FMECA and MFCC-Based Early Wear Detection in Gear Pumps in Cost-Aware Monitoring Systems

Gear pump failures in industrial settings are common due to their exposure to uneven high-pressure outputs within short time periods of machine operation and uncertainty. Improving the field and line clam are considered as the solutions for these failures, yet they are quite insufficient for optimal...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 10; no. 23; p. 2939
Main Authors Lee, Geon-Hui, Akpudo, Ugochukwu Ejike, Hur, Jang-Wook
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2021
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics10232939

Cover

Abstract Gear pump failures in industrial settings are common due to their exposure to uneven high-pressure outputs within short time periods of machine operation and uncertainty. Improving the field and line clam are considered as the solutions for these failures, yet they are quite insufficient for optimal reliability. This research, therefore, suggests a method for early wear detection in gear pumps following an extensive failure modes, effects, and criticality analysis (FMECA) of an AP3.5/100 external gear pump manufactured by BESCO. To replicate this condition, fine particles of iron oxide (Fe2O3) were mixed with the experimental fluid, and the resulting vibration data were collected, processed, and exploited for wear detection. The intelligent wear detection process was explored using various machine learning algorithms following a mel-frequency cepstral coefficient (MFCC)-based discriminative feature extraction process. Among these algorithms, extensive performance evaluation reveals that the random forest classifier returned the highest test accuracy of 95.17%, while the k-nearest neighbour was the most cost efficient following cross validations. This study is expected to contribute to improved evaluations of gear pump failure diagnosis and prognostics.
AbstractList Gear pump failures in industrial settings are common due to their exposure to uneven high-pressure outputs within short time periods of machine operation and uncertainty. Improving the field and line clam are considered as the solutions for these failures, yet they are quite insufficient for optimal reliability. This research, therefore, suggests a method for early wear detection in gear pumps following an extensive failure modes, effects, and criticality analysis (FMECA) of an AP3.5/100 external gear pump manufactured by BESCO. To replicate this condition, fine particles of iron oxide (Fe2O3) were mixed with the experimental fluid, and the resulting vibration data were collected, processed, and exploited for wear detection. The intelligent wear detection process was explored using various machine learning algorithms following a mel-frequency cepstral coefficient (MFCC)-based discriminative feature extraction process. Among these algorithms, extensive performance evaluation reveals that the random forest classifier returned the highest test accuracy of 95.17%, while the k-nearest neighbour was the most cost efficient following cross validations. This study is expected to contribute to improved evaluations of gear pump failure diagnosis and prognostics.
Author Akpudo, Ugochukwu Ejike
Hur, Jang-Wook
Lee, Geon-Hui
Author_xml – sequence: 1
  givenname: Geon-Hui
  surname: Lee
  fullname: Lee, Geon-Hui
– sequence: 2
  givenname: Ugochukwu Ejike
  orcidid: 0000-0003-4221-5192
  surname: Akpudo
  fullname: Akpudo, Ugochukwu Ejike
– sequence: 3
  givenname: Jang-Wook
  surname: Hur
  fullname: Hur, Jang-Wook
BookMark eNqNUN9LwzAQDjLBOfcX-BLwuZofW9c8zrpNYUNBRd9Kml6lo0tqkjL63y9lPoiIeBzcXfJ93x3fORpoowGhS0quORfkBmpQ3hpdKUcJ40xwcYKGjMxEJJhgg2_9GRo7tyUhBOUJJ0P0vtws0jmWusCbZZpGt9JBgRfS1h1-A2nxHfggXxmNK41X_ctTu2tcP6XG-Wi-lxbwJqz3xlb6Az93zsPOXaDTUtYOxl91hF6Xi5f0Plo_rh7S-TpSnDEf0VxySsV0BkrNYpVAUU4hj5Vk0zLniYpjyYqY5JOc5UUccIUsw6cCKBlVJfARmhx1W93Ibi_rOmtstZO2yyjJeoOyXwwKtKsjrbHmswXns61prQ6XZiwmCUkmIQOKH1HKGucslP_UFj9YqvKy99BbWdV_cg8mHI-6
CitedBy_id crossref_primary_10_1177_02670844241281589
crossref_primary_10_3390_s22249714
crossref_primary_10_1016_j_ymssp_2024_111123
crossref_primary_10_3390_math10132297
crossref_primary_10_1007_s11012_024_01754_w
crossref_primary_10_3390_a15060212
Cites_doi 10.3390/s20236793
10.3390/en12112105
10.3390/s20247152
10.3390/s19051088
10.3390/electronics10172054
10.33162/JAR.2020.6.20.2.187
10.3390/en12050953
10.1007/s11071-021-06857-7
10.1088/1361-6501/abb0bf
10.1177/0142331217708242
10.3390/electronics10192323
10.3390/app11094031
10.3390/app9235086
10.1109/TNNLS.2020.3027314
10.3390/electronics10121418
10.1007/s12206-020-0908-7
10.3390/s18020463
10.1109/ACCESS.2019.2936496
10.3390/app11156785
10.3390/machines5040021
10.3390/s16122069
10.1016/j.chaos.2021.110813
10.3390/electronics10040439
10.3390/electronics10151786
10.3390/en14061531
10.3390/en14175286
10.1109/ACCESS.2020.3025909
10.1109/ICAIIC48513.2020.9065282
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics10232939
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics10232939
10_3390_electronics10232939
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c322t-1ba311957ecc76c8edf5eb6ca25fb38c66a2d60b4b2bd6957dafca2ceef21cfe3
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Sun Oct 26 04:16:32 EDT 2025
Fri Jul 25 03:57:23 EDT 2025
Thu Oct 16 04:44:23 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-1ba311957ecc76c8edf5eb6ca25fb38c66a2d60b4b2bd6957dafca2ceef21cfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4221-5192
OpenAccessLink https://www.proquest.com/docview/2608084084?pq-origsite=%requestingapplication%&accountid=15518
PQID 2608084084
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics10232939
proquest_journals_2608084084
crossref_primary_10_3390_electronics10232939
crossref_citationtrail_10_3390_electronics10232939
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Qiao (ref_11) 2021; 106
ref_14
ref_13
ref_35
ref_34
ref_33
Oh (ref_31) 2018; 13
ref_32
ref_30
ref_19
ref_18
Gu (ref_5) 2019; 7
ref_15
Akpudo (ref_20) 2020; 8
Akpudo (ref_16) 2020; 34
Qiao (ref_12) 2021; 145
Lee (ref_23) 2020; 20
ref_25
ref_22
ref_21
ref_1
ref_3
ref_2
Ding (ref_10) 2021; 32
ref_29
ref_28
ref_27
ref_26
ref_8
Ju (ref_9) 2020; 5
Han (ref_17) 2017; 40
ref_4
ref_7
Tjoa (ref_24) 2020; 32
ref_6
References_xml – ident: ref_35
  doi: 10.3390/s20236793
– ident: ref_8
  doi: 10.3390/en12112105
– ident: ref_32
– ident: ref_3
– ident: ref_21
  doi: 10.3390/s20247152
– ident: ref_34
– ident: ref_27
  doi: 10.3390/s19051088
– ident: ref_15
  doi: 10.3390/electronics10172054
– volume: 20
  start-page: 187
  year: 2020
  ident: ref_23
  article-title: Fault Classification of Gear Pumps Using SVM
  publication-title: J. Appl. Reliab.
  doi: 10.33162/JAR.2020.6.20.2.187
– volume: 13
  start-page: 23
  year: 2018
  ident: ref_31
  article-title: Improving the Water Level Prediction of Multi-Layer Perceptron with a Modified Error Function
  publication-title: Int. J. Contents
– ident: ref_2
  doi: 10.3390/en12050953
– volume: 5
  start-page: 77
  year: 2020
  ident: ref_9
  article-title: Comparison of Machine Learning Algorithms Applied to Classification of Operating Condition of Rotating Machinery
  publication-title: J. Comput. Des. Eng.
– volume: 106
  start-page: 707
  year: 2021
  ident: ref_11
  article-title: A second-order stochastic resonance method enhanced by fractional-order derivative for mechanical fault detection
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06857-7
– volume: 32
  start-page: 1
  year: 2021
  ident: ref_10
  article-title: Sparse feature extraction based on periodical convolutional sparse representation for fault detection of rotating machinery
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/abb0bf
– volume: 40
  start-page: 2681
  year: 2017
  ident: ref_17
  article-title: Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/0142331217708242
– ident: ref_14
  doi: 10.3390/electronics10192323
– ident: ref_25
  doi: 10.3390/app11094031
– ident: ref_7
  doi: 10.3390/app9235086
– volume: 32
  start-page: 4793
  year: 2020
  ident: ref_24
  article-title: A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3027314
– ident: ref_1
  doi: 10.3390/electronics10121418
– ident: ref_4
– volume: 34
  start-page: 4161
  year: 2020
  ident: ref_16
  article-title: Towards bearing failure prognostics: A practical comparison between data-driven methods for industrial applications
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-020-0908-7
– ident: ref_33
– ident: ref_30
  doi: 10.3390/s18020463
– volume: 7
  start-page: 117639
  year: 2019
  ident: ref_5
  article-title: Effects of Wear, Backlash, and Bearing Clearance on Dynamic Characteristics of a Spur Gear System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936496
– ident: ref_6
  doi: 10.3390/app11156785
– ident: ref_19
  doi: 10.3390/machines5040021
– ident: ref_28
  doi: 10.3390/s16122069
– volume: 145
  start-page: 110813
  year: 2021
  ident: ref_12
  article-title: Coupled neurons with multi-objective optimization benefit incipient fault identification of machinery
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.110813
– ident: ref_18
  doi: 10.3390/electronics10040439
– ident: ref_29
  doi: 10.3390/electronics10151786
– ident: ref_26
  doi: 10.3390/en14061531
– ident: ref_13
  doi: 10.3390/en14175286
– volume: 8
  start-page: 175020
  year: 2020
  ident: ref_20
  article-title: A Multi-Domain Diagnostics Approach for Solenoid Pumps Based on Discriminative Features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3025909
– ident: ref_22
  doi: 10.1109/ICAIIC48513.2020.9065282
SSID ssj0000913830
Score 2.2699535
Snippet Gear pump failures in industrial settings are common due to their exposure to uneven high-pressure outputs within short time periods of machine operation and...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2939
SubjectTerms Algorithms
Artificial intelligence
Automation
Design
Efficiency
Failure
Failure analysis
Failure modes
Feature extraction
Gear pumps
Hydraulics
Iron oxides
Machine learning
Noise
Performance evaluation
R&D
Research & development
Signal processing
Wavelet transforms
Wear
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RcGg5AKWtCC_toUeWOOv1ZnNCwRAQUhCHRqQna58SamQi4oDg1zNrO5AiVFFxsWR7d2RrZnbmW81-A_DTJFJqJjxF6BXjxWgqufM06YZTk8bLuKzNGVyIsyE_HyWjhVP8oawSofh1uUizqNOlGL8Z-naLxS0MTd3WxPrDu3ovCZMJtK_QWO4TLAuUHzVgeXhx2fsdesrNZ1dkQzGi-9ZLb5lp4CwIAv8OSC9Z5udZPlEP92o8Xgg4_TVQ80-t6kz-HMwKfWAeX7E4fuRf1mG1zkZJrzKfr7Dk8g1YWeAo_Aaj_uAk7RGVWzLopyk9wrBnScmLTK7QTcixK8pyrpxc5-Q0PLlEE5mGu_RmWtDevbp1pFo7gkhSk6R_h2H_5Fd6Rut2DNSg1xe0rVUcCOI6qPWOMNJZnzgtjGKJ17E0QihmRaS5ZtoKHGeVx5cYhT1Drbv4BzTym9xtAhHWBtYYYbnnvBtZKa1rS--4StpWcdYENtdJZmqu8tAyY5whZgmKzN5QZBP2nydNKqqOfw_fmSs7q_12miG6kxFiXsmbQJ8N4D3itv5z_DZ8YaE8pqyM2YFGcTtzu5jfFHqvNuEnjjH3bA
  priority: 102
  providerName: Unpaywall
Title FMECA and MFCC-Based Early Wear Detection in Gear Pumps in Cost-Aware Monitoring Systems
URI https://www.proquest.com/docview/2608084084
https://www.mdpi.com/2079-9292/10/23/2939/pdf?version=1637930018
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9B-8B4mDbGtG6s8sMesWgdx7gP0xRCA5rWqoJVlKfIn9KkKi00CO2_3zlNWiYhxEuiJM493Ifvzj7_DuCbiaXUTHiKqVeEF6Op5M7TeBBOTRovo6o2ZzQWl1P-cxbPdmDcnIUJZZXNnFhN1HZhwhr5CcbdsofZiOQ_lnc0dI0Ku6tNCw1Vt1aw3yuIsV1os4CM1YL22XA8udqsugQUTBn11vBDEeb7J9tuM6uAYoDeb_C_i9rGnXsPxVL9fVTz-RMXlL2Dt3XsSJK1sN_DjisOYP8JouAHmGWjYZoQVVgyytKUnqGTsqRCMSY3qNTk3JVV8VVB_hTkIryZoEBX4SldrEqaPKp7R9aWHkiSGtL8EKbZ8Hd6SevmCdSgjZa0r1UU4NxOUUanwkhnfey0MIrFXkfSCKGYFT3NNdNW4DirPH5En-kZyshFH6FVLAr3CYiwNmC8CMs954OeldK6vvSOq7hvFWcdYA2_clMji4cGF_McM4zA5PwZJnfgePPTcg2s8fLwo0YQeW1lq3yrEx2gG-G8htznl8l9gTcs1K5UZStH0CrvH9xXDD5K3YVdmV10oZ2cj35dd2v9wvt0PElu_wGCGOA2
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9swED8xeGB7mPZX68bAD9vbLFLbMc4DmkpoVwat0ARa3zI7tqVJVdqRoIovt8-2c5q0ICG0F14iJXFO8t3Fd2ff_Q7gUx4rZZj0FEMvjpfcUCWcp3ESqiZzr3idmzMay-Gl-D6JJxvwt62FCWmV7ZpYL9R2loc98n30u1WE0YgSX-d_aOgaFU5X2xYaummtYA9riLGmsOPU3SwwhCsPT45R3p8ZG_Qv0iFtugzQHJW5ol2jecA9O8DJHMhcOetjZ2SuWewNV7mUmlkZGWGYsRLHWe3xJRoXz3AyjiPdJ7AluEgw-Ns66o_Pf6x2eQLqpuLREu6I8yTaX3e3KQNqAlrb5K5JXPu529fFXN8s9HR6y-QNXsDzxlclvaVyvYQNV7yCZ7cQDF_DZDDqpz2iC0tGgzSlR2gULalRk8lP5A45dlWd7FWQ3wX5Fp6cowKV4S6dlRXtLfSVI8uVJZAkDYT6G7h8FDa-hc1iVrh3QKS1AVNGWuGFSCKrlHVd5Z3QcddqwTrAWn5leYNkHhpqTDOMaAKTs3uY3IEvq4_mSyCPh4fvtILImr-6zNY62AG6Es7_kHv_MLk92B5ejM6ys5Px6Qd4ykLeTJ0yswOb1dW1-4iOT2V2G-0i8OuxFfofw3YcfQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SFPo4lL5Ctk1aHdpbxXplWas9lLLxxkmabsihoXtz9YTA4t3GDkv-Wn9dR37splBCL7kYbMsDGn3WzEijbwA-mERKzYSnGHrFeDGaSu48TUbh1KTxMq5zc6Zn4viCf50lsy343Z2FCWmV3ZxYT9R2YcIaeR_9bhlhNCJ537dpEeeT7MvyFw0VpMJOa1dOo4HIqbtZYfhWfj6Z4Fh_ZCw7_J4e07bCADUI5IoOtIoD59kQOzIURjrrE6eFUSzxOpZGCMWsiDTXTFuB7azy-BINi2fYERej3AfwcBhY3MMp9exovb4T-DZlHDVER3E8ivqbujZl4EtAOzv62xhuPNzH18VS3azUfH7L2GXP4VnrpZJxA6sXsOWKl_D0FnfhK5hl08N0TFRhyTRLU3qA5tCSmi-Z_EDdkImr6jSvglwW5Cg8OUfolOEuXZQVHa_UlSPNnBJEkpY8_TVc3IsSd2C7WBRuF4iwNrDJCMs956PISmndQHrHVTKwirMesE5fuWk5zEMpjXmOsUxQcv4PJffg0_qjZUPhcXfzvW4g8vZ_LvMN-npA14PzP-Le3C3uPTxCGOffTs5O38ITFhJm6lyZPdiurq7dPno8lX5XQ4vAz_vG8h8cKxoX
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RcGg5AKWtCC_toUeWOOv1ZnNCwRAQUhCHRqQna58SamQi4oDg1zNrO5AiVFFxsWR7d2RrZnbmW81-A_DTJFJqJjxF6BXjxWgqufM06YZTk8bLuKzNGVyIsyE_HyWjhVP8oawSofh1uUizqNOlGL8Z-naLxS0MTd3WxPrDu3ovCZMJtK_QWO4TLAuUHzVgeXhx2fsdesrNZ1dkQzGi-9ZLb5lp4CwIAv8OSC9Z5udZPlEP92o8Xgg4_TVQ80-t6kz-HMwKfWAeX7E4fuRf1mG1zkZJrzKfr7Dk8g1YWeAo_Aaj_uAk7RGVWzLopyk9wrBnScmLTK7QTcixK8pyrpxc5-Q0PLlEE5mGu_RmWtDevbp1pFo7gkhSk6R_h2H_5Fd6Rut2DNSg1xe0rVUcCOI6qPWOMNJZnzgtjGKJ17E0QihmRaS5ZtoKHGeVx5cYhT1Drbv4BzTym9xtAhHWBtYYYbnnvBtZKa1rS--4StpWcdYENtdJZmqu8tAyY5whZgmKzN5QZBP2nydNKqqOfw_fmSs7q_12miG6kxFiXsmbQJ8N4D3itv5z_DZ8YaE8pqyM2YFGcTtzu5jfFHqvNuEnjjH3bA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FMECA+and+MFCC-Based+Early+Wear+Detection+in+Gear+Pumps+in+Cost-Aware+Monitoring+Systems&rft.jtitle=Electronics+%28Basel%29&rft.au=Lee%2C+Geon-Hui&rft.au=Ugochukwu+Ejike+Akpudo&rft.au=Jang-Wook+Hur&rft.date=2021-12-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=10&rft.issue=23&rft.spage=2939&rft_id=info:doi/10.3390%2Felectronics10232939&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon