Multi-model deep learning approach for segmentation of teeth and periapical lesions on pantomographs
The fields of medicine and dentistry are beginning to integrate artificial intelligence (AI) in diagnostics. This may reduce subjectivity and improve the accuracy of diagnoses and treatment planning. Current evidence on pathosis detection on pantomographs (PGs) indicates the presence or absence of d...
Saved in:
| Published in | Oral surgery, oral medicine, oral pathology and oral radiology Vol. 138; no. 1; pp. 196 - 204 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.07.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2212-4403 2212-4411 2212-4411 |
| DOI | 10.1016/j.oooo.2023.11.006 |
Cover
| Abstract | The fields of medicine and dentistry are beginning to integrate artificial intelligence (AI) in diagnostics. This may reduce subjectivity and improve the accuracy of diagnoses and treatment planning. Current evidence on pathosis detection on pantomographs (PGs) indicates the presence or absence of disease in the entire radiographic image, with little evidence of the relation of periapical pathosis to the causative tooth.
To develop a deep learning (DL) AI model for the segmentation of periapical pathosis and its relation to teeth on PGs.
250 PGs were manually annotated by subject experts to lay down the ground truth for training AI algorithms on the segmentation of periapical pathosis. Two approaches were used for lesion detection: Multi-models 1 and 2, using U-net and Mask RCNN algorithms, respectively. The resulting segmented lesions generated on the testing data set were superimposed with results of teeth segmentation and numbering algorithms trained separately to relate lesions to causative teeth. Hence, both multi-model approaches related periapical pathosis to the causative teeth on PGs.
The performance metrics of lesion segmentation carried out by U-net are as follows: Accuracy = 98.1%, precision = 84.5%, re-call = 80.3%, F-1 score = 82.2%, dice index = 75.2%, and Intersection over Union = 67.6%. Mask RCNN carried out lesion segmentation with an accuracy of 46.7%, precision of 80.6%, recall of 55%, and F-1 score of 63.1%.
In this study, the multi-model approach successfully related periapical pathosis to the causative tooth on PGs. However, U-net outperformed Mask RCNN in the tasks performed, suggesting that U-net will remain the standard for medical image segmentation tasks. Further training of the models on other findings and an increased number of images will lead to the automation of the detection of common radiographic findings in the dental diagnostic workflow. |
|---|---|
| AbstractList | The fields of medicine and dentistry are beginning to integrate artificial intelligence (AI) in diagnostics. This may reduce subjectivity and improve the accuracy of diagnoses and treatment planning. Current evidence on pathosis detection on pantomographs (PGs) indicates the presence or absence of disease in the entire radiographic image, with little evidence of the relation of periapical pathosis to the causative tooth.
To develop a deep learning (DL) AI model for the segmentation of periapical pathosis and its relation to teeth on PGs.
250 PGs were manually annotated by subject experts to lay down the ground truth for training AI algorithms on the segmentation of periapical pathosis. Two approaches were used for lesion detection: Multi-models 1 and 2, using U-net and Mask RCNN algorithms, respectively. The resulting segmented lesions generated on the testing data set were superimposed with results of teeth segmentation and numbering algorithms trained separately to relate lesions to causative teeth. Hence, both multi-model approaches related periapical pathosis to the causative teeth on PGs.
The performance metrics of lesion segmentation carried out by U-net are as follows: Accuracy = 98.1%, precision = 84.5%, re-call = 80.3%, F-1 score = 82.2%, dice index = 75.2%, and Intersection over Union = 67.6%. Mask RCNN carried out lesion segmentation with an accuracy of 46.7%, precision of 80.6%, recall of 55%, and F-1 score of 63.1%.
In this study, the multi-model approach successfully related periapical pathosis to the causative tooth on PGs. However, U-net outperformed Mask RCNN in the tasks performed, suggesting that U-net will remain the standard for medical image segmentation tasks. Further training of the models on other findings and an increased number of images will lead to the automation of the detection of common radiographic findings in the dental diagnostic workflow. The fields of medicine and dentistry are beginning to integrate artificial intelligence (AI) in diagnostics. This may reduce subjectivity and improve the accuracy of diagnoses and treatment planning. Current evidence on pathosis detection on pantomographs (PGs) indicates the presence or absence of disease in the entire radiographic image, with little evidence of the relation of periapical pathosis to the causative tooth.INTRODUCTIONThe fields of medicine and dentistry are beginning to integrate artificial intelligence (AI) in diagnostics. This may reduce subjectivity and improve the accuracy of diagnoses and treatment planning. Current evidence on pathosis detection on pantomographs (PGs) indicates the presence or absence of disease in the entire radiographic image, with little evidence of the relation of periapical pathosis to the causative tooth.To develop a deep learning (DL) AI model for the segmentation of periapical pathosis and its relation to teeth on PGs.OBJECTIVETo develop a deep learning (DL) AI model for the segmentation of periapical pathosis and its relation to teeth on PGs.250 PGs were manually annotated by subject experts to lay down the ground truth for training AI algorithms on the segmentation of periapical pathosis. Two approaches were used for lesion detection: Multi-models 1 and 2, using U-net and Mask RCNN algorithms, respectively. The resulting segmented lesions generated on the testing data set were superimposed with results of teeth segmentation and numbering algorithms trained separately to relate lesions to causative teeth. Hence, both multi-model approaches related periapical pathosis to the causative teeth on PGs.METHOD250 PGs were manually annotated by subject experts to lay down the ground truth for training AI algorithms on the segmentation of periapical pathosis. Two approaches were used for lesion detection: Multi-models 1 and 2, using U-net and Mask RCNN algorithms, respectively. The resulting segmented lesions generated on the testing data set were superimposed with results of teeth segmentation and numbering algorithms trained separately to relate lesions to causative teeth. Hence, both multi-model approaches related periapical pathosis to the causative teeth on PGs.The performance metrics of lesion segmentation carried out by U-net are as follows: Accuracy = 98.1%, precision = 84.5%, re-call = 80.3%, F-1 score = 82.2%, dice index = 75.2%, and Intersection over Union = 67.6%. Mask RCNN carried out lesion segmentation with an accuracy of 46.7%, precision of 80.6%, recall of 55%, and F-1 score of 63.1%.RESULTSThe performance metrics of lesion segmentation carried out by U-net are as follows: Accuracy = 98.1%, precision = 84.5%, re-call = 80.3%, F-1 score = 82.2%, dice index = 75.2%, and Intersection over Union = 67.6%. Mask RCNN carried out lesion segmentation with an accuracy of 46.7%, precision of 80.6%, recall of 55%, and F-1 score of 63.1%.In this study, the multi-model approach successfully related periapical pathosis to the causative tooth on PGs. However, U-net outperformed Mask RCNN in the tasks performed, suggesting that U-net will remain the standard for medical image segmentation tasks. Further training of the models on other findings and an increased number of images will lead to the automation of the detection of common radiographic findings in the dental diagnostic workflow.CONCLUSIONIn this study, the multi-model approach successfully related periapical pathosis to the causative tooth on PGs. However, U-net outperformed Mask RCNN in the tasks performed, suggesting that U-net will remain the standard for medical image segmentation tasks. Further training of the models on other findings and an increased number of images will lead to the automation of the detection of common radiographic findings in the dental diagnostic workflow. |
| Author | Umer, Fahad Malik, Shahzaib Hussain, Owais A. Adnan, Niha |
| Author_xml | – sequence: 1 givenname: Niha surname: Adnan fullname: Adnan, Niha organization: Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan – sequence: 2 givenname: Fahad orcidid: 0000-0003-3817-5941 surname: Umer fullname: Umer, Fahad email: fahad.umer@aku.edu organization: Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan – sequence: 3 givenname: Shahzaib surname: Malik fullname: Malik, Shahzaib organization: Information Technology University, Lahore, Pakistan – sequence: 4 givenname: Owais A. surname: Hussain fullname: Hussain, Owais A. organization: Karachi Institute of Economics and Technology, Karachi, Pakistan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38616480$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkTFPHDEQha0IFAjhD6SIXKbZjcf27t5FaSIUSCQQDdSWz56988Vrb2wfEv8-Ph2koIBpPJLfN5p57wM5CjEgIZ-AtcCg_7ptY62WMy5agJax_h055Rx4IyXA0f-eiRNynvOW1eorKPl7ciIWfe0W7JTYm50vrpmiRU8t4kw96hRcWFM9zylqs6FjTDTjesJQdHEx0DjSglg2VAdLZ0xOz85oX9FcvzOtklmHEqe4Tnre5I_keNQ-4_nTe0buL3_eXfxqrm-vfl_8uG6M4Lw0nMGK173EkncIY4_Cyq4bJFtJ08NSDEumceSdZHYAtrTIFrDqLGDfy1GMgzgjXw5z6-J_d5iLmlw26L0OGHdZCVZHi04OXZV-fpLuVhNaNSc36fSonp2pgsVBYFLMOeGojDucX5J2XgFT-xzUVu1zUPscFICqJleUv0Cfp78KfT9AWA16cJhUNg6DQesSmqJsdK_j317gxruwT-UPPr4F_wOoybR2 |
| CitedBy_id | crossref_primary_10_1016_j_dib_2024_111152 crossref_primary_10_1038_s41432_024_01089_1 crossref_primary_10_1186_s12903_024_04984_2 crossref_primary_10_3390_diagnostics14232768 |
| Cites_doi | 10.1038/s41598-021-90386-1 10.3390/healthcare11030347 10.1016/j.aiopen.2022.10.001 10.5005/jp-journals-10024-2564 10.1016/j.joen.2019.03.016 10.1109/JBHI.2021.3117575 10.1155/2022/7035367 10.1016/j.jdent.2021.103610 10.3390/s22155611 10.1007/s00784-020-03544-6 10.1259/dmfr.20210504 10.1016/j.eswa.2018.04.001 10.1016/j.joen.2018.07.003 10.1016/j.joen.2020.03.025 10.1111/iej.12507 10.1016/j.jdent.2022.104080 10.1016/j.joen.2021.11.007 10.1259/dmfr.20190290 10.1109/TASE.2020.3025871 10.1016/S2589-7500(22)00032-2 10.1186/s12859-022-04971-w 10.1007/s41095-021-0247-3 10.1016/j.joen.2022.12.007 10.1002/9781394205639.ch2 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.oooo.2023.11.006 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Dentistry |
| EISSN | 2212-4411 |
| EndPage | 204 |
| ExternalDocumentID | 38616480 10_1016_j_oooo_2023_11_006 S2212440323007411 |
| Genre | Journal Article |
| GroupedDBID | --K --M .1- .FO .~1 0R~ 1P~ 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AATTM AAXKI AAXUO AAYWO ABBQC ABJNI ABLJU ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV C45 EBS EFJIC EFKBS EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ K-O KOM M41 MO0 O-L O9- OAUVE OBH OF. OQ0 OVD P-8 P-9 PC. Q38 ROL SDF SEL SPCBC SSH SSZ T5K TEORI UV1 Z5R ~G- ~HD AACTN AAIAV AFKWA AJOXV AMFUW RIG AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c322t-201b21643925e1f6e3d455740b4c6193790aef2540d7109de081b5d1e664f3f73 |
| IEDL.DBID | .~1 |
| ISSN | 2212-4403 2212-4411 |
| IngestDate | Sun Sep 28 06:39:09 EDT 2025 Mon Jul 21 06:07:13 EDT 2025 Thu Apr 24 22:58:41 EDT 2025 Wed Oct 01 03:19:38 EDT 2025 Wed Jun 26 17:52:52 EDT 2024 Tue Oct 14 19:28:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Copyright © 2023 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-201b21643925e1f6e3d455740b4c6193790aef2540d7109de081b5d1e664f3f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-3817-5941 |
| PMID | 38616480 |
| PQID | 3039235475 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_3039235475 pubmed_primary_38616480 crossref_citationtrail_10_1016_j_oooo_2023_11_006 crossref_primary_10_1016_j_oooo_2023_11_006 elsevier_sciencedirect_doi_10_1016_j_oooo_2023_11_006 elsevier_clinicalkey_doi_10_1016_j_oooo_2023_11_006 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2024 2024-07-00 20240701 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Oral surgery, oral medicine, oral pathology and oral radiology |
| PublicationTitleAlternate | Oral Surg Oral Med Oral Pathol Oral Radiol |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | (bib0020) 2014 Schwendicke, Singh, Lee (bib0015) 2021; 107 Umer, Habib, Adnan (bib0011) 2022; 51 Setzer, Shi, Zhang (bib0029) 2020; 46 Arslan, Demir, Berker Yıldız, Yaşar (bib0004) 2020; 49 Akpokiro, Martin, Oluwadare (bib0025) 2022; 23 Xu, Wei, Lin (bib0007) 2022; 8 Umer, Habib (bib0008) 2022; 48 Maddalone, Bonfanti, Pellegatta, Citterio, Baldoni (bib0006) 2019; 20 Yüksel, Gültekin, Simsar (bib0024) 2021; 11 Ronneberger, Fischer, Brox (bib0017) 2015 Bayrakdar, Orhan, Çelik (bib0022) 2022; 2022 UNet Line By Line Explanation: Towards Data Science. Medium. Accessed July 15, 2021. Segura-Egea, Martín-González, Castellanos-Cosano (bib0003) 2015; 48 Zheng, Yan, Setzer (bib0030) 2020; 18 Leite, Gerven, Willems (bib0021) 2021; 25 Adnan, Khalid, Umer (bib0012) 2023; 26 He, Gkioxari, Dollar, Girshick, Mask (bib0019) 2017 Fatima, Shafi, Afzal (bib0031) 2023; 11 (bib0028) 2019 Zhang, Whebell, Gallifant (bib0032) 2022; 4 Panetta, Rajendran, Ramesh, Rao, Agaian (bib0014) 2022; 26 Ensemble Learning Methods for Deep Learning Neural Networks. Machine Learning Mastery. Accessed May 23, 2023. . Ngoc, Viet, Anh (bib0023) 2021; 12 Nardi, Calistri, Grazzini (bib0005) 2018; 44 Schwendicke, Mertens, Cantu, Chaurasia, Meyer-Lueckel, Krois (bib0033) 2022; 119 Lin, Wang, Liu, Qiu (bib0009) 2023; 3 Sadr, Mohammad-Rahimi, Motamedian (bib0013) 2023; 49 Welcome To Colaboratory. Google Colaboratory. Accessed July 15, 2021. Ekert, Krois, Meinhold (bib0002) 2019; 45 Silva, Oliveira, Pithon (bib0001) 2018; 107 Adnan, Umer (bib0010) 2022; 72 Younis, Zaki, Kanjo, Houssein (bib0027) 2022; 22 Bayrakdar (10.1016/j.oooo.2023.11.006_bib0022) 2022; 2022 Yüksel (10.1016/j.oooo.2023.11.006_bib0024) 2021; 11 Lin (10.1016/j.oooo.2023.11.006_bib0009) 2023; 3 Younis (10.1016/j.oooo.2023.11.006_bib0027) 2022; 22 Xu (10.1016/j.oooo.2023.11.006_bib0007) 2022; 8 Adnan (10.1016/j.oooo.2023.11.006_bib0012) 2023; 26 Akpokiro (10.1016/j.oooo.2023.11.006_bib0025) 2022; 23 He (10.1016/j.oooo.2023.11.006_bib0019) 2017 Fatima (10.1016/j.oooo.2023.11.006_bib0031) 2023; 11 Umer (10.1016/j.oooo.2023.11.006_bib0011) 2022; 51 Ronneberger (10.1016/j.oooo.2023.11.006_bib0017) 2015 Nardi (10.1016/j.oooo.2023.11.006_bib0005) 2018; 44 10.1016/j.oooo.2023.11.006_bib0016 Ngoc (10.1016/j.oooo.2023.11.006_bib0023) 2021; 12 10.1016/j.oooo.2023.11.006_bib0018 Segura-Egea (10.1016/j.oooo.2023.11.006_bib0003) 2015; 48 Schwendicke (10.1016/j.oooo.2023.11.006_bib0033) 2022; 119 Silva (10.1016/j.oooo.2023.11.006_bib0001) 2018; 107 Leite (10.1016/j.oooo.2023.11.006_bib0021) 2021; 25 Adnan (10.1016/j.oooo.2023.11.006_bib0010) 2022; 72 Sadr (10.1016/j.oooo.2023.11.006_bib0013) 2023; 49 Zheng (10.1016/j.oooo.2023.11.006_bib0030) 2020; 18 Zhang (10.1016/j.oooo.2023.11.006_bib0032) 2022; 4 Maddalone (10.1016/j.oooo.2023.11.006_bib0006) 2019; 20 Setzer (10.1016/j.oooo.2023.11.006_bib0029) 2020; 46 Ekert (10.1016/j.oooo.2023.11.006_bib0002) 2019; 45 Arslan (10.1016/j.oooo.2023.11.006_bib0004) 2020; 49 Schwendicke (10.1016/j.oooo.2023.11.006_bib0015) 2021; 107 Umer (10.1016/j.oooo.2023.11.006_bib0008) 2022; 48 (10.1016/j.oooo.2023.11.006_bib0020) 2014 10.1016/j.oooo.2023.11.006_bib0026 (10.1016/j.oooo.2023.11.006_bib0028) 2019 Panetta (10.1016/j.oooo.2023.11.006_bib0014) 2022; 26 |
| References_xml | – volume: 3 start-page: 111 year: 2023 end-page: 132 ident: bib0009 article-title: A survey of transformers publication-title: AI Open – volume: 12 start-page: 190 year: 2021 ident: bib0023 article-title: Periapical lesion diagnosis support system based on X-ray images using machine learning technique publication-title: World J Dent – volume: 72 start-page: S59 year: 2022 end-page: S63 ident: bib0010 publication-title: Understanding deep learning—challenges and prospects – reference: Welcome To Colaboratory. Google Colaboratory. Accessed July 15, 2021. – volume: 49 year: 2020 ident: bib0004 article-title: Diagnostic accuracy of panoramic radiography and ultrasonography in detecting periapical lesions using periapical radiography as a gold standard publication-title: Dentomaxillofac Radiol – volume: 48 start-page: 152 year: 2022 end-page: 160 ident: bib0008 article-title: Critical analysis of Artificial Intelligence in endodontics: a scoping review publication-title: J Endod – volume: 22 start-page: 5611 year: 2022 ident: bib0027 article-title: Evaluating ensemble learning methods for multi-modal emotion recognition using sensor data fusion publication-title: Sensors (Basel) – volume: 26 start-page: 1650 year: 2022 end-page: 1659 ident: bib0014 article-title: Tufts Dental Database: a multimodal panoramic X-Ray dataset for benchmarking diagnostic systems publication-title: IEEE J Biomed Health Inform – reference: Ensemble Learning Methods for Deep Learning Neural Networks. Machine Learning Mastery. Accessed May 23, 2023. – volume: 48 start-page: 933 year: 2015 end-page: 951 ident: bib0003 article-title: Endodontic medicine: connections between apical periodontitis and systemic diseases publication-title: Int Endod J – volume: 46 start-page: 987 year: 2020 end-page: 993 ident: bib0029 article-title: Artificial Intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images publication-title: J Endod – volume: 119 year: 2022 ident: bib0033 article-title: Cost-effectiveness of AI for caries detection: randomized trial publication-title: J Dent – reference: UNet Line By Line Explanation: Towards Data Science. Medium. Accessed July 15, 2021. – volume: 20 start-page: 593 year: 2019 end-page: 597 ident: bib0006 article-title: Digital orthopantomography vs cone beam computed tomography-Part 1: detection of periapical lesions publication-title: J Contemp Dent Pract – volume: 51 year: 2022 ident: bib0011 article-title: Application of deep learning in teeth identification tasks on panoramic radiographs publication-title: Dentomaxillofac Radiol – start-page: 234 year: 2015 end-page: 241 ident: bib0017 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: Int Conf on MICCAI; – volume: 8 start-page: 33 year: 2022 end-page: 62 ident: bib0007 article-title: Transformers in computational visual media: a survey publication-title: Comput Vis Media – year: 2014 ident: bib0020 publication-title: Microsoft coco: common objects in context. Computer Vision–ECCV 2014: 13th European Conference – year: 2019 ident: bib0028 article-title: Rethinking ImageNet pre-training, 2019 publication-title: IEEE/CVF International Conference on Computer Vision (ICCV) – volume: 25 start-page: 2257 year: 2021 end-page: 2267 ident: bib0021 article-title: Artificial Intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs publication-title: Clin Oral Investig – volume: 49 year: 2023 ident: bib0013 article-title: Deep Learning for detection of periapical radiolucent lesions: a systematic review and meta-analysis of diagnostic test accuracy publication-title: J Endod – reference: . – volume: 11 start-page: 12342 year: 2021 ident: bib0024 article-title: Dental enumeration and multiple treatment detection on panoramic X-rays using deep learning publication-title: Sci Rep – start-page: 2961 year: 2017 end-page: 2969 ident: bib0019 publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 4 start-page: e212 year: 2022 end-page: e213 ident: bib0032 article-title: An interactive dashboard to track themes, development maturity, and global equity in clinical Artificial Intelligence research publication-title: Lancet Digit Health – volume: 18 start-page: 603 year: 2020 end-page: 614 ident: bib0030 article-title: Anatomically constrained deep learning for automating dental CBCT segmentation and lesion detection publication-title: IEEE Trans Autom Sci Eng – volume: 26 start-page: 301 year: 2023 end-page: 309 ident: bib0012 article-title: An artificial intelligence model for teeth segmentation and numbering on orthopantomograms publication-title: Int J Comput Dent – volume: 44 start-page: 1500 year: 2018 end-page: 1508 ident: bib0005 article-title: Is panoramic radiography an accurate imaging technique for the detection of endodontically treated asymptomatic apical periodontitis? publication-title: J Endod – volume: 45 year: 2019 ident: bib0002 article-title: Deep Learning for the radiographic detection of apical lesions publication-title: J Endod – volume: 107 start-page: 15 year: 2018 end-page: 31 ident: bib0001 article-title: Automatic segmenting teeth in X-ray images: trends, a novel data set, benchmarking and future perspectives publication-title: Expert Syst Appl – volume: 107 year: 2021 ident: bib0015 article-title: Artificial Intelligence in dental research: checklist for authors, reviewers, readers publication-title: J Dent – volume: 2022 year: 2022 ident: bib0022 article-title: A U-Net approach to apical lesion segmentation on panoramic radiographs publication-title: Biomed Res Int – volume: 23 start-page: 413 year: 2022 ident: bib0025 article-title: EnsembleSplice: ensemble deep learning model for splice site prediction publication-title: BMC Bioinform – volume: 11 start-page: 347 year: 2023 ident: bib0031 article-title: Deep Learning-based multiclass instance segmentation for dental lesion detection publication-title: Healthcare (Basel) – start-page: 234 year: 2015 ident: 10.1016/j.oooo.2023.11.006_bib0017 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: Int Conf on MICCAI; – volume: 11 start-page: 12342 year: 2021 ident: 10.1016/j.oooo.2023.11.006_bib0024 article-title: Dental enumeration and multiple treatment detection on panoramic X-rays using deep learning publication-title: Sci Rep doi: 10.1038/s41598-021-90386-1 – volume: 11 start-page: 347 year: 2023 ident: 10.1016/j.oooo.2023.11.006_bib0031 article-title: Deep Learning-based multiclass instance segmentation for dental lesion detection publication-title: Healthcare (Basel) doi: 10.3390/healthcare11030347 – volume: 3 start-page: 111 year: 2023 ident: 10.1016/j.oooo.2023.11.006_bib0009 article-title: A survey of transformers publication-title: AI Open doi: 10.1016/j.aiopen.2022.10.001 – volume: 20 start-page: 593 year: 2019 ident: 10.1016/j.oooo.2023.11.006_bib0006 article-title: Digital orthopantomography vs cone beam computed tomography-Part 1: detection of periapical lesions publication-title: J Contemp Dent Pract doi: 10.5005/jp-journals-10024-2564 – volume: 45 year: 2019 ident: 10.1016/j.oooo.2023.11.006_bib0002 article-title: Deep Learning for the radiographic detection of apical lesions publication-title: J Endod doi: 10.1016/j.joen.2019.03.016 – volume: 26 start-page: 1650 year: 2022 ident: 10.1016/j.oooo.2023.11.006_bib0014 article-title: Tufts Dental Database: a multimodal panoramic X-Ray dataset for benchmarking diagnostic systems publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2021.3117575 – volume: 2022 year: 2022 ident: 10.1016/j.oooo.2023.11.006_bib0022 article-title: A U-Net approach to apical lesion segmentation on panoramic radiographs publication-title: Biomed Res Int doi: 10.1155/2022/7035367 – volume: 107 year: 2021 ident: 10.1016/j.oooo.2023.11.006_bib0015 article-title: Artificial Intelligence in dental research: checklist for authors, reviewers, readers publication-title: J Dent doi: 10.1016/j.jdent.2021.103610 – volume: 22 start-page: 5611 year: 2022 ident: 10.1016/j.oooo.2023.11.006_bib0027 article-title: Evaluating ensemble learning methods for multi-modal emotion recognition using sensor data fusion publication-title: Sensors (Basel) doi: 10.3390/s22155611 – volume: 25 start-page: 2257 year: 2021 ident: 10.1016/j.oooo.2023.11.006_bib0021 article-title: Artificial Intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs publication-title: Clin Oral Investig doi: 10.1007/s00784-020-03544-6 – volume: 51 year: 2022 ident: 10.1016/j.oooo.2023.11.006_bib0011 article-title: Application of deep learning in teeth identification tasks on panoramic radiographs publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20210504 – volume: 26 start-page: 301 year: 2023 ident: 10.1016/j.oooo.2023.11.006_bib0012 article-title: An artificial intelligence model for teeth segmentation and numbering on orthopantomograms publication-title: Int J Comput Dent – volume: 107 start-page: 15 year: 2018 ident: 10.1016/j.oooo.2023.11.006_bib0001 article-title: Automatic segmenting teeth in X-ray images: trends, a novel data set, benchmarking and future perspectives publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.04.001 – volume: 44 start-page: 1500 year: 2018 ident: 10.1016/j.oooo.2023.11.006_bib0005 article-title: Is panoramic radiography an accurate imaging technique for the detection of endodontically treated asymptomatic apical periodontitis? publication-title: J Endod doi: 10.1016/j.joen.2018.07.003 – volume: 46 start-page: 987 year: 2020 ident: 10.1016/j.oooo.2023.11.006_bib0029 article-title: Artificial Intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images publication-title: J Endod doi: 10.1016/j.joen.2020.03.025 – volume: 48 start-page: 933 year: 2015 ident: 10.1016/j.oooo.2023.11.006_bib0003 article-title: Endodontic medicine: connections between apical periodontitis and systemic diseases publication-title: Int Endod J doi: 10.1111/iej.12507 – year: 2019 ident: 10.1016/j.oooo.2023.11.006_bib0028 article-title: Rethinking ImageNet pre-training, 2019 – volume: 119 year: 2022 ident: 10.1016/j.oooo.2023.11.006_bib0033 article-title: Cost-effectiveness of AI for caries detection: randomized trial publication-title: J Dent doi: 10.1016/j.jdent.2022.104080 – volume: 48 start-page: 152 year: 2022 ident: 10.1016/j.oooo.2023.11.006_bib0008 article-title: Critical analysis of Artificial Intelligence in endodontics: a scoping review publication-title: J Endod doi: 10.1016/j.joen.2021.11.007 – volume: 49 year: 2020 ident: 10.1016/j.oooo.2023.11.006_bib0004 article-title: Diagnostic accuracy of panoramic radiography and ultrasonography in detecting periapical lesions using periapical radiography as a gold standard publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20190290 – ident: 10.1016/j.oooo.2023.11.006_bib0016 – ident: 10.1016/j.oooo.2023.11.006_bib0018 – volume: 18 start-page: 603 year: 2020 ident: 10.1016/j.oooo.2023.11.006_bib0030 article-title: Anatomically constrained deep learning for automating dental CBCT segmentation and lesion detection publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2020.3025871 – volume: 4 start-page: e212 year: 2022 ident: 10.1016/j.oooo.2023.11.006_bib0032 article-title: An interactive dashboard to track themes, development maturity, and global equity in clinical Artificial Intelligence research publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(22)00032-2 – volume: 72 start-page: S59 issue: Suppl 1 year: 2022 ident: 10.1016/j.oooo.2023.11.006_bib0010 publication-title: Understanding deep learning—challenges and prospects – volume: 23 start-page: 413 year: 2022 ident: 10.1016/j.oooo.2023.11.006_bib0025 article-title: EnsembleSplice: ensemble deep learning model for splice site prediction publication-title: BMC Bioinform doi: 10.1186/s12859-022-04971-w – year: 2014 ident: 10.1016/j.oooo.2023.11.006_bib0020 – volume: 8 start-page: 33 year: 2022 ident: 10.1016/j.oooo.2023.11.006_bib0007 article-title: Transformers in computational visual media: a survey publication-title: Comput Vis Media doi: 10.1007/s41095-021-0247-3 – volume: 49 year: 2023 ident: 10.1016/j.oooo.2023.11.006_bib0013 article-title: Deep Learning for detection of periapical radiolucent lesions: a systematic review and meta-analysis of diagnostic test accuracy publication-title: J Endod doi: 10.1016/j.joen.2022.12.007 – start-page: 2961 year: 2017 ident: 10.1016/j.oooo.2023.11.006_bib0019 – volume: 12 start-page: 190 year: 2021 ident: 10.1016/j.oooo.2023.11.006_bib0023 article-title: Periapical lesion diagnosis support system based on X-ray images using machine learning technique publication-title: World J Dent – ident: 10.1016/j.oooo.2023.11.006_bib0026 doi: 10.1002/9781394205639.ch2 |
| SSID | ssj0000601642 |
| Score | 2.4435341 |
| Snippet | The fields of medicine and dentistry are beginning to integrate artificial intelligence (AI) in diagnostics. This may reduce subjectivity and improve the... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 196 |
| SubjectTerms | Algorithms Deep Learning Humans Periapical Diseases - diagnostic imaging Radiographic Image Interpretation, Computer-Assisted - methods |
| Title | Multi-model deep learning approach for segmentation of teeth and periapical lesions on pantomographs |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2212440323007411 https://dx.doi.org/10.1016/j.oooo.2023.11.006 https://www.ncbi.nlm.nih.gov/pubmed/38616480 https://www.proquest.com/docview/3039235475 |
| Volume | 138 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 2212-4411 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601642 issn: 2212-4403 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 2212-4411 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601642 issn: 2212-4403 databaseCode: ACRLP dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 2212-4411 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601642 issn: 2212-4403 databaseCode: .~1 dateStart: 0 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - access via UTK customDbUrl: eissn: 2212-4411 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601642 issn: 2212-4403 databaseCode: AIKHN dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2212-4411 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601642 issn: 2212-4403 databaseCode: AKRWK dateStart: 20120101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG6MHvRifLu-UhNvhl2gLSxH4yOrGz34iN4aSgddoyxx8epvdwbKJiY-ErkQSCeUaTvzFWbmY-yAEhr7UWI8lcjMk9JKL_EpTCy2vlIWRJZTcvLlVTS4kxcP6mGGHbe5MBRW6Wx_Y9Nra-3u9Jw2e-Vo1LsJQ_JNvkAQTX6xzmCXMbEYdD-C6XeWut5IzaFD7T0ScLkzTZjXGI8ucYh3qZgnER99759-wp-1HzpbYosOQPKjpo_LbAaKFTZ_QkE_xNu2ymydU-vVFDfcApTcMUM88raAOEekyifw-OoSjwo-znkFUD3xtLCcih-nJY0eitLXtAnHJiXRDb82Fa4na-zu7PT2eOA5LgUvwyVb4WIITBgQ_AgVBHkEwkqlYukbmeEeSsSJn0KOu0XfUnSmBYQKRtkAokjmIo_FOpstxgVsMo5Kh35kTGhMIiOVGRAxZGGKb4Te0OYdFrQa1JkrNE58Fy-6jSh71qR1TVrHHYhGrXfY4VSmbMps_NpatAOj2wRSNHkavcCvUmoq9WWK_Sm33469xrVHP1TSAsbvE43uH_GxkrHqsI1mUkx7L_oRqrvvb_3zqdtsAa9kExm8w2art3fYRfxTmb16gu-xuaPz4eCKzsPr--En0rAFHQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG42elgvxrfrsybeDLtAW1iOxkfW50VNvDWUDj6iLHHx6m93BsomJj4SOUInlOljvikz8zG2TwmNwygxnkpk5klppZf4FCYWW18pCyLLKTn56joa3cnze3XfYUdtLgyFVbq9v9nT693a3Rk4bQ7Kp6fBTRiSbfIFgmiyi-gCzUoVxuSB9T-C6UFLXXCkJtEhAY8kXPJME-c1xqtPJOJ9quZJzEffG6ifAGhtiE4X2LxDkPyw6eQi60CxxLrHFPVDxG3LzNZJtV7NccMtQMkdNcQDbyuIc4SqfAIPry7zqODjnFcA1SNPC8up-nFa0vChKB2nTTg2KYlv-LUpcT1ZYXenJ7dHI8-RKXgZrtkKV0NgwoDwR6ggyCMQVioVS9_IDJ0oESd-Cjm6i76l8EwLiBWMsgFEkcxFHotVNlOMC1hnHLUOw8iY0JhERiozIGLIwhS_CM2hzXssaDWoM1dpnAgvXnQbUvasSeuatI4uiEat99jBVKZs6mz82lq0A6PbDFLc8zSagV-l1FTqyxz7U26vHXuNi4_-qKQFjN8nGu0_AmQlY9Vja82kmPZeDCNU99Df-Odbd1l3dHt1qS_Pri822Rw-kU2Y8Babqd7eYRvBUGV26sn-CaB7BQ8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-model+deep+learning+approach+for+segmentation+of+teeth+and+periapical+lesions+on+pantomographs&rft.jtitle=Oral+surgery%2C+oral+medicine%2C+oral+pathology+and+oral+radiology&rft.au=Adnan%2C+Niha&rft.au=Umer%2C+Fahad&rft.au=Malik%2C+Shahzaib&rft.au=Hussain%2C+Owais+A.&rft.date=2024-07-01&rft.pub=Elsevier+Inc&rft.issn=2212-4403&rft.eissn=2212-4411&rft.volume=138&rft.issue=1&rft.spage=196&rft.epage=204&rft_id=info:doi/10.1016%2Fj.oooo.2023.11.006&rft.externalDocID=S2212440323007411 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-4403&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-4403&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-4403&client=summon |