A data assimilation algorithm for predicting rain
Convective‐scale data assimilation uses high‐resolution numerical weather prediction models and temporally and spatially dense observations of relevant atmospheric variables. In addition, it requires a data assimilation algorithm that is able to provide initial conditions for a state vector of large...
Saved in:
| Published in | Quarterly journal of the Royal Meteorological Society Vol. 147; no. 736; pp. 1949 - 1963 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Chichester, UK
John Wiley & Sons, Ltd
01.04.2021
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0035-9009 1477-870X 1477-870X |
| DOI | 10.1002/qj.4004 |
Cover
| Abstract | Convective‐scale data assimilation uses high‐resolution numerical weather prediction models and temporally and spatially dense observations of relevant atmospheric variables. In addition, it requires a data assimilation algorithm that is able to provide initial conditions for a state vector of large size with one third or more of its components containing prognostic hydrometeors variables whose non‐negativity needs to be preserved. The algorithm also needs to be fast as the state vector requires a high updating frequency in order to catch fast‐changing convection. A computationally efficient algorithm for quadratic optimization (QO, or formerly QP) is presented here, which preserves physical properties in order to represent features of the real atmosphere. Crucially for its performance, it exploits the fact that the resulting linear constraints may be disjoint. Numerical results on a simple model designed for testing convective‐scale data assimilation show accurate results and promising computational cost. In particular, if constraints on physical quantities are disjoint and their rank is small, further reduction in computational costs can be achieved.
Convective scale data assimilation requires a data assimilation algorithm that is able to provide initial conditions for a state vector of large size with one third or more of its components containing prognostic hydrometeors variables whose non‐negativity needs to be preserved. Governed by the principal of preservation of physical properties in order to represent features of real atmosphere and the computational efficiency, a specialized algorithm that focuses on predicting rain is presented and tested on idealized convective scale data assimilation example. |
|---|---|
| AbstractList | Convective‐scale data assimilation uses high‐resolution numerical weather prediction models and temporally and spatially dense observations of relevant atmospheric variables. In addition, it requires a data assimilation algorithm that is able to provide initial conditions for a state vector of large size with one third or more of its components containing prognostic hydrometeors variables whose non‐negativity needs to be preserved. The algorithm also needs to be fast as the state vector requires a high updating frequency in order to catch fast‐changing convection. A computationally efficient algorithm for quadratic optimization (QO, or formerly QP) is presented here, which preserves physical properties in order to represent features of the real atmosphere. Crucially for its performance, it exploits the fact that the resulting linear constraints may be disjoint. Numerical results on a simple model designed for testing convective‐scale data assimilation show accurate results and promising computational cost. In particular, if constraints on physical quantities are disjoint and their rank is small, further reduction in computational costs can be achieved.
Convective scale data assimilation requires a data assimilation algorithm that is able to provide initial conditions for a state vector of large size with one third or more of its components containing prognostic hydrometeors variables whose non‐negativity needs to be preserved. Governed by the principal of preservation of physical properties in order to represent features of real atmosphere and the computational efficiency, a specialized algorithm that focuses on predicting rain is presented and tested on idealized convective scale data assimilation example. Convective‐scale data assimilation uses high‐resolution numerical weather prediction models and temporally and spatially dense observations of relevant atmospheric variables. In addition, it requires a data assimilation algorithm that is able to provide initial conditions for a state vector of large size with one third or more of its components containing prognostic hydrometeors variables whose non‐negativity needs to be preserved. The algorithm also needs to be fast as the state vector requires a high updating frequency in order to catch fast‐changing convection. A computationally efficient algorithm for quadratic optimization (QO, or formerly QP) is presented here, which preserves physical properties in order to represent features of the real atmosphere. Crucially for its performance, it exploits the fact that the resulting linear constraints may be disjoint. Numerical results on a simple model designed for testing convective‐scale data assimilation show accurate results and promising computational cost. In particular, if constraints on physical quantities are disjoint and their rank is small, further reduction in computational costs can be achieved. |
| Author | Janjić, Tijana Toint, Philippe L. Ruckstuhl, Yvonne |
| Author_xml | – sequence: 1 givenname: Tijana orcidid: 0000-0002-8837-0879 surname: Janjić fullname: Janjić, Tijana email: tijana.pfander@lmu.de organization: Ludwig‐Maximilians‐University Munich – sequence: 2 givenname: Yvonne surname: Ruckstuhl fullname: Ruckstuhl, Yvonne organization: Ludwig‐Maximilians‐University Munich – sequence: 3 givenname: Philippe L. surname: Toint fullname: Toint, Philippe L. organization: University of Namur |
| BookMark | eNp1z01Lw0AQgOFFKthW8S8EPChIdPYrmxxL8ZOCCArelkmyqRvSJN1NKf33po0nsae5PMzMOyGjuqkNIZcU7igAu1-XdwJAnJAxFUqFsYKvERkDcBkmAMkZmXhfAoBUTI0JnQU5dhig93ZlK-xsUwdYLRtnu-9VUDQuaJ3JbdbZehk4tPU5OS2w8ubid07J5-PDx_w5XLw9vcxnizDjjIkwiwTNMWUmQ4whkRIjmqVpLmPBgeVpwRg3KaZJxFUmpYxyKnLKIVExKo6cT8nNsHdTt7jbYlXp1tkVup2moPepel3qfWpPrwbauma9Mb7TZbNxdf-dZpKBiGPOk16Fg8pc470zhc5sdwju-q7qn63Xf_zx-7eD3NrK7I4x_f560D_MJn1R |
| CitedBy_id | crossref_primary_10_1093_imanum_drac005 crossref_primary_10_1002_qj_4571 crossref_primary_10_1002_qj_4245 crossref_primary_10_5194_npg_28_111_2021 crossref_primary_10_1002_qj_4942 crossref_primary_10_1029_2021MS002606 crossref_primary_10_1002_qj_4426 crossref_primary_10_1002_qj_4537 crossref_primary_10_1029_2021GL094962 crossref_primary_10_5194_gmd_15_6891_2022 |
| Cites_doi | 10.1080/07055900.2012.747171 10.1002/qj.3179 10.3402/tellusa.v65i0.19915 10.1002/qj.368 10.1002/qj.477 10.1007/s12532-010-0016-2 10.6028/jres.049.044 10.1137/1.9780898719857 10.1002/qj.3142 10.1137/S1052623498345075 10.1029/94JC00572 10.1175/BAMS-D-11-00263.1 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2 10.1016/j.ocemod.2008.10.007 10.1111/j.1600-0870.2007.00271.x 10.5194/os-5-495-2009 10.1175/1520-0469(1975)032<0680:TDOFDM>2.0.CO;2 10.2151/jmsj1965.75.1B_257 10.1175/1520-0493(1991)119<1757:TBOFEC>2.0.CO;2 10.1127/0941-2948/2014/0492 10.1016/j.jcp.2008.08.009 10.1175/MWR2946.1 10.1002/qj.49712656415 10.1137/S1052623494266250 10.1175/MWR-D-13-00056.1 10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2 10.3402/tellusa.v21i3.10086 10.1016/S0168-9274(02)00120-4 10.1016/j.jmarsys.2011.07.007 10.1002/qj.3382 10.1175/1520-0493(1998)126<2913:ATEODS>2.0.CO;2 10.1002/qj.3257 10.1111/j.1751-5823.2003.tb00194.x 10.1007/s10589-012-9478-7 10.1080/07055900.1997.9687359 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2 10.1145/1271.1276 10.1002/qj.2757 10.1016/j.physd.2006.11.008 10.1137/090780493 10.1007/s10236-003-0036-9 10.1137/S1064827598345667 10.1007/978-3-662-12211-2 10.1002/qj.2829 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7TG 7TN F1W H96 KL. L.G ADTOC UNPAY |
| DOI | 10.1002/qj.4004 |
| DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley - Revues - OpenAccess url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1477-870X |
| EndPage | 1963 |
| ExternalDocumentID | 10.1002/qj.4004 10_1002_qj_4004 QJ4004 |
| Genre | article |
| GrantInformation_xml | – fundername: Transregional Collaborative Research Center German Science Foundation (DFG) funderid: SFB/TRR 165; DFG JA1077/3‐1; DFG JA1077/4‐1 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ H~9 IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NNB O66 O9- OHT OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ UB1 VOH W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XOL XV2 ZY4 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION 7TG 7TN F1W H96 KL. L.G ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3224-c641dab2ecaa80955a61cbbd584302dbf223ebab9637c5556d14d130978a73a33 |
| IEDL.DBID | UNPAY |
| ISSN | 0035-9009 1477-870X |
| IngestDate | Tue Aug 19 21:03:54 EDT 2025 Sun Sep 07 08:10:35 EDT 2025 Wed Oct 01 01:20:06 EDT 2025 Thu Apr 24 22:59:20 EDT 2025 Wed Jan 22 16:30:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 736 |
| Language | English |
| License | Attribution cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3224-c641dab2ecaa80955a61cbbd584302dbf223ebab9637c5556d14d130978a73a33 |
| Notes | Funding information Transregional Collaborative Research Center German Science Foundation (DFG),SFB/TRR 165;DFG JA1077/3‐1;DFG JA1077/4‐1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8837-0879 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/qj.4004 |
| PQID | 2520488339 |
| PQPubID | 1016432 |
| PageCount | 16 |
| ParticipantIDs | unpaywall_primary_10_1002_qj_4004 proquest_journals_2520488339 crossref_citationtrail_10_1002_qj_4004 crossref_primary_10_1002_qj_4004 wiley_primary_10_1002_qj_4004_QJ4004 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2021 2021-04-00 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Reading |
| PublicationTitle | Quarterly journal of the Royal Meteorological Society |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
| References | 2018; 144 2012 2013; 65 2005; 133 1996 2009; 135 2011; 32 1992 1975; 32 2003; 71 2001; 129 2001; 23 2003; 53 2016; 142 2009; 27 2014; 23 1997; 7 2007; 59 1991; 119 1999; 9 1980; 109 1952; 49 2000 2013; 54 1997; 75 2000; 126 2013; 51 1984; 10 1997; 35 2002; 43 2007; 230 1994; 99 1998; 126 1981 2009; 5 1998; 127 2017; 143 2009; 228 2010; 2 1969; XXI 2014; 95 2012; 89 2014; 142 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 Gill P.E. (e_1_2_7_18_1) 1981 e_1_2_7_3_1 e_1_2_7_9_1 Conn A.R. (e_1_2_7_11_1) 1992 e_1_2_7_8_1 e_1_2_7_7_1 Conn A.R. (e_1_2_7_12_1) 2000 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_43_1 e_1_2_7_44_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_29_1 Courtier P. (e_1_2_7_13_1) 1998; 127 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 Saad Y. (e_1_2_7_39_1) 1996 |
| References_xml | – volume: 109 start-page: 18 year: 1980 end-page: 36 article-title: A potential enstrophy and energy conserving scheme for the shallow‐water equations publication-title: Monthly Weather Review – volume: 43 start-page: 109 issue: 1–2 year: 2002 end-page: 128 article-title: An iterative working‐set method for large‐scale non‐convex quadratic programming publication-title: Applied Numerical Mathematics – volume: 144 start-page: 826 year: 2018 end-page: 841 article-title: Parameter and state estimation with ensemble Kalman filter‐based approaches for convective‐scale data assimilation publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 99 start-page: 10143 year: 1994 end-page: 10162 article-title: Sequential data assimilation with a nonliear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics publication-title: Journal of Geophysical Research – volume: 54 start-page: 1 issue: 1 year: 2013 end-page: 25 article-title: Preconditioning and globalizing conjugate gradients in dual space for quadratically penalized nonlinear‐least squares problems publication-title: Computational Optimization and Applications – year: 1981 – volume: 144 start-page: 1189 year: 2018 end-page: 1190 article-title: Editorial publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 5 start-page: 495 year: 2009 end-page: 510 article-title: Application of the Gaussian anamorphosis to assimilation in a 3D coupled physical‐ecosystem model of the North Atlantic with the EnKF: a twin experiment publication-title: Ocean Science – volume: 135 start-page: 1573 year: 2009 end-page: 1585 article-title: An observation‐space formulation of variational assimilation using a restricted preconditioned conjugate‐gradient algorithm publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 142 start-page: 1628 year: 2016 end-page: 1646 article-title: Testing particle filters on simple convective‐scale models. Part 2: a modified shallow‐water model publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 10 start-page: 282 year: 1984 end-page: 298 article-title: Procedures for optimization problems with a mixture of bounds and general linear constraints publication-title: ACM Transactions on Mathematical Software – volume: 142 start-page: 755 year: 2014 end-page: 773 article-title: Conservation of mass and preservation of positivity with ensemble‐type Kalman filter algorithms publication-title: Monthly Weather Review – volume: 9 start-page: 1100 issue: 4 year: 1999 end-page: 1127 article-title: Newton's method for large bound‐constrained optimization problems publication-title: SIAM Journal on Optimization – volume: XXI start-page: 289 issue: 3 year: 1969 end-page: 307 article-title: The predictability of a flow which possesses many scales of motion publication-title: Tellus – volume: 133 start-page: 1710 year: 2005 end-page: 1726 article-title: Maximum Likelihood Ensemble Filter: theoretical aspects publication-title: Monthly Weather Review – year: 1996 – volume: 32 start-page: 680 year: 1975 end-page: 689 article-title: The dynamics of finite‐difference models of the shallow‐water equations publication-title: Journal of the Atmospheric Sciences – volume: 51 start-page: 18 issue: 1 year: 2013 end-page: 34 article-title: A new Environment Canada regional ice analysis system publication-title: Atmosphere–Ocean – start-page: 330 year: 1992 – volume: 119 start-page: 1757 issue: 8 year: 1991 end-page: 1785 article-title: The behavior of forecast error covariances for a Kalman Filter in two dimensions publication-title: Monthly Weather Review – volume: 35 start-page: 425 year: 1997 end-page: 444 article-title: An overview of numerical methods for the next generation UK NWP and climate mode1 publication-title: Atmosphere–Ocean – volume: 32 start-page: 969 issue: 3 year: 2011 end-page: 986 article-title: Range‐space variants and inexact matrix‐vector products in Krylov solvers for linear systems arising from inverse problems publication-title: SIAM Journal on Matrix Analysis and Applications – volume: 23 start-page: 1375 issue: 4 year: 2001 end-page: 1394 article-title: On the solution of equality constrained quadratic problems arising in optimization publication-title: SIAM Journal on Scientific Computing – volume: 2 start-page: 167 year: 2010 end-page: 201 article-title: Implementation of nonsymmetric interior‐point methods for linear optimization over sparse matrix cones publication-title: Mathematical Programming, Series C – start-page: 978 year: 2000 – year: 2012 – volume: 144 start-page: 1218 year: 2018 end-page: 1256 article-title: Survey of data assimilation methods for convective‐scale numerical weather prediction at operational centres publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 53 start-page: 343 year: 2003 end-page: 367 article-title: The ensemble Kalman filter: theoretical formulation and practical implementation publication-title: Ocean Dynamics – volume: 49 start-page: 409 year: 1952 end-page: 436 article-title: Methods of conjugate gradients for solving linear systems publication-title: Journal of the National Bureau of Standards – volume: 27 start-page: 1 year: 2009 end-page: 17 article-title: A truncated Gaussian filter for data assimilation with inequality constraints: application to the hydrostatic stability condition in ocean models publication-title: Ocean Modelling – volume: 142 start-page: 2359 year: 2016 end-page: 2372 article-title: Study of conservation laws with the Local Ensemble Transform Kalman Filter publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 126 start-page: 1719 year: 1998 end-page: 1724 article-title: Analysis scheme in the Ensemble Kalman Filter publication-title: Monthly Weather Review – volume: 129 start-page: 420 year: 2001 end-page: 436 article-title: Adaptive sampling with the ensemble transform Kalman filter. Part I: theoretical aspects publication-title: Monthly Weather Review – volume: 71 start-page: 223 year: 2003 end-page: 241 article-title: Sequential data assimilation techniques in oceanography publication-title: International Statistical Reviews – volume: 228 start-page: 1 year: 2009 end-page: 32 article-title: A mass, energy, vorticity, and potential enstrophy conserving lateral fluid‐land boundary scheme for the shallow‐water equations publication-title: Journal of Computational Physics – volume: 127 start-page: 1783 year: 1998 end-page: 1807 article-title: The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: formulation publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 230 start-page: 112 year: 2007 end-page: 126 article-title: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter publication-title: Physica D – volume: 95 start-page: 409 issue: 3 year: 2014 end-page: 426 article-title: Use of NWP for nowcasting convective precipitation: recent progress and challenges publication-title: Bulletin of the American Meteorological Society – volume: 89 start-page: 1 year: 2012 end-page: 18 article-title: Gaussian anamorphosis extension of the DEnKF for combined state and parameter estimation: application to a 1D ocean ecosystem model publication-title: Journal of Marine Systems – volume: 143 start-page: 2902 year: 2017 end-page: 2914 article-title: Ensemble‐type Kalman filter algorithm conserving mass, total energy and enstrophy publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 75 start-page: 257 year: 1997 end-page: 288 article-title: An introduction to estimation theory publication-title: Journal of the Meteorological Society of Japan – volume: 135 start-page: 485 year: 2009 end-page: 494 article-title: A conservative scheme for the shallow‐water system on a staggered geodesic grid based on a Nambu representation publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 59 start-page: 706 issue: 5 year: 2007 end-page: 718 article-title: Incremental 4D‐Var convergence study publication-title: Tellus A: Dynamic Meteorology and Oceanography – volume: 126 start-page: 2913 year: 1998 end-page: 2926 article-title: Assessing the effects of data selection with the DAO physical‐space statistical analysis system publication-title: Monthly Weather Review – volume: 65 issue: 1 year: 2013 article-title: Effective assimilation of global precipitation: simulation experiments publication-title: Tellus A – volume: 126 start-page: 1143 year: 2000 end-page: 1170 article-title: The ECMWF operational implementation of four‐dimensional variational assimilation. I: experimental results with simplified physics publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 7 start-page: 871 issue: 3 year: 1997 end-page: 887 article-title: Box constrained quadratic programming with proportioning and projections publication-title: SIAM Journal on Optimization – volume: 23 start-page: 483 year: 2014 end-page: 490 article-title: A simple dynamical model of cumulus convection for data assimilation research publication-title: Meteorologische Zeitschrift – ident: e_1_2_7_7_1 doi: 10.1080/07055900.2012.747171 – ident: e_1_2_7_26_1 doi: 10.1002/qj.3179 – ident: e_1_2_7_34_1 doi: 10.3402/tellusa.v65i0.19915 – ident: e_1_2_7_43_1 doi: 10.1002/qj.368 – ident: e_1_2_7_22_1 doi: 10.1002/qj.477 – ident: e_1_2_7_2_1 doi: 10.1007/s12532-010-0016-2 – ident: e_1_2_7_28_1 doi: 10.6028/jres.049.044 – start-page: 978 volume-title: Trust‐region Methods year: 2000 ident: e_1_2_7_12_1 doi: 10.1137/1.9780898719857 – ident: e_1_2_7_48_1 doi: 10.1002/qj.3142 – ident: e_1_2_7_35_1 doi: 10.1137/S1052623498345075 – volume-title: Iterative Methods for Sparse Linear Systems year: 1996 ident: e_1_2_7_39_1 – volume: 127 start-page: 1783 year: 1998 ident: e_1_2_7_13_1 article-title: The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: formulation publication-title: Quarterly Journal of the Royal Meteorological Society – ident: e_1_2_7_16_1 doi: 10.1029/94JC00572 – ident: e_1_2_7_44_1 doi: 10.1175/BAMS-D-11-00263.1 – ident: e_1_2_7_5_1 doi: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2 – ident: e_1_2_7_33_1 doi: 10.1016/j.ocemod.2008.10.007 – ident: e_1_2_7_45_1 doi: 10.1111/j.1600-0870.2007.00271.x – ident: e_1_2_7_41_1 doi: 10.5194/os-5-495-2009 – volume-title: Practical Optimization year: 1981 ident: e_1_2_7_18_1 – ident: e_1_2_7_40_1 doi: 10.1175/1520-0469(1975)032<0680:TDOFDM>2.0.CO;2 – ident: e_1_2_7_9_1 doi: 10.2151/jmsj1965.75.1B_257 – ident: e_1_2_7_10_1 doi: 10.1175/1520-0493(1991)119<1757:TBOFEC>2.0.CO;2 – ident: e_1_2_7_46_1 doi: 10.1127/0941-2948/2014/0492 – ident: e_1_2_7_32_1 doi: 10.1016/j.jcp.2008.08.009 – ident: e_1_2_7_49_1 doi: 10.1175/MWR2946.1 – ident: e_1_2_7_37_1 doi: 10.1002/qj.49712656415 – ident: e_1_2_7_15_1 doi: 10.1137/S1052623494266250 – ident: e_1_2_7_30_1 doi: 10.1175/MWR-D-13-00056.1 – ident: e_1_2_7_3_1 doi: 10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2 – ident: e_1_2_7_24_1 – ident: e_1_2_7_36_1 doi: 10.3402/tellusa.v21i3.10086 – ident: e_1_2_7_21_1 doi: 10.1016/S0168-9274(02)00120-4 – ident: e_1_2_7_42_1 doi: 10.1016/j.jmarsys.2011.07.007 – ident: e_1_2_7_31_1 doi: 10.1002/qj.3382 – ident: e_1_2_7_8_1 doi: 10.1175/1520-0493(1998)126<2913:ATEODS>2.0.CO;2 – ident: e_1_2_7_38_1 doi: 10.1002/qj.3257 – ident: e_1_2_7_4_1 doi: 10.1111/j.1751-5823.2003.tb00194.x – ident: e_1_2_7_25_1 doi: 10.1007/s10589-012-9478-7 – ident: e_1_2_7_14_1 doi: 10.1080/07055900.1997.9687359 – ident: e_1_2_7_6_1 doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2 – ident: e_1_2_7_19_1 doi: 10.1145/1271.1276 – ident: e_1_2_7_27_1 doi: 10.1002/qj.2757 – ident: e_1_2_7_29_1 doi: 10.1016/j.physd.2006.11.008 – ident: e_1_2_7_23_1 doi: 10.1137/090780493 – ident: e_1_2_7_17_1 doi: 10.1007/s10236-003-0036-9 – ident: e_1_2_7_20_1 doi: 10.1137/S1064827598345667 – start-page: 330 volume-title: LANCELOT: A Fortran Package for Large‐scale Nonlinear Optimization (Release A) year: 1992 ident: e_1_2_7_11_1 doi: 10.1007/978-3-662-12211-2 – ident: e_1_2_7_47_1 doi: 10.1002/qj.2829 |
| SSID | ssj0005727 |
| Score | 2.3861113 |
| Snippet | Convective‐scale data assimilation uses high‐resolution numerical weather prediction models and temporally and spatially dense observations of relevant... |
| SourceID | unpaywall proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1949 |
| SubjectTerms | Algorithms Computer applications Convection convective‐scale predictions Data Data assimilation Data collection disjoint linear constraints Hydrometeors Meteorological satellites Physical properties Prediction models preservation of non‐negativity quadratic optimization Rainfall forecasting Weather forecasting |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeD7EVfvIvTKRHG3rrZ5tLucQzHGExQHAxfSpJmutndO0Q_vSdptzllID6V0qS0SU7yS3LyPwgVpRdwLij0fgrwjVLlOQKGeUf3GO1pSYVnT7m273mzQ1td1v0W6ivVh1gtuBnLsP21MXAh55W1aOh0UKapEqhLuJ1MPa6Fo5ifBWslzKkCRqTHZU3OSpZvcxxaw-XuYjQRH-8ijjdx1Y43jQP0vPzS1M3krbxIZFl9_hBx_NevHKL9jEJxLW02R2hHj45Rvg0APZ7ZdXZcwvW4DzRr706QW8PGlxQDaveH_dR_Dov4ZTzrJ69DDOSLJzOz52O8qLEJO3GKOo27p3rTyaItOAqMmjqKUzcS0tNKiMAI0wnuKikjIBRy60WyByChpZBgsb5ijPHIpRGMgDANFT4RhJyh3Gg80ucIC2m3IxVRCoCBRTLgFLhY-7qnuS9pHpWWZR-qTIrcRMSIw1RE2Qung9CUSB7hVcJJqr7xO0lhWXlhZn7z0GNGjzggpJpHN6sK3f6Koq2dbc_Dh5a5XPwt2SXa84zfi_XuKaBcMlvoKwCXRF7bNvoFbPzoig priority: 102 providerName: Wiley-Blackwell |
| Title | A data assimilation algorithm for predicting rain |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqj.4004 https://www.proquest.com/docview/2520488339 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/qj.4004 |
| UnpaywallVersion | publishedVersion |
| Volume | 147 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1477-870X dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0005727 issn: 0035-9009 databaseCode: ADMLS dateStart: 20120701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0035-9009 databaseCode: DR2 dateStart: 20020101 customDbUrl: isFulltext: true eissn: 1477-870X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005727 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bT8IwFMcbhQefvBsxSGpCeBuyruvgkYCEECHeSPBpabtOwXGHGP30nnYDRWNifFqadc3W9vT81p7-i1BekDJjnMLoJwHfKJXE4uDmLRW6NFSCcmJ2ubY7rNmlrZ7bS2Jz9F6YWB9iPeGmLcOM19rAJ0EYj_PJ6j65nA6K1KiBppkLKJ5C6W7npvq4kmKslEyIh009eBev1Is3zX59ctMbfSLmznI04W-vPIo2odV4ncZefLTq3IgV6mCTl-JyIYry_ZuU478_aB_tJjyKq3EHOkBbanSIMm1A6fHMzLjjAq5FfeBakzpCdhXrqFIM0N0f9uNIOsyjp_Gsv3geYmBgPJnp1R8dT431ARTHqNu4eqg1reTcBUuCeVNLMmoHXBAlOS9riTrObClEAKzilEggQkAKJbgA2_Wk67ossGkAvhB-SLnncMc5QanReKROEebCLExKR0pABzcQZUaBkJWnQsU8QTOosKp_Xyai5PpsjMiP5ZSJPx34ukYyCK8zTmIdjp9ZsqsG9BNDnPvE1crEZcepZNDFulF_LyJvWui3-_5tS1_O_lBUFqUWs6U6B2RZiBzaJvQmh9LVevv6HlL1O5JLOusH2cHu-w |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4MHvBi_BmnqDUh3Cau7To4EiJBBKIJJNyWtusUMn4KMf73vnYDQgyJp2XZ6w6vfX1f26_fQ6goSYVzwWD2UwDfGFPEFZDmXR37LNaSCWJvuXa6vNlnrYE_yFiV5i5Mqg-x2XAzkWHnaxPgZkO6vFUNnY8emZUCPWTc42bhRdjblt4RZOVaqe9WAUikF2ZN03LWcDcTbeFlfjWZiZ9vkSS7gNVmnMYJOs6gIq6lfXuKDvTkDDkdQLnThd0MxyVcT4YAOe3bOfJq2BA-MeDh4XiYktywSD6mi-Hyc4wBnuLZwhzMGKozNrUhLlC_8dyrN92sJIKrIPKYqzjzIiGJVkJUjHqc4J6SMgIYQZ9IJGPI9loKCWEVKN_3eeSxCNIUrBVFQAWllyg3mU70FcJC2jNDRZWCrO5HssIZgFcd6FjzQDIHldbuCVWmF27KViRhqnRMwvkoNH50EN4YzlKJjL8mhbV_wyxGvkLiG9HgCqVVBz1sfL7_F0XbF_u-h-8t87j-n9k9yjd7nXbYfum-3qAjYogqlo5TQLnlYqVvAWks5Z0dUr8On8yW |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT8IwFG0MJuqL30YUtSaEt4Hb2m08EpAgClEjCYkPS9t1Co5PIUZ_vbfdgKAhMT4ty26Xre3tPW1Pz0Uoyy3PcRiB0U8AfCNEWAaDMG_IkJJQcsIsfcq10XRqLVJv03bCqlRnYWJ9iPmCm_IMPV4rB5fDICwsVENH3TzRUqDrhBY9ReerPC6ko6ibpGu1qVEEIBEfmFVFC0nB5Ui0gJeb0_6QfX6wKFoGrDriVHfQ8-xbY6LJW3464Xnx9UPG8X8_s4u2EyCKS3HP2UNrsr-P0g3A0IOxXmrHOVyOOgBo9d0BMktY0UkxoO1OrxNT6DCLXgbjzuS1hwH84uFYbfsoIjVWmScOUat6_VSuGUnCBUOAXxNDOMQMGLekYMxT2nTMMQXnAYAU-8oKeAhYQnLGwWldQSl1ApMEEARhJspcm9n2EUr1B315jDDjekdS2EIAZqAB9xwC0Fi6MpSOy0ka5WaV74tEjVwlxYj8WEfZ8kddX9VIGuG54TAW4Phtkpm1np944LtvUSVJ7Nl2MY0u5y26-hVZ3TyrnvsPdXU5-ZvZBdq4r1T9u5vm7SnashQLRnN9Mig1GU_lGcCYCT_X_fUbyhDsLw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pa8IwFMfD0MNO-z3mcCMD8VZn2zTVo8hEBGWDCe5UkjTddLXWqoztr99LUt3cEMZOpTQtbZKX92ny8n0IVbjToJQRGP0E4BshwrEYuHlLRh6JJCfM0btc-wPaHZLeyBvlsTlqL4zRh9hMuCnL0OO1MvA0jMw4n6_uO7fzSY1oNdAi9QDFC6g4HNy3ntZSjM26DvGwiQ_v4tdHZtPs9zu3vdEXYu6vkpS9v7E43oZW7XU6hya16kKLFapgk9faaslr4uOHlOO_P-gIHeQ8ilumAx2jPZmcoFIfUHqW6Rl3XMXteAxcq89Okd3CKqoUA3SPp2MTSYdZ_DzLxsuXKQYGxmmmVn9UPDVWCSjO0LBz99juWnneBUuAeRNLUGKHjDtSMNZQEnWM2oLzEFjFrTshjwApJGccbNcXnufR0CYh-EL4IWW-y1z3HBWSWSIvEGZcL0wKVwhABy_kDUqAkKUvI0l9Tkqouq7_QOSi5Co3RhwYOWUnmE8CVSMlhDcFU6PD8btIed2AQW6Ii8DxlDJxw3WbJXSzadTdj6joFtp1PXjoqcPlHx5VRoVltpJXgCxLfp13zE9X6Oun |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data+assimilation+algorithm+for+predicting+rain&rft.jtitle=Quarterly+journal+of+the+Royal+Meteorological+Society&rft.au=Janji%C4%87%2C+Tijana&rft.au=Ruckstuhl%2C+Yvonne&rft.au=Toint%2C+Philippe+L&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=147&rft.issue=736&rft.spage=1949&rft.epage=1963&rft_id=info:doi/10.1002%2Fqj.4004&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon |