New neural network-based algorithm for predicting fatigue life of aluminum alloys in terms of machining parameters

•Roughness measurement and high-cycle fatigue test were performed to investigate the effect of turning parameters on the quality and strength of aluminum products.•The difference in the effects of turning parameters on surface roughness and fatigue behavior of different aluminum series (2xxx and 7xx...

Full description

Saved in:
Bibliographic Details
Published inEngineering failure analysis Vol. 146; p. 107128
Main Authors Reza Kashyzadeh, K., Ghorbani, S.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2023
Subjects
Online AccessGet full text
ISSN1350-6307
1873-1961
DOI10.1016/j.engfailanal.2023.107128

Cover

Abstract •Roughness measurement and high-cycle fatigue test were performed to investigate the effect of turning parameters on the quality and strength of aluminum products.•The difference in the effects of turning parameters on surface roughness and fatigue behavior of different aluminum series (2xxx and 7xxx) was investigated experimentally.•Two-stage artificial neural network model was presented to predict the fatigue life of turned aluminum parts with higher accuracy than the usual ANN model. Various classification of aluminum alloys is one of the most common applied materials in transportation industries due to the specific mechanical and material properties. Body of vehicles, including cars, ships, and airplanes, are constantly exposed to different cyclic loads that lead to surface damage and finally, fatigue failure occurs by crack growth. Therefore, the quality of the machined surface has a direct effect on the fatigue life of the products. In this regard, the most important source of surface roughness is the choice of machining parameters. To understand it, turning operations were performed on 2xxx and 7xxx series aluminum alloys considering different values of process parameters. For any series of aluminums, 189 high-cycle fatigue testing specimens were prepared, and experiments were performed by axial tension–compression fatigue test machine in 7 levels of stress (all tests were repeated three times and the mean failure cycles were reported as the fatigue life). Next, an Artificial Neural Network (ANN) based on the Back Propagation (BP) error algorithm was developed to predict fatigue life of Al alloys which are machined with different conditions. To this end, the parameters considered as input variables to the neural network structure include the Yield Strength (YS) and Ultimate Tensile Strength (UTS) to identify the aluminum series, as well as the process parameters such as cutting depth (d), rotational speed (R), and feed speed (V). In addition, the applied cyclic stress (S) to specimen was considered as input. Furthermore, surface roughness (Z) and number of cycles to failure (N) were considered as ANN output. The comparison of the obtained results from ANN predicting with the experimental values indicates that this approach was tuned finely. Eventually, the presented model can be a suitable alternative to perform fatigue tests with high costs and time-consuming.‌‌ Also, the most effective machining parameter on the surface roughness and fatigue limit was reported.
AbstractList •Roughness measurement and high-cycle fatigue test were performed to investigate the effect of turning parameters on the quality and strength of aluminum products.•The difference in the effects of turning parameters on surface roughness and fatigue behavior of different aluminum series (2xxx and 7xxx) was investigated experimentally.•Two-stage artificial neural network model was presented to predict the fatigue life of turned aluminum parts with higher accuracy than the usual ANN model. Various classification of aluminum alloys is one of the most common applied materials in transportation industries due to the specific mechanical and material properties. Body of vehicles, including cars, ships, and airplanes, are constantly exposed to different cyclic loads that lead to surface damage and finally, fatigue failure occurs by crack growth. Therefore, the quality of the machined surface has a direct effect on the fatigue life of the products. In this regard, the most important source of surface roughness is the choice of machining parameters. To understand it, turning operations were performed on 2xxx and 7xxx series aluminum alloys considering different values of process parameters. For any series of aluminums, 189 high-cycle fatigue testing specimens were prepared, and experiments were performed by axial tension–compression fatigue test machine in 7 levels of stress (all tests were repeated three times and the mean failure cycles were reported as the fatigue life). Next, an Artificial Neural Network (ANN) based on the Back Propagation (BP) error algorithm was developed to predict fatigue life of Al alloys which are machined with different conditions. To this end, the parameters considered as input variables to the neural network structure include the Yield Strength (YS) and Ultimate Tensile Strength (UTS) to identify the aluminum series, as well as the process parameters such as cutting depth (d), rotational speed (R), and feed speed (V). In addition, the applied cyclic stress (S) to specimen was considered as input. Furthermore, surface roughness (Z) and number of cycles to failure (N) were considered as ANN output. The comparison of the obtained results from ANN predicting with the experimental values indicates that this approach was tuned finely. Eventually, the presented model can be a suitable alternative to perform fatigue tests with high costs and time-consuming.‌‌ Also, the most effective machining parameter on the surface roughness and fatigue limit was reported.
ArticleNumber 107128
Author Ghorbani, S.
Reza Kashyzadeh, K.
Author_xml – sequence: 1
  givenname: K.
  surname: Reza Kashyzadeh
  fullname: Reza Kashyzadeh, K.
  email: reza-kashi-zade-ka@rudn.ru
  organization: Department of Transport, Academy of Engineering, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
– sequence: 2
  givenname: S.
  orcidid: 0000-0003-0251-3144
  surname: Ghorbani
  fullname: Ghorbani, S.
  organization: Department of Mechanical Engineering Technologies, Academy of Engineering, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
BookMark eNqNkMtOAzEMRSMEEs9_CB8wJZnM5LFCqOIlIdjAOkozTkmZSaokBfH3pCoLxKqra9m-V_Y5RYchBkDokpIZJZRfrWYQls740QQzzlrSstoXtJUH6IRKwRqqOD2sNetJwxkRx-g05xUhRLSKnqD0DF84wCaZsUr5iumjWZgMAzbjMiZf3ifsYsLrBIO3xYcldqb45Qbw6B3g6OriZvJhM9VijN8Z-4ALpClvZ5Ox7z5sXWuTzAR1kM_RkTNjhotfPUNvd7ev84fm6eX-cX7z1FjW0tK4XgjbLrhSPe0GGKRixvCOq15JJqRdcOic4D2XrQRpOyoIrZ2F6ihwySg7Q9e7XJtizgmctr7U22MoqQLTlOgtQr3SfxDqLUK9Q1gT1L-EdfKTSd97eec7L9QXPz0kna2HYCvGBLboIfo9Un4AbYCXHg
CitedBy_id crossref_primary_10_3390_polym16202927
crossref_primary_10_3390_ma16134693
crossref_primary_10_3390_ma18020332
crossref_primary_10_3390_s23104969
crossref_primary_10_3390_app14114551
crossref_primary_10_1007_s10853_024_09799_8
crossref_primary_10_1016_j_measurement_2024_116355
crossref_primary_10_1088_2053_1591_ada41c
crossref_primary_10_1177_09544089241231093
crossref_primary_10_1016_j_engfailanal_2023_107511
crossref_primary_10_3390_polym15193939
crossref_primary_10_3390_ma17215332
crossref_primary_10_1016_j_engfailanal_2024_108732
crossref_primary_10_1016_j_ijfatigue_2024_108418
crossref_primary_10_3390_ma18051153
crossref_primary_10_1111_ffe_14604
crossref_primary_10_1007_s12540_023_01601_9
crossref_primary_10_3390_pr12102214
crossref_primary_10_3390_cryst13081171
crossref_primary_10_1007_s00339_024_07356_3
crossref_primary_10_3390_app14083354
crossref_primary_10_3390_jmmp9030092
Cites_doi 10.1016/j.ijfatigue.2014.07.002
10.3390/met10101372
10.3390/jmse10111627
10.1016/j.proeng.2014.12.260
10.1088/2053-1591/ab756b
10.1016/j.ijfatigue.2022.107311
10.3103/S1068798X11080077
10.1016/j.apsadv.2021.100071
10.1007/s00170-022-10351-8
10.1007/s11223-013-9510-x
10.1080/17445300701797111
10.3390/applmech3020030
10.1016/j.ijfatigue.2021.106356
10.1016/j.engfailanal.2022.106851
10.3390/buildings12040438
10.1016/j.surfcoat.2018.02.081
10.1007/s40868-019-00069-w
10.1038/s43246-020-00074-2
10.3390/jmse9121433
10.1016/0142-1123(95)98938-Y
10.1007/978-981-19-7150-1_19
10.1016/j.ijfatigue.2018.06.004
10.1007/s11668-017-0362-8
10.1016/S1452-3981(23)19701-X
10.5957/jspd.2011.27.1.35
10.1162/neco.1992.4.3.415
10.1088/1757-899X/1107/1/012024
10.1016/j.engfailanal.2018.03.033
10.1007/s11668-020-00841-w
10.1016/j.simpat.2020.102168
10.1007/s12540-020-00890-8
10.1007/978-981-19-7150-1_21
10.1007/s12540-021-01013-7
10.1016/j.proeng.2010.03.044
10.1016/j.engfracmech.2018.01.009
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engfailanal.2023.107128
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-1961
ExternalDocumentID 10_1016_j_engfailanal_2023_107128
S1350630723000821
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
WUQ
XPP
XSW
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c321t-f577c2b699514ded893aa6469598378cb6e4f7656828e8c41701e4fb941e68313
IEDL.DBID .~1
ISSN 1350-6307
IngestDate Wed Oct 29 21:17:14 EDT 2025
Thu Apr 24 22:59:26 EDT 2025
Fri Feb 23 02:38:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ANN
Surface roughness
Fatigue behavior
Tension-compression fatigue test
Machining parameters
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-f577c2b699514ded893aa6469598378cb6e4f7656828e8c41701e4fb941e68313
ORCID 0000-0003-0251-3144
ParticipantIDs crossref_citationtrail_10_1016_j_engfailanal_2023_107128
crossref_primary_10_1016_j_engfailanal_2023_107128
elsevier_sciencedirect_doi_10_1016_j_engfailanal_2023_107128
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Engineering failure analysis
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hernandez, Santana, Souto, González, Morales (b0020) 2011
Reza Kashyzadeh (b0105) 2020; 20
Farrahi, Ahmadi, Kasyzadeh (b0120) 2020; 105
Kumar, Ghoshal, Arora, Nagdeve (b0175) 2023; 227–241
Maleki, Unal, Kashyzadeh (b0130) 2018; 344
Horňas, Běhal, Homola, Senck, Holzleitner, Godja, Pasztor, Hegedus, Doubrava, Ruzek, Petrusová (b0190) 2022; 107483
Mukhopadhyay (b0050) 2012; 2012
Chen, Cai, Deng, Jiang, Chen, Sun (b0075) 2020; 7
Yang, Kang, Liu, Kan (b0210) 2021; 151
Sukumar, Ramaiah, Nagarjuna (b0065) 2014; 97
Reza Kashyzadeh, Amiri, Ghorbani, Souri (b0220) 2022; 12
Nguyen, Tien, Tung, Luan (b0060) 2021; 3
Li, Chang, Shi, Liu, Chen, Zhang, Guan, Dai (b0195) 2022; 10
Benedetti, Fontanari, Monelli (b0155) 2010; 2
Raman, Padmanabhan (b0165) 1995; 17
Skillingberg (b0045) 2007; 112
Li, Zhang, Cao, Zeng, Zhuang, Qian, Chen (b0005) 2020; 1
Guan, Lou, Huang, Liang, Xiao, Li, Zeng (b0010) 2020; 22
MacKay (b0225) 1992; 4
Reza Kashyzadeh, Maleki (b0090) 2017; 17
Kashyzadeh, Farrahi, Shariyat, Ahmadian (b0110) 2018; 90
Ghorbani, Ghorbani, Reaz Kashyzadeh (b0235) 2020; 33
Danilenko (b0025) 2011; 31
Reza Kashyzadeh, Souri, Gharehsheikh Bayat, Safavi Jabalbarez, Ahmad (b0100) 2022; 3
Huang, Inderawati, Rohmat, Sukwadi (b0170) 2023; 1–19
Ghasempour-Mouziraji, Hosseinzadeh, Hajimiri, Najafizadeh, Marzban Shirkharkolaei (b0185) 2022; 123
Kashyzadeh, Arghavan (b0080) 2013; 45
Maleki, Unal, Reza Kashyzadeh (b0150) 2021; 27
Maleki, Unal, Kashyzadeh, Bagherifard, Guagliano (b0140) 2021; 4
Maleki, Farrahi, Reza Kashyzadeh, Unal, Gugaliano, Bagherifard (b0135) 2021; 27
A.O. Emmanuel, O.S.I. Fayomi, I.G. Akande, Aluminium alloys as advanced materials: a short communication, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, vol. 1107, no. 1, p. 012024. 2021, April, https://doi.org/10.1088/1757-899X/1107/1/012024.
Banerjee, Doloi, Das, Dhupal (b0180) 2023; 257–270
Sielski (b0035) 2008; 3
Zhang, Wu, Xie, Zhang, Zhang (b0070) 2018; 191
Abdollahnia, Alizadeh Elizei, Reza Kashyzadeh (b0095) 2021; 9
Benedetti, Fontanari, Bandini, Savio (b0160) 2015; 70
Maleki (b0215) 2015; 103
Wahid, Siddiquee, Khan (b0055) 2020; 15
Kashyzadeh (b0115) 2020; 23
Zheng, Li, Sun, Huang, Xie (b0205) 2023; 143
Ramesh (b0030) 2011
Maleki, Unal, Kashyzadeh (b0145) 2018; 116
Mortazavi, Ince (b0200) 2023; 167
Omidi Bidgoli, Reza Kashyzadeh, Rahimian Koloor, Petru (b0230) 2020; 10
Zhao, Song, Xie, Hu, Chen (b0125) 2021; 11
Lamb, Beavers, Ingram, Schmieman (b0040) 2011; 27
Arghavan, Reza Kashyzadeh, Asfarjani (b0085) 2011; Vol. 87
Maleki (10.1016/j.engfailanal.2023.107128_b0130) 2018; 344
Kashyzadeh (10.1016/j.engfailanal.2023.107128_b0080) 2013; 45
Maleki (10.1016/j.engfailanal.2023.107128_b0145) 2018; 116
Guan (10.1016/j.engfailanal.2023.107128_b0010) 2020; 22
Kumar (10.1016/j.engfailanal.2023.107128_b0175) 2023; 227–241
Farrahi (10.1016/j.engfailanal.2023.107128_b0120) 2020; 105
Ramesh (10.1016/j.engfailanal.2023.107128_b0030) 2011
Zhao (10.1016/j.engfailanal.2023.107128_b0125) 2021; 11
Huang (10.1016/j.engfailanal.2023.107128_b0170) 2023; 1–19
Zheng (10.1016/j.engfailanal.2023.107128_b0205) 2023; 143
Li (10.1016/j.engfailanal.2023.107128_b0005) 2020; 1
Mortazavi (10.1016/j.engfailanal.2023.107128_b0200) 2023; 167
Ghasempour-Mouziraji (10.1016/j.engfailanal.2023.107128_b0185) 2022; 123
Arghavan (10.1016/j.engfailanal.2023.107128_b0085) 2011; Vol. 87
Sielski (10.1016/j.engfailanal.2023.107128_b0035) 2008; 3
Lamb (10.1016/j.engfailanal.2023.107128_b0040) 2011; 27
Chen (10.1016/j.engfailanal.2023.107128_b0075) 2020; 7
Hernandez (10.1016/j.engfailanal.2023.107128_b0020) 2011
Skillingberg (10.1016/j.engfailanal.2023.107128_b0045) 2007; 112
Zhang (10.1016/j.engfailanal.2023.107128_b0070) 2018; 191
Maleki (10.1016/j.engfailanal.2023.107128_b0135) 2021; 27
Reza Kashyzadeh (10.1016/j.engfailanal.2023.107128_b0090) 2017; 17
Wahid (10.1016/j.engfailanal.2023.107128_b0055) 2020; 15
MacKay (10.1016/j.engfailanal.2023.107128_b0225) 1992; 4
Raman (10.1016/j.engfailanal.2023.107128_b0165) 1995; 17
Mukhopadhyay (10.1016/j.engfailanal.2023.107128_b0050) 2012; 2012
Kashyzadeh (10.1016/j.engfailanal.2023.107128_b0115) 2020; 23
Benedetti (10.1016/j.engfailanal.2023.107128_b0155) 2010; 2
Banerjee (10.1016/j.engfailanal.2023.107128_b0180) 2023; 257–270
Reza Kashyzadeh (10.1016/j.engfailanal.2023.107128_b0100) 2022; 3
Reza Kashyzadeh (10.1016/j.engfailanal.2023.107128_b0105) 2020; 20
Benedetti (10.1016/j.engfailanal.2023.107128_b0160) 2015; 70
Horňas (10.1016/j.engfailanal.2023.107128_b0190) 2022; 107483
Ghorbani (10.1016/j.engfailanal.2023.107128_b0235) 2020; 33
Abdollahnia (10.1016/j.engfailanal.2023.107128_b0095) 2021; 9
Kashyzadeh (10.1016/j.engfailanal.2023.107128_b0110) 2018; 90
Omidi Bidgoli (10.1016/j.engfailanal.2023.107128_b0230) 2020; 10
Maleki (10.1016/j.engfailanal.2023.107128_b0215) 2015; 103
10.1016/j.engfailanal.2023.107128_b0015
Maleki (10.1016/j.engfailanal.2023.107128_b0140) 2021; 4
Reza Kashyzadeh (10.1016/j.engfailanal.2023.107128_b0220) 2022; 12
Nguyen (10.1016/j.engfailanal.2023.107128_b0060) 2021; 3
Danilenko (10.1016/j.engfailanal.2023.107128_b0025) 2011; 31
Maleki (10.1016/j.engfailanal.2023.107128_b0150) 2021; 27
Li (10.1016/j.engfailanal.2023.107128_b0195) 2022; 10
Yang (10.1016/j.engfailanal.2023.107128_b0210) 2021; 151
Sukumar (10.1016/j.engfailanal.2023.107128_b0065) 2014; 97
References_xml – volume: 9
  start-page: 1433
  year: 2021
  ident: b0095
  article-title: Multiaxial fatigue life assessment of integral concrete bridge with a real-scale and complicated geometry due to the simultaneous effects of temperature variations and sea waves clash
  publication-title: J. Marine Sci. Eng.
– volume: 2
  start-page: 397
  year: 2010
  end-page: 406
  ident: b0155
  article-title: Plain fatigue resistance of shot peened high strength aluminium alloys: effect of loading ratio
  publication-title: Procedia Eng.
– year: 2011
  ident: b0020
  article-title: Characterization of the atmospheric corrosion of aluminum in archipelagic subtropical environments
  publication-title: Int. J. Electrochem. Sci.
– volume: 20
  start-page: 455
  year: 2020
  end-page: 463
  ident: b0105
  article-title: Effects of axial and multiaxial variable amplitude loading conditions on the fatigue life assessment of automotive steering knuckle
  publication-title: J. Fail. Anal. Prev.
– volume: 10
  start-page: 1372
  year: 2020
  ident: b0230
  article-title: Estimation of critical dimensions for the crack and pitting corrosion defects in the oil storage tank using finite element method and Taguchi approach
  publication-title: Metals
– volume: 2012
  year: 2012
  ident: b0050
  article-title: Alloy designation, processing, and use of AA6XXX series aluminium alloys
  publication-title: Int. Scholarly Res. Notices
– volume: 107483
  year: 2022
  ident: b0190
  article-title: Modelling fatigue life prediction of additively manufactured Ti–6Al–4V samples using machine learning approach
  publication-title: Int. J. Fatigue
– volume: 116
  start-page: 48
  year: 2018
  end-page: 67
  ident: b0145
  article-title: Fatigue behavior prediction and analysis of shot peened mild carbon steels
  publication-title: Int. J. Fatigue
– volume: 97
  start-page: 365
  year: 2014
  end-page: 371
  ident: b0065
  article-title: Optimization and prediction of parameters in face milling of Al-6061 using Taguchi and ANN approach
  publication-title: Procedia Eng.
– volume: 90
  start-page: 534
  year: 2018
  end-page: 553
  ident: b0110
  article-title: Experimental accuracy assessment of various high-cycle fatigue criteria for a critical component with a complicated geometry and multi-input random non-proportional 3D stress components
  publication-title: Eng. Fail. Anal.
– volume: 70
  start-page: 451
  year: 2015
  end-page: 462
  ident: b0160
  article-title: High-and very high-cycle plain fatigue resistance of shot peened high-strength aluminum alloys: the role of surface morphology
  publication-title: Int. J. Fatigue
– volume: 27
  start-page: 4418
  year: 2021
  end-page: 4440
  ident: b0150
  article-title: Influences of shot peening parameters on mechanical properties and fatigue behavior of 316 L steel: experimental, Taguchi method and response surface methodology
  publication-title: Met. Mater. Int.
– volume: 1
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0005
  article-title: Accelerated discovery of high-strength aluminum alloys by machine learning
  publication-title: Commun. Mater.
– volume: 4
  year: 2021
  ident: b0140
  article-title: A systematic study on the effects of shot peening on a mild carbon steel: Microstructure, mechanical properties, and axial fatigue strength of smooth and notched specimens
  publication-title: Appl. Surface Sci. Adv.
– volume: 105
  year: 2020
  ident: b0120
  article-title: Simulation of vehicle body spot weld failures due to fatigue by considering road roughness and vehicle velocity
  publication-title: Simul. Model. Pract. Theory
– volume: 17
  start-page: 1276
  year: 2017
  end-page: 1287
  ident: b0090
  article-title: Experimental investigation and artificial neural network modeling of warm galvanization and hardened chromium coatings thickness effects on fatigue life of AISI 1045 carbon steel
  publication-title: J. Fail. Anal. Prev.
– volume: 103
  year: 2015
  ident: b0215
  article-title: Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075–T6 aluminum alloy
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
– volume: 344
  start-page: 62
  year: 2018
  end-page: 74
  ident: b0130
  article-title: Effects of conventional, severe, over, and re-shot peening processes on the fatigue behavior of mild carbon steel
  publication-title: Surf. Coat. Technol.
– volume: 23
  start-page: 392
  year: 2020
  end-page: 404
  ident: b0115
  article-title: A new algorithm for fatigue life assessment of automotive safety components based on the probabilistic approach: the case of the steering knuckle
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 45
  start-page: 748
  year: 2013
  end-page: 757
  ident: b0080
  article-title: Study of the effect of different industrial coating with microscale thickness on the CK45 steel by experimental and finite element methods
  publication-title: Strength Mater.
– volume: 257–270
  year: 2023
  ident: b0180
  article-title: Parametric optimization of MRR during ultrasonic machining process
  publication-title: Adv. Modern Mach. Process.
– volume: Vol. 87
  start-page: 230
  year: 2011
  end-page: 237
  ident: b0085
  article-title: Investigating effect of industrial coatings on fatigue damage
  publication-title: Appl. Mech. Mater.
– volume: 3
  start-page: 517
  year: 2022
  end-page: 532
  ident: b0100
  article-title: Fatigue life analysis of automotive cast iron knuckle under constant and variable amplitude loading conditions
  publication-title: Appl. Mech.
– volume: 15
  start-page: 70
  year: 2020
  end-page: 80
  ident: b0055
  article-title: Aluminum alloys in marine construction: characteristics, application, and problems from a fabrication viewpoint
  publication-title: Marine Syst. Ocean Technol.
– volume: 4
  start-page: 415
  year: 1992
  end-page: 447
  ident: b0225
  article-title: Bayesian interpolation
  publication-title: Neural Comput.
– volume: 167
  year: 2023
  ident: b0200
  article-title: Artificial neural networks-based J-integral prediction for cracked bodies under elasto-plastic deformation state–monotonic loading
  publication-title: Int. J. Fatigue
– volume: 151
  year: 2021
  ident: b0210
  article-title: A novel method of multiaxial fatigue life prediction based on deep learning
  publication-title: Int. J. Fatigue
– volume: 27
  start-page: 35
  year: 2011
  end-page: 49
  ident: b0040
  article-title: The benefits and cost impact of aluminum naval ship structure
  publication-title: J. Ship Prod. Des.
– volume: 112
  year: 2007
  ident: b0045
  article-title: Aluminum at sea: speed, endurance and affordability
  publication-title: Marine Log
– volume: 3
  start-page: 71
  year: 2021
  end-page: 84
  ident: b0060
  article-title: Analysis of tool wear and surface roughness in high-speed milling process of aluminum alloy Al6061
  publication-title: EUREKA: Phys. Eng.
– volume: 123
  start-page: 4265
  year: 2022
  end-page: 4276
  ident: b0185
  article-title: Machine learning-based optimization of geometrical accuracy in wire cut drilling
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 17
  start-page: 179
  year: 1995
  end-page: 182
  ident: b0165
  article-title: Effect of electropolishing on the room-temperature low-cycle fatigue behaviour of AISl 304LN stainless steel
  publication-title: Int. J. Fatigue
– volume: 3
  start-page: 57
  year: 2008
  end-page: 65
  ident: b0035
  article-title: Research needs in aluminum structure
  publication-title: Ships and Offshore Structures
– volume: 191
  start-page: 1
  year: 2018
  end-page: 12
  ident: b0070
  article-title: The effects of pre-cyclic stress on fracture properties and fatigue crack propagation life of 7N01 aluminum alloy
  publication-title: Eng. Fract. Mech.
– volume: 33
  start-page: 1598
  year: 2020
  end-page: 1607
  ident: b0235
  article-title: Taguchi approach and response surface analysis for design of a high-performance single-walled carbon nanotube bundle interconnects in a full adder
  publication-title: Int. J. Eng.
– volume: 10
  start-page: 1627
  year: 2022
  ident: b0195
  article-title: Probability prediction approach of fatigue failure for the subsea wellhead using bayesian regularization artificial neural network
  publication-title: J. Marine Sci. Eng.
– volume: 31
  start-page: 797
  year: 2011
  end-page: 799
  ident: b0025
  article-title: Workability of aluminum alloys
  publication-title: Russ. Eng. Res.
– volume: 1–19
  year: 2023
  ident: b0170
  article-title: The development of an ANN surface roughness prediction system of multiple materials in CNC turning
  publication-title: Int. J. Adv. Manuf. Technol.
– year: 2011
  ident: b0030
  article-title: Workability Analysis on Aluminium based Composites and Aluminium Alloys
– volume: 227–241
  year: 2023
  ident: b0175
  article-title: Optimization of process variables in sinking EDM using artificial neural network (ANN) method
  publication-title: Adv. Modern Mach. Process.
– volume: 22
  start-page: 68
  year: 2020
  end-page: 75
  ident: b0010
  article-title: Development of aluminum alloy materials: current status, trend, and prospects
  publication-title: Strategic Study Chin. Acad. Eng.
– volume: 7
  year: 2020
  ident: b0075
  article-title: Effect of different surface conditions on fatigue properties of 7N01 aluminum alloy and the behavioral mechanism of crack of the alloy under alternating load
  publication-title: Mater. Res. Express
– volume: 143
  year: 2023
  ident: b0205
  article-title: Multiaxial fatigue life prediction of metals considering loading paths by image recognition and machine learning
  publication-title: Eng. Fail. Anal.
– volume: 12
  start-page: 438
  year: 2022
  ident: b0220
  article-title: Prediction of concrete compressive strength using a back-propagation neural network optimized by a genetic algorithm and response surface analysis considering the appearance of aggregates and curing conditions
  publication-title: Buildings
– volume: 11
  start-page: 1
  year: 2021
  end-page: 17
  ident: b0125
  article-title: Surface roughness effect on fatigue strength of aluminum alloy using revised stress field intensity approach
  publication-title: Sci. Rep.
– reference: A.O. Emmanuel, O.S.I. Fayomi, I.G. Akande, Aluminium alloys as advanced materials: a short communication, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, vol. 1107, no. 1, p. 012024. 2021, April, https://doi.org/10.1088/1757-899X/1107/1/012024.
– volume: 27
  start-page: 2575
  year: 2021
  end-page: 2591
  ident: b0135
  article-title: Effects of conventional and severe shot peening on residual stress and fatigue strength of steel AISI 1060 and residual stress relaxation due to fatigue loading: experimental and numerical simulation
  publication-title: Met. Mater. Int.
– volume: 1–19
  year: 2023
  ident: 10.1016/j.engfailanal.2023.107128_b0170
  article-title: The development of an ANN surface roughness prediction system of multiple materials in CNC turning
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 70
  start-page: 451
  year: 2015
  ident: 10.1016/j.engfailanal.2023.107128_b0160
  article-title: High-and very high-cycle plain fatigue resistance of shot peened high-strength aluminum alloys: the role of surface morphology
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2014.07.002
– volume: 10
  start-page: 1372
  issue: 10
  year: 2020
  ident: 10.1016/j.engfailanal.2023.107128_b0230
  article-title: Estimation of critical dimensions for the crack and pitting corrosion defects in the oil storage tank using finite element method and Taguchi approach
  publication-title: Metals
  doi: 10.3390/met10101372
– volume: 2012
  year: 2012
  ident: 10.1016/j.engfailanal.2023.107128_b0050
  article-title: Alloy designation, processing, and use of AA6XXX series aluminium alloys
  publication-title: Int. Scholarly Res. Notices
– volume: 10
  start-page: 1627
  issue: 11
  year: 2022
  ident: 10.1016/j.engfailanal.2023.107128_b0195
  article-title: Probability prediction approach of fatigue failure for the subsea wellhead using bayesian regularization artificial neural network
  publication-title: J. Marine Sci. Eng.
  doi: 10.3390/jmse10111627
– volume: 97
  start-page: 365
  year: 2014
  ident: 10.1016/j.engfailanal.2023.107128_b0065
  article-title: Optimization and prediction of parameters in face milling of Al-6061 using Taguchi and ANN approach
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2014.12.260
– volume: 7
  issue: 2
  year: 2020
  ident: 10.1016/j.engfailanal.2023.107128_b0075
  article-title: Effect of different surface conditions on fatigue properties of 7N01 aluminum alloy and the behavioral mechanism of crack of the alloy under alternating load
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab756b
– volume: 167
  year: 2023
  ident: 10.1016/j.engfailanal.2023.107128_b0200
  article-title: Artificial neural networks-based J-integral prediction for cracked bodies under elasto-plastic deformation state–monotonic loading
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2022.107311
– volume: 31
  start-page: 797
  issue: 8
  year: 2011
  ident: 10.1016/j.engfailanal.2023.107128_b0025
  article-title: Workability of aluminum alloys
  publication-title: Russ. Eng. Res.
  doi: 10.3103/S1068798X11080077
– volume: 22
  start-page: 68
  issue: 5
  year: 2020
  ident: 10.1016/j.engfailanal.2023.107128_b0010
  article-title: Development of aluminum alloy materials: current status, trend, and prospects
  publication-title: Strategic Study Chin. Acad. Eng.
– volume: 112
  issue: 5
  year: 2007
  ident: 10.1016/j.engfailanal.2023.107128_b0045
  article-title: Aluminum at sea: speed, endurance and affordability
  publication-title: Marine Log
– volume: Vol. 87
  start-page: 230
  year: 2011
  ident: 10.1016/j.engfailanal.2023.107128_b0085
  article-title: Investigating effect of industrial coatings on fatigue damage
– volume: 4
  year: 2021
  ident: 10.1016/j.engfailanal.2023.107128_b0140
  article-title: A systematic study on the effects of shot peening on a mild carbon steel: Microstructure, mechanical properties, and axial fatigue strength of smooth and notched specimens
  publication-title: Appl. Surface Sci. Adv.
  doi: 10.1016/j.apsadv.2021.100071
– volume: 123
  start-page: 4265
  issue: 11
  year: 2022
  ident: 10.1016/j.engfailanal.2023.107128_b0185
  article-title: Machine learning-based optimization of geometrical accuracy in wire cut drilling
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-022-10351-8
– volume: 45
  start-page: 748
  issue: 6
  year: 2013
  ident: 10.1016/j.engfailanal.2023.107128_b0080
  article-title: Study of the effect of different industrial coating with microscale thickness on the CK45 steel by experimental and finite element methods
  publication-title: Strength Mater.
  doi: 10.1007/s11223-013-9510-x
– volume: 3
  start-page: 57
  issue: 1
  year: 2008
  ident: 10.1016/j.engfailanal.2023.107128_b0035
  article-title: Research needs in aluminum structure
  publication-title: Ships and Offshore Structures
  doi: 10.1080/17445300701797111
– volume: 3
  start-page: 517
  issue: 2
  year: 2022
  ident: 10.1016/j.engfailanal.2023.107128_b0100
  article-title: Fatigue life analysis of automotive cast iron knuckle under constant and variable amplitude loading conditions
  publication-title: Appl. Mech.
  doi: 10.3390/applmech3020030
– volume: 151
  year: 2021
  ident: 10.1016/j.engfailanal.2023.107128_b0210
  article-title: A novel method of multiaxial fatigue life prediction based on deep learning
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2021.106356
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.engfailanal.2023.107128_b0125
  article-title: Surface roughness effect on fatigue strength of aluminum alloy using revised stress field intensity approach
  publication-title: Sci. Rep.
– volume: 143
  year: 2023
  ident: 10.1016/j.engfailanal.2023.107128_b0205
  article-title: Multiaxial fatigue life prediction of metals considering loading paths by image recognition and machine learning
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2022.106851
– volume: 107483
  year: 2022
  ident: 10.1016/j.engfailanal.2023.107128_b0190
  article-title: Modelling fatigue life prediction of additively manufactured Ti–6Al–4V samples using machine learning approach
  publication-title: Int. J. Fatigue
– volume: 12
  start-page: 438
  issue: 4
  year: 2022
  ident: 10.1016/j.engfailanal.2023.107128_b0220
  article-title: Prediction of concrete compressive strength using a back-propagation neural network optimized by a genetic algorithm and response surface analysis considering the appearance of aggregates and curing conditions
  publication-title: Buildings
  doi: 10.3390/buildings12040438
– volume: 344
  start-page: 62
  year: 2018
  ident: 10.1016/j.engfailanal.2023.107128_b0130
  article-title: Effects of conventional, severe, over, and re-shot peening processes on the fatigue behavior of mild carbon steel
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.02.081
– volume: 15
  start-page: 70
  issue: 1
  year: 2020
  ident: 10.1016/j.engfailanal.2023.107128_b0055
  article-title: Aluminum alloys in marine construction: characteristics, application, and problems from a fabrication viewpoint
  publication-title: Marine Syst. Ocean Technol.
  doi: 10.1007/s40868-019-00069-w
– volume: 1
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.engfailanal.2023.107128_b0005
  article-title: Accelerated discovery of high-strength aluminum alloys by machine learning
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-020-00074-2
– volume: 9
  start-page: 1433
  issue: 12
  year: 2021
  ident: 10.1016/j.engfailanal.2023.107128_b0095
  article-title: Multiaxial fatigue life assessment of integral concrete bridge with a real-scale and complicated geometry due to the simultaneous effects of temperature variations and sea waves clash
  publication-title: J. Marine Sci. Eng.
  doi: 10.3390/jmse9121433
– volume: 17
  start-page: 179
  issue: 3
  year: 1995
  ident: 10.1016/j.engfailanal.2023.107128_b0165
  article-title: Effect of electropolishing on the room-temperature low-cycle fatigue behaviour of AISl 304LN stainless steel
  publication-title: Int. J. Fatigue
  doi: 10.1016/0142-1123(95)98938-Y
– volume: 227–241
  year: 2023
  ident: 10.1016/j.engfailanal.2023.107128_b0175
  article-title: Optimization of process variables in sinking EDM using artificial neural network (ANN) method
  publication-title: Adv. Modern Mach. Process.
  doi: 10.1007/978-981-19-7150-1_19
– volume: 116
  start-page: 48
  year: 2018
  ident: 10.1016/j.engfailanal.2023.107128_b0145
  article-title: Fatigue behavior prediction and analysis of shot peened mild carbon steels
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2018.06.004
– year: 2011
  ident: 10.1016/j.engfailanal.2023.107128_b0030
– volume: 17
  start-page: 1276
  issue: 6
  year: 2017
  ident: 10.1016/j.engfailanal.2023.107128_b0090
  article-title: Experimental investigation and artificial neural network modeling of warm galvanization and hardened chromium coatings thickness effects on fatigue life of AISI 1045 carbon steel
  publication-title: J. Fail. Anal. Prev.
  doi: 10.1007/s11668-017-0362-8
– year: 2011
  ident: 10.1016/j.engfailanal.2023.107128_b0020
  article-title: Characterization of the atmospheric corrosion of aluminum in archipelagic subtropical environments
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)19701-X
– volume: 27
  start-page: 35
  issue: 01
  year: 2011
  ident: 10.1016/j.engfailanal.2023.107128_b0040
  article-title: The benefits and cost impact of aluminum naval ship structure
  publication-title: J. Ship Prod. Des.
  doi: 10.5957/jspd.2011.27.1.35
– volume: 33
  start-page: 1598
  issue: 8
  year: 2020
  ident: 10.1016/j.engfailanal.2023.107128_b0235
  article-title: Taguchi approach and response surface analysis for design of a high-performance single-walled carbon nanotube bundle interconnects in a full adder
  publication-title: Int. J. Eng.
– volume: 3
  start-page: 71
  year: 2021
  ident: 10.1016/j.engfailanal.2023.107128_b0060
  article-title: Analysis of tool wear and surface roughness in high-speed milling process of aluminum alloy Al6061
  publication-title: EUREKA: Phys. Eng.
– volume: 4
  start-page: 415
  issue: 3
  year: 1992
  ident: 10.1016/j.engfailanal.2023.107128_b0225
  article-title: Bayesian interpolation
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.3.415
– ident: 10.1016/j.engfailanal.2023.107128_b0015
  doi: 10.1088/1757-899X/1107/1/012024
– volume: 90
  start-page: 534
  year: 2018
  ident: 10.1016/j.engfailanal.2023.107128_b0110
  article-title: Experimental accuracy assessment of various high-cycle fatigue criteria for a critical component with a complicated geometry and multi-input random non-proportional 3D stress components
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2018.03.033
– volume: 20
  start-page: 455
  issue: 2
  year: 2020
  ident: 10.1016/j.engfailanal.2023.107128_b0105
  article-title: Effects of axial and multiaxial variable amplitude loading conditions on the fatigue life assessment of automotive steering knuckle
  publication-title: J. Fail. Anal. Prev.
  doi: 10.1007/s11668-020-00841-w
– volume: 105
  year: 2020
  ident: 10.1016/j.engfailanal.2023.107128_b0120
  article-title: Simulation of vehicle body spot weld failures due to fatigue by considering road roughness and vehicle velocity
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2020.102168
– volume: 103
  issue: 1
  year: 2015
  ident: 10.1016/j.engfailanal.2023.107128_b0215
  article-title: Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075–T6 aluminum alloy
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
– volume: 27
  start-page: 2575
  issue: 8
  year: 2021
  ident: 10.1016/j.engfailanal.2023.107128_b0135
  article-title: Effects of conventional and severe shot peening on residual stress and fatigue strength of steel AISI 1060 and residual stress relaxation due to fatigue loading: experimental and numerical simulation
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-020-00890-8
– volume: 257–270
  year: 2023
  ident: 10.1016/j.engfailanal.2023.107128_b0180
  article-title: Parametric optimization of MRR during ultrasonic machining process
  publication-title: Adv. Modern Mach. Process.
  doi: 10.1007/978-981-19-7150-1_21
– volume: 23
  start-page: 392
  issue: 2
  year: 2020
  ident: 10.1016/j.engfailanal.2023.107128_b0115
  article-title: A new algorithm for fatigue life assessment of automotive safety components based on the probabilistic approach: the case of the steering knuckle
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 27
  start-page: 4418
  issue: 11
  year: 2021
  ident: 10.1016/j.engfailanal.2023.107128_b0150
  article-title: Influences of shot peening parameters on mechanical properties and fatigue behavior of 316 L steel: experimental, Taguchi method and response surface methodology
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-021-01013-7
– volume: 2
  start-page: 397
  issue: 1
  year: 2010
  ident: 10.1016/j.engfailanal.2023.107128_b0155
  article-title: Plain fatigue resistance of shot peened high strength aluminium alloys: effect of loading ratio
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2010.03.044
– volume: 191
  start-page: 1
  year: 2018
  ident: 10.1016/j.engfailanal.2023.107128_b0070
  article-title: The effects of pre-cyclic stress on fracture properties and fatigue crack propagation life of 7N01 aluminum alloy
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2018.01.009
SSID ssj0007291
Score 2.4888625
Snippet •Roughness measurement and high-cycle fatigue test were performed to investigate the effect of turning parameters on the quality and strength of aluminum...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107128
SubjectTerms ANN
Fatigue behavior
Machining parameters
Surface roughness
Tension-compression fatigue test
Title New neural network-based algorithm for predicting fatigue life of aluminum alloys in terms of machining parameters
URI https://dx.doi.org/10.1016/j.engfailanal.2023.107128
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-1961
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007291
  issn: 1350-6307
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-1961
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007291
  issn: 1350-6307
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-1961
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007291
  issn: 1350-6307
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-1961
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007291
  issn: 1350-6307
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-1961
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007291
  issn: 1350-6307
  databaseCode: AKRWK
  dateStart: 19940301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5jguiDeMV5GRF87bYubdqCL2M45m2IOthbSdpkVtpubOuDL_52z2k7N0FQ8Kk0zYFwkp7zhXz5DiGXWjJMy8xQ2m4ZmPEMl7c8-K9CzYUpmRJ4d_hhwPtD63Zkjyqku7wLg7TKMvYXMT2P1mVLs_RmcxpFzWeT2SgY5QCIxkSW32C3HKxi0PhY0TwAPBabLhgK9t4kFyuOl0rHWkSxgDlrYB1xaHdMLMz-U45ayzu9XbJTAkbaKca0Ryoq3SfbazKCB2QGkYqiMCX0Swtat4HZKaQiHk9g9_-aUMCmdDrDUxnkOVMNEzLOFI0jrehEQ8csidIsoXgO_z6nUUoxZs_xW5LzLdEKdcIT5M_MD8mwd_3S7RtlLQUjYG1zYWjbcYK25B4gKitUIcAUITjsjW0PJeUDyZWlHQB3sANTbmChTDu0SM8yFXeZyY5INZ2k6phQDlOjmSlEaKMYmJKcS2YCLNNMW8q2asRdes8PSqFxrHcR-0tG2Zu_5ngfHe8Xjq-R9pfptFDb-IvR1XKK_G9Lx4es8Lv5yf_MT8kWvhVknjNSXcwydQ44ZSHr-UKsk41O9-n-EZ83d_3BJ8rm63U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6Kgo-D-MT6XMFr2qab3STgRYqlatuLLfQWNslujSRpaZuDF3-7M01iKwgKXnd3YJndzHxDvv2GkFvtM0zLzFCaNwzMeIYjGi58V6EW0vSZkvh2uNcXnaH1NOKjCmmVb2GQVlnE_jymL6N1MVIvvFmfRlH9xWQcBaNsANGYyKAE2rR408YKrPax4nkAesyrLtgLLt8iNyuSl0rHWkaxhEOrYSNxGLdN7Mz-U5JaSzztfbJXIEZ6n2_qgFRUekh213QEj8gMQhVFZUpYl-a8bgPTU0hlPJ5A-f-aUACndDrD3zJIdKYaTmScKRpHWtGJhoVZEqVZQvFH_PucRinFoD3HuWRJuEQrFApPkEAzPybD9sOg1TGKZgpGwJrmwtDctoOmL1yAVFaoQsApUgoojrmLmvKBL5SlbUB3UIIpJ7BQpx1GfNcylXCYyU7IRjpJ1SmhAs5GM1PKkKMamPKF8JkJuEwzbSluVYlTes8LCqVxbHgReyWl7M1bc7yHjvdyx1dJ88t0mstt_MXorjwi79vd8SAt_G5-9j_za7LdGfS6Xvex_3xOdnAmZ_ZckI3FLFOXAFoW_tXyUn4C68nrdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+neural+network-based+algorithm+for+predicting+fatigue+life+of+aluminum+alloys+in+terms+of+machining+parameters&rft.jtitle=Engineering+failure+analysis&rft.au=Reza+Kashyzadeh%2C+K.&rft.au=Ghorbani%2C+S.&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=1350-6307&rft.eissn=1873-1961&rft.volume=146&rft_id=info:doi/10.1016%2Fj.engfailanal.2023.107128&rft.externalDocID=S1350630723000821
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-6307&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-6307&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-6307&client=summon