FMECA and MFCC-Based Early Wear Detection in Gear Pumps in Cost-Aware Monitoring Systems
Gear pump failures in industrial settings are common due to their exposure to uneven high-pressure outputs within short time periods of machine operation and uncertainty. Improving the field and line clam are considered as the solutions for these failures, yet they are quite insufficient for optimal...
Saved in:
| Published in | Electronics (Basel) Vol. 10; no. 23; p. 2939 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.12.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics10232939 |
Cover
| Abstract | Gear pump failures in industrial settings are common due to their exposure to uneven high-pressure outputs within short time periods of machine operation and uncertainty. Improving the field and line clam are considered as the solutions for these failures, yet they are quite insufficient for optimal reliability. This research, therefore, suggests a method for early wear detection in gear pumps following an extensive failure modes, effects, and criticality analysis (FMECA) of an AP3.5/100 external gear pump manufactured by BESCO. To replicate this condition, fine particles of iron oxide (Fe2O3) were mixed with the experimental fluid, and the resulting vibration data were collected, processed, and exploited for wear detection. The intelligent wear detection process was explored using various machine learning algorithms following a mel-frequency cepstral coefficient (MFCC)-based discriminative feature extraction process. Among these algorithms, extensive performance evaluation reveals that the random forest classifier returned the highest test accuracy of 95.17%, while the k-nearest neighbour was the most cost efficient following cross validations. This study is expected to contribute to improved evaluations of gear pump failure diagnosis and prognostics. |
|---|---|
| AbstractList | Gear pump failures in industrial settings are common due to their exposure to uneven high-pressure outputs within short time periods of machine operation and uncertainty. Improving the field and line clam are considered as the solutions for these failures, yet they are quite insufficient for optimal reliability. This research, therefore, suggests a method for early wear detection in gear pumps following an extensive failure modes, effects, and criticality analysis (FMECA) of an AP3.5/100 external gear pump manufactured by BESCO. To replicate this condition, fine particles of iron oxide (Fe2O3) were mixed with the experimental fluid, and the resulting vibration data were collected, processed, and exploited for wear detection. The intelligent wear detection process was explored using various machine learning algorithms following a mel-frequency cepstral coefficient (MFCC)-based discriminative feature extraction process. Among these algorithms, extensive performance evaluation reveals that the random forest classifier returned the highest test accuracy of 95.17%, while the k-nearest neighbour was the most cost efficient following cross validations. This study is expected to contribute to improved evaluations of gear pump failure diagnosis and prognostics. |
| Author | Akpudo, Ugochukwu Ejike Hur, Jang-Wook Lee, Geon-Hui |
| Author_xml | – sequence: 1 givenname: Geon-Hui surname: Lee fullname: Lee, Geon-Hui – sequence: 2 givenname: Ugochukwu Ejike orcidid: 0000-0003-4221-5192 surname: Akpudo fullname: Akpudo, Ugochukwu Ejike – sequence: 3 givenname: Jang-Wook surname: Hur fullname: Hur, Jang-Wook |
| BookMark | eNqNUN9LwzAQDjLBOfcX-BLwuZofW9c8zrpNYUNBRd9Kml6lo0tqkjL63y9lPoiIeBzcXfJ93x3fORpoowGhS0quORfkBmpQ3hpdKUcJ40xwcYKGjMxEJJhgg2_9GRo7tyUhBOUJJ0P0vtws0jmWusCbZZpGt9JBgRfS1h1-A2nxHfggXxmNK41X_ctTu2tcP6XG-Wi-lxbwJqz3xlb6Az93zsPOXaDTUtYOxl91hF6Xi5f0Plo_rh7S-TpSnDEf0VxySsV0BkrNYpVAUU4hj5Vk0zLniYpjyYqY5JOc5UUccIUsw6cCKBlVJfARmhx1W93Ibi_rOmtstZO2yyjJeoOyXwwKtKsjrbHmswXns61prQ6XZiwmCUkmIQOKH1HKGucslP_UFj9YqvKy99BbWdV_cg8mHI-6 |
| CitedBy_id | crossref_primary_10_1177_02670844241281589 crossref_primary_10_3390_s22249714 crossref_primary_10_1016_j_ymssp_2024_111123 crossref_primary_10_3390_math10132297 crossref_primary_10_1007_s11012_024_01754_w crossref_primary_10_3390_a15060212 |
| Cites_doi | 10.3390/s20236793 10.3390/en12112105 10.3390/s20247152 10.3390/s19051088 10.3390/electronics10172054 10.33162/JAR.2020.6.20.2.187 10.3390/en12050953 10.1007/s11071-021-06857-7 10.1088/1361-6501/abb0bf 10.1177/0142331217708242 10.3390/electronics10192323 10.3390/app11094031 10.3390/app9235086 10.1109/TNNLS.2020.3027314 10.3390/electronics10121418 10.1007/s12206-020-0908-7 10.3390/s18020463 10.1109/ACCESS.2019.2936496 10.3390/app11156785 10.3390/machines5040021 10.3390/s16122069 10.1016/j.chaos.2021.110813 10.3390/electronics10040439 10.3390/electronics10151786 10.3390/en14061531 10.3390/en14175286 10.1109/ACCESS.2020.3025909 10.1109/ICAIIC48513.2020.9065282 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/electronics10232939 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10.3390/electronics10232939 10_3390_electronics10232939 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c322t-1ba311957ecc76c8edf5eb6ca25fb38c66a2d60b4b2bd6957dafca2ceef21cfe3 |
| IEDL.DBID | BENPR |
| ISSN | 2079-9292 |
| IngestDate | Sun Oct 26 04:16:32 EDT 2025 Fri Jul 25 03:57:23 EDT 2025 Thu Oct 16 04:44:23 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-1ba311957ecc76c8edf5eb6ca25fb38c66a2d60b4b2bd6957dafca2ceef21cfe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4221-5192 |
| OpenAccessLink | https://www.proquest.com/docview/2608084084?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2608084084 |
| PQPubID | 2032404 |
| ParticipantIDs | unpaywall_primary_10_3390_electronics10232939 proquest_journals_2608084084 crossref_primary_10_3390_electronics10232939 crossref_citationtrail_10_3390_electronics10232939 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Qiao (ref_11) 2021; 106 ref_14 ref_13 ref_35 ref_34 ref_33 Oh (ref_31) 2018; 13 ref_32 ref_30 ref_19 ref_18 Gu (ref_5) 2019; 7 ref_15 Akpudo (ref_20) 2020; 8 Akpudo (ref_16) 2020; 34 Qiao (ref_12) 2021; 145 Lee (ref_23) 2020; 20 ref_25 ref_22 ref_21 ref_1 ref_3 ref_2 Ding (ref_10) 2021; 32 ref_29 ref_28 ref_27 ref_26 ref_8 Ju (ref_9) 2020; 5 Han (ref_17) 2017; 40 ref_4 ref_7 Tjoa (ref_24) 2020; 32 ref_6 |
| References_xml | – ident: ref_35 doi: 10.3390/s20236793 – ident: ref_8 doi: 10.3390/en12112105 – ident: ref_32 – ident: ref_3 – ident: ref_21 doi: 10.3390/s20247152 – ident: ref_34 – ident: ref_27 doi: 10.3390/s19051088 – ident: ref_15 doi: 10.3390/electronics10172054 – volume: 20 start-page: 187 year: 2020 ident: ref_23 article-title: Fault Classification of Gear Pumps Using SVM publication-title: J. Appl. Reliab. doi: 10.33162/JAR.2020.6.20.2.187 – volume: 13 start-page: 23 year: 2018 ident: ref_31 article-title: Improving the Water Level Prediction of Multi-Layer Perceptron with a Modified Error Function publication-title: Int. J. Contents – ident: ref_2 doi: 10.3390/en12050953 – volume: 5 start-page: 77 year: 2020 ident: ref_9 article-title: Comparison of Machine Learning Algorithms Applied to Classification of Operating Condition of Rotating Machinery publication-title: J. Comput. Des. Eng. – volume: 106 start-page: 707 year: 2021 ident: ref_11 article-title: A second-order stochastic resonance method enhanced by fractional-order derivative for mechanical fault detection publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06857-7 – volume: 32 start-page: 1 year: 2021 ident: ref_10 article-title: Sparse feature extraction based on periodical convolutional sparse representation for fault detection of rotating machinery publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/abb0bf – volume: 40 start-page: 2681 year: 2017 ident: ref_17 article-title: Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331217708242 – ident: ref_14 doi: 10.3390/electronics10192323 – ident: ref_25 doi: 10.3390/app11094031 – ident: ref_7 doi: 10.3390/app9235086 – volume: 32 start-page: 4793 year: 2020 ident: ref_24 article-title: A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3027314 – ident: ref_1 doi: 10.3390/electronics10121418 – ident: ref_4 – volume: 34 start-page: 4161 year: 2020 ident: ref_16 article-title: Towards bearing failure prognostics: A practical comparison between data-driven methods for industrial applications publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-020-0908-7 – ident: ref_33 – ident: ref_30 doi: 10.3390/s18020463 – volume: 7 start-page: 117639 year: 2019 ident: ref_5 article-title: Effects of Wear, Backlash, and Bearing Clearance on Dynamic Characteristics of a Spur Gear System publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936496 – ident: ref_6 doi: 10.3390/app11156785 – ident: ref_19 doi: 10.3390/machines5040021 – ident: ref_28 doi: 10.3390/s16122069 – volume: 145 start-page: 110813 year: 2021 ident: ref_12 article-title: Coupled neurons with multi-objective optimization benefit incipient fault identification of machinery publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.110813 – ident: ref_18 doi: 10.3390/electronics10040439 – ident: ref_29 doi: 10.3390/electronics10151786 – ident: ref_26 doi: 10.3390/en14061531 – ident: ref_13 doi: 10.3390/en14175286 – volume: 8 start-page: 175020 year: 2020 ident: ref_20 article-title: A Multi-Domain Diagnostics Approach for Solenoid Pumps Based on Discriminative Features publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3025909 – ident: ref_22 doi: 10.1109/ICAIIC48513.2020.9065282 |
| SSID | ssj0000913830 |
| Score | 2.2699535 |
| Snippet | Gear pump failures in industrial settings are common due to their exposure to uneven high-pressure outputs within short time periods of machine operation and... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 2939 |
| SubjectTerms | Algorithms Artificial intelligence Automation Design Efficiency Failure Failure analysis Failure modes Feature extraction Gear pumps Hydraulics Iron oxides Machine learning Noise Performance evaluation R&D Research & development Signal processing Wavelet transforms Wear |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RcGg5AKWtCC_toUeWOOv1ZnNCwRAQUhCHRqQna58SamQi4oDg1zNrO5AiVFFxsWR7d2RrZnbmW81-A_DTJFJqJjxF6BXjxWgqufM06YZTk8bLuKzNGVyIsyE_HyWjhVP8oawSofh1uUizqNOlGL8Z-naLxS0MTd3WxPrDu3ovCZMJtK_QWO4TLAuUHzVgeXhx2fsdesrNZ1dkQzGi-9ZLb5lp4CwIAv8OSC9Z5udZPlEP92o8Xgg4_TVQ80-t6kz-HMwKfWAeX7E4fuRf1mG1zkZJrzKfr7Dk8g1YWeAo_Aaj_uAk7RGVWzLopyk9wrBnScmLTK7QTcixK8pyrpxc5-Q0PLlEE5mGu_RmWtDevbp1pFo7gkhSk6R_h2H_5Fd6Rut2DNSg1xe0rVUcCOI6qPWOMNJZnzgtjGKJ17E0QihmRaS5ZtoKHGeVx5cYhT1Drbv4BzTym9xtAhHWBtYYYbnnvBtZKa1rS--4StpWcdYENtdJZmqu8tAyY5whZgmKzN5QZBP2nydNKqqOfw_fmSs7q_12miG6kxFiXsmbQJ8N4D3itv5z_DZ8YaE8pqyM2YFGcTtzu5jfFHqvNuEnjjH3bA priority: 102 providerName: Unpaywall |
| Title | FMECA and MFCC-Based Early Wear Detection in Gear Pumps in Cost-Aware Monitoring Systems |
| URI | https://www.proquest.com/docview/2608084084 https://www.mdpi.com/2079-9292/10/23/2939/pdf?version=1637930018 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9B-8B4mDbGtG6s8sMesWgdx7gP0xRCA5rWqoJVlKfIn9KkKi00CO2_3zlNWiYhxEuiJM493Ifvzj7_DuCbiaXUTHiKqVeEF6Op5M7TeBBOTRovo6o2ZzQWl1P-cxbPdmDcnIUJZZXNnFhN1HZhwhr5CcbdsofZiOQ_lnc0dI0Ku6tNCw1Vt1aw3yuIsV1os4CM1YL22XA8udqsugQUTBn11vBDEeb7J9tuM6uAYoDeb_C_i9rGnXsPxVL9fVTz-RMXlL2Dt3XsSJK1sN_DjisOYP8JouAHmGWjYZoQVVgyytKUnqGTsqRCMSY3qNTk3JVV8VVB_hTkIryZoEBX4SldrEqaPKp7R9aWHkiSGtL8EKbZ8Hd6SevmCdSgjZa0r1UU4NxOUUanwkhnfey0MIrFXkfSCKGYFT3NNdNW4DirPH5En-kZyshFH6FVLAr3CYiwNmC8CMs954OeldK6vvSOq7hvFWcdYA2_clMji4cGF_McM4zA5PwZJnfgePPTcg2s8fLwo0YQeW1lq3yrEx2gG-G8htznl8l9gTcs1K5UZStH0CrvH9xXDD5K3YVdmV10oZ2cj35dd2v9wvt0PElu_wGCGOA2 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9swED8xeGB7mPZX68bAD9vbLFLbMc4DmkpoVwat0ARa3zI7tqVJVdqRoIovt8-2c5q0ICG0F14iJXFO8t3Fd2ff_Q7gUx4rZZj0FEMvjpfcUCWcp3ESqiZzr3idmzMay-Gl-D6JJxvwt62FCWmV7ZpYL9R2loc98n30u1WE0YgSX-d_aOgaFU5X2xYaummtYA9riLGmsOPU3SwwhCsPT45R3p8ZG_Qv0iFtugzQHJW5ol2jecA9O8DJHMhcOetjZ2SuWewNV7mUmlkZGWGYsRLHWe3xJRoXz3AyjiPdJ7AluEgw-Ns66o_Pf6x2eQLqpuLREu6I8yTaX3e3KQNqAlrb5K5JXPu529fFXN8s9HR6y-QNXsDzxlclvaVyvYQNV7yCZ7cQDF_DZDDqpz2iC0tGgzSlR2gULalRk8lP5A45dlWd7FWQ3wX5Fp6cowKV4S6dlRXtLfSVI8uVJZAkDYT6G7h8FDa-hc1iVrh3QKS1AVNGWuGFSCKrlHVd5Z3QcddqwTrAWn5leYNkHhpqTDOMaAKTs3uY3IEvq4_mSyCPh4fvtILImr-6zNY62AG6Es7_kHv_MLk92B5ejM6ys5Px6Qd4ykLeTJ0yswOb1dW1-4iOT2V2G-0i8OuxFfofw3YcfQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7SFPo4lL5Ctk1aHdpbxXplWas9lLLxxkmabsihoXtz9YTA4t3GDkv-Wn9dR37splBCL7kYbMsDGn3WzEijbwA-mERKzYSnGHrFeDGaSu48TUbh1KTxMq5zc6Zn4viCf50lsy343Z2FCWmV3ZxYT9R2YcIaeR_9bhlhNCJ537dpEeeT7MvyFw0VpMJOa1dOo4HIqbtZYfhWfj6Z4Fh_ZCw7_J4e07bCADUI5IoOtIoD59kQOzIURjrrE6eFUSzxOpZGCMWsiDTXTFuB7azy-BINi2fYERej3AfwcBhY3MMp9exovb4T-DZlHDVER3E8ivqbujZl4EtAOzv62xhuPNzH18VS3azUfH7L2GXP4VnrpZJxA6sXsOWKl_D0FnfhK5hl08N0TFRhyTRLU3qA5tCSmi-Z_EDdkImr6jSvglwW5Cg8OUfolOEuXZQVHa_UlSPNnBJEkpY8_TVc3IsSd2C7WBRuF4iwNrDJCMs956PISmndQHrHVTKwirMesE5fuWk5zEMpjXmOsUxQcv4PJffg0_qjZUPhcXfzvW4g8vZ_LvMN-npA14PzP-Le3C3uPTxCGOffTs5O38ITFhJm6lyZPdiurq7dPno8lX5XQ4vAz_vG8h8cKxoX |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RcGg5AKWtCC_toUeWOOv1ZnNCwRAQUhCHRqQna58SamQi4oDg1zNrO5AiVFFxsWR7d2RrZnbmW81-A_DTJFJqJjxF6BXjxWgqufM06YZTk8bLuKzNGVyIsyE_HyWjhVP8oawSofh1uUizqNOlGL8Z-naLxS0MTd3WxPrDu3ovCZMJtK_QWO4TLAuUHzVgeXhx2fsdesrNZ1dkQzGi-9ZLb5lp4CwIAv8OSC9Z5udZPlEP92o8Xgg4_TVQ80-t6kz-HMwKfWAeX7E4fuRf1mG1zkZJrzKfr7Dk8g1YWeAo_Aaj_uAk7RGVWzLopyk9wrBnScmLTK7QTcixK8pyrpxc5-Q0PLlEE5mGu_RmWtDevbp1pFo7gkhSk6R_h2H_5Fd6Rut2DNSg1xe0rVUcCOI6qPWOMNJZnzgtjGKJ17E0QihmRaS5ZtoKHGeVx5cYhT1Drbv4BzTym9xtAhHWBtYYYbnnvBtZKa1rS--4StpWcdYENtdJZmqu8tAyY5whZgmKzN5QZBP2nydNKqqOfw_fmSs7q_12miG6kxFiXsmbQJ8N4D3itv5z_DZ8YaE8pqyM2YFGcTtzu5jfFHqvNuEnjjH3bA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FMECA+and+MFCC-Based+Early+Wear+Detection+in+Gear+Pumps+in+Cost-Aware+Monitoring+Systems&rft.jtitle=Electronics+%28Basel%29&rft.au=Lee%2C+Geon-Hui&rft.au=Ugochukwu+Ejike+Akpudo&rft.au=Jang-Wook+Hur&rft.date=2021-12-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=10&rft.issue=23&rft.spage=2939&rft_id=info:doi/10.3390%2Felectronics10232939&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |