
– ident: ref_18
– ident: ref_23
– ident: ref_21
– volume: 13
  start-page: 81
  year: 1974
  ident: ref_27
  article-title: Assessment of coma and impaired consciousness. A practical scale
  publication-title: Lancet
  doi: 10.1016/S0140-6736(74)91639-0
– volume: 6
  start-page: 255
  year: 2012
  ident: ref_14
  article-title: Embracing chaos: The scope and importance of clinical and pathological heterogeneity in mTBI
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-012-9162-7
– volume: 3
  start-page: 175
  year: 2018
  ident: ref_2
  article-title: Proof-of-Concept Testing of a Real-Time mHealth Measure to Estimate Postural Control During Walking: A Potential Application for Mild Traumatic Brain Injuries
  publication-title: Asian/Pac. Isl. Nurs. J.
– volume: 49
  start-page: 341
  year: 2013
  ident: ref_3
  article-title: Trunk recovery scale: A new tool to measure posture control in patients with severe acquired brain injury. A study of the psychometric properties
  publication-title: Eur. J. Phys. Rehabil. Med.
– volume: 233
  start-page: 197
  year: 2015
  ident: ref_1
  article-title: Temporal disruption of upper-limb anticipatory postural adjustments in cerebellar ataxic patients
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-014-4103-x
– volume: 20
  start-page: 1035
  year: 2014
  ident: ref_13
  article-title: Health monitors for chronic disease by gait analysis with mobile phones
  publication-title: Telemed. J. E-Health
  doi: 10.1089/tmj.2014.0025
– ident: ref_25
– ident: ref_8
  doi: 10.1109/IEMBS.2006.260349
– ident: ref_9
  doi: 10.1109/EMBC.2013.6610578
– volume: 31
  start-page: 49
  year: 2016
  ident: ref_6
  article-title: The effects of mild traumatic brain injury on postural control
  publication-title: Brain Inj.
  doi: 10.1080/02699052.2016.1225982
– ident: ref_20
  doi: 10.3390/app12020850
– volume: 14
  start-page: 17235
  year: 2014
  ident: ref_15
  article-title: Wearability assessment of a wearable system for Parkinson’s disease remote monitoring based on a body area network of sensors
  publication-title: Sensors
  doi: 10.3390/s140917235
– volume: 1
  start-page: 155
  year: 1979
  ident: ref_28
  article-title: The stages of recovery from severe head injury with special reference to late outcome
  publication-title: Int. Rehabil. Med.
– ident: ref_17
– ident: ref_19
– volume: 151
  start-page: 90
  year: 2003
  ident: ref_4
  article-title: Vestibular optokinetic and cognitive contribution to the guidance of passive self-rotation toward instructed targets
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-003-1472-y
– ident: ref_22
SSID ssj0000913810
Score 2.2170198
Snippet This study identifies seven human subjects’ walking features by training a deep learning model with sensor data. Using the proposed Mobile Health Application...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 5444
SubjectTerms deep learning
mild traumatic brain injuries
mobile
mobile health
sensor
Sensors
Software
Telemedicine
Traumatic brain injury
walking feature
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BGYAB8RSFgjyABENEYp_zmBAUCkKCCUS3yE-WKil9CPHvsVO3lIU1iqLoXv7ufPcdwBlXDjWkgkfGZCzCHIuo4JpHKDLJPT0L0023xUv6-IZPfd4PBbdxaKucx8QmUOta-Rr5FfXd8hRZitfDz8hvjfK3q2GFxiqsJdRZkp8U7z0saiye8zJP4tlYHnPZvb8V9pxmHBH_HEQNX_8fkLk-rYbi-0sMBkvnTW8btgJQJDczze7Aiql2YXOJPnAXdoJjjslFYI--3IPunZk07VUVqS15FwNfCyce6U1dZk2aFgHyXEsXDchsBomISpM7Y4YkkK1-7MNb7_61-xiFTQmRcg45iSg3HugkubIusUTUTKTaWqEzZZyDokoLjhQVS23CpUBuKRWplNqBQ2sksgNoVXVlDoEoy6QUCc-kztDKOFdYxLGVhVJaFJK14WwutnI4I8QoXSLhpVsuSbcNt16ki1c8i3XzoB59lMEpSoYOHOksi6VUaFziQ0WsXYapc5Fblso2dOYKKYNrjctfQ2jD-UJJ__3L0f-fOYYN6mcamtJKB1qT0dScOKQxkaeNOf0Anz_Q2g
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7C5pD20Dza0s2j6JBCe3DWlkaSfQp5EgINPXRpejJ6htLFuyTelObXR7K1YdNDKfRqZFlmNKPvk2Y-AexzE1CDUDxzTrIMS6yyilueoZKaR3kWZrtsiytxMcbLa369VMUf0yoDFf_RBWkaSHYWwqwcFXRUFCOOiKOZ9Yf3aS-pEJwJLot4zfCqiEdMA1gdX305-h7vlFu83ZflscDu46lw1DSLHT1biDq9_mcgc23ezNTvX2oyWVpvztdBLUbap5n8PJi3-sA8_CHi-D-_sgGvEhglR_3s2YQV12zByyWJwi3YTM5_Rz4mhepPr-Hk1LVdCldDpp58U5O4304impwH9k66NATyeapDxCF9nRNRjSWnzs1IEnS9eQPj87OvJxdZuo0hM8Hp24xyF8FUURofyCuiZUpY75WVxoUggEZUHCkaJnzBtULuKVVCaxsAqHca2VsYNNPGvQNiPNNaFVxqK9HrvDRY5bnXlTFWVZoNYX9hmnrWi27UgaxEC9ZLFhzCcTTbU5OolN09mN7e1MnxaoYBgFkpc60NukCuqMptYLG2VKVnQg9hd2H0OrnvXU1jaQZFJsI3PjxNhL-NZfsf2-3ACxoLKLp9nF0YtLdztxdgTavfp5n7CGTN7yI
  priority: 102
  providerName: Unpaywall
Title Detection of Walking Features Using Mobile Health and Deep Learning
URI https://www.proquest.com/docview/2674324364
https://www.mdpi.com/2076-3417/12/11/5444/pdf?version=1653657112
https://doaj.org/article/34937d770bbc4e7682a0d407d8a8f36b
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB58HNSD-MRqLXtQ0EMwzc7mcbRqFcEiYlFPYZ9eSlpsi_jvnU2ixItePCYEssxkZr5vM_MtwJHQhBpiKQJrEx5gilmQCSMClIkSXp6Fm7LbYhDfDPH2WTw3jvryPWGVPHBluDOOVEBNkoRKabQEjiMZGmIhJpWp47Hy2ZfKWINMlTk463rpqmogjxOv9_-DvZqZQMQfJahU6v8BL1fmxUR-vMvRqFFp-huwXkNEdl4tbRMWbLEFaw3hwC3YrENyyk5q3ejTbbi4tLOysapgY8ee5MjvgjOP8ebEqVnZHMDuxoryAKumj5gsDLu0dsJqmdXXHRj2rx4vboL6jIRAUyjOgkhYD3G6qXZEKRENl7FxTppEWwpN1HEmMELNY9cVSqJwUSRjpQzBQmcV8l1YKsaF3QOmHVdKdkWiTIJOhanGLAydyrQ2MlO8BUdfZssnlRRGThTCWzdvWLcFPW_S70e8fnV5g7ya117N__JqC9pfDsnroJrmkR-YiJDH9I7jbyf9tpb9_1jLAaxGfuah3Hppw9LsbW4PCYnMVAcW0_51B5Z7V4P7h075CdLVcHB__vIJp_XdVQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07TxtBEB4RKAhFFEginJCwBUhJccp5d_YeRRQFHGOeFSh0l33SWHcG20L8qfzG7NzDmIaO9nQ6nWa_nf1mduYbgD1pAmtIlIycS0WEGeZRLq2MUKVakjyLsHW1xUUyusKTa3m9Av-6Xhgqq-x8Yu2obWUoR_6dU7U8R5Hgz8ltRFOj6Ha1G6HRwOLUPdyHkG3643gQ1nef8-Hvy8NR1E4ViEwA7yzi0hEp6GfGhyAM0QqVWO-VTY0LYEaT5BI5GpH4vtQKpedcJVrbQKS80yjCd1_BGgohSKs_Gx4tcjqksZn146YNUIg8plto0lCTiPjk4KvnAzwhtevzcqIe7tV4vHS-Dd_Cm5aYsl8NkjZhxZVbsLEkV7gFm60jmLKvrVr1t3dwOHCzupyrZJVnf9SYcu-MmOU8RPKsLklg55UO3oc1PU9MlZYNnJuwVtz15j1cvYgNP8BqWZVuG5jxQmvVl6m2KXodZwbzOPY6N8aqXIse7HVmKyaNAEcRAheybrFk3R4ckEkXr5Bqdv2gursp2k1YCAxkzKZprLVBFwItrmIbIlqbqcyLRPdgp1uQot3K0-IReD3YXyzSc__y8fnP7ML66PL8rDg7vjj9BK859VPUaZ0dWJ3dzd3nwHJm-ksNLQZ_XxrL_wHDZw3x
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RINFyQIW2aiiUPYBEDxbO7qwfB4SAEPFoI4RA5Wb2ySWyU5II8Rf7q9h11iFcuHG1LMua_Xb2m9mZbwC2uXKsIRE8MiZlEWaYRznXPEKRSu7lWZiuqy36yekNnt_y2wX43_TC-LLKxifWjlpXyufI96ivlqfIEtyzoSzists7GP6L_AQpf9PajNMQYcyC3q_lxkKTx4V5enTh3Gj_rOvWfofS3sn18WkUJg5EygF7HFFuPGHoZMq6AA1RM5Foa4VOlXFAR5XkHCkqltgOlwK5pVQkUmpHsqyRyNx3P8Bi6vtFW7B4dNK_vJplfLwCZ9aJp02CjOWxv6P2CmscEV8di_X0gFeU9-OkHIqnRzEYzJ1-vc-wEmgrOZzibBUWTLkGy3NihmuwGtzEiOwGLetfX-C4a8Z1sVdJKkv-ioHPzBPPOycuzid1wQL5U0nnm8i0I4qIUpOuMUMSpF_vv8LNu1jxG7TKqjTfgSjLpBQdnkqdopVxpjCPYytzpbTIJWvDdmO2YjiV5yhcWOOtW8xZtw1H3qSzV7ymdv2gergvwhYtGDqqptM0llKhcWEYFbF28a7ORGZZItuw0SxIETb6qHiBZRt2Zov01r-sv_2ZLVhyuC5-n_UvfsAn6pst6pzPBrTGDxOz6SjQWP4M2CJw995wfgZ_mhjL
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7C5pD20Dza0s2j6JBCe3DWlkaSfQp5EgINPXRpejJ6htLFuyTelObXR7K1YdNDKfRqZFlmNKPvk2Y-AexzE1CDUDxzTrIMS6yyilueoZKaR3kWZrtsiytxMcbLa369VMUf0yoDFf_RBWkaSHYWwqwcFXRUFCOOiKOZ9Yf3aS-pEJwJLot4zfCqiEdMA1gdX305-h7vlFu83ZflscDu46lw1DSLHT1biDq9_mcgc23ezNTvX2oyWVpvztdBLUbap5n8PJi3-sA8_CHi-D-_sgGvEhglR_3s2YQV12zByyWJwi3YTM5_Rz4mhepPr-Hk1LVdCldDpp58U5O4304impwH9k66NATyeapDxCF9nRNRjSWnzs1IEnS9eQPj87OvJxdZuo0hM8Hp24xyF8FUURofyCuiZUpY75WVxoUggEZUHCkaJnzBtULuKVVCaxsAqHca2VsYNNPGvQNiPNNaFVxqK9HrvDRY5bnXlTFWVZoNYX9hmnrWi27UgaxEC9ZLFhzCcTTbU5OolN09mN7e1MnxaoYBgFkpc60NukCuqMptYLG2VKVnQg9hd2H0OrnvXU1jaQZFJsI3PjxNhL-NZfsf2-3ACxoLKLp9nF0YtLdztxdgTavfp5n7CGTN7yI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Walking+Features+Using+Mobile+Health+and+Deep+Learning&rft.jtitle=Applied+sciences&rft.au=Sungchul+Lee&rft.au=Hyunhwa+Lee&rft.date=2022-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=11&rft.spage=5444&rft_id=info:doi/10.3390%2Fapp12115444&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_34937d770bbc4e7682a0d407d8a8f36b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon