Quantum speedup of Bayes' classifiers

Data classification is a fundamental problem in machine learning. We study quantum speedup of the supervised data classification algorithms (quadratic, linear and naïve Bayes classifiers) based on Bayes' theory. The main technique we use to achieve quantum speedup is block-encoding. However, to...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. A, Mathematical and theoretical Vol. 53; no. 4; pp. 45301 - 45326
Main Author Shao, Changpeng
Format Journal Article
LanguageEnglish
Published IOP Publishing 31.01.2020
Subjects
Online AccessGet full text
ISSN1751-8113
1751-8121
1751-8121
DOI10.1088/1751-8121/ab5d77

Cover

Abstract Data classification is a fundamental problem in machine learning. We study quantum speedup of the supervised data classification algorithms (quadratic, linear and naïve Bayes classifiers) based on Bayes' theory. The main technique we use to achieve quantum speedup is block-encoding. However, to apply this technique effectively, we propose a general method to construct the block-encoding. As an application, we show that all the three classifiers achieve exponential speedup at the number of samples over their classical counterparts. As for the dimension of the space, quantum quadratic and linear classifiers achieve varying degrees of polynomial speedup, while quantum naïve Bayes' classifier achieves an exponential speedup. The only assumption we make is the qRAM to prepare quantum states of the input data.
AbstractList Data classification is a fundamental problem in machine learning. We study quantum speedup of the supervised data classification algorithms (quadratic, linear and naïve Bayes classifiers) based on Bayes' theory. The main technique we use to achieve quantum speedup is block-encoding. However, to apply this technique effectively, we propose a general method to construct the block-encoding. As an application, we show that all the three classifiers achieve exponential speedup at the number of samples over their classical counterparts. As for the dimension of the space, quantum quadratic and linear classifiers achieve varying degrees of polynomial speedup, while quantum naïve Bayes' classifier achieves an exponential speedup. The only assumption we make is the qRAM to prepare quantum states of the input data.
Author Shao, Changpeng
Author_xml – sequence: 1
  givenname: Changpeng
  orcidid: 0000-0002-3008-7296
  surname: Shao
  fullname: Shao, Changpeng
  email: changpeng.shao@bristol.ac.uk
  organization: University of Bristol School of Mathematics, Bristol, BS8 1UG, United Kingdom
BookMark eNqNkE1LxDAQhoOs4O7q3WMv4sW6maTZJkdd_IIFEfQc0nxAlm5akhbpv3dLZQ-C4mmGl3leeGaBZqEJFqFLwLeAOV9BySDnQGClKmbK8gTNj9HsuAM9Q4uUdhizAgsyR1dvvQpdv89Sa63p26xx2b0abLrOdK1S8s7bmM7RqVN1shffc4k-Hh_eN8_59vXpZXO3zTUlpMvB6TXnxgEzxFRrUQmLQQhjCycotYxRww3FwhBGlDG64pwTDYaXWENRUbpEMPX2oVXDp6pr2Ua_V3GQgOXoKUcROUrJyfPA4InRsUkpWvcfZP0D0b5TnW9CF5Wv_wJvJtA3rdw1fQyHb_x-_gWA_XXO
CODEN JPHAC5
CitedBy_id crossref_primary_10_1103_PhysRevA_107_062403
crossref_primary_10_1103_PhysRevA_104_062414
crossref_primary_10_1016_j_physa_2022_128227
crossref_primary_10_1209_0295_5075_acdff5
crossref_primary_10_1088_1402_4896_ace485
crossref_primary_10_1103_PhysRevA_108_042418
crossref_primary_10_1103_PhysRevA_106_012406
Cites_doi 10.1103/PhysRevLett.113.130503
10.1145/3313276.3316366
10.1038/s41534-018-0116-9
10.1103/PhysRevA.99.052331
10.26421/QIC15.3-4
10.22331/q-2019-07-12-163
10.1090/conm/305/05215
10.1103/PhysRevLett.110.250504
10.1103/PhysRevLett.100.160501
10.1103/PhysRevA.97.012327
10.1103/PhysRevLett.87.167902
10.1038/nature23474
10.1038/s41598-019-40439-3
10.1080/00107514.2014.964942
10.1103/PhysRevLett.122.040504
10.1162/089976603321780317
10.1088/1367-2630/18/7/073011
10.1017/CBO9780511976667
10.1038/s41586-019-0980-2
10.1007/s11424-019-9008-0
10.1145/321075.321084
10.1007/s11128-014-0809-8
10.1201/b16018
10.1007/s42484-019-00004-7
10.1103/PhysRevLett.103.150502
10.1007/978-1-4614-7138-7
10.1209/0295-5075/119/60002
10.1088/1367-2630/17/12/123010
10.56021/9781421407944
10.1103/PhysRevA.94.022342
10.1038/nphys3029
10.1038/nphys3272
10.1103/PhysRevLett.109.050505
10.1007/978-3-319-96424-9
ContentType Journal Article
Copyright 2020 IOP Publishing Ltd
Copyright_xml – notice: 2020 IOP Publishing Ltd
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1088/1751-8121/ab5d77
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Quantum speedup of Bayes' classifiers
EISSN 1751-8121
ExternalDocumentID 10.1088/1751-8121/ab5d77
10_1088_1751_8121_ab5d77
aab5d77
GrantInformation_xml – fundername: QuantERA ERA-NET Cofund in Quantum Technologies implemented within the European Union's Horizon 2020 Programme (QuantAlgo project)
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/L021005/1; EP/R043957/1
  funderid: https://doi.org/10.13039/501100000266
GroupedDBID 1JI
4.4
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ACNCT
AEFHF
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
PJBAE
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
AAYXX
ADEQX
AEINN
CITATION
02O
1WK
5ZI
6TJ
AALHV
ADTOC
AERVB
AFFNX
BBWZM
EJD
FEDTE
HVGLF
H~9
JCGBZ
NT-
NT.
Q02
UNPAY
ID FETCH-LOGICAL-c322t-1fc688df15d2db69b9e0199de4f933e553d8d309d252addcb8882c1d870c14b33
IEDL.DBID UNPAY
ISSN 1751-8113
1751-8121
IngestDate Tue Aug 19 22:12:22 EDT 2025
Wed Oct 01 03:14:22 EDT 2025
Thu Apr 24 22:58:37 EDT 2025
Wed Aug 21 03:33:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-1fc688df15d2db69b9e0199de4f933e553d8d309d252addcb8882c1d870c14b33
Notes JPhysA-112361.R2
ORCID 0000-0002-3008-7296
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1751-8121/ab5d77/pdf
PageCount 26
ParticipantIDs iop_journals_10_1088_1751_8121_ab5d77
unpaywall_primary_10_1088_1751_8121_ab5d77
crossref_citationtrail_10_1088_1751_8121_ab5d77
crossref_primary_10_1088_1751_8121_ab5d77
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-31
PublicationDateYYYYMMDD 2020-01-31
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-31
  day: 31
PublicationDecade 2020
PublicationTitle Journal of physics. A, Mathematical and theoretical
PublicationTitleAbbrev JPhysA
PublicationTitleAlternate J. Phys. A: Math. Theor
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 45
46
47
48
49
Hastie T (3) 2016
Kerenidis I (39) 2018
Haykin S (2) 2009
Rish I (17) 2001; 3
50
52
Shao C (36) 2018
10
Chakraborty S (23) 2019; 132
Alpaydin E (1) 2015
12
Li T (44) 2019; PMLR 97
56
Aïmeur E (8) 2007
13
14
15
Shao C (55) 2019
59
16
Kerenidis I (22) 2017; 67
Wang C H (32) 2018
4
Murphy K (20) 2012
Schuld M (53) 2018
6
7
Farhi E (11) 2018
21
Cong I (9) 2016; 18
26
27
Coyle B (54) 2019
28
29
Shao C (34) 2018
Lloyd S (5) 2013
Duda R O (51) 2001
Arunachalam S (57) 2015; 17
Kerenidis I (24) 2018
Berry D W (30) 2015
Shao C (41) 2019
31
33
McLachlan G (60) 2004
37
Kerenidis I (25) 2018
38
Gelman A (19) 2013
van Apeldoorn J (40) 2018
Schuld M (35) 2017; 119
Golub H H (58) 2013
McCallum A (18) 1998; 752
42
43
References_xml – year: 2019
  ident: 55
– ident: 7
  doi: 10.1103/PhysRevLett.113.130503
– ident: 37
  doi: 10.1145/3313276.3316366
– year: 2018
  ident: 53
– ident: 56
  doi: 10.1038/s41534-018-0116-9
– volume: 132
  start-page: 1
  year: 2019
  ident: 23
  publication-title: Proc. 46th International Colloquium on Automata, Languages, and Programming
– ident: 28
  doi: 10.1103/PhysRevA.99.052331
– year: 2018
  ident: 32
– ident: 6
  doi: 10.26421/QIC15.3-4
– year: 2001
  ident: 51
  publication-title: Pattern Classification
– year: 2018
  ident: 34
– year: 2018
  ident: 36
– year: 2004
  ident: 60
  publication-title: Discriminant Analysis and Statistical Pattern Recognition
– ident: 38
  doi: 10.22331/q-2019-07-12-163
– ident: 46
  doi: 10.1090/conm/305/05215
– ident: 45
  doi: 10.1103/PhysRevLett.110.250504
– ident: 43
  doi: 10.1103/PhysRevLett.100.160501
– year: 2018
  ident: 11
– start-page: 792
  year: 2015
  ident: 30
  publication-title: Proc. 56th IEEE Symp. on Foundations of Computer Science
– ident: 31
  doi: 10.1103/PhysRevA.97.012327
– ident: 33
  doi: 10.1103/PhysRevLett.87.167902
– ident: 15
  doi: 10.1038/nature23474
– year: 2012
  ident: 20
  publication-title: Machine Learning: a Probabilistic Perspective
– year: 2019
  ident: 54
– ident: 49
  doi: 10.1038/s41598-019-40439-3
– year: 2018
  ident: 24
– ident: 14
  doi: 10.1080/00107514.2014.964942
– year: 2015
  ident: 1
  publication-title: Introduction to Machine Learning
– ident: 12
  doi: 10.1103/PhysRevLett.122.040504
– volume: 752
  start-page: 41
  year: 1998
  ident: 18
  publication-title: AAAI-98 Workshop on Learning for Text Categorization
– ident: 59
  doi: 10.1162/089976603321780317
– volume: 18
  issn: 1367-2630
  year: 2016
  ident: 9
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/7/073011
– ident: 50
  doi: 10.1017/CBO9780511976667
– ident: 13
  doi: 10.1038/s41586-019-0980-2
– year: 2018
  ident: 39
– year: 2019
  ident: 41
– ident: 47
  doi: 10.1007/s11424-019-9008-0
– ident: 16
  doi: 10.1145/321075.321084
– year: 2018
  ident: 25
– ident: 10
  doi: 10.1007/s11128-014-0809-8
– volume: 67
  start-page: 1
  year: 2017
  ident: 22
  publication-title: Proc. 8th Innovations in Theoretical Computer Science Conf.
– year: 2013
  ident: 19
  publication-title: Bayesian Data Analysis
  doi: 10.1201/b16018
– year: 2018
  ident: 40
– ident: 29
  doi: 10.1007/s42484-019-00004-7
– start-page: 1
  year: 2007
  ident: 8
  publication-title: Proc. 24th Annual Int. Conf. of Machine Learning
– year: 2013
  ident: 5
– year: 2016
  ident: 3
  publication-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– volume: PMLR 97
  start-page: 3815
  year: 2019
  ident: 44
  publication-title: Proc. of the 36th Int. Conf. on Machine Learning
– ident: 21
  doi: 10.1103/PhysRevLett.103.150502
– ident: 4
  doi: 10.1007/978-1-4614-7138-7
– volume: 119
  start-page: 60002
  issn: 0295-5075
  year: 2017
  ident: 35
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/119/60002
– volume: 17
  issn: 1367-2630
  year: 2015
  ident: 57
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/12/123010
– year: 2013
  ident: 58
  publication-title: Matrix Computations
  doi: 10.56021/9781421407944
– ident: 48
  doi: 10.1103/PhysRevA.94.022342
– ident: 26
  doi: 10.1038/nphys3029
– year: 2009
  ident: 2
  publication-title: Neural Networks and Learning Machines
– ident: 52
  doi: 10.1038/nphys3272
– volume: 3
  start-page: 41
  year: 2001
  ident: 17
  publication-title: Proc. IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence
– ident: 27
  doi: 10.1103/PhysRevLett.109.050505
– ident: 42
  doi: 10.1007/978-3-319-96424-9
SSID ssj0054092
Score 2.3771632
Snippet Data classification is a fundamental problem in machine learning. We study quantum speedup of the supervised data classification algorithms (quadratic, linear...
SourceID unpaywall
crossref
iop
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 45301
SubjectTerms Bayes' classifiers
machine learning
quantum algorithms
quantum computing
SummonAdditionalLinks – databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB7aiqgH32J9kYNFFNJ2s9k0iycVSxF8gYUehJDdzYJY22AapP56Z5O0qEgVbzlMJplJZuZb5gVwqDxOzBwqW3CpbdfTrh26gtnKjTjzTSavafqdr2-8Tte96rFeCU6nvTDDuHD9dbzMBwXnKiwK4vwGBjxiY1wijVAw1WqVYY76CIxN997t3cQNIxLJNiIX1IQWOcqfOHyJSWV87hIspIM4HL-F_f6ncNNegcfJi-ZVJs_1dCTq8v3bDMd_SrIKywUMtc5y0jUoRYN1mM_KQWWyAbX7FDWevlhJjNEtja2hts7DcZQcWdLA7SdtNmhvQrd9-XDRsYuFCrZEux3ZREvP95UmTDlKeFzwCBEeV5GrOaURY1T5ija5cpiDfk8KPB47kii0aUlcQekWVAbDQbQNFjFL1KnnSoX4gDMtiGgyM1xQ6pAqwarQmKg0kMW0cbP0oh9kWW_fD4zwgRE-yIWvwvH0jjiftDGDtoY6DQpzS2bQnUy_469Md_7IdBcWHXPobhIMYHtQGb2m0T4ik5E4yP7AD8sM1to
  priority: 102
  providerName: IOP Publishing
Title Quantum speedup of Bayes' classifiers
URI https://iopscience.iop.org/article/10.1088/1751-8121/ab5d77
https://iopscience.iop.org/article/10.1088/1751-8121/ab5d77/pdf
UnpaywallVersion publishedVersion
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1751-8121
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054092
  issn: 1751-8121
  databaseCode: IOP
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL24DVEf_Bbnx-iDIgrdlrbpmscpyhScExzMp9okDYizK3ZF5pN_w7_nLzFps6EiE_GtDzdpe9rknnDvPRdgj7sEKR0qkxImTMcVjhk4FJvcCQn2VCSvruqdL9tuq-tc9HBP9znNamEGsd76q_IyFwrOIdQJcV5NOjxkSr-EagHFvNGoxVwUoORiScaLUOq2O83brAwyM8saJE-G6EDlT9N8cUwFefMFmEujOBg9B_3-J59ztgR346fNU00equmQVtnLNyHHf7zOMixqPmo0c_MVmAmjVZjN8kJZsgYH16mEPn00kli6uTQ2BsI4DkZh8v76ZjDFvO-Faqa9Dt2z05uTlql7K5hMLuGhiQRzPY8LhLnFqUsoCSXZIzx0BLHtEGObe9yuE25hS26BjMqTssUQl8ubIYfa9gYUo0EUboKBVD9123UYl1SBYEERrWOlM8hEYHOKy1AbA-szLTyu-l_0_SwA7nm-gsBXEPg5BGU4nIyIc9GNKbb7Ellfr7xkit3R5Gv-OunWX4y3Yd5Sh_A6kg5tB4rDpzTclUxlSCtQOL_qVPQ_-QFkXN8g
linkProvider Unpaywall
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD64ibcH7-K89sEhCt2WpumaR29j3uYEB3urTdKAOLfiVmT-epM2GyoyBd_6cHLafu25hJzzHYAD4VGkeahsRrm0XU-6dugyYgs3osTXJ3kV3e982_DqLfeqTdpmzmnaC9OLjesvqcuMKDiD0BTE-WUV8JCt4hIqh4yIarUcC5mD6ZSnRHfw3TVHrlhlI-lUZLMCYXNO-ZOWL3Epp-69AHNJNw6Hb2Gn8ynk1JbgcfSwWaXJcykZsBJ__8bj-I-3WYZFk45aJ5n4CkxF3VWYSctCeX8NiveJQj55sfqxinJJbPWkdRoOo_6hxXXa_ST1JO11aNUuHs7qthmsYHNlvwMbSe75vpCICEcwjzIaqUyPisiVFOOIECx8gStUOMRR_o8ztU12OBLKtjlyGcYbkO_2utEmWEgPU8eey4XKEyiRDLEK0SSDXIZYMFKA8gjWgBvWcT38ohOkp9--H2gAAg1AkAFQgKPxijhj3JggW1S4Bsbs-hPkjsff8lelW39Uug-zzfNacHPZuN6GeUfvwytIxbQdyA9ek2hXJSsDtpf-kB8zkNw7
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL24DVEf_BbnF31QRKHr0jZd8zjFMQSHgoP5VJukAXF2xbbIfPJv-Pf8JSZtNlREEd_6cJO2p03uCffecwH2uUeQ0qEyKWHCdD3hmqFLscndiGBfRfKaqt75oud1--75AA90n9OiFmaU6K2_IS9LoeASQp0Q51vS4SFT-iVkhRTzVstKuKhAzcOSjFeh1u9dtm-KMsjCrGiQPB2iA5XfTfPJMVXkzRdgLo-TcPwUDocffE5nCW4nT1ummtw38ow22PMXIcd_vM4yLGo-arRL8xWYieJVmC3yQlm6BodXuYQ-fzDSRLq5PDFGwjgJx1H69vJqMMW874Rqpr0O_c7Z9WnX1L0VTCaXcGYiwTzf5wJhbnPqEUoiSfYIj1xBHCfC2OE-d5qE29iWWyCj8qRsM8Tl8mbIpY6zAdV4FEebYCDVT93xXMYlVSBYUESbWOkMMhE6nOI6WBNgA6aFx1X_i2FQBMB9P1AQBAqCoISgDkfTEUkpuvGD7YFENtArL_3B7nj6NX-ddOsvxtswb6tDeBNJh7YD1ewxj3YlU8nonv4b3wEu1t4X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+speedup+of+Bayes%E2%80%99+classifiers&rft.jtitle=Journal+of+physics.+A%2C+Mathematical+and+theoretical&rft.au=Shao%2C+Changpeng&rft.date=2020-01-31&rft.issn=1751-8113&rft.eissn=1751-8121&rft.volume=53&rft.issue=4&rft.spage=45301&rft_id=info:doi/10.1088%2F1751-8121%2Fab5d77&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1751_8121_ab5d77
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8113&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8113&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8113&client=summon