A data assimilation algorithm for predicting rain

Convective‐scale data assimilation uses high‐resolution numerical weather prediction models and temporally and spatially dense observations of relevant atmospheric variables. In addition, it requires a data assimilation algorithm that is able to provide initial conditions for a state vector of large...

Full description

Saved in:
Bibliographic Details
Published inQuarterly journal of the Royal Meteorological Society Vol. 147; no. 736; pp. 1949 - 1963
Main Authors Janjić, Tijana, Ruckstuhl, Yvonne, Toint, Philippe L.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.04.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0035-9009
1477-870X
1477-870X
DOI10.1002/qj.4004

Cover

Abstract Convective‐scale data assimilation uses high‐resolution numerical weather prediction models and temporally and spatially dense observations of relevant atmospheric variables. In addition, it requires a data assimilation algorithm that is able to provide initial conditions for a state vector of large size with one third or more of its components containing prognostic hydrometeors variables whose non‐negativity needs to be preserved. The algorithm also needs to be fast as the state vector requires a high updating frequency in order to catch fast‐changing convection. A computationally efficient algorithm for quadratic optimization (QO, or formerly QP) is presented here, which preserves physical properties in order to represent features of the real atmosphere. Crucially for its performance, it exploits the fact that the resulting linear constraints may be disjoint. Numerical results on a simple model designed for testing convective‐scale data assimilation show accurate results and promising computational cost. In particular, if constraints on physical quantities are disjoint and their rank is small, further reduction in computational costs can be achieved. Convective scale data assimilation requires a data assimilation algorithm that is able to provide initial conditions for a state vector of large size with one third or more of its components containing prognostic hydrometeors variables whose non‐negativity needs to be preserved. Governed by the principal of preservation of physical properties in order to represent features of real atmosphere and the computational efficiency, a specialized algorithm that focuses on predicting rain is presented and tested on idealized convective scale data assimilation example.
AbstractList Convective‐scale data assimilation uses high‐resolution numerical weather prediction models and temporally and spatially dense observations of relevant atmospheric variables. In addition, it requires a data assimilation algorithm that is able to provide initial conditions for a state vector of large size with one third or more of its components containing prognostic hydrometeors variables whose non‐negativity needs to be preserved. The algorithm also needs to be fast as the state vector requires a high updating frequency in order to catch fast‐changing convection. A computationally efficient algorithm for quadratic optimization (QO, or formerly QP) is presented here, which preserves physical properties in order to represent features of the real atmosphere. Crucially for its performance, it exploits the fact that the resulting linear constraints may be disjoint. Numerical results on a simple model designed for testing convective‐scale data assimilation show accurate results and promising computational cost. In particular, if constraints on physical quantities are disjoint and their rank is small, further reduction in computational costs can be achieved. Convective scale data assimilation requires a data assimilation algorithm that is able to provide initial conditions for a state vector of large size with one third or more of its components containing prognostic hydrometeors variables whose non‐negativity needs to be preserved. Governed by the principal of preservation of physical properties in order to represent features of real atmosphere and the computational efficiency, a specialized algorithm that focuses on predicting rain is presented and tested on idealized convective scale data assimilation example.
Convective‐scale data assimilation uses high‐resolution numerical weather prediction models and temporally and spatially dense observations of relevant atmospheric variables. In addition, it requires a data assimilation algorithm that is able to provide initial conditions for a state vector of large size with one third or more of its components containing prognostic hydrometeors variables whose non‐negativity needs to be preserved. The algorithm also needs to be fast as the state vector requires a high updating frequency in order to catch fast‐changing convection. A computationally efficient algorithm for quadratic optimization (QO, or formerly QP) is presented here, which preserves physical properties in order to represent features of the real atmosphere. Crucially for its performance, it exploits the fact that the resulting linear constraints may be disjoint. Numerical results on a simple model designed for testing convective‐scale data assimilation show accurate results and promising computational cost. In particular, if constraints on physical quantities are disjoint and their rank is small, further reduction in computational costs can be achieved.
Author Janjić, Tijana
Toint, Philippe L.
Ruckstuhl, Yvonne
Author_xml – sequence: 1
  givenname: Tijana
  orcidid: 0000-0002-8837-0879
  surname: Janjić
  fullname: Janjić, Tijana
  email: tijana.pfander@lmu.de
  organization: Ludwig‐Maximilians‐University Munich
– sequence: 2
  givenname: Yvonne
  surname: Ruckstuhl
  fullname: Ruckstuhl, Yvonne
  organization: Ludwig‐Maximilians‐University Munich
– sequence: 3
  givenname: Philippe L.
  surname: Toint
  fullname: Toint, Philippe L.
  organization: University of Namur
BookMark eNp1z01Lw0AQgOFFKthW8S8EPChIdPYrmxxL8ZOCCArelkmyqRvSJN1NKf33po0nsae5PMzMOyGjuqkNIZcU7igAu1-XdwJAnJAxFUqFsYKvERkDcBkmAMkZmXhfAoBUTI0JnQU5dhig93ZlK-xsUwdYLRtnu-9VUDQuaJ3JbdbZehk4tPU5OS2w8ubid07J5-PDx_w5XLw9vcxnizDjjIkwiwTNMWUmQ4whkRIjmqVpLmPBgeVpwRg3KaZJxFUmpYxyKnLKIVExKo6cT8nNsHdTt7jbYlXp1tkVup2moPepel3qfWpPrwbauma9Mb7TZbNxdf-dZpKBiGPOk16Fg8pc470zhc5sdwju-q7qn63Xf_zx-7eD3NrK7I4x_f560D_MJn1R
CitedBy_id crossref_primary_10_1093_imanum_drac005
crossref_primary_10_1002_qj_4571
crossref_primary_10_1002_qj_4245
crossref_primary_10_5194_npg_28_111_2021
crossref_primary_10_1002_qj_4942
crossref_primary_10_1029_2021MS002606
crossref_primary_10_1002_qj_4426
crossref_primary_10_1002_qj_4537
crossref_primary_10_1029_2021GL094962
crossref_primary_10_5194_gmd_15_6891_2022
Cites_doi 10.1080/07055900.2012.747171
10.1002/qj.3179
10.3402/tellusa.v65i0.19915
10.1002/qj.368
10.1002/qj.477
10.1007/s12532-010-0016-2
10.6028/jres.049.044
10.1137/1.9780898719857
10.1002/qj.3142
10.1137/S1052623498345075
10.1029/94JC00572
10.1175/BAMS-D-11-00263.1
10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
10.1016/j.ocemod.2008.10.007
10.1111/j.1600-0870.2007.00271.x
10.5194/os-5-495-2009
10.1175/1520-0469(1975)032<0680:TDOFDM>2.0.CO;2
10.2151/jmsj1965.75.1B_257
10.1175/1520-0493(1991)119<1757:TBOFEC>2.0.CO;2
10.1127/0941-2948/2014/0492
10.1016/j.jcp.2008.08.009
10.1175/MWR2946.1
10.1002/qj.49712656415
10.1137/S1052623494266250
10.1175/MWR-D-13-00056.1
10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2
10.3402/tellusa.v21i3.10086
10.1016/S0168-9274(02)00120-4
10.1016/j.jmarsys.2011.07.007
10.1002/qj.3382
10.1175/1520-0493(1998)126<2913:ATEODS>2.0.CO;2
10.1002/qj.3257
10.1111/j.1751-5823.2003.tb00194.x
10.1007/s10589-012-9478-7
10.1080/07055900.1997.9687359
10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
10.1145/1271.1276
10.1002/qj.2757
10.1016/j.physd.2006.11.008
10.1137/090780493
10.1007/s10236-003-0036-9
10.1137/S1064827598345667
10.1007/978-3-662-12211-2
10.1002/qj.2829
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
ADTOC
UNPAY
DOI 10.1002/qj.4004
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley - Revues - OpenAccess
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1477-870X
EndPage 1963
ExternalDocumentID 10.1002/qj.4004
10_1002_qj_4004
QJ4004
Genre article
GrantInformation_xml – fundername: Transregional Collaborative Research Center German Science Foundation (DFG)
  funderid: SFB/TRR 165; DFG JA1077/3‐1; DFG JA1077/4‐1
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NNB
O66
O9-
OHT
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
UB1
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XOL
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7TG
7TN
F1W
H96
KL.
L.G
ADTOC
UNPAY
ID FETCH-LOGICAL-c3224-c641dab2ecaa80955a61cbbd584302dbf223ebab9637c5556d14d130978a73a33
IEDL.DBID UNPAY
ISSN 0035-9009
1477-870X
IngestDate Tue Aug 19 21:03:54 EDT 2025
Sun Sep 07 08:10:35 EDT 2025
Wed Oct 01 01:20:06 EDT 2025
Thu Apr 24 22:59:20 EDT 2025
Wed Jan 22 16:30:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 736
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3224-c641dab2ecaa80955a61cbbd584302dbf223ebab9637c5556d14d130978a73a33
Notes Funding information
Transregional Collaborative Research Center German Science Foundation (DFG),SFB/TRR 165;DFG JA1077/3‐1;DFG JA1077/4‐1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8837-0879
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/qj.4004
PQID 2520488339
PQPubID 1016432
PageCount 16
ParticipantIDs unpaywall_primary_10_1002_qj_4004
proquest_journals_2520488339
crossref_citationtrail_10_1002_qj_4004
crossref_primary_10_1002_qj_4004
wiley_primary_10_1002_qj_4004_QJ4004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Reading
PublicationTitle Quarterly journal of the Royal Meteorological Society
PublicationYear 2021
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References 2018; 144
2012
2013; 65
2005; 133
1996
2009; 135
2011; 32
1992
1975; 32
2003; 71
2001; 129
2001; 23
2003; 53
2016; 142
2009; 27
2014; 23
1997; 7
2007; 59
1991; 119
1999; 9
1980; 109
1952; 49
2000
2013; 54
1997; 75
2000; 126
2013; 51
1984; 10
1997; 35
2002; 43
2007; 230
1994; 99
1998; 126
1981
2009; 5
1998; 127
2017; 143
2009; 228
2010; 2
1969; XXI
2014; 95
2012; 89
2014; 142
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
Gill P.E. (e_1_2_7_18_1) 1981
e_1_2_7_3_1
e_1_2_7_9_1
Conn A.R. (e_1_2_7_11_1) 1992
e_1_2_7_8_1
e_1_2_7_7_1
Conn A.R. (e_1_2_7_12_1) 2000
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_43_1
e_1_2_7_44_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_29_1
Courtier P. (e_1_2_7_13_1) 1998; 127
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
Saad Y. (e_1_2_7_39_1) 1996
References_xml – volume: 109
  start-page: 18
  year: 1980
  end-page: 36
  article-title: A potential enstrophy and energy conserving scheme for the shallow‐water equations
  publication-title: Monthly Weather Review
– volume: 43
  start-page: 109
  issue: 1–2
  year: 2002
  end-page: 128
  article-title: An iterative working‐set method for large‐scale non‐convex quadratic programming
  publication-title: Applied Numerical Mathematics
– volume: 144
  start-page: 826
  year: 2018
  end-page: 841
  article-title: Parameter and state estimation with ensemble Kalman filter‐based approaches for convective‐scale data assimilation
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 99
  start-page: 10143
  year: 1994
  end-page: 10162
  article-title: Sequential data assimilation with a nonliear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics
  publication-title: Journal of Geophysical Research
– volume: 54
  start-page: 1
  issue: 1
  year: 2013
  end-page: 25
  article-title: Preconditioning and globalizing conjugate gradients in dual space for quadratically penalized nonlinear‐least squares problems
  publication-title: Computational Optimization and Applications
– year: 1981
– volume: 144
  start-page: 1189
  year: 2018
  end-page: 1190
  article-title: Editorial
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 5
  start-page: 495
  year: 2009
  end-page: 510
  article-title: Application of the Gaussian anamorphosis to assimilation in a 3D coupled physical‐ecosystem model of the North Atlantic with the EnKF: a twin experiment
  publication-title: Ocean Science
– volume: 135
  start-page: 1573
  year: 2009
  end-page: 1585
  article-title: An observation‐space formulation of variational assimilation using a restricted preconditioned conjugate‐gradient algorithm
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 142
  start-page: 1628
  year: 2016
  end-page: 1646
  article-title: Testing particle filters on simple convective‐scale models. Part 2: a modified shallow‐water model
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 10
  start-page: 282
  year: 1984
  end-page: 298
  article-title: Procedures for optimization problems with a mixture of bounds and general linear constraints
  publication-title: ACM Transactions on Mathematical Software
– volume: 142
  start-page: 755
  year: 2014
  end-page: 773
  article-title: Conservation of mass and preservation of positivity with ensemble‐type Kalman filter algorithms
  publication-title: Monthly Weather Review
– volume: 9
  start-page: 1100
  issue: 4
  year: 1999
  end-page: 1127
  article-title: Newton's method for large bound‐constrained optimization problems
  publication-title: SIAM Journal on Optimization
– volume: XXI
  start-page: 289
  issue: 3
  year: 1969
  end-page: 307
  article-title: The predictability of a flow which possesses many scales of motion
  publication-title: Tellus
– volume: 133
  start-page: 1710
  year: 2005
  end-page: 1726
  article-title: Maximum Likelihood Ensemble Filter: theoretical aspects
  publication-title: Monthly Weather Review
– year: 1996
– volume: 32
  start-page: 680
  year: 1975
  end-page: 689
  article-title: The dynamics of finite‐difference models of the shallow‐water equations
  publication-title: Journal of the Atmospheric Sciences
– volume: 51
  start-page: 18
  issue: 1
  year: 2013
  end-page: 34
  article-title: A new Environment Canada regional ice analysis system
  publication-title: Atmosphere–Ocean
– start-page: 330
  year: 1992
– volume: 119
  start-page: 1757
  issue: 8
  year: 1991
  end-page: 1785
  article-title: The behavior of forecast error covariances for a Kalman Filter in two dimensions
  publication-title: Monthly Weather Review
– volume: 35
  start-page: 425
  year: 1997
  end-page: 444
  article-title: An overview of numerical methods for the next generation UK NWP and climate mode1
  publication-title: Atmosphere–Ocean
– volume: 32
  start-page: 969
  issue: 3
  year: 2011
  end-page: 986
  article-title: Range‐space variants and inexact matrix‐vector products in Krylov solvers for linear systems arising from inverse problems
  publication-title: SIAM Journal on Matrix Analysis and Applications
– volume: 23
  start-page: 1375
  issue: 4
  year: 2001
  end-page: 1394
  article-title: On the solution of equality constrained quadratic problems arising in optimization
  publication-title: SIAM Journal on Scientific Computing
– volume: 2
  start-page: 167
  year: 2010
  end-page: 201
  article-title: Implementation of nonsymmetric interior‐point methods for linear optimization over sparse matrix cones
  publication-title: Mathematical Programming, Series C
– start-page: 978
  year: 2000
– year: 2012
– volume: 144
  start-page: 1218
  year: 2018
  end-page: 1256
  article-title: Survey of data assimilation methods for convective‐scale numerical weather prediction at operational centres
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 53
  start-page: 343
  year: 2003
  end-page: 367
  article-title: The ensemble Kalman filter: theoretical formulation and practical implementation
  publication-title: Ocean Dynamics
– volume: 49
  start-page: 409
  year: 1952
  end-page: 436
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: Journal of the National Bureau of Standards
– volume: 27
  start-page: 1
  year: 2009
  end-page: 17
  article-title: A truncated Gaussian filter for data assimilation with inequality constraints: application to the hydrostatic stability condition in ocean models
  publication-title: Ocean Modelling
– volume: 142
  start-page: 2359
  year: 2016
  end-page: 2372
  article-title: Study of conservation laws with the Local Ensemble Transform Kalman Filter
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 126
  start-page: 1719
  year: 1998
  end-page: 1724
  article-title: Analysis scheme in the Ensemble Kalman Filter
  publication-title: Monthly Weather Review
– volume: 129
  start-page: 420
  year: 2001
  end-page: 436
  article-title: Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects
  publication-title: Monthly Weather Review
– volume: 71
  start-page: 223
  year: 2003
  end-page: 241
  article-title: Sequential data assimilation techniques in oceanography
  publication-title: International Statistical Reviews
– volume: 228
  start-page: 1
  year: 2009
  end-page: 32
  article-title: A mass, energy, vorticity, and potential enstrophy conserving lateral fluid‐land boundary scheme for the shallow‐water equations
  publication-title: Journal of Computational Physics
– volume: 127
  start-page: 1783
  year: 1998
  end-page: 1807
  article-title: The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: formulation
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 230
  start-page: 112
  year: 2007
  end-page: 126
  article-title: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter
  publication-title: Physica D
– volume: 95
  start-page: 409
  issue: 3
  year: 2014
  end-page: 426
  article-title: Use of NWP for nowcasting convective precipitation: recent progress and challenges
  publication-title: Bulletin of the American Meteorological Society
– volume: 89
  start-page: 1
  year: 2012
  end-page: 18
  article-title: Gaussian anamorphosis extension of the DEnKF for combined state and parameter estimation: application to a 1D ocean ecosystem model
  publication-title: Journal of Marine Systems
– volume: 143
  start-page: 2902
  year: 2017
  end-page: 2914
  article-title: Ensemble‐type Kalman filter algorithm conserving mass, total energy and enstrophy
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 75
  start-page: 257
  year: 1997
  end-page: 288
  article-title: An introduction to estimation theory
  publication-title: Journal of the Meteorological Society of Japan
– volume: 135
  start-page: 485
  year: 2009
  end-page: 494
  article-title: A conservative scheme for the shallow‐water system on a staggered geodesic grid based on a Nambu representation
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 59
  start-page: 706
  issue: 5
  year: 2007
  end-page: 718
  article-title: Incremental 4D‐Var convergence study
  publication-title: Tellus A: Dynamic Meteorology and Oceanography
– volume: 126
  start-page: 2913
  year: 1998
  end-page: 2926
  article-title: Assessing the effects of data selection with the DAO physical‐space statistical analysis system
  publication-title: Monthly Weather Review
– volume: 65
  issue: 1
  year: 2013
  article-title: Effective assimilation of global precipitation: simulation experiments
  publication-title: Tellus A
– volume: 126
  start-page: 1143
  year: 2000
  end-page: 1170
  article-title: The ECMWF operational implementation of four‐dimensional variational assimilation. I: experimental results with simplified physics
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 7
  start-page: 871
  issue: 3
  year: 1997
  end-page: 887
  article-title: Box constrained quadratic programming with proportioning and projections
  publication-title: SIAM Journal on Optimization
– volume: 23
  start-page: 483
  year: 2014
  end-page: 490
  article-title: A simple dynamical model of cumulus convection for data assimilation research
  publication-title: Meteorologische Zeitschrift
– ident: e_1_2_7_7_1
  doi: 10.1080/07055900.2012.747171
– ident: e_1_2_7_26_1
  doi: 10.1002/qj.3179
– ident: e_1_2_7_34_1
  doi: 10.3402/tellusa.v65i0.19915
– ident: e_1_2_7_43_1
  doi: 10.1002/qj.368
– ident: e_1_2_7_22_1
  doi: 10.1002/qj.477
– ident: e_1_2_7_2_1
  doi: 10.1007/s12532-010-0016-2
– ident: e_1_2_7_28_1
  doi: 10.6028/jres.049.044
– start-page: 978
  volume-title: Trust‐region Methods
  year: 2000
  ident: e_1_2_7_12_1
  doi: 10.1137/1.9780898719857
– ident: e_1_2_7_48_1
  doi: 10.1002/qj.3142
– ident: e_1_2_7_35_1
  doi: 10.1137/S1052623498345075
– volume-title: Iterative Methods for Sparse Linear Systems
  year: 1996
  ident: e_1_2_7_39_1
– volume: 127
  start-page: 1783
  year: 1998
  ident: e_1_2_7_13_1
  article-title: The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: formulation
  publication-title: Quarterly Journal of the Royal Meteorological Society
– ident: e_1_2_7_16_1
  doi: 10.1029/94JC00572
– ident: e_1_2_7_44_1
  doi: 10.1175/BAMS-D-11-00263.1
– ident: e_1_2_7_5_1
  doi: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
– ident: e_1_2_7_33_1
  doi: 10.1016/j.ocemod.2008.10.007
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1600-0870.2007.00271.x
– ident: e_1_2_7_41_1
  doi: 10.5194/os-5-495-2009
– volume-title: Practical Optimization
  year: 1981
  ident: e_1_2_7_18_1
– ident: e_1_2_7_40_1
  doi: 10.1175/1520-0469(1975)032<0680:TDOFDM>2.0.CO;2
– ident: e_1_2_7_9_1
  doi: 10.2151/jmsj1965.75.1B_257
– ident: e_1_2_7_10_1
  doi: 10.1175/1520-0493(1991)119<1757:TBOFEC>2.0.CO;2
– ident: e_1_2_7_46_1
  doi: 10.1127/0941-2948/2014/0492
– ident: e_1_2_7_32_1
  doi: 10.1016/j.jcp.2008.08.009
– ident: e_1_2_7_49_1
  doi: 10.1175/MWR2946.1
– ident: e_1_2_7_37_1
  doi: 10.1002/qj.49712656415
– ident: e_1_2_7_15_1
  doi: 10.1137/S1052623494266250
– ident: e_1_2_7_30_1
  doi: 10.1175/MWR-D-13-00056.1
– ident: e_1_2_7_3_1
  doi: 10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2
– ident: e_1_2_7_24_1
– ident: e_1_2_7_36_1
  doi: 10.3402/tellusa.v21i3.10086
– ident: e_1_2_7_21_1
  doi: 10.1016/S0168-9274(02)00120-4
– ident: e_1_2_7_42_1
  doi: 10.1016/j.jmarsys.2011.07.007
– ident: e_1_2_7_31_1
  doi: 10.1002/qj.3382
– ident: e_1_2_7_8_1
  doi: 10.1175/1520-0493(1998)126<2913:ATEODS>2.0.CO;2
– ident: e_1_2_7_38_1
  doi: 10.1002/qj.3257
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1751-5823.2003.tb00194.x
– ident: e_1_2_7_25_1
  doi: 10.1007/s10589-012-9478-7
– ident: e_1_2_7_14_1
  doi: 10.1080/07055900.1997.9687359
– ident: e_1_2_7_6_1
  doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
– ident: e_1_2_7_19_1
  doi: 10.1145/1271.1276
– ident: e_1_2_7_27_1
  doi: 10.1002/qj.2757
– ident: e_1_2_7_29_1
  doi: 10.1016/j.physd.2006.11.008
– ident: e_1_2_7_23_1
  doi: 10.1137/090780493
– ident: e_1_2_7_17_1
  doi: 10.1007/s10236-003-0036-9
– ident: e_1_2_7_20_1
  doi: 10.1137/S1064827598345667
– start-page: 330
  volume-title: LANCELOT: A Fortran Package for Large‐scale Nonlinear Optimization (Release A)
  year: 1992
  ident: e_1_2_7_11_1
  doi: 10.1007/978-3-662-12211-2
– ident: e_1_2_7_47_1
  doi: 10.1002/qj.2829
SSID ssj0005727
Score 2.3861113
Snippet Convective‐scale data assimilation uses high‐resolution numerical weather prediction models and temporally and spatially dense observations of relevant...
SourceID unpaywall
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1949
SubjectTerms Algorithms
Computer applications
Convection
convective‐scale predictions
Data
Data assimilation
Data collection
disjoint linear constraints
Hydrometeors
Meteorological satellites
Physical properties
Prediction models
preservation of non‐negativity
quadratic optimization
Rainfall forecasting
Weather forecasting
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeD7EVfvIvTKRHG3rrZ5tLucQzHGExQHAxfSpJmutndO0Q_vSdptzllID6V0qS0SU7yS3LyPwgVpRdwLij0fgrwjVLlOQKGeUf3GO1pSYVnT7m273mzQ1td1v0W6ivVh1gtuBnLsP21MXAh55W1aOh0UKapEqhLuJ1MPa6Fo5ifBWslzKkCRqTHZU3OSpZvcxxaw-XuYjQRH-8ijjdx1Y43jQP0vPzS1M3krbxIZFl9_hBx_NevHKL9jEJxLW02R2hHj45Rvg0APZ7ZdXZcwvW4DzRr706QW8PGlxQDaveH_dR_Dov4ZTzrJ69DDOSLJzOz52O8qLEJO3GKOo27p3rTyaItOAqMmjqKUzcS0tNKiMAI0wnuKikjIBRy60WyByChpZBgsb5ijPHIpRGMgDANFT4RhJyh3Gg80ucIC2m3IxVRCoCBRTLgFLhY-7qnuS9pHpWWZR-qTIrcRMSIw1RE2Qung9CUSB7hVcJJqr7xO0lhWXlhZn7z0GNGjzggpJpHN6sK3f6Koq2dbc_Dh5a5XPwt2SXa84zfi_XuKaBcMlvoKwCXRF7bNvoFbPzoig
  priority: 102
  providerName: Wiley-Blackwell
Title A data assimilation algorithm for predicting rain
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.4004
https://www.proquest.com/docview/2520488339
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/qj.4004
UnpaywallVersion publishedVersion
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1477-870X
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0005727
  issn: 0035-9009
  databaseCode: ADMLS
  dateStart: 20120701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0035-9009
  databaseCode: DR2
  dateStart: 20020101
  customDbUrl:
  isFulltext: true
  eissn: 1477-870X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005727
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bT8IwFMcbhQefvBsxSGpCeBuyruvgkYCEECHeSPBpabtOwXGHGP30nnYDRWNifFqadc3W9vT81p7-i1BekDJjnMLoJwHfKJXE4uDmLRW6NFSCcmJ2ubY7rNmlrZ7bS2Jz9F6YWB9iPeGmLcOM19rAJ0EYj_PJ6j65nA6K1KiBppkLKJ5C6W7npvq4kmKslEyIh009eBev1Is3zX59ctMbfSLmznI04W-vPIo2odV4ncZefLTq3IgV6mCTl-JyIYry_ZuU478_aB_tJjyKq3EHOkBbanSIMm1A6fHMzLjjAq5FfeBakzpCdhXrqFIM0N0f9uNIOsyjp_Gsv3geYmBgPJnp1R8dT431ARTHqNu4eqg1reTcBUuCeVNLMmoHXBAlOS9riTrObClEAKzilEggQkAKJbgA2_Wk67ossGkAvhB-SLnncMc5QanReKROEebCLExKR0pABzcQZUaBkJWnQsU8QTOosKp_Xyai5PpsjMiP5ZSJPx34ukYyCK8zTmIdjp9ZsqsG9BNDnPvE1crEZcepZNDFulF_LyJvWui3-_5tS1_O_lBUFqUWs6U6B2RZiBzaJvQmh9LVevv6HlL1O5JLOusH2cHu-w
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4MHvBi_BmnqDUh3Cau7To4EiJBBKIJJNyWtusUMn4KMf73vnYDQgyJp2XZ6w6vfX1f26_fQ6goSYVzwWD2UwDfGFPEFZDmXR37LNaSCWJvuXa6vNlnrYE_yFiV5i5Mqg-x2XAzkWHnaxPgZkO6vFUNnY8emZUCPWTc42bhRdjblt4RZOVaqe9WAUikF2ZN03LWcDcTbeFlfjWZiZ9vkSS7gNVmnMYJOs6gIq6lfXuKDvTkDDkdQLnThd0MxyVcT4YAOe3bOfJq2BA-MeDh4XiYktywSD6mi-Hyc4wBnuLZwhzMGKozNrUhLlC_8dyrN92sJIKrIPKYqzjzIiGJVkJUjHqc4J6SMgIYQZ9IJGPI9loKCWEVKN_3eeSxCNIUrBVFQAWllyg3mU70FcJC2jNDRZWCrO5HssIZgFcd6FjzQDIHldbuCVWmF27KViRhqnRMwvkoNH50EN4YzlKJjL8mhbV_wyxGvkLiG9HgCqVVBz1sfL7_F0XbF_u-h-8t87j-n9k9yjd7nXbYfum-3qAjYogqlo5TQLnlYqVvAWks5Z0dUr8On8yW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT8IwFG0MJuqL30YUtSaEt4Hb2m08EpAgClEjCYkPS9t1Co5PIUZ_vbfdgKAhMT4ty26Xre3tPW1Pz0Uoyy3PcRiB0U8AfCNEWAaDMG_IkJJQcsIsfcq10XRqLVJv03bCqlRnYWJ9iPmCm_IMPV4rB5fDICwsVENH3TzRUqDrhBY9ReerPC6ko6ibpGu1qVEEIBEfmFVFC0nB5Ui0gJeb0_6QfX6wKFoGrDriVHfQ8-xbY6LJW3464Xnx9UPG8X8_s4u2EyCKS3HP2UNrsr-P0g3A0IOxXmrHOVyOOgBo9d0BMktY0UkxoO1OrxNT6DCLXgbjzuS1hwH84uFYbfsoIjVWmScOUat6_VSuGUnCBUOAXxNDOMQMGLekYMxT2nTMMQXnAYAU-8oKeAhYQnLGwWldQSl1ApMEEARhJspcm9n2EUr1B315jDDjekdS2EIAZqAB9xwC0Fi6MpSOy0ka5WaV74tEjVwlxYj8WEfZ8kddX9VIGuG54TAW4Phtkpm1np944LtvUSVJ7Nl2MY0u5y26-hVZ3TyrnvsPdXU5-ZvZBdq4r1T9u5vm7SnashQLRnN9Mig1GU_lGcCYCT_X_fUbyhDsLw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pa8IwFMfD0MNO-z3mcCMD8VZn2zTVo8hEBGWDCe5UkjTddLXWqoztr99LUt3cEMZOpTQtbZKX92ny8n0IVbjToJQRGP0E4BshwrEYuHlLRh6JJCfM0btc-wPaHZLeyBvlsTlqL4zRh9hMuCnL0OO1MvA0jMw4n6_uO7fzSY1oNdAi9QDFC6g4HNy3ntZSjM26DvGwiQ_v4tdHZtPs9zu3vdEXYu6vkpS9v7E43oZW7XU6hya16kKLFapgk9faaslr4uOHlOO_P-gIHeQ8ilumAx2jPZmcoFIfUHqW6Rl3XMXteAxcq89Okd3CKqoUA3SPp2MTSYdZ_DzLxsuXKQYGxmmmVn9UPDVWCSjO0LBz99juWnneBUuAeRNLUGKHjDtSMNZQEnWM2oLzEFjFrTshjwApJGccbNcXnufR0CYh-EL4IWW-y1z3HBWSWSIvEGZcL0wKVwhABy_kDUqAkKUvI0l9Tkqouq7_QOSi5Co3RhwYOWUnmE8CVSMlhDcFU6PD8btIed2AQW6Ii8DxlDJxw3WbJXSzadTdj6joFtp1PXjoqcPlHx5VRoVltpJXgCxLfp13zE9X6Oun
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data+assimilation+algorithm+for+predicting+rain&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Janji%C4%87%2C+Tijana&rft.au=Ruckstuhl%2C+Yvonne&rft.au=Toint%2C+Philippe+L&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=147&rft.issue=736&rft.spage=1949&rft.epage=1963&rft_id=info:doi/10.1002%2Fqj.4004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon