New neural network-based algorithm for predicting fatigue life of aluminum alloys in terms of machining parameters
•Roughness measurement and high-cycle fatigue test were performed to investigate the effect of turning parameters on the quality and strength of aluminum products.•The difference in the effects of turning parameters on surface roughness and fatigue behavior of different aluminum series (2xxx and 7xx...
        Saved in:
      
    
          | Published in | Engineering failure analysis Vol. 146; p. 107128 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.04.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1350-6307 1873-1961  | 
| DOI | 10.1016/j.engfailanal.2023.107128 | 
Cover
| Abstract | •Roughness measurement and high-cycle fatigue test were performed to investigate the effect of turning parameters on the quality and strength of aluminum products.•The difference in the effects of turning parameters on surface roughness and fatigue behavior of different aluminum series (2xxx and 7xxx) was investigated experimentally.•Two-stage artificial neural network model was presented to predict the fatigue life of turned aluminum parts with higher accuracy than the usual ANN model.
Various classification of aluminum alloys is one of the most common applied materials in transportation industries due to the specific mechanical and material properties. Body of vehicles, including cars, ships, and airplanes, are constantly exposed to different cyclic loads that lead to surface damage and finally, fatigue failure occurs by crack growth. Therefore, the quality of the machined surface has a direct effect on the fatigue life of the products. In this regard, the most important source of surface roughness is the choice of machining parameters. To understand it, turning operations were performed on 2xxx and 7xxx series aluminum alloys considering different values of process parameters. For any series of aluminums, 189 high-cycle fatigue testing specimens were prepared, and experiments were performed by axial tension–compression fatigue test machine in 7 levels of stress (all tests were repeated three times and the mean failure cycles were reported as the fatigue life). Next, an Artificial Neural Network (ANN) based on the Back Propagation (BP) error algorithm was developed to predict fatigue life of Al alloys which are machined with different conditions. To this end, the parameters considered as input variables to the neural network structure include the Yield Strength (YS) and Ultimate Tensile Strength (UTS) to identify the aluminum series, as well as the process parameters such as cutting depth (d), rotational speed (R), and feed speed (V). In addition, the applied cyclic stress (S) to specimen was considered as input. Furthermore, surface roughness (Z) and number of cycles to failure (N) were considered as ANN output. The comparison of the obtained results from ANN predicting with the experimental values indicates that this approach was tuned finely. Eventually, the presented model can be a suitable alternative to perform fatigue tests with high costs and time-consuming. Also, the most effective machining parameter on the surface roughness and fatigue limit was reported. | 
    
|---|---|
| AbstractList | •Roughness measurement and high-cycle fatigue test were performed to investigate the effect of turning parameters on the quality and strength of aluminum products.•The difference in the effects of turning parameters on surface roughness and fatigue behavior of different aluminum series (2xxx and 7xxx) was investigated experimentally.•Two-stage artificial neural network model was presented to predict the fatigue life of turned aluminum parts with higher accuracy than the usual ANN model.
Various classification of aluminum alloys is one of the most common applied materials in transportation industries due to the specific mechanical and material properties. Body of vehicles, including cars, ships, and airplanes, are constantly exposed to different cyclic loads that lead to surface damage and finally, fatigue failure occurs by crack growth. Therefore, the quality of the machined surface has a direct effect on the fatigue life of the products. In this regard, the most important source of surface roughness is the choice of machining parameters. To understand it, turning operations were performed on 2xxx and 7xxx series aluminum alloys considering different values of process parameters. For any series of aluminums, 189 high-cycle fatigue testing specimens were prepared, and experiments were performed by axial tension–compression fatigue test machine in 7 levels of stress (all tests were repeated three times and the mean failure cycles were reported as the fatigue life). Next, an Artificial Neural Network (ANN) based on the Back Propagation (BP) error algorithm was developed to predict fatigue life of Al alloys which are machined with different conditions. To this end, the parameters considered as input variables to the neural network structure include the Yield Strength (YS) and Ultimate Tensile Strength (UTS) to identify the aluminum series, as well as the process parameters such as cutting depth (d), rotational speed (R), and feed speed (V). In addition, the applied cyclic stress (S) to specimen was considered as input. Furthermore, surface roughness (Z) and number of cycles to failure (N) were considered as ANN output. The comparison of the obtained results from ANN predicting with the experimental values indicates that this approach was tuned finely. Eventually, the presented model can be a suitable alternative to perform fatigue tests with high costs and time-consuming. Also, the most effective machining parameter on the surface roughness and fatigue limit was reported. | 
    
| ArticleNumber | 107128 | 
    
| Author | Ghorbani, S. Reza Kashyzadeh, K.  | 
    
| Author_xml | – sequence: 1 givenname: K. surname: Reza Kashyzadeh fullname: Reza Kashyzadeh, K. email: reza-kashi-zade-ka@rudn.ru organization: Department of Transport, Academy of Engineering, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation – sequence: 2 givenname: S. orcidid: 0000-0003-0251-3144 surname: Ghorbani fullname: Ghorbani, S. organization: Department of Mechanical Engineering Technologies, Academy of Engineering, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation  | 
    
| BookMark | eNqNkMtOAzEMRSMEEs9_CB8wJZnM5LFCqOIlIdjAOkozTkmZSaokBfH3pCoLxKqra9m-V_Y5RYchBkDokpIZJZRfrWYQls740QQzzlrSstoXtJUH6IRKwRqqOD2sNetJwxkRx-g05xUhRLSKnqD0DF84wCaZsUr5iumjWZgMAzbjMiZf3ifsYsLrBIO3xYcldqb45Qbw6B3g6OriZvJhM9VijN8Z-4ALpClvZ5Ox7z5sXWuTzAR1kM_RkTNjhotfPUNvd7ev84fm6eX-cX7z1FjW0tK4XgjbLrhSPe0GGKRixvCOq15JJqRdcOic4D2XrQRpOyoIrZ2F6ihwySg7Q9e7XJtizgmctr7U22MoqQLTlOgtQr3SfxDqLUK9Q1gT1L-EdfKTSd97eec7L9QXPz0kna2HYCvGBLboIfo9Un4AbYCXHg | 
    
| CitedBy_id | crossref_primary_10_3390_polym16202927 crossref_primary_10_3390_ma16134693 crossref_primary_10_3390_ma18020332 crossref_primary_10_3390_s23104969 crossref_primary_10_3390_app14114551 crossref_primary_10_1007_s10853_024_09799_8 crossref_primary_10_1016_j_measurement_2024_116355 crossref_primary_10_1088_2053_1591_ada41c crossref_primary_10_1177_09544089241231093 crossref_primary_10_1016_j_engfailanal_2023_107511 crossref_primary_10_3390_polym15193939 crossref_primary_10_3390_ma17215332 crossref_primary_10_1016_j_engfailanal_2024_108732 crossref_primary_10_1016_j_ijfatigue_2024_108418 crossref_primary_10_3390_ma18051153 crossref_primary_10_1111_ffe_14604 crossref_primary_10_1007_s12540_023_01601_9 crossref_primary_10_3390_pr12102214 crossref_primary_10_3390_cryst13081171 crossref_primary_10_1007_s00339_024_07356_3 crossref_primary_10_3390_app14083354 crossref_primary_10_3390_jmmp9030092  | 
    
| Cites_doi | 10.1016/j.ijfatigue.2014.07.002 10.3390/met10101372 10.3390/jmse10111627 10.1016/j.proeng.2014.12.260 10.1088/2053-1591/ab756b 10.1016/j.ijfatigue.2022.107311 10.3103/S1068798X11080077 10.1016/j.apsadv.2021.100071 10.1007/s00170-022-10351-8 10.1007/s11223-013-9510-x 10.1080/17445300701797111 10.3390/applmech3020030 10.1016/j.ijfatigue.2021.106356 10.1016/j.engfailanal.2022.106851 10.3390/buildings12040438 10.1016/j.surfcoat.2018.02.081 10.1007/s40868-019-00069-w 10.1038/s43246-020-00074-2 10.3390/jmse9121433 10.1016/0142-1123(95)98938-Y 10.1007/978-981-19-7150-1_19 10.1016/j.ijfatigue.2018.06.004 10.1007/s11668-017-0362-8 10.1016/S1452-3981(23)19701-X 10.5957/jspd.2011.27.1.35 10.1162/neco.1992.4.3.415 10.1088/1757-899X/1107/1/012024 10.1016/j.engfailanal.2018.03.033 10.1007/s11668-020-00841-w 10.1016/j.simpat.2020.102168 10.1007/s12540-020-00890-8 10.1007/978-981-19-7150-1_21 10.1007/s12540-021-01013-7 10.1016/j.proeng.2010.03.044 10.1016/j.engfracmech.2018.01.009  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2023 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.engfailanal.2023.107128 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1873-1961 | 
    
| ExternalDocumentID | 10_1016_j_engfailanal_2023_107128 S1350630723000821  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K WUQ XPP XSW ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c321t-f577c2b699514ded893aa6469598378cb6e4f7656828e8c41701e4fb941e68313 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1350-6307 | 
    
| IngestDate | Wed Oct 29 21:17:14 EDT 2025 Thu Apr 24 22:59:26 EDT 2025 Fri Feb 23 02:38:36 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | ANN Surface roughness Fatigue behavior Tension-compression fatigue test Machining parameters  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c321t-f577c2b699514ded893aa6469598378cb6e4f7656828e8c41701e4fb941e68313 | 
    
| ORCID | 0000-0003-0251-3144 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_engfailanal_2023_107128 crossref_primary_10_1016_j_engfailanal_2023_107128 elsevier_sciencedirect_doi_10_1016_j_engfailanal_2023_107128  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | April 2023 2023-04-00  | 
    
| PublicationDateYYYYMMDD | 2023-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2023 text: April 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Engineering failure analysis | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Hernandez, Santana, Souto, González, Morales (b0020) 2011 Reza Kashyzadeh (b0105) 2020; 20 Farrahi, Ahmadi, Kasyzadeh (b0120) 2020; 105 Kumar, Ghoshal, Arora, Nagdeve (b0175) 2023; 227–241 Maleki, Unal, Kashyzadeh (b0130) 2018; 344 Horňas, Běhal, Homola, Senck, Holzleitner, Godja, Pasztor, Hegedus, Doubrava, Ruzek, Petrusová (b0190) 2022; 107483 Mukhopadhyay (b0050) 2012; 2012 Chen, Cai, Deng, Jiang, Chen, Sun (b0075) 2020; 7 Yang, Kang, Liu, Kan (b0210) 2021; 151 Sukumar, Ramaiah, Nagarjuna (b0065) 2014; 97 Reza Kashyzadeh, Amiri, Ghorbani, Souri (b0220) 2022; 12 Nguyen, Tien, Tung, Luan (b0060) 2021; 3 Li, Chang, Shi, Liu, Chen, Zhang, Guan, Dai (b0195) 2022; 10 Benedetti, Fontanari, Monelli (b0155) 2010; 2 Raman, Padmanabhan (b0165) 1995; 17 Skillingberg (b0045) 2007; 112 Li, Zhang, Cao, Zeng, Zhuang, Qian, Chen (b0005) 2020; 1 Guan, Lou, Huang, Liang, Xiao, Li, Zeng (b0010) 2020; 22 MacKay (b0225) 1992; 4 Reza Kashyzadeh, Maleki (b0090) 2017; 17 Kashyzadeh, Farrahi, Shariyat, Ahmadian (b0110) 2018; 90 Ghorbani, Ghorbani, Reaz Kashyzadeh (b0235) 2020; 33 Danilenko (b0025) 2011; 31 Reza Kashyzadeh, Souri, Gharehsheikh Bayat, Safavi Jabalbarez, Ahmad (b0100) 2022; 3 Huang, Inderawati, Rohmat, Sukwadi (b0170) 2023; 1–19 Ghasempour-Mouziraji, Hosseinzadeh, Hajimiri, Najafizadeh, Marzban Shirkharkolaei (b0185) 2022; 123 Kashyzadeh, Arghavan (b0080) 2013; 45 Maleki, Unal, Reza Kashyzadeh (b0150) 2021; 27 Maleki, Unal, Kashyzadeh, Bagherifard, Guagliano (b0140) 2021; 4 Maleki, Farrahi, Reza Kashyzadeh, Unal, Gugaliano, Bagherifard (b0135) 2021; 27 A.O. Emmanuel, O.S.I. Fayomi, I.G. Akande, Aluminium alloys as advanced materials: a short communication, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, vol. 1107, no. 1, p. 012024. 2021, April, https://doi.org/10.1088/1757-899X/1107/1/012024. Banerjee, Doloi, Das, Dhupal (b0180) 2023; 257–270 Sielski (b0035) 2008; 3 Zhang, Wu, Xie, Zhang, Zhang (b0070) 2018; 191 Abdollahnia, Alizadeh Elizei, Reza Kashyzadeh (b0095) 2021; 9 Benedetti, Fontanari, Bandini, Savio (b0160) 2015; 70 Maleki (b0215) 2015; 103 Wahid, Siddiquee, Khan (b0055) 2020; 15 Kashyzadeh (b0115) 2020; 23 Zheng, Li, Sun, Huang, Xie (b0205) 2023; 143 Ramesh (b0030) 2011 Maleki, Unal, Kashyzadeh (b0145) 2018; 116 Mortazavi, Ince (b0200) 2023; 167 Omidi Bidgoli, Reza Kashyzadeh, Rahimian Koloor, Petru (b0230) 2020; 10 Zhao, Song, Xie, Hu, Chen (b0125) 2021; 11 Lamb, Beavers, Ingram, Schmieman (b0040) 2011; 27 Arghavan, Reza Kashyzadeh, Asfarjani (b0085) 2011; Vol. 87 Maleki (10.1016/j.engfailanal.2023.107128_b0130) 2018; 344 Kashyzadeh (10.1016/j.engfailanal.2023.107128_b0080) 2013; 45 Maleki (10.1016/j.engfailanal.2023.107128_b0145) 2018; 116 Guan (10.1016/j.engfailanal.2023.107128_b0010) 2020; 22 Kumar (10.1016/j.engfailanal.2023.107128_b0175) 2023; 227–241 Farrahi (10.1016/j.engfailanal.2023.107128_b0120) 2020; 105 Ramesh (10.1016/j.engfailanal.2023.107128_b0030) 2011 Zhao (10.1016/j.engfailanal.2023.107128_b0125) 2021; 11 Huang (10.1016/j.engfailanal.2023.107128_b0170) 2023; 1–19 Zheng (10.1016/j.engfailanal.2023.107128_b0205) 2023; 143 Li (10.1016/j.engfailanal.2023.107128_b0005) 2020; 1 Mortazavi (10.1016/j.engfailanal.2023.107128_b0200) 2023; 167 Ghasempour-Mouziraji (10.1016/j.engfailanal.2023.107128_b0185) 2022; 123 Arghavan (10.1016/j.engfailanal.2023.107128_b0085) 2011; Vol. 87 Sielski (10.1016/j.engfailanal.2023.107128_b0035) 2008; 3 Lamb (10.1016/j.engfailanal.2023.107128_b0040) 2011; 27 Chen (10.1016/j.engfailanal.2023.107128_b0075) 2020; 7 Hernandez (10.1016/j.engfailanal.2023.107128_b0020) 2011 Skillingberg (10.1016/j.engfailanal.2023.107128_b0045) 2007; 112 Zhang (10.1016/j.engfailanal.2023.107128_b0070) 2018; 191 Maleki (10.1016/j.engfailanal.2023.107128_b0135) 2021; 27 Reza Kashyzadeh (10.1016/j.engfailanal.2023.107128_b0090) 2017; 17 Wahid (10.1016/j.engfailanal.2023.107128_b0055) 2020; 15 MacKay (10.1016/j.engfailanal.2023.107128_b0225) 1992; 4 Raman (10.1016/j.engfailanal.2023.107128_b0165) 1995; 17 Mukhopadhyay (10.1016/j.engfailanal.2023.107128_b0050) 2012; 2012 Kashyzadeh (10.1016/j.engfailanal.2023.107128_b0115) 2020; 23 Benedetti (10.1016/j.engfailanal.2023.107128_b0155) 2010; 2 Banerjee (10.1016/j.engfailanal.2023.107128_b0180) 2023; 257–270 Reza Kashyzadeh (10.1016/j.engfailanal.2023.107128_b0100) 2022; 3 Reza Kashyzadeh (10.1016/j.engfailanal.2023.107128_b0105) 2020; 20 Benedetti (10.1016/j.engfailanal.2023.107128_b0160) 2015; 70 Horňas (10.1016/j.engfailanal.2023.107128_b0190) 2022; 107483 Ghorbani (10.1016/j.engfailanal.2023.107128_b0235) 2020; 33 Abdollahnia (10.1016/j.engfailanal.2023.107128_b0095) 2021; 9 Kashyzadeh (10.1016/j.engfailanal.2023.107128_b0110) 2018; 90 Omidi Bidgoli (10.1016/j.engfailanal.2023.107128_b0230) 2020; 10 Maleki (10.1016/j.engfailanal.2023.107128_b0215) 2015; 103 10.1016/j.engfailanal.2023.107128_b0015 Maleki (10.1016/j.engfailanal.2023.107128_b0140) 2021; 4 Reza Kashyzadeh (10.1016/j.engfailanal.2023.107128_b0220) 2022; 12 Nguyen (10.1016/j.engfailanal.2023.107128_b0060) 2021; 3 Danilenko (10.1016/j.engfailanal.2023.107128_b0025) 2011; 31 Maleki (10.1016/j.engfailanal.2023.107128_b0150) 2021; 27 Li (10.1016/j.engfailanal.2023.107128_b0195) 2022; 10 Yang (10.1016/j.engfailanal.2023.107128_b0210) 2021; 151 Sukumar (10.1016/j.engfailanal.2023.107128_b0065) 2014; 97  | 
    
| References_xml | – volume: 9 start-page: 1433 year: 2021 ident: b0095 article-title: Multiaxial fatigue life assessment of integral concrete bridge with a real-scale and complicated geometry due to the simultaneous effects of temperature variations and sea waves clash publication-title: J. Marine Sci. Eng. – volume: 2 start-page: 397 year: 2010 end-page: 406 ident: b0155 article-title: Plain fatigue resistance of shot peened high strength aluminium alloys: effect of loading ratio publication-title: Procedia Eng. – year: 2011 ident: b0020 article-title: Characterization of the atmospheric corrosion of aluminum in archipelagic subtropical environments publication-title: Int. J. Electrochem. Sci. – volume: 20 start-page: 455 year: 2020 end-page: 463 ident: b0105 article-title: Effects of axial and multiaxial variable amplitude loading conditions on the fatigue life assessment of automotive steering knuckle publication-title: J. Fail. Anal. Prev. – volume: 10 start-page: 1372 year: 2020 ident: b0230 article-title: Estimation of critical dimensions for the crack and pitting corrosion defects in the oil storage tank using finite element method and Taguchi approach publication-title: Metals – volume: 2012 year: 2012 ident: b0050 article-title: Alloy designation, processing, and use of AA6XXX series aluminium alloys publication-title: Int. Scholarly Res. Notices – volume: 107483 year: 2022 ident: b0190 article-title: Modelling fatigue life prediction of additively manufactured Ti–6Al–4V samples using machine learning approach publication-title: Int. J. Fatigue – volume: 116 start-page: 48 year: 2018 end-page: 67 ident: b0145 article-title: Fatigue behavior prediction and analysis of shot peened mild carbon steels publication-title: Int. J. Fatigue – volume: 97 start-page: 365 year: 2014 end-page: 371 ident: b0065 article-title: Optimization and prediction of parameters in face milling of Al-6061 using Taguchi and ANN approach publication-title: Procedia Eng. – volume: 90 start-page: 534 year: 2018 end-page: 553 ident: b0110 article-title: Experimental accuracy assessment of various high-cycle fatigue criteria for a critical component with a complicated geometry and multi-input random non-proportional 3D stress components publication-title: Eng. Fail. Anal. – volume: 70 start-page: 451 year: 2015 end-page: 462 ident: b0160 article-title: High-and very high-cycle plain fatigue resistance of shot peened high-strength aluminum alloys: the role of surface morphology publication-title: Int. J. Fatigue – volume: 27 start-page: 4418 year: 2021 end-page: 4440 ident: b0150 article-title: Influences of shot peening parameters on mechanical properties and fatigue behavior of 316 L steel: experimental, Taguchi method and response surface methodology publication-title: Met. Mater. Int. – volume: 1 start-page: 1 year: 2020 end-page: 10 ident: b0005 article-title: Accelerated discovery of high-strength aluminum alloys by machine learning publication-title: Commun. Mater. – volume: 4 year: 2021 ident: b0140 article-title: A systematic study on the effects of shot peening on a mild carbon steel: Microstructure, mechanical properties, and axial fatigue strength of smooth and notched specimens publication-title: Appl. Surface Sci. Adv. – volume: 105 year: 2020 ident: b0120 article-title: Simulation of vehicle body spot weld failures due to fatigue by considering road roughness and vehicle velocity publication-title: Simul. Model. Pract. Theory – volume: 17 start-page: 1276 year: 2017 end-page: 1287 ident: b0090 article-title: Experimental investigation and artificial neural network modeling of warm galvanization and hardened chromium coatings thickness effects on fatigue life of AISI 1045 carbon steel publication-title: J. Fail. Anal. Prev. – volume: 103 year: 2015 ident: b0215 article-title: Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075–T6 aluminum alloy publication-title: IOP Conf. Ser.: Mater. Sci. Eng. – volume: 344 start-page: 62 year: 2018 end-page: 74 ident: b0130 article-title: Effects of conventional, severe, over, and re-shot peening processes on the fatigue behavior of mild carbon steel publication-title: Surf. Coat. Technol. – volume: 23 start-page: 392 year: 2020 end-page: 404 ident: b0115 article-title: A new algorithm for fatigue life assessment of automotive safety components based on the probabilistic approach: the case of the steering knuckle publication-title: Eng. Sci. Technol. Int. J. – volume: 45 start-page: 748 year: 2013 end-page: 757 ident: b0080 article-title: Study of the effect of different industrial coating with microscale thickness on the CK45 steel by experimental and finite element methods publication-title: Strength Mater. – volume: 257–270 year: 2023 ident: b0180 article-title: Parametric optimization of MRR during ultrasonic machining process publication-title: Adv. Modern Mach. Process. – volume: Vol. 87 start-page: 230 year: 2011 end-page: 237 ident: b0085 article-title: Investigating effect of industrial coatings on fatigue damage publication-title: Appl. Mech. Mater. – volume: 3 start-page: 517 year: 2022 end-page: 532 ident: b0100 article-title: Fatigue life analysis of automotive cast iron knuckle under constant and variable amplitude loading conditions publication-title: Appl. Mech. – volume: 15 start-page: 70 year: 2020 end-page: 80 ident: b0055 article-title: Aluminum alloys in marine construction: characteristics, application, and problems from a fabrication viewpoint publication-title: Marine Syst. Ocean Technol. – volume: 4 start-page: 415 year: 1992 end-page: 447 ident: b0225 article-title: Bayesian interpolation publication-title: Neural Comput. – volume: 167 year: 2023 ident: b0200 article-title: Artificial neural networks-based J-integral prediction for cracked bodies under elasto-plastic deformation state–monotonic loading publication-title: Int. J. Fatigue – volume: 151 year: 2021 ident: b0210 article-title: A novel method of multiaxial fatigue life prediction based on deep learning publication-title: Int. J. Fatigue – volume: 27 start-page: 35 year: 2011 end-page: 49 ident: b0040 article-title: The benefits and cost impact of aluminum naval ship structure publication-title: J. Ship Prod. Des. – volume: 112 year: 2007 ident: b0045 article-title: Aluminum at sea: speed, endurance and affordability publication-title: Marine Log – volume: 3 start-page: 71 year: 2021 end-page: 84 ident: b0060 article-title: Analysis of tool wear and surface roughness in high-speed milling process of aluminum alloy Al6061 publication-title: EUREKA: Phys. Eng. – volume: 123 start-page: 4265 year: 2022 end-page: 4276 ident: b0185 article-title: Machine learning-based optimization of geometrical accuracy in wire cut drilling publication-title: Int. J. Adv. Manuf. Technol. – volume: 17 start-page: 179 year: 1995 end-page: 182 ident: b0165 article-title: Effect of electropolishing on the room-temperature low-cycle fatigue behaviour of AISl 304LN stainless steel publication-title: Int. J. Fatigue – volume: 3 start-page: 57 year: 2008 end-page: 65 ident: b0035 article-title: Research needs in aluminum structure publication-title: Ships and Offshore Structures – volume: 191 start-page: 1 year: 2018 end-page: 12 ident: b0070 article-title: The effects of pre-cyclic stress on fracture properties and fatigue crack propagation life of 7N01 aluminum alloy publication-title: Eng. Fract. Mech. – volume: 33 start-page: 1598 year: 2020 end-page: 1607 ident: b0235 article-title: Taguchi approach and response surface analysis for design of a high-performance single-walled carbon nanotube bundle interconnects in a full adder publication-title: Int. J. Eng. – volume: 10 start-page: 1627 year: 2022 ident: b0195 article-title: Probability prediction approach of fatigue failure for the subsea wellhead using bayesian regularization artificial neural network publication-title: J. Marine Sci. Eng. – volume: 31 start-page: 797 year: 2011 end-page: 799 ident: b0025 article-title: Workability of aluminum alloys publication-title: Russ. Eng. Res. – volume: 1–19 year: 2023 ident: b0170 article-title: The development of an ANN surface roughness prediction system of multiple materials in CNC turning publication-title: Int. J. Adv. Manuf. Technol. – year: 2011 ident: b0030 article-title: Workability Analysis on Aluminium based Composites and Aluminium Alloys – volume: 227–241 year: 2023 ident: b0175 article-title: Optimization of process variables in sinking EDM using artificial neural network (ANN) method publication-title: Adv. Modern Mach. Process. – volume: 22 start-page: 68 year: 2020 end-page: 75 ident: b0010 article-title: Development of aluminum alloy materials: current status, trend, and prospects publication-title: Strategic Study Chin. Acad. Eng. – volume: 7 year: 2020 ident: b0075 article-title: Effect of different surface conditions on fatigue properties of 7N01 aluminum alloy and the behavioral mechanism of crack of the alloy under alternating load publication-title: Mater. Res. Express – volume: 143 year: 2023 ident: b0205 article-title: Multiaxial fatigue life prediction of metals considering loading paths by image recognition and machine learning publication-title: Eng. Fail. Anal. – volume: 12 start-page: 438 year: 2022 ident: b0220 article-title: Prediction of concrete compressive strength using a back-propagation neural network optimized by a genetic algorithm and response surface analysis considering the appearance of aggregates and curing conditions publication-title: Buildings – volume: 11 start-page: 1 year: 2021 end-page: 17 ident: b0125 article-title: Surface roughness effect on fatigue strength of aluminum alloy using revised stress field intensity approach publication-title: Sci. Rep. – reference: A.O. Emmanuel, O.S.I. Fayomi, I.G. Akande, Aluminium alloys as advanced materials: a short communication, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, vol. 1107, no. 1, p. 012024. 2021, April, https://doi.org/10.1088/1757-899X/1107/1/012024. – volume: 27 start-page: 2575 year: 2021 end-page: 2591 ident: b0135 article-title: Effects of conventional and severe shot peening on residual stress and fatigue strength of steel AISI 1060 and residual stress relaxation due to fatigue loading: experimental and numerical simulation publication-title: Met. Mater. Int. – volume: 1–19 year: 2023 ident: 10.1016/j.engfailanal.2023.107128_b0170 article-title: The development of an ANN surface roughness prediction system of multiple materials in CNC turning publication-title: Int. J. Adv. Manuf. Technol. – volume: 70 start-page: 451 year: 2015 ident: 10.1016/j.engfailanal.2023.107128_b0160 article-title: High-and very high-cycle plain fatigue resistance of shot peened high-strength aluminum alloys: the role of surface morphology publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2014.07.002 – volume: 10 start-page: 1372 issue: 10 year: 2020 ident: 10.1016/j.engfailanal.2023.107128_b0230 article-title: Estimation of critical dimensions for the crack and pitting corrosion defects in the oil storage tank using finite element method and Taguchi approach publication-title: Metals doi: 10.3390/met10101372 – volume: 2012 year: 2012 ident: 10.1016/j.engfailanal.2023.107128_b0050 article-title: Alloy designation, processing, and use of AA6XXX series aluminium alloys publication-title: Int. Scholarly Res. Notices – volume: 10 start-page: 1627 issue: 11 year: 2022 ident: 10.1016/j.engfailanal.2023.107128_b0195 article-title: Probability prediction approach of fatigue failure for the subsea wellhead using bayesian regularization artificial neural network publication-title: J. Marine Sci. Eng. doi: 10.3390/jmse10111627 – volume: 97 start-page: 365 year: 2014 ident: 10.1016/j.engfailanal.2023.107128_b0065 article-title: Optimization and prediction of parameters in face milling of Al-6061 using Taguchi and ANN approach publication-title: Procedia Eng. doi: 10.1016/j.proeng.2014.12.260 – volume: 7 issue: 2 year: 2020 ident: 10.1016/j.engfailanal.2023.107128_b0075 article-title: Effect of different surface conditions on fatigue properties of 7N01 aluminum alloy and the behavioral mechanism of crack of the alloy under alternating load publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab756b – volume: 167 year: 2023 ident: 10.1016/j.engfailanal.2023.107128_b0200 article-title: Artificial neural networks-based J-integral prediction for cracked bodies under elasto-plastic deformation state–monotonic loading publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2022.107311 – volume: 31 start-page: 797 issue: 8 year: 2011 ident: 10.1016/j.engfailanal.2023.107128_b0025 article-title: Workability of aluminum alloys publication-title: Russ. Eng. Res. doi: 10.3103/S1068798X11080077 – volume: 22 start-page: 68 issue: 5 year: 2020 ident: 10.1016/j.engfailanal.2023.107128_b0010 article-title: Development of aluminum alloy materials: current status, trend, and prospects publication-title: Strategic Study Chin. Acad. Eng. – volume: 112 issue: 5 year: 2007 ident: 10.1016/j.engfailanal.2023.107128_b0045 article-title: Aluminum at sea: speed, endurance and affordability publication-title: Marine Log – volume: Vol. 87 start-page: 230 year: 2011 ident: 10.1016/j.engfailanal.2023.107128_b0085 article-title: Investigating effect of industrial coatings on fatigue damage – volume: 4 year: 2021 ident: 10.1016/j.engfailanal.2023.107128_b0140 article-title: A systematic study on the effects of shot peening on a mild carbon steel: Microstructure, mechanical properties, and axial fatigue strength of smooth and notched specimens publication-title: Appl. Surface Sci. Adv. doi: 10.1016/j.apsadv.2021.100071 – volume: 123 start-page: 4265 issue: 11 year: 2022 ident: 10.1016/j.engfailanal.2023.107128_b0185 article-title: Machine learning-based optimization of geometrical accuracy in wire cut drilling publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-022-10351-8 – volume: 45 start-page: 748 issue: 6 year: 2013 ident: 10.1016/j.engfailanal.2023.107128_b0080 article-title: Study of the effect of different industrial coating with microscale thickness on the CK45 steel by experimental and finite element methods publication-title: Strength Mater. doi: 10.1007/s11223-013-9510-x – volume: 3 start-page: 57 issue: 1 year: 2008 ident: 10.1016/j.engfailanal.2023.107128_b0035 article-title: Research needs in aluminum structure publication-title: Ships and Offshore Structures doi: 10.1080/17445300701797111 – volume: 3 start-page: 517 issue: 2 year: 2022 ident: 10.1016/j.engfailanal.2023.107128_b0100 article-title: Fatigue life analysis of automotive cast iron knuckle under constant and variable amplitude loading conditions publication-title: Appl. Mech. doi: 10.3390/applmech3020030 – volume: 151 year: 2021 ident: 10.1016/j.engfailanal.2023.107128_b0210 article-title: A novel method of multiaxial fatigue life prediction based on deep learning publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2021.106356 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.engfailanal.2023.107128_b0125 article-title: Surface roughness effect on fatigue strength of aluminum alloy using revised stress field intensity approach publication-title: Sci. Rep. – volume: 143 year: 2023 ident: 10.1016/j.engfailanal.2023.107128_b0205 article-title: Multiaxial fatigue life prediction of metals considering loading paths by image recognition and machine learning publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2022.106851 – volume: 107483 year: 2022 ident: 10.1016/j.engfailanal.2023.107128_b0190 article-title: Modelling fatigue life prediction of additively manufactured Ti–6Al–4V samples using machine learning approach publication-title: Int. J. Fatigue – volume: 12 start-page: 438 issue: 4 year: 2022 ident: 10.1016/j.engfailanal.2023.107128_b0220 article-title: Prediction of concrete compressive strength using a back-propagation neural network optimized by a genetic algorithm and response surface analysis considering the appearance of aggregates and curing conditions publication-title: Buildings doi: 10.3390/buildings12040438 – volume: 344 start-page: 62 year: 2018 ident: 10.1016/j.engfailanal.2023.107128_b0130 article-title: Effects of conventional, severe, over, and re-shot peening processes on the fatigue behavior of mild carbon steel publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.02.081 – volume: 15 start-page: 70 issue: 1 year: 2020 ident: 10.1016/j.engfailanal.2023.107128_b0055 article-title: Aluminum alloys in marine construction: characteristics, application, and problems from a fabrication viewpoint publication-title: Marine Syst. Ocean Technol. doi: 10.1007/s40868-019-00069-w – volume: 1 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.engfailanal.2023.107128_b0005 article-title: Accelerated discovery of high-strength aluminum alloys by machine learning publication-title: Commun. Mater. doi: 10.1038/s43246-020-00074-2 – volume: 9 start-page: 1433 issue: 12 year: 2021 ident: 10.1016/j.engfailanal.2023.107128_b0095 article-title: Multiaxial fatigue life assessment of integral concrete bridge with a real-scale and complicated geometry due to the simultaneous effects of temperature variations and sea waves clash publication-title: J. Marine Sci. Eng. doi: 10.3390/jmse9121433 – volume: 17 start-page: 179 issue: 3 year: 1995 ident: 10.1016/j.engfailanal.2023.107128_b0165 article-title: Effect of electropolishing on the room-temperature low-cycle fatigue behaviour of AISl 304LN stainless steel publication-title: Int. J. Fatigue doi: 10.1016/0142-1123(95)98938-Y – volume: 227–241 year: 2023 ident: 10.1016/j.engfailanal.2023.107128_b0175 article-title: Optimization of process variables in sinking EDM using artificial neural network (ANN) method publication-title: Adv. Modern Mach. Process. doi: 10.1007/978-981-19-7150-1_19 – volume: 116 start-page: 48 year: 2018 ident: 10.1016/j.engfailanal.2023.107128_b0145 article-title: Fatigue behavior prediction and analysis of shot peened mild carbon steels publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2018.06.004 – year: 2011 ident: 10.1016/j.engfailanal.2023.107128_b0030 – volume: 17 start-page: 1276 issue: 6 year: 2017 ident: 10.1016/j.engfailanal.2023.107128_b0090 article-title: Experimental investigation and artificial neural network modeling of warm galvanization and hardened chromium coatings thickness effects on fatigue life of AISI 1045 carbon steel publication-title: J. Fail. Anal. Prev. doi: 10.1007/s11668-017-0362-8 – year: 2011 ident: 10.1016/j.engfailanal.2023.107128_b0020 article-title: Characterization of the atmospheric corrosion of aluminum in archipelagic subtropical environments publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)19701-X – volume: 27 start-page: 35 issue: 01 year: 2011 ident: 10.1016/j.engfailanal.2023.107128_b0040 article-title: The benefits and cost impact of aluminum naval ship structure publication-title: J. Ship Prod. Des. doi: 10.5957/jspd.2011.27.1.35 – volume: 33 start-page: 1598 issue: 8 year: 2020 ident: 10.1016/j.engfailanal.2023.107128_b0235 article-title: Taguchi approach and response surface analysis for design of a high-performance single-walled carbon nanotube bundle interconnects in a full adder publication-title: Int. J. Eng. – volume: 3 start-page: 71 year: 2021 ident: 10.1016/j.engfailanal.2023.107128_b0060 article-title: Analysis of tool wear and surface roughness in high-speed milling process of aluminum alloy Al6061 publication-title: EUREKA: Phys. Eng. – volume: 4 start-page: 415 issue: 3 year: 1992 ident: 10.1016/j.engfailanal.2023.107128_b0225 article-title: Bayesian interpolation publication-title: Neural Comput. doi: 10.1162/neco.1992.4.3.415 – ident: 10.1016/j.engfailanal.2023.107128_b0015 doi: 10.1088/1757-899X/1107/1/012024 – volume: 90 start-page: 534 year: 2018 ident: 10.1016/j.engfailanal.2023.107128_b0110 article-title: Experimental accuracy assessment of various high-cycle fatigue criteria for a critical component with a complicated geometry and multi-input random non-proportional 3D stress components publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2018.03.033 – volume: 20 start-page: 455 issue: 2 year: 2020 ident: 10.1016/j.engfailanal.2023.107128_b0105 article-title: Effects of axial and multiaxial variable amplitude loading conditions on the fatigue life assessment of automotive steering knuckle publication-title: J. Fail. Anal. Prev. doi: 10.1007/s11668-020-00841-w – volume: 105 year: 2020 ident: 10.1016/j.engfailanal.2023.107128_b0120 article-title: Simulation of vehicle body spot weld failures due to fatigue by considering road roughness and vehicle velocity publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2020.102168 – volume: 103 issue: 1 year: 2015 ident: 10.1016/j.engfailanal.2023.107128_b0215 article-title: Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075–T6 aluminum alloy publication-title: IOP Conf. Ser.: Mater. Sci. Eng. – volume: 27 start-page: 2575 issue: 8 year: 2021 ident: 10.1016/j.engfailanal.2023.107128_b0135 article-title: Effects of conventional and severe shot peening on residual stress and fatigue strength of steel AISI 1060 and residual stress relaxation due to fatigue loading: experimental and numerical simulation publication-title: Met. Mater. Int. doi: 10.1007/s12540-020-00890-8 – volume: 257–270 year: 2023 ident: 10.1016/j.engfailanal.2023.107128_b0180 article-title: Parametric optimization of MRR during ultrasonic machining process publication-title: Adv. Modern Mach. Process. doi: 10.1007/978-981-19-7150-1_21 – volume: 23 start-page: 392 issue: 2 year: 2020 ident: 10.1016/j.engfailanal.2023.107128_b0115 article-title: A new algorithm for fatigue life assessment of automotive safety components based on the probabilistic approach: the case of the steering knuckle publication-title: Eng. Sci. Technol. Int. J. – volume: 27 start-page: 4418 issue: 11 year: 2021 ident: 10.1016/j.engfailanal.2023.107128_b0150 article-title: Influences of shot peening parameters on mechanical properties and fatigue behavior of 316 L steel: experimental, Taguchi method and response surface methodology publication-title: Met. Mater. Int. doi: 10.1007/s12540-021-01013-7 – volume: 2 start-page: 397 issue: 1 year: 2010 ident: 10.1016/j.engfailanal.2023.107128_b0155 article-title: Plain fatigue resistance of shot peened high strength aluminium alloys: effect of loading ratio publication-title: Procedia Eng. doi: 10.1016/j.proeng.2010.03.044 – volume: 191 start-page: 1 year: 2018 ident: 10.1016/j.engfailanal.2023.107128_b0070 article-title: The effects of pre-cyclic stress on fracture properties and fatigue crack propagation life of 7N01 aluminum alloy publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2018.01.009  | 
    
| SSID | ssj0007291 | 
    
| Score | 2.4888625 | 
    
| Snippet | •Roughness measurement and high-cycle fatigue test were performed to investigate the effect of turning parameters on the quality and strength of aluminum... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 107128 | 
    
| SubjectTerms | ANN Fatigue behavior Machining parameters Surface roughness Tension-compression fatigue test  | 
    
| Title | New neural network-based algorithm for predicting fatigue life of aluminum alloys in terms of machining parameters | 
    
| URI | https://dx.doi.org/10.1016/j.engfailanal.2023.107128 | 
    
| Volume | 146 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-1961 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007291 issn: 1350-6307 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-1961 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007291 issn: 1350-6307 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-1961 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007291 issn: 1350-6307 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-1961 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007291 issn: 1350-6307 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-1961 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007291 issn: 1350-6307 databaseCode: AKRWK dateStart: 19940301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5jguiDeMV5GRF87bYubdqCL2M45m2IOthbSdpkVtpubOuDL_52z2k7N0FQ8Kk0zYFwkp7zhXz5DiGXWjJMy8xQ2m4ZmPEMl7c8-K9CzYUpmRJ4d_hhwPtD63Zkjyqku7wLg7TKMvYXMT2P1mVLs_RmcxpFzWeT2SgY5QCIxkSW32C3HKxi0PhY0TwAPBabLhgK9t4kFyuOl0rHWkSxgDlrYB1xaHdMLMz-U45ayzu9XbJTAkbaKca0Ryoq3SfbazKCB2QGkYqiMCX0Swtat4HZKaQiHk9g9_-aUMCmdDrDUxnkOVMNEzLOFI0jrehEQ8csidIsoXgO_z6nUUoxZs_xW5LzLdEKdcIT5M_MD8mwd_3S7RtlLQUjYG1zYWjbcYK25B4gKitUIcAUITjsjW0PJeUDyZWlHQB3sANTbmChTDu0SM8yFXeZyY5INZ2k6phQDlOjmSlEaKMYmJKcS2YCLNNMW8q2asRdes8PSqFxrHcR-0tG2Zu_5ngfHe8Xjq-R9pfptFDb-IvR1XKK_G9Lx4es8Lv5yf_MT8kWvhVknjNSXcwydQ44ZSHr-UKsk41O9-n-EZ83d_3BJ8rm63U | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6Kgo-D-MT6XMFr2qab3STgRYqlatuLLfQWNslujSRpaZuDF3-7M01iKwgKXnd3YJndzHxDvv2GkFvtM0zLzFCaNwzMeIYjGi58V6EW0vSZkvh2uNcXnaH1NOKjCmmVb2GQVlnE_jymL6N1MVIvvFmfRlH9xWQcBaNsANGYyKAE2rR408YKrPax4nkAesyrLtgLLt8iNyuSl0rHWkaxhEOrYSNxGLdN7Mz-U5JaSzztfbJXIEZ6n2_qgFRUekh213QEj8gMQhVFZUpYl-a8bgPTU0hlPJ5A-f-aUACndDrD3zJIdKYaTmScKRpHWtGJhoVZEqVZQvFH_PucRinFoD3HuWRJuEQrFApPkEAzPybD9sOg1TGKZgpGwJrmwtDctoOmL1yAVFaoQsApUgoojrmLmvKBL5SlbUB3UIIpJ7BQpx1GfNcylXCYyU7IRjpJ1SmhAs5GM1PKkKMamPKF8JkJuEwzbSluVYlTes8LCqVxbHgReyWl7M1bc7yHjvdyx1dJ88t0mstt_MXorjwi79vd8SAt_G5-9j_za7LdGfS6Xvex_3xOdnAmZ_ZckI3FLFOXAFoW_tXyUn4C68nrdQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+neural+network-based+algorithm+for+predicting+fatigue+life+of+aluminum+alloys+in+terms+of+machining+parameters&rft.jtitle=Engineering+failure+analysis&rft.au=Reza+Kashyzadeh%2C+K.&rft.au=Ghorbani%2C+S.&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=1350-6307&rft.eissn=1873-1961&rft.volume=146&rft_id=info:doi/10.1016%2Fj.engfailanal.2023.107128&rft.externalDocID=S1350630723000821 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-6307&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-6307&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-6307&client=summon |