Multi-model deep learning approach for segmentation of teeth and periapical lesions on pantomographs

The fields of medicine and dentistry are beginning to integrate artificial intelligence (AI) in diagnostics. This may reduce subjectivity and improve the accuracy of diagnoses and treatment planning. Current evidence on pathosis detection on pantomographs (PGs) indicates the presence or absence of d...

Full description

Saved in:
Bibliographic Details
Published inOral surgery, oral medicine, oral pathology and oral radiology Vol. 138; no. 1; pp. 196 - 204
Main Authors Adnan, Niha, Umer, Fahad, Malik, Shahzaib, Hussain, Owais A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2024
Subjects
Online AccessGet full text
ISSN2212-4403
2212-4411
2212-4411
DOI10.1016/j.oooo.2023.11.006

Cover

Abstract The fields of medicine and dentistry are beginning to integrate artificial intelligence (AI) in diagnostics. This may reduce subjectivity and improve the accuracy of diagnoses and treatment planning. Current evidence on pathosis detection on pantomographs (PGs) indicates the presence or absence of disease in the entire radiographic image, with little evidence of the relation of periapical pathosis to the causative tooth. To develop a deep learning (DL) AI model for the segmentation of periapical pathosis and its relation to teeth on PGs. 250 PGs were manually annotated by subject experts to lay down the ground truth for training AI algorithms on the segmentation of periapical pathosis. Two approaches were used for lesion detection: Multi-models 1 and 2, using U-net and Mask RCNN algorithms, respectively. The resulting segmented lesions generated on the testing data set were superimposed with results of teeth segmentation and numbering algorithms trained separately to relate lesions to causative teeth. Hence, both multi-model approaches related periapical pathosis to the causative teeth on PGs. The performance metrics of lesion segmentation carried out by U-net are as follows: Accuracy = 98.1%, precision = 84.5%, re-call = 80.3%, F-1 score = 82.2%, dice index = 75.2%, and Intersection over Union = 67.6%. Mask RCNN carried out lesion segmentation with an accuracy of 46.7%, precision of 80.6%, recall of 55%, and F-1 score of 63.1%. In this study, the multi-model approach successfully related periapical pathosis to the causative tooth on PGs. However, U-net outperformed Mask RCNN in the tasks performed, suggesting that U-net will remain the standard for medical image segmentation tasks. Further training of the models on other findings and an increased number of images will lead to the automation of the detection of common radiographic findings in the dental diagnostic workflow.
AbstractList The fields of medicine and dentistry are beginning to integrate artificial intelligence (AI) in diagnostics. This may reduce subjectivity and improve the accuracy of diagnoses and treatment planning. Current evidence on pathosis detection on pantomographs (PGs) indicates the presence or absence of disease in the entire radiographic image, with little evidence of the relation of periapical pathosis to the causative tooth. To develop a deep learning (DL) AI model for the segmentation of periapical pathosis and its relation to teeth on PGs. 250 PGs were manually annotated by subject experts to lay down the ground truth for training AI algorithms on the segmentation of periapical pathosis. Two approaches were used for lesion detection: Multi-models 1 and 2, using U-net and Mask RCNN algorithms, respectively. The resulting segmented lesions generated on the testing data set were superimposed with results of teeth segmentation and numbering algorithms trained separately to relate lesions to causative teeth. Hence, both multi-model approaches related periapical pathosis to the causative teeth on PGs. The performance metrics of lesion segmentation carried out by U-net are as follows: Accuracy = 98.1%, precision = 84.5%, re-call = 80.3%, F-1 score = 82.2%, dice index = 75.2%, and Intersection over Union = 67.6%. Mask RCNN carried out lesion segmentation with an accuracy of 46.7%, precision of 80.6%, recall of 55%, and F-1 score of 63.1%. In this study, the multi-model approach successfully related periapical pathosis to the causative tooth on PGs. However, U-net outperformed Mask RCNN in the tasks performed, suggesting that U-net will remain the standard for medical image segmentation tasks. Further training of the models on other findings and an increased number of images will lead to the automation of the detection of common radiographic findings in the dental diagnostic workflow.
The fields of medicine and dentistry are beginning to integrate artificial intelligence (AI) in diagnostics. This may reduce subjectivity and improve the accuracy of diagnoses and treatment planning. Current evidence on pathosis detection on pantomographs (PGs) indicates the presence or absence of disease in the entire radiographic image, with little evidence of the relation of periapical pathosis to the causative tooth.INTRODUCTIONThe fields of medicine and dentistry are beginning to integrate artificial intelligence (AI) in diagnostics. This may reduce subjectivity and improve the accuracy of diagnoses and treatment planning. Current evidence on pathosis detection on pantomographs (PGs) indicates the presence or absence of disease in the entire radiographic image, with little evidence of the relation of periapical pathosis to the causative tooth.To develop a deep learning (DL) AI model for the segmentation of periapical pathosis and its relation to teeth on PGs.OBJECTIVETo develop a deep learning (DL) AI model for the segmentation of periapical pathosis and its relation to teeth on PGs.250 PGs were manually annotated by subject experts to lay down the ground truth for training AI algorithms on the segmentation of periapical pathosis. Two approaches were used for lesion detection: Multi-models 1 and 2, using U-net and Mask RCNN algorithms, respectively. The resulting segmented lesions generated on the testing data set were superimposed with results of teeth segmentation and numbering algorithms trained separately to relate lesions to causative teeth. Hence, both multi-model approaches related periapical pathosis to the causative teeth on PGs.METHOD250 PGs were manually annotated by subject experts to lay down the ground truth for training AI algorithms on the segmentation of periapical pathosis. Two approaches were used for lesion detection: Multi-models 1 and 2, using U-net and Mask RCNN algorithms, respectively. The resulting segmented lesions generated on the testing data set were superimposed with results of teeth segmentation and numbering algorithms trained separately to relate lesions to causative teeth. Hence, both multi-model approaches related periapical pathosis to the causative teeth on PGs.The performance metrics of lesion segmentation carried out by U-net are as follows: Accuracy = 98.1%, precision = 84.5%, re-call = 80.3%, F-1 score = 82.2%, dice index = 75.2%, and Intersection over Union = 67.6%. Mask RCNN carried out lesion segmentation with an accuracy of 46.7%, precision of 80.6%, recall of 55%, and F-1 score of 63.1%.RESULTSThe performance metrics of lesion segmentation carried out by U-net are as follows: Accuracy = 98.1%, precision = 84.5%, re-call = 80.3%, F-1 score = 82.2%, dice index = 75.2%, and Intersection over Union = 67.6%. Mask RCNN carried out lesion segmentation with an accuracy of 46.7%, precision of 80.6%, recall of 55%, and F-1 score of 63.1%.In this study, the multi-model approach successfully related periapical pathosis to the causative tooth on PGs. However, U-net outperformed Mask RCNN in the tasks performed, suggesting that U-net will remain the standard for medical image segmentation tasks. Further training of the models on other findings and an increased number of images will lead to the automation of the detection of common radiographic findings in the dental diagnostic workflow.CONCLUSIONIn this study, the multi-model approach successfully related periapical pathosis to the causative tooth on PGs. However, U-net outperformed Mask RCNN in the tasks performed, suggesting that U-net will remain the standard for medical image segmentation tasks. Further training of the models on other findings and an increased number of images will lead to the automation of the detection of common radiographic findings in the dental diagnostic workflow.
Author Umer, Fahad
Malik, Shahzaib
Hussain, Owais A.
Adnan, Niha
Author_xml – sequence: 1
  givenname: Niha
  surname: Adnan
  fullname: Adnan, Niha
  organization: Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
– sequence: 2
  givenname: Fahad
  orcidid: 0000-0003-3817-5941
  surname: Umer
  fullname: Umer, Fahad
  email: fahad.umer@aku.edu
  organization: Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
– sequence: 3
  givenname: Shahzaib
  surname: Malik
  fullname: Malik, Shahzaib
  organization: Information Technology University, Lahore, Pakistan
– sequence: 4
  givenname: Owais A.
  surname: Hussain
  fullname: Hussain, Owais A.
  organization: Karachi Institute of Economics and Technology, Karachi, Pakistan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38616480$$D View this record in MEDLINE/PubMed
BookMark eNqFkTFPHDEQha0IFAjhD6SIXKbZjcf27t5FaSIUSCQQDdSWz56988Vrb2wfEv8-Ph2koIBpPJLfN5p57wM5CjEgIZ-AtcCg_7ptY62WMy5agJax_h055Rx4IyXA0f-eiRNynvOW1eorKPl7ciIWfe0W7JTYm50vrpmiRU8t4kw96hRcWFM9zylqs6FjTDTjesJQdHEx0DjSglg2VAdLZ0xOz85oX9FcvzOtklmHEqe4Tnre5I_keNQ-4_nTe0buL3_eXfxqrm-vfl_8uG6M4Lw0nMGK173EkncIY4_Cyq4bJFtJ08NSDEumceSdZHYAtrTIFrDqLGDfy1GMgzgjXw5z6-J_d5iLmlw26L0OGHdZCVZHi04OXZV-fpLuVhNaNSc36fSonp2pgsVBYFLMOeGojDucX5J2XgFT-xzUVu1zUPscFICqJleUv0Cfp78KfT9AWA16cJhUNg6DQesSmqJsdK_j317gxruwT-UPPr4F_wOoybR2
CitedBy_id crossref_primary_10_1016_j_dib_2024_111152
crossref_primary_10_1038_s41432_024_01089_1
crossref_primary_10_1186_s12903_024_04984_2
crossref_primary_10_3390_diagnostics14232768
Cites_doi 10.1038/s41598-021-90386-1
10.3390/healthcare11030347
10.1016/j.aiopen.2022.10.001
10.5005/jp-journals-10024-2564
10.1016/j.joen.2019.03.016
10.1109/JBHI.2021.3117575
10.1155/2022/7035367
10.1016/j.jdent.2021.103610
10.3390/s22155611
10.1007/s00784-020-03544-6
10.1259/dmfr.20210504
10.1016/j.eswa.2018.04.001
10.1016/j.joen.2018.07.003
10.1016/j.joen.2020.03.025
10.1111/iej.12507
10.1016/j.jdent.2022.104080
10.1016/j.joen.2021.11.007
10.1259/dmfr.20190290
10.1109/TASE.2020.3025871
10.1016/S2589-7500(22)00032-2
10.1186/s12859-022-04971-w
10.1007/s41095-021-0247-3
10.1016/j.joen.2022.12.007
10.1002/9781394205639.ch2
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright © 2023 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Inc.
– notice: Copyright © 2023 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.oooo.2023.11.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Dentistry
EISSN 2212-4411
EndPage 204
ExternalDocumentID 38616480
10_1016_j_oooo_2023_11_006
S2212440323007411
Genre Journal Article
GroupedDBID --K
--M
.1-
.FO
.~1
0R~
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABJNI
ABLJU
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
C45
EBS
EFJIC
EFKBS
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
K-O
KOM
M41
MO0
O-L
O9-
OAUVE
OBH
OF.
OQ0
OVD
P-8
P-9
PC.
Q38
ROL
SDF
SEL
SPCBC
SSH
SSZ
T5K
TEORI
UV1
Z5R
~G-
~HD
AACTN
AAIAV
AFKWA
AJOXV
AMFUW
RIG
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c322t-201b21643925e1f6e3d455740b4c6193790aef2540d7109de081b5d1e664f3f73
IEDL.DBID .~1
ISSN 2212-4403
2212-4411
IngestDate Sun Sep 28 06:39:09 EDT 2025
Mon Jul 21 06:07:13 EDT 2025
Thu Apr 24 22:58:41 EDT 2025
Wed Oct 01 03:19:38 EDT 2025
Wed Jun 26 17:52:52 EDT 2024
Tue Oct 14 19:28:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright © 2023 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-201b21643925e1f6e3d455740b4c6193790aef2540d7109de081b5d1e664f3f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3817-5941
PMID 38616480
PQID 3039235475
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_3039235475
pubmed_primary_38616480
crossref_citationtrail_10_1016_j_oooo_2023_11_006
crossref_primary_10_1016_j_oooo_2023_11_006
elsevier_sciencedirect_doi_10_1016_j_oooo_2023_11_006
elsevier_clinicalkey_doi_10_1016_j_oooo_2023_11_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Oral surgery, oral medicine, oral pathology and oral radiology
PublicationTitleAlternate Oral Surg Oral Med Oral Pathol Oral Radiol
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References (bib0020) 2014
Schwendicke, Singh, Lee (bib0015) 2021; 107
Umer, Habib, Adnan (bib0011) 2022; 51
Setzer, Shi, Zhang (bib0029) 2020; 46
Arslan, Demir, Berker Yıldız, Yaşar (bib0004) 2020; 49
Akpokiro, Martin, Oluwadare (bib0025) 2022; 23
Xu, Wei, Lin (bib0007) 2022; 8
Umer, Habib (bib0008) 2022; 48
Maddalone, Bonfanti, Pellegatta, Citterio, Baldoni (bib0006) 2019; 20
Yüksel, Gültekin, Simsar (bib0024) 2021; 11
Ronneberger, Fischer, Brox (bib0017) 2015
Bayrakdar, Orhan, Çelik (bib0022) 2022; 2022
UNet Line By Line Explanation: Towards Data Science. Medium. Accessed July 15, 2021.
Segura-Egea, Martín-González, Castellanos-Cosano (bib0003) 2015; 48
Zheng, Yan, Setzer (bib0030) 2020; 18
Leite, Gerven, Willems (bib0021) 2021; 25
Adnan, Khalid, Umer (bib0012) 2023; 26
He, Gkioxari, Dollar, Girshick, Mask (bib0019) 2017
Fatima, Shafi, Afzal (bib0031) 2023; 11
(bib0028) 2019
Zhang, Whebell, Gallifant (bib0032) 2022; 4
Panetta, Rajendran, Ramesh, Rao, Agaian (bib0014) 2022; 26
Ensemble Learning Methods for Deep Learning Neural Networks. Machine Learning Mastery. Accessed May 23, 2023.
.
Ngoc, Viet, Anh (bib0023) 2021; 12
Nardi, Calistri, Grazzini (bib0005) 2018; 44
Schwendicke, Mertens, Cantu, Chaurasia, Meyer-Lueckel, Krois (bib0033) 2022; 119
Lin, Wang, Liu, Qiu (bib0009) 2023; 3
Sadr, Mohammad-Rahimi, Motamedian (bib0013) 2023; 49
Welcome To Colaboratory. Google Colaboratory. Accessed July 15, 2021.
Ekert, Krois, Meinhold (bib0002) 2019; 45
Silva, Oliveira, Pithon (bib0001) 2018; 107
Adnan, Umer (bib0010) 2022; 72
Younis, Zaki, Kanjo, Houssein (bib0027) 2022; 22
Bayrakdar (10.1016/j.oooo.2023.11.006_bib0022) 2022; 2022
Yüksel (10.1016/j.oooo.2023.11.006_bib0024) 2021; 11
Lin (10.1016/j.oooo.2023.11.006_bib0009) 2023; 3
Younis (10.1016/j.oooo.2023.11.006_bib0027) 2022; 22
Xu (10.1016/j.oooo.2023.11.006_bib0007) 2022; 8
Adnan (10.1016/j.oooo.2023.11.006_bib0012) 2023; 26
Akpokiro (10.1016/j.oooo.2023.11.006_bib0025) 2022; 23
He (10.1016/j.oooo.2023.11.006_bib0019) 2017
Fatima (10.1016/j.oooo.2023.11.006_bib0031) 2023; 11
Umer (10.1016/j.oooo.2023.11.006_bib0011) 2022; 51
Ronneberger (10.1016/j.oooo.2023.11.006_bib0017) 2015
Nardi (10.1016/j.oooo.2023.11.006_bib0005) 2018; 44
10.1016/j.oooo.2023.11.006_bib0016
Ngoc (10.1016/j.oooo.2023.11.006_bib0023) 2021; 12
10.1016/j.oooo.2023.11.006_bib0018
Segura-Egea (10.1016/j.oooo.2023.11.006_bib0003) 2015; 48
Schwendicke (10.1016/j.oooo.2023.11.006_bib0033) 2022; 119
Silva (10.1016/j.oooo.2023.11.006_bib0001) 2018; 107
Leite (10.1016/j.oooo.2023.11.006_bib0021) 2021; 25
Adnan (10.1016/j.oooo.2023.11.006_bib0010) 2022; 72
Sadr (10.1016/j.oooo.2023.11.006_bib0013) 2023; 49
Zheng (10.1016/j.oooo.2023.11.006_bib0030) 2020; 18
Zhang (10.1016/j.oooo.2023.11.006_bib0032) 2022; 4
Maddalone (10.1016/j.oooo.2023.11.006_bib0006) 2019; 20
Setzer (10.1016/j.oooo.2023.11.006_bib0029) 2020; 46
Ekert (10.1016/j.oooo.2023.11.006_bib0002) 2019; 45
Arslan (10.1016/j.oooo.2023.11.006_bib0004) 2020; 49
Schwendicke (10.1016/j.oooo.2023.11.006_bib0015) 2021; 107
Umer (10.1016/j.oooo.2023.11.006_bib0008) 2022; 48
(10.1016/j.oooo.2023.11.006_bib0020) 2014
10.1016/j.oooo.2023.11.006_bib0026
(10.1016/j.oooo.2023.11.006_bib0028) 2019
Panetta (10.1016/j.oooo.2023.11.006_bib0014) 2022; 26
References_xml – volume: 3
  start-page: 111
  year: 2023
  end-page: 132
  ident: bib0009
  article-title: A survey of transformers
  publication-title: AI Open
– volume: 12
  start-page: 190
  year: 2021
  ident: bib0023
  article-title: Periapical lesion diagnosis support system based on X-ray images using machine learning technique
  publication-title: World J Dent
– volume: 72
  start-page: S59
  year: 2022
  end-page: S63
  ident: bib0010
  publication-title: Understanding deep learning—challenges and prospects
– reference: Welcome To Colaboratory. Google Colaboratory. Accessed July 15, 2021.
– volume: 49
  year: 2020
  ident: bib0004
  article-title: Diagnostic accuracy of panoramic radiography and ultrasonography in detecting periapical lesions using periapical radiography as a gold standard
  publication-title: Dentomaxillofac Radiol
– volume: 48
  start-page: 152
  year: 2022
  end-page: 160
  ident: bib0008
  article-title: Critical analysis of Artificial Intelligence in endodontics: a scoping review
  publication-title: J Endod
– volume: 22
  start-page: 5611
  year: 2022
  ident: bib0027
  article-title: Evaluating ensemble learning methods for multi-modal emotion recognition using sensor data fusion
  publication-title: Sensors (Basel)
– volume: 26
  start-page: 1650
  year: 2022
  end-page: 1659
  ident: bib0014
  article-title: Tufts Dental Database: a multimodal panoramic X-Ray dataset for benchmarking diagnostic systems
  publication-title: IEEE J Biomed Health Inform
– reference: Ensemble Learning Methods for Deep Learning Neural Networks. Machine Learning Mastery. Accessed May 23, 2023.
– volume: 48
  start-page: 933
  year: 2015
  end-page: 951
  ident: bib0003
  article-title: Endodontic medicine: connections between apical periodontitis and systemic diseases
  publication-title: Int Endod J
– volume: 46
  start-page: 987
  year: 2020
  end-page: 993
  ident: bib0029
  article-title: Artificial Intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images
  publication-title: J Endod
– volume: 119
  year: 2022
  ident: bib0033
  article-title: Cost-effectiveness of AI for caries detection: randomized trial
  publication-title: J Dent
– reference: UNet Line By Line Explanation: Towards Data Science. Medium. Accessed July 15, 2021.
– volume: 20
  start-page: 593
  year: 2019
  end-page: 597
  ident: bib0006
  article-title: Digital orthopantomography vs cone beam computed tomography-Part 1: detection of periapical lesions
  publication-title: J Contemp Dent Pract
– volume: 51
  year: 2022
  ident: bib0011
  article-title: Application of deep learning in teeth identification tasks on panoramic radiographs
  publication-title: Dentomaxillofac Radiol
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0017
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: Int Conf on MICCAI;
– volume: 8
  start-page: 33
  year: 2022
  end-page: 62
  ident: bib0007
  article-title: Transformers in computational visual media: a survey
  publication-title: Comput Vis Media
– year: 2014
  ident: bib0020
  publication-title: Microsoft coco: common objects in context. Computer Vision–ECCV 2014: 13th European Conference
– year: 2019
  ident: bib0028
  article-title: Rethinking ImageNet pre-training, 2019
  publication-title: IEEE/CVF International Conference on Computer Vision (ICCV)
– volume: 25
  start-page: 2257
  year: 2021
  end-page: 2267
  ident: bib0021
  article-title: Artificial Intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs
  publication-title: Clin Oral Investig
– volume: 49
  year: 2023
  ident: bib0013
  article-title: Deep Learning for detection of periapical radiolucent lesions: a systematic review and meta-analysis of diagnostic test accuracy
  publication-title: J Endod
– reference: .
– volume: 11
  start-page: 12342
  year: 2021
  ident: bib0024
  article-title: Dental enumeration and multiple treatment detection on panoramic X-rays using deep learning
  publication-title: Sci Rep
– start-page: 2961
  year: 2017
  end-page: 2969
  ident: bib0019
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 4
  start-page: e212
  year: 2022
  end-page: e213
  ident: bib0032
  article-title: An interactive dashboard to track themes, development maturity, and global equity in clinical Artificial Intelligence research
  publication-title: Lancet Digit Health
– volume: 18
  start-page: 603
  year: 2020
  end-page: 614
  ident: bib0030
  article-title: Anatomically constrained deep learning for automating dental CBCT segmentation and lesion detection
  publication-title: IEEE Trans Autom Sci Eng
– volume: 26
  start-page: 301
  year: 2023
  end-page: 309
  ident: bib0012
  article-title: An artificial intelligence model for teeth segmentation and numbering on orthopantomograms
  publication-title: Int J Comput Dent
– volume: 44
  start-page: 1500
  year: 2018
  end-page: 1508
  ident: bib0005
  article-title: Is panoramic radiography an accurate imaging technique for the detection of endodontically treated asymptomatic apical periodontitis?
  publication-title: J Endod
– volume: 45
  year: 2019
  ident: bib0002
  article-title: Deep Learning for the radiographic detection of apical lesions
  publication-title: J Endod
– volume: 107
  start-page: 15
  year: 2018
  end-page: 31
  ident: bib0001
  article-title: Automatic segmenting teeth in X-ray images: trends, a novel data set, benchmarking and future perspectives
  publication-title: Expert Syst Appl
– volume: 107
  year: 2021
  ident: bib0015
  article-title: Artificial Intelligence in dental research: checklist for authors, reviewers, readers
  publication-title: J Dent
– volume: 2022
  year: 2022
  ident: bib0022
  article-title: A U-Net approach to apical lesion segmentation on panoramic radiographs
  publication-title: Biomed Res Int
– volume: 23
  start-page: 413
  year: 2022
  ident: bib0025
  article-title: EnsembleSplice: ensemble deep learning model for splice site prediction
  publication-title: BMC Bioinform
– volume: 11
  start-page: 347
  year: 2023
  ident: bib0031
  article-title: Deep Learning-based multiclass instance segmentation for dental lesion detection
  publication-title: Healthcare (Basel)
– start-page: 234
  year: 2015
  ident: 10.1016/j.oooo.2023.11.006_bib0017
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: Int Conf on MICCAI;
– volume: 11
  start-page: 12342
  year: 2021
  ident: 10.1016/j.oooo.2023.11.006_bib0024
  article-title: Dental enumeration and multiple treatment detection on panoramic X-rays using deep learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-90386-1
– volume: 11
  start-page: 347
  year: 2023
  ident: 10.1016/j.oooo.2023.11.006_bib0031
  article-title: Deep Learning-based multiclass instance segmentation for dental lesion detection
  publication-title: Healthcare (Basel)
  doi: 10.3390/healthcare11030347
– volume: 3
  start-page: 111
  year: 2023
  ident: 10.1016/j.oooo.2023.11.006_bib0009
  article-title: A survey of transformers
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2022.10.001
– volume: 20
  start-page: 593
  year: 2019
  ident: 10.1016/j.oooo.2023.11.006_bib0006
  article-title: Digital orthopantomography vs cone beam computed tomography-Part 1: detection of periapical lesions
  publication-title: J Contemp Dent Pract
  doi: 10.5005/jp-journals-10024-2564
– volume: 45
  year: 2019
  ident: 10.1016/j.oooo.2023.11.006_bib0002
  article-title: Deep Learning for the radiographic detection of apical lesions
  publication-title: J Endod
  doi: 10.1016/j.joen.2019.03.016
– volume: 26
  start-page: 1650
  year: 2022
  ident: 10.1016/j.oooo.2023.11.006_bib0014
  article-title: Tufts Dental Database: a multimodal panoramic X-Ray dataset for benchmarking diagnostic systems
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2021.3117575
– volume: 2022
  year: 2022
  ident: 10.1016/j.oooo.2023.11.006_bib0022
  article-title: A U-Net approach to apical lesion segmentation on panoramic radiographs
  publication-title: Biomed Res Int
  doi: 10.1155/2022/7035367
– volume: 107
  year: 2021
  ident: 10.1016/j.oooo.2023.11.006_bib0015
  article-title: Artificial Intelligence in dental research: checklist for authors, reviewers, readers
  publication-title: J Dent
  doi: 10.1016/j.jdent.2021.103610
– volume: 22
  start-page: 5611
  year: 2022
  ident: 10.1016/j.oooo.2023.11.006_bib0027
  article-title: Evaluating ensemble learning methods for multi-modal emotion recognition using sensor data fusion
  publication-title: Sensors (Basel)
  doi: 10.3390/s22155611
– volume: 25
  start-page: 2257
  year: 2021
  ident: 10.1016/j.oooo.2023.11.006_bib0021
  article-title: Artificial Intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs
  publication-title: Clin Oral Investig
  doi: 10.1007/s00784-020-03544-6
– volume: 51
  year: 2022
  ident: 10.1016/j.oooo.2023.11.006_bib0011
  article-title: Application of deep learning in teeth identification tasks on panoramic radiographs
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20210504
– volume: 26
  start-page: 301
  year: 2023
  ident: 10.1016/j.oooo.2023.11.006_bib0012
  article-title: An artificial intelligence model for teeth segmentation and numbering on orthopantomograms
  publication-title: Int J Comput Dent
– volume: 107
  start-page: 15
  year: 2018
  ident: 10.1016/j.oooo.2023.11.006_bib0001
  article-title: Automatic segmenting teeth in X-ray images: trends, a novel data set, benchmarking and future perspectives
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.04.001
– volume: 44
  start-page: 1500
  year: 2018
  ident: 10.1016/j.oooo.2023.11.006_bib0005
  article-title: Is panoramic radiography an accurate imaging technique for the detection of endodontically treated asymptomatic apical periodontitis?
  publication-title: J Endod
  doi: 10.1016/j.joen.2018.07.003
– volume: 46
  start-page: 987
  year: 2020
  ident: 10.1016/j.oooo.2023.11.006_bib0029
  article-title: Artificial Intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images
  publication-title: J Endod
  doi: 10.1016/j.joen.2020.03.025
– volume: 48
  start-page: 933
  year: 2015
  ident: 10.1016/j.oooo.2023.11.006_bib0003
  article-title: Endodontic medicine: connections between apical periodontitis and systemic diseases
  publication-title: Int Endod J
  doi: 10.1111/iej.12507
– year: 2019
  ident: 10.1016/j.oooo.2023.11.006_bib0028
  article-title: Rethinking ImageNet pre-training, 2019
– volume: 119
  year: 2022
  ident: 10.1016/j.oooo.2023.11.006_bib0033
  article-title: Cost-effectiveness of AI for caries detection: randomized trial
  publication-title: J Dent
  doi: 10.1016/j.jdent.2022.104080
– volume: 48
  start-page: 152
  year: 2022
  ident: 10.1016/j.oooo.2023.11.006_bib0008
  article-title: Critical analysis of Artificial Intelligence in endodontics: a scoping review
  publication-title: J Endod
  doi: 10.1016/j.joen.2021.11.007
– volume: 49
  year: 2020
  ident: 10.1016/j.oooo.2023.11.006_bib0004
  article-title: Diagnostic accuracy of panoramic radiography and ultrasonography in detecting periapical lesions using periapical radiography as a gold standard
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20190290
– ident: 10.1016/j.oooo.2023.11.006_bib0016
– ident: 10.1016/j.oooo.2023.11.006_bib0018
– volume: 18
  start-page: 603
  year: 2020
  ident: 10.1016/j.oooo.2023.11.006_bib0030
  article-title: Anatomically constrained deep learning for automating dental CBCT segmentation and lesion detection
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2020.3025871
– volume: 4
  start-page: e212
  year: 2022
  ident: 10.1016/j.oooo.2023.11.006_bib0032
  article-title: An interactive dashboard to track themes, development maturity, and global equity in clinical Artificial Intelligence research
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(22)00032-2
– volume: 72
  start-page: S59
  issue: Suppl 1
  year: 2022
  ident: 10.1016/j.oooo.2023.11.006_bib0010
  publication-title: Understanding deep learning—challenges and prospects
– volume: 23
  start-page: 413
  year: 2022
  ident: 10.1016/j.oooo.2023.11.006_bib0025
  article-title: EnsembleSplice: ensemble deep learning model for splice site prediction
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-022-04971-w
– year: 2014
  ident: 10.1016/j.oooo.2023.11.006_bib0020
– volume: 8
  start-page: 33
  year: 2022
  ident: 10.1016/j.oooo.2023.11.006_bib0007
  article-title: Transformers in computational visual media: a survey
  publication-title: Comput Vis Media
  doi: 10.1007/s41095-021-0247-3
– volume: 49
  year: 2023
  ident: 10.1016/j.oooo.2023.11.006_bib0013
  article-title: Deep Learning for detection of periapical radiolucent lesions: a systematic review and meta-analysis of diagnostic test accuracy
  publication-title: J Endod
  doi: 10.1016/j.joen.2022.12.007
– start-page: 2961
  year: 2017
  ident: 10.1016/j.oooo.2023.11.006_bib0019
– volume: 12
  start-page: 190
  year: 2021
  ident: 10.1016/j.oooo.2023.11.006_bib0023
  article-title: Periapical lesion diagnosis support system based on X-ray images using machine learning technique
  publication-title: World J Dent
– ident: 10.1016/j.oooo.2023.11.006_bib0026
  doi: 10.1002/9781394205639.ch2
SSID ssj0000601642
Score 2.4435341
Snippet The fields of medicine and dentistry are beginning to integrate artificial intelligence (AI) in diagnostics. This may reduce subjectivity and improve the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 196
SubjectTerms Algorithms
Deep Learning
Humans
Periapical Diseases - diagnostic imaging
Radiographic Image Interpretation, Computer-Assisted - methods
Title Multi-model deep learning approach for segmentation of teeth and periapical lesions on pantomographs
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2212440323007411
https://dx.doi.org/10.1016/j.oooo.2023.11.006
https://www.ncbi.nlm.nih.gov/pubmed/38616480
https://www.proquest.com/docview/3039235475
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2212-4411
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601642
  issn: 2212-4403
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2212-4411
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601642
  issn: 2212-4403
  databaseCode: ACRLP
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 2212-4411
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601642
  issn: 2212-4403
  databaseCode: .~1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - access via UTK
  customDbUrl:
  eissn: 2212-4411
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601642
  issn: 2212-4403
  databaseCode: AIKHN
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2212-4411
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601642
  issn: 2212-4403
  databaseCode: AKRWK
  dateStart: 20120101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG6MHvRifLu-UhNvhl2gLSxH4yOrGz34iN4aSgddoyxx8epvdwbKJiY-ErkQSCeUaTvzFWbmY-yAEhr7UWI8lcjMk9JKL_EpTCy2vlIWRJZTcvLlVTS4kxcP6mGGHbe5MBRW6Wx_Y9Nra-3u9Jw2e-Vo1LsJQ_JNvkAQTX6xzmCXMbEYdD-C6XeWut5IzaFD7T0ScLkzTZjXGI8ucYh3qZgnER99759-wp-1HzpbYosOQPKjpo_LbAaKFTZ_QkE_xNu2ymydU-vVFDfcApTcMUM88raAOEekyifw-OoSjwo-znkFUD3xtLCcih-nJY0eitLXtAnHJiXRDb82Fa4na-zu7PT2eOA5LgUvwyVb4WIITBgQ_AgVBHkEwkqlYukbmeEeSsSJn0KOu0XfUnSmBYQKRtkAokjmIo_FOpstxgVsMo5Kh35kTGhMIiOVGRAxZGGKb4Te0OYdFrQa1JkrNE58Fy-6jSh71qR1TVrHHYhGrXfY4VSmbMps_NpatAOj2wRSNHkavcCvUmoq9WWK_Sm33469xrVHP1TSAsbvE43uH_GxkrHqsI1mUkx7L_oRqrvvb_3zqdtsAa9kExm8w2art3fYRfxTmb16gu-xuaPz4eCKzsPr--En0rAFHQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG42elgvxrfrsybeDLtAW1iOxkfW50VNvDWUDj6iLHHx6m93BsomJj4SOUInlOljvikz8zG2TwmNwygxnkpk5klppZf4FCYWW18pCyLLKTn56joa3cnze3XfYUdtLgyFVbq9v9nT693a3Rk4bQ7Kp6fBTRiSbfIFgmiyi-gCzUoVxuSB9T-C6UFLXXCkJtEhAY8kXPJME-c1xqtPJOJ9quZJzEffG6ifAGhtiE4X2LxDkPyw6eQi60CxxLrHFPVDxG3LzNZJtV7NccMtQMkdNcQDbyuIc4SqfAIPry7zqODjnFcA1SNPC8up-nFa0vChKB2nTTg2KYlv-LUpcT1ZYXenJ7dHI8-RKXgZrtkKV0NgwoDwR6ggyCMQVioVS9_IDJ0oESd-Cjm6i76l8EwLiBWMsgFEkcxFHotVNlOMC1hnHLUOw8iY0JhERiozIGLIwhS_CM2hzXssaDWoM1dpnAgvXnQbUvasSeuatI4uiEat99jBVKZs6mz82lq0A6PbDFLc8zSagV-l1FTqyxz7U26vHXuNi4_-qKQFjN8nGu0_AmQlY9Vja82kmPZeDCNU99Df-Odbd1l3dHt1qS_Pri822Rw-kU2Y8Babqd7eYRvBUGV26sn-CaB7BQ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-model+deep+learning+approach+for+segmentation+of+teeth+and+periapical+lesions+on+pantomographs&rft.jtitle=Oral+surgery%2C+oral+medicine%2C+oral+pathology+and+oral+radiology&rft.au=Adnan%2C+Niha&rft.au=Umer%2C+Fahad&rft.au=Malik%2C+Shahzaib&rft.au=Hussain%2C+Owais+A.&rft.date=2024-07-01&rft.pub=Elsevier+Inc&rft.issn=2212-4403&rft.eissn=2212-4411&rft.volume=138&rft.issue=1&rft.spage=196&rft.epage=204&rft_id=info:doi/10.1016%2Fj.oooo.2023.11.006&rft.externalDocID=S2212440323007411
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-4403&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-4403&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-4403&client=summon