Quantum speedup of Bayes' classifiers
Data classification is a fundamental problem in machine learning. We study quantum speedup of the supervised data classification algorithms (quadratic, linear and naïve Bayes classifiers) based on Bayes' theory. The main technique we use to achieve quantum speedup is block-encoding. However, to...
Saved in:
| Published in | Journal of physics. A, Mathematical and theoretical Vol. 53; no. 4; pp. 45301 - 45326 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
IOP Publishing
31.01.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1751-8113 1751-8121 1751-8121 |
| DOI | 10.1088/1751-8121/ab5d77 |
Cover
| Abstract | Data classification is a fundamental problem in machine learning. We study quantum speedup of the supervised data classification algorithms (quadratic, linear and naïve Bayes classifiers) based on Bayes' theory. The main technique we use to achieve quantum speedup is block-encoding. However, to apply this technique effectively, we propose a general method to construct the block-encoding. As an application, we show that all the three classifiers achieve exponential speedup at the number of samples over their classical counterparts. As for the dimension of the space, quantum quadratic and linear classifiers achieve varying degrees of polynomial speedup, while quantum naïve Bayes' classifier achieves an exponential speedup. The only assumption we make is the qRAM to prepare quantum states of the input data. |
|---|---|
| AbstractList | Data classification is a fundamental problem in machine learning. We study quantum speedup of the supervised data classification algorithms (quadratic, linear and naïve Bayes classifiers) based on Bayes' theory. The main technique we use to achieve quantum speedup is block-encoding. However, to apply this technique effectively, we propose a general method to construct the block-encoding. As an application, we show that all the three classifiers achieve exponential speedup at the number of samples over their classical counterparts. As for the dimension of the space, quantum quadratic and linear classifiers achieve varying degrees of polynomial speedup, while quantum naïve Bayes' classifier achieves an exponential speedup. The only assumption we make is the qRAM to prepare quantum states of the input data. |
| Author | Shao, Changpeng |
| Author_xml | – sequence: 1 givenname: Changpeng orcidid: 0000-0002-3008-7296 surname: Shao fullname: Shao, Changpeng email: changpeng.shao@bristol.ac.uk organization: University of Bristol School of Mathematics, Bristol, BS8 1UG, United Kingdom |
| BookMark | eNqNkE1LxDAQhoOs4O7q3WMv4sW6maTZJkdd_IIFEfQc0nxAlm5akhbpv3dLZQ-C4mmGl3leeGaBZqEJFqFLwLeAOV9BySDnQGClKmbK8gTNj9HsuAM9Q4uUdhizAgsyR1dvvQpdv89Sa63p26xx2b0abLrOdK1S8s7bmM7RqVN1shffc4k-Hh_eN8_59vXpZXO3zTUlpMvB6TXnxgEzxFRrUQmLQQhjCycotYxRww3FwhBGlDG64pwTDYaXWENRUbpEMPX2oVXDp6pr2Ua_V3GQgOXoKUcROUrJyfPA4InRsUkpWvcfZP0D0b5TnW9CF5Wv_wJvJtA3rdw1fQyHb_x-_gWA_XXO |
| CODEN | JPHAC5 |
| CitedBy_id | crossref_primary_10_1103_PhysRevA_107_062403 crossref_primary_10_1103_PhysRevA_104_062414 crossref_primary_10_1016_j_physa_2022_128227 crossref_primary_10_1209_0295_5075_acdff5 crossref_primary_10_1088_1402_4896_ace485 crossref_primary_10_1103_PhysRevA_108_042418 crossref_primary_10_1103_PhysRevA_106_012406 |
| Cites_doi | 10.1103/PhysRevLett.113.130503 10.1145/3313276.3316366 10.1038/s41534-018-0116-9 10.1103/PhysRevA.99.052331 10.26421/QIC15.3-4 10.22331/q-2019-07-12-163 10.1090/conm/305/05215 10.1103/PhysRevLett.110.250504 10.1103/PhysRevLett.100.160501 10.1103/PhysRevA.97.012327 10.1103/PhysRevLett.87.167902 10.1038/nature23474 10.1038/s41598-019-40439-3 10.1080/00107514.2014.964942 10.1103/PhysRevLett.122.040504 10.1162/089976603321780317 10.1088/1367-2630/18/7/073011 10.1017/CBO9780511976667 10.1038/s41586-019-0980-2 10.1007/s11424-019-9008-0 10.1145/321075.321084 10.1007/s11128-014-0809-8 10.1201/b16018 10.1007/s42484-019-00004-7 10.1103/PhysRevLett.103.150502 10.1007/978-1-4614-7138-7 10.1209/0295-5075/119/60002 10.1088/1367-2630/17/12/123010 10.56021/9781421407944 10.1103/PhysRevA.94.022342 10.1038/nphys3029 10.1038/nphys3272 10.1103/PhysRevLett.109.050505 10.1007/978-3-319-96424-9 |
| ContentType | Journal Article |
| Copyright | 2020 IOP Publishing Ltd |
| Copyright_xml | – notice: 2020 IOP Publishing Ltd |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1088/1751-8121/ab5d77 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| DocumentTitleAlternate | Quantum speedup of Bayes' classifiers |
| EISSN | 1751-8121 |
| ExternalDocumentID | 10.1088/1751-8121/ab5d77 10_1088_1751_8121_ab5d77 aab5d77 |
| GrantInformation_xml | – fundername: QuantERA ERA-NET Cofund in Quantum Technologies implemented within the European Union's Horizon 2020 Programme (QuantAlgo project) – fundername: Engineering and Physical Sciences Research Council grantid: EP/L021005/1; EP/R043957/1 funderid: https://doi.org/10.13039/501100000266 |
| GroupedDBID | 1JI 4.4 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABQJV ABVAM ACAFW ACGFS ACHIP ACNCT AEFHF AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L PJBAE RIN RNS RO9 ROL RPA SY9 TN5 W28 AAYXX ADEQX AEINN CITATION 02O 1WK 5ZI 6TJ AALHV ADTOC AERVB AFFNX BBWZM EJD FEDTE HVGLF H~9 JCGBZ NT- NT. Q02 UNPAY |
| ID | FETCH-LOGICAL-c322t-1fc688df15d2db69b9e0199de4f933e553d8d309d252addcb8882c1d870c14b33 |
| IEDL.DBID | UNPAY |
| ISSN | 1751-8113 1751-8121 |
| IngestDate | Tue Aug 19 22:12:22 EDT 2025 Wed Oct 01 03:14:22 EDT 2025 Thu Apr 24 22:58:37 EDT 2025 Wed Aug 21 03:33:52 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-1fc688df15d2db69b9e0199de4f933e553d8d309d252addcb8882c1d870c14b33 |
| Notes | JPhysA-112361.R2 |
| ORCID | 0000-0002-3008-7296 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1751-8121/ab5d77/pdf |
| PageCount | 26 |
| ParticipantIDs | iop_journals_10_1088_1751_8121_ab5d77 unpaywall_primary_10_1088_1751_8121_ab5d77 crossref_citationtrail_10_1088_1751_8121_ab5d77 crossref_primary_10_1088_1751_8121_ab5d77 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-31 |
| PublicationDateYYYYMMDD | 2020-01-31 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of physics. A, Mathematical and theoretical |
| PublicationTitleAbbrev | JPhysA |
| PublicationTitleAlternate | J. Phys. A: Math. Theor |
| PublicationYear | 2020 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | 45 46 47 48 49 Hastie T (3) 2016 Kerenidis I (39) 2018 Haykin S (2) 2009 Rish I (17) 2001; 3 50 52 Shao C (36) 2018 10 Chakraborty S (23) 2019; 132 Alpaydin E (1) 2015 12 Li T (44) 2019; PMLR 97 56 Aïmeur E (8) 2007 13 14 15 Shao C (55) 2019 59 16 Kerenidis I (22) 2017; 67 Wang C H (32) 2018 4 Murphy K (20) 2012 Schuld M (53) 2018 6 7 Farhi E (11) 2018 21 Cong I (9) 2016; 18 26 27 Coyle B (54) 2019 28 29 Shao C (34) 2018 Lloyd S (5) 2013 Duda R O (51) 2001 Arunachalam S (57) 2015; 17 Kerenidis I (24) 2018 Berry D W (30) 2015 Shao C (41) 2019 31 33 McLachlan G (60) 2004 37 Kerenidis I (25) 2018 38 Gelman A (19) 2013 van Apeldoorn J (40) 2018 Schuld M (35) 2017; 119 Golub H H (58) 2013 McCallum A (18) 1998; 752 42 43 |
| References_xml | – year: 2019 ident: 55 – ident: 7 doi: 10.1103/PhysRevLett.113.130503 – ident: 37 doi: 10.1145/3313276.3316366 – year: 2018 ident: 53 – ident: 56 doi: 10.1038/s41534-018-0116-9 – volume: 132 start-page: 1 year: 2019 ident: 23 publication-title: Proc. 46th International Colloquium on Automata, Languages, and Programming – ident: 28 doi: 10.1103/PhysRevA.99.052331 – year: 2018 ident: 32 – ident: 6 doi: 10.26421/QIC15.3-4 – year: 2001 ident: 51 publication-title: Pattern Classification – year: 2018 ident: 34 – year: 2018 ident: 36 – year: 2004 ident: 60 publication-title: Discriminant Analysis and Statistical Pattern Recognition – ident: 38 doi: 10.22331/q-2019-07-12-163 – ident: 46 doi: 10.1090/conm/305/05215 – ident: 45 doi: 10.1103/PhysRevLett.110.250504 – ident: 43 doi: 10.1103/PhysRevLett.100.160501 – year: 2018 ident: 11 – start-page: 792 year: 2015 ident: 30 publication-title: Proc. 56th IEEE Symp. on Foundations of Computer Science – ident: 31 doi: 10.1103/PhysRevA.97.012327 – ident: 33 doi: 10.1103/PhysRevLett.87.167902 – ident: 15 doi: 10.1038/nature23474 – year: 2012 ident: 20 publication-title: Machine Learning: a Probabilistic Perspective – year: 2019 ident: 54 – ident: 49 doi: 10.1038/s41598-019-40439-3 – year: 2018 ident: 24 – ident: 14 doi: 10.1080/00107514.2014.964942 – year: 2015 ident: 1 publication-title: Introduction to Machine Learning – ident: 12 doi: 10.1103/PhysRevLett.122.040504 – volume: 752 start-page: 41 year: 1998 ident: 18 publication-title: AAAI-98 Workshop on Learning for Text Categorization – ident: 59 doi: 10.1162/089976603321780317 – volume: 18 issn: 1367-2630 year: 2016 ident: 9 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/7/073011 – ident: 50 doi: 10.1017/CBO9780511976667 – ident: 13 doi: 10.1038/s41586-019-0980-2 – year: 2018 ident: 39 – year: 2019 ident: 41 – ident: 47 doi: 10.1007/s11424-019-9008-0 – ident: 16 doi: 10.1145/321075.321084 – year: 2018 ident: 25 – ident: 10 doi: 10.1007/s11128-014-0809-8 – volume: 67 start-page: 1 year: 2017 ident: 22 publication-title: Proc. 8th Innovations in Theoretical Computer Science Conf. – year: 2013 ident: 19 publication-title: Bayesian Data Analysis doi: 10.1201/b16018 – year: 2018 ident: 40 – ident: 29 doi: 10.1007/s42484-019-00004-7 – start-page: 1 year: 2007 ident: 8 publication-title: Proc. 24th Annual Int. Conf. of Machine Learning – year: 2013 ident: 5 – year: 2016 ident: 3 publication-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction – volume: PMLR 97 start-page: 3815 year: 2019 ident: 44 publication-title: Proc. of the 36th Int. Conf. on Machine Learning – ident: 21 doi: 10.1103/PhysRevLett.103.150502 – ident: 4 doi: 10.1007/978-1-4614-7138-7 – volume: 119 start-page: 60002 issn: 0295-5075 year: 2017 ident: 35 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/119/60002 – volume: 17 issn: 1367-2630 year: 2015 ident: 57 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/12/123010 – year: 2013 ident: 58 publication-title: Matrix Computations doi: 10.56021/9781421407944 – ident: 48 doi: 10.1103/PhysRevA.94.022342 – ident: 26 doi: 10.1038/nphys3029 – year: 2009 ident: 2 publication-title: Neural Networks and Learning Machines – ident: 52 doi: 10.1038/nphys3272 – volume: 3 start-page: 41 year: 2001 ident: 17 publication-title: Proc. IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence – ident: 27 doi: 10.1103/PhysRevLett.109.050505 – ident: 42 doi: 10.1007/978-3-319-96424-9 |
| SSID | ssj0054092 |
| Score | 2.3771632 |
| Snippet | Data classification is a fundamental problem in machine learning. We study quantum speedup of the supervised data classification algorithms (quadratic, linear... |
| SourceID | unpaywall crossref iop |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 45301 |
| SubjectTerms | Bayes' classifiers machine learning quantum algorithms quantum computing |
| SummonAdditionalLinks | – databaseName: IOP Science Platform dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB7aiqgH32J9kYNFFNJ2s9k0iycVSxF8gYUehJDdzYJY22AapP56Z5O0qEgVbzlMJplJZuZb5gVwqDxOzBwqW3CpbdfTrh26gtnKjTjzTSavafqdr2-8Tte96rFeCU6nvTDDuHD9dbzMBwXnKiwK4vwGBjxiY1wijVAw1WqVYY76CIxN997t3cQNIxLJNiIX1IQWOcqfOHyJSWV87hIspIM4HL-F_f6ncNNegcfJi-ZVJs_1dCTq8v3bDMd_SrIKywUMtc5y0jUoRYN1mM_KQWWyAbX7FDWevlhJjNEtja2hts7DcZQcWdLA7SdtNmhvQrd9-XDRsYuFCrZEux3ZREvP95UmTDlKeFzwCBEeV5GrOaURY1T5ija5cpiDfk8KPB47kii0aUlcQekWVAbDQbQNFjFL1KnnSoX4gDMtiGgyM1xQ6pAqwarQmKg0kMW0cbP0oh9kWW_fD4zwgRE-yIWvwvH0jjiftDGDtoY6DQpzS2bQnUy_469Md_7IdBcWHXPobhIMYHtQGb2m0T4ik5E4yP7AD8sM1to priority: 102 providerName: IOP Publishing |
| Title | Quantum speedup of Bayes' classifiers |
| URI | https://iopscience.iop.org/article/10.1088/1751-8121/ab5d77 https://iopscience.iop.org/article/10.1088/1751-8121/ab5d77/pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 53 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1751-8121 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054092 issn: 1751-8121 databaseCode: IOP dateStart: 20070101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL24DVEf_Bbnx-iDIgrdlrbpmscpyhScExzMp9okDYizK3ZF5pN_w7_nLzFps6EiE_GtDzdpe9rknnDvPRdgj7sEKR0qkxImTMcVjhk4FJvcCQn2VCSvruqdL9tuq-tc9HBP9znNamEGsd76q_IyFwrOIdQJcV5NOjxkSr-EagHFvNGoxVwUoORiScaLUOq2O83brAwyM8saJE-G6EDlT9N8cUwFefMFmEujOBg9B_3-J59ztgR346fNU00equmQVtnLNyHHf7zOMixqPmo0c_MVmAmjVZjN8kJZsgYH16mEPn00kli6uTQ2BsI4DkZh8v76ZjDFvO-Faqa9Dt2z05uTlql7K5hMLuGhiQRzPY8LhLnFqUsoCSXZIzx0BLHtEGObe9yuE25hS26BjMqTssUQl8ubIYfa9gYUo0EUboKBVD9123UYl1SBYEERrWOlM8hEYHOKy1AbA-szLTyu-l_0_SwA7nm-gsBXEPg5BGU4nIyIc9GNKbb7Ellfr7xkit3R5Gv-OunWX4y3Yd5Sh_A6kg5tB4rDpzTclUxlSCtQOL_qVPQ_-QFkXN8g |
| linkProvider | Unpaywall |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD64ibcH7-K89sEhCt2WpumaR29j3uYEB3urTdKAOLfiVmT-epM2GyoyBd_6cHLafu25hJzzHYAD4VGkeahsRrm0XU-6dugyYgs3osTXJ3kV3e982_DqLfeqTdpmzmnaC9OLjesvqcuMKDiD0BTE-WUV8JCt4hIqh4yIarUcC5mD6ZSnRHfw3TVHrlhlI-lUZLMCYXNO-ZOWL3Epp-69AHNJNw6Hb2Gn8ynk1JbgcfSwWaXJcykZsBJ__8bj-I-3WYZFk45aJ5n4CkxF3VWYSctCeX8NiveJQj55sfqxinJJbPWkdRoOo_6hxXXa_ST1JO11aNUuHs7qthmsYHNlvwMbSe75vpCICEcwjzIaqUyPisiVFOOIECx8gStUOMRR_o8ztU12OBLKtjlyGcYbkO_2utEmWEgPU8eey4XKEyiRDLEK0SSDXIZYMFKA8gjWgBvWcT38ohOkp9--H2gAAg1AkAFQgKPxijhj3JggW1S4Bsbs-hPkjsff8lelW39Uug-zzfNacHPZuN6GeUfvwytIxbQdyA9ek2hXJSsDtpf-kB8zkNw7 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL24DVEf_BbnF31QRKHr0jZd8zjFMQSHgoP5VJukAXF2xbbIfPJv-Pf8JSZtNlREEd_6cJO2p03uCffecwH2uUeQ0qEyKWHCdD3hmqFLscndiGBfRfKaqt75oud1--75AA90n9OiFmaU6K2_IS9LoeASQp0Q51vS4SFT-iVkhRTzVstKuKhAzcOSjFeh1u9dtm-KMsjCrGiQPB2iA5XfTfPJMVXkzRdgLo-TcPwUDocffE5nCW4nT1ummtw38ow22PMXIcd_vM4yLGo-arRL8xWYieJVmC3yQlm6BodXuYQ-fzDSRLq5PDFGwjgJx1H69vJqMMW874Rqpr0O_c7Z9WnX1L0VTCaXcGYiwTzf5wJhbnPqEUoiSfYIj1xBHCfC2OE-d5qE29iWWyCj8qRsM8Tl8mbIpY6zAdV4FEebYCDVT93xXMYlVSBYUESbWOkMMhE6nOI6WBNgA6aFx1X_i2FQBMB9P1AQBAqCoISgDkfTEUkpuvGD7YFENtArL_3B7nj6NX-ddOsvxtswb6tDeBNJh7YD1ewxj3YlU8nonv4b3wEu1t4X |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+speedup+of+Bayes%E2%80%99+classifiers&rft.jtitle=Journal+of+physics.+A%2C+Mathematical+and+theoretical&rft.au=Shao%2C+Changpeng&rft.date=2020-01-31&rft.issn=1751-8113&rft.eissn=1751-8121&rft.volume=53&rft.issue=4&rft.spage=45301&rft_id=info:doi/10.1088%2F1751-8121%2Fab5d77&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1751_8121_ab5d77 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8113&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8113&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8113&client=summon |