An Automatic Patient-Adapted ECG Heartbeat Classifier Allowing Expert Assistance
In this paper, we present a patient-adaptable algorithm for ECG heartbeat classification, based on a previously developed automatic classifier and a clustering algorithm. Both classifier and clustering algorithms include features from the RR interval series and morphology descriptors calculated from...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 59; no. 8; pp. 2312 - 2320 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.08.2012
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2012.2202662 |
Cover
| Abstract | In this paper, we present a patient-adaptable algorithm for ECG heartbeat classification, based on a previously developed automatic classifier and a clustering algorithm. Both classifier and clustering algorithms include features from the RR interval series and morphology descriptors calculated from the wavelet transform. Integrating the decisions of both classifiers, the presented algorithm can work either automatically or with several degrees of assistance. The algorithm was comprehensively evaluated in several ECG databases for comparison purposes. Even in the fully automatic mode, the algorithm slightly improved the performance figures of the original automatic classifier; just with less than two manually annotated heartbeats (MAHB) per recording, the algorithm obtained a mean improvement for all databases of 6.9% in accuracy A, of 6.5% in global sensitivity S and of 8.9% in global positive predictive value P + . An assistance of just 12 MAHB per recording resulted in a mean improvement of 13.1% in A, of 13.9% in S, and of 36.1% in P + . For the assisted mode, the algorithm outperformed other state-of-the-art classifiers with less expert annotation effort. The results presented in this paper represent an improvement in the field of automatic and patient-adaptable heartbeats classification, concluding that the performance of an automatic classifier can be improved with an efficient handling of the expert assistance. |
|---|---|
| AbstractList | In this paper, we present a patient-adaptable algorithm for ECG heartbeat classification, based on a previously developed automatic classifier and a clustering algorithm. Both classifier and clustering algorithms include features from the RR interval series and morphology descriptors calculated from the wavelet transform. Integrating the decisions of both classifiers, the presented algorithm can work either automatically or with several degrees of assistance. The algorithm was comprehensively evaluated in several ECG databases for comparison purposes. Even in the fully automatic mode, the algorithm slightly improved the performance figures of the original automatic classifier; just with less than two manually annotated heartbeats (MAHB) per recording, the algorithm obtained a mean improvement for all databases of 6.9% in accuracy A, of 6.5% in global sensitivity S and of 8.9% in global positive predictive value P(+). An assistance of just 12 MAHB per recording resulted in a mean improvement of 13.1% in A, of 13.9% in S, and of 36.1% in P(+). For the assisted mode, the algorithm outperformed other state-of-the-art classifiers with less expert annotation effort. The results presented in this paper represent an improvement in the field of automatic and patient-adaptable heartbeats classification, concluding that the performance of an automatic classifier can be improved with an efficient handling of the expert assistance. In this paper, we present a patient-adaptable algorithm for ECG heartbeat classification, based on a previously developed automatic classifier and a clustering algorithm. Both classifier and clustering algorithms include features from the RR interval series and morphology descriptors calculated from the wavelet transform. Integrating the decisions of both classifiers, the presented algorithm can work either automatically or with several degrees of assistance. The algorithm was comprehensively evaluated in several ECG databases for comparison purposes. Even in the fully automatic mode, the algorithm slightly improved the performance figures of the original automatic classifier; just with less than two manually annotated heartbeats (MAHB) per recording, the algorithm obtained a mean improvement for all databases of 6.9% in accuracy A, of 6.5% in global sensitivity S and of 8.9% in global positive predictive value P(+). An assistance of just 12 MAHB per recording resulted in a mean improvement of 13.1% in A, of 13.9% in S, and of 36.1% in P(+). For the assisted mode, the algorithm outperformed other state-of-the-art classifiers with less expert annotation effort. The results presented in this paper represent an improvement in the field of automatic and patient-adaptable heartbeats classification, concluding that the performance of an automatic classifier can be improved with an efficient handling of the expert assistance.In this paper, we present a patient-adaptable algorithm for ECG heartbeat classification, based on a previously developed automatic classifier and a clustering algorithm. Both classifier and clustering algorithms include features from the RR interval series and morphology descriptors calculated from the wavelet transform. Integrating the decisions of both classifiers, the presented algorithm can work either automatically or with several degrees of assistance. The algorithm was comprehensively evaluated in several ECG databases for comparison purposes. Even in the fully automatic mode, the algorithm slightly improved the performance figures of the original automatic classifier; just with less than two manually annotated heartbeats (MAHB) per recording, the algorithm obtained a mean improvement for all databases of 6.9% in accuracy A, of 6.5% in global sensitivity S and of 8.9% in global positive predictive value P(+). An assistance of just 12 MAHB per recording resulted in a mean improvement of 13.1% in A, of 13.9% in S, and of 36.1% in P(+). For the assisted mode, the algorithm outperformed other state-of-the-art classifiers with less expert annotation effort. The results presented in this paper represent an improvement in the field of automatic and patient-adaptable heartbeats classification, concluding that the performance of an automatic classifier can be improved with an efficient handling of the expert assistance. |
| Author | Martinez, Juan Pablo Llamedo, Mariano |
| Author_xml | – sequence: 1 givenname: Mariano surname: Llamedo fullname: Llamedo, Mariano email: llamedom@electron.frba.utn.edu.ar organization: Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain – sequence: 2 givenname: Juan Pablo surname: Martinez fullname: Martinez, Juan Pablo email: jpmart@unizar.es organization: Communications Technology Group, Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza , Spain |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22692868$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1Lw0AQhhdRtFZ_gAiSo5fU3dlksznGEj-gYg_1HCbJRFbyUXe3qP_elFYPHrzMMMzzzsBzyg77oSfGLgSfCcHTm9XtUz4DLmAGwEEpOGATEcc6hFiKQzbhXOgwhTQ6YafOvY1jpCN1zE4AVApa6QlbZn2QbfzQoTdVsBwr9T7Malx7qoN8fh88EFpfEvpg3qJzpjFkg6xthw_Tvwb555qsD7Jx4Tz2FZ2xowZbR-f7PmUvd_lq_hAunu8f59kirCQIHxLqpAGhm0Q2CpNaR5WiSFSlxDStkbhKlY4TLKUirXgDUCZKC0SqJQHFcsqud3fXdnjfkPNFZ1xFbYs9DRtXjH5iJSMZixG92qObsqO6WFvTof0qfiyMgNgBlR2cs9T8IoIXW9PF1nSxNV3sTY-Z5E-mMn7UN_Teomn_TV7ukoaIfj8pEBAnQn4DmQKJ_A |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2024_106097 crossref_primary_10_1016_j_cmpb_2017_08_013 crossref_primary_10_1007_s11042_019_08132_9 crossref_primary_10_1088_1361_6579_ab6f9a crossref_primary_10_3390_app9040702 crossref_primary_10_1038_s41598_018_29690_2 crossref_primary_10_1093_ehjdh_ztae025 crossref_primary_10_1016_j_bbe_2020_08_001 crossref_primary_10_1016_j_bspc_2022_103663 crossref_primary_10_1109_ACCESS_2019_2937875 crossref_primary_10_1109_ACCESS_2018_2807700 crossref_primary_10_1142_S0218001417580046 crossref_primary_10_1016_j_neucom_2018_06_068 crossref_primary_10_1109_ACCESS_2018_2833841 crossref_primary_10_32604_cmc_2022_015474 crossref_primary_10_5334_jors_86 crossref_primary_10_1016_j_knosys_2013_02_007 crossref_primary_10_1016_j_medengphy_2017_11_004 crossref_primary_10_1016_j_eswa_2021_114809 crossref_primary_10_1109_JTEHM_2024_3397739 crossref_primary_10_32604_cmc_2022_021987 crossref_primary_10_1016_j_bspc_2024_106265 crossref_primary_10_1155_2017_4108720 crossref_primary_10_1016_j_cmpb_2021_105931 crossref_primary_10_1016_j_jbi_2017_12_003 crossref_primary_10_1016_j_neucom_2017_02_056 crossref_primary_10_1016_j_cmpb_2015_12_008 crossref_primary_10_1016_j_eswa_2020_113411 crossref_primary_10_1016_j_artmed_2018_04_003 crossref_primary_10_1016_j_jelectrocard_2020_11_014 crossref_primary_10_1088_2057_1976_acf222 crossref_primary_10_1109_ACCESS_2023_3236189 crossref_primary_10_3390_app11156711 crossref_primary_10_1109_ACCESS_2019_2938617 crossref_primary_10_1007_s13534_014_0158_7 crossref_primary_10_1049_iet_spr_2015_0274 crossref_primary_10_1155_2022_2323625 crossref_primary_10_1016_j_neucom_2021_04_104 crossref_primary_10_1016_j_irbm_2019_12_001 crossref_primary_10_1016_j_procs_2022_09_406 crossref_primary_10_1080_10255842_2024_2332942 crossref_primary_10_1109_TIM_2022_3186355 crossref_primary_10_1016_j_knosys_2023_111006 crossref_primary_10_1007_s11704_014_2398_1 crossref_primary_10_1007_s00521_021_05820_2 crossref_primary_10_1016_j_bspc_2024_105983 crossref_primary_10_1016_j_bspc_2016_12_017 crossref_primary_10_1016_j_bspc_2018_03_003 crossref_primary_10_1109_TBME_2015_2468589 crossref_primary_10_1109_JBHI_2015_2468224 crossref_primary_10_3389_fphys_2021_678558 crossref_primary_10_1109_TCE_2018_2875799 crossref_primary_10_1109_TBME_2021_3135622 crossref_primary_10_1109_ACCESS_2019_2960116 crossref_primary_10_1016_j_neucom_2020_05_063 crossref_primary_10_2139_ssrn_4017037 crossref_primary_10_1016_j_cmpb_2018_11_005 crossref_primary_10_1093_europace_euv320 crossref_primary_10_1049_htl_2014_0072 crossref_primary_10_1109_TBME_2015_2402236 crossref_primary_10_1088_1742_6596_1717_1_012040 crossref_primary_10_1016_j_bspc_2013_01_005 crossref_primary_10_3389_fphy_2019_00103 crossref_primary_10_1166_jctn_2020_9240 crossref_primary_10_1016_j_bspc_2023_104756 crossref_primary_10_1016_j_cmpb_2018_04_021 crossref_primary_10_1109_JBHI_2016_2631247 crossref_primary_10_1007_s13246_021_01072_5 crossref_primary_10_1098_rsif_2017_0821 crossref_primary_10_1016_j_ins_2018_06_062 crossref_primary_10_1038_s41598_017_09544_z crossref_primary_10_1016_j_compbiomed_2013_11_019 |
| Cites_doi | 10.1109/10.623058 10.1109/TBME.2004.827359 10.1109/TBME.2011.2113395 10.1109/10.846677 10.1109/TBME.2009.2013934 10.1109/TBME.2006.883802 10.1007/s10439-007-9368-9 10.1088/0967-3334/30/7/010 10.1161/01.CIR.101.23.e215 10.1109/CIC.1995.482614 10.1016/j.eswa.2010.09.010 10.1016/0167-8655(94)90127-9 10.1109/TBME.2010.2068048 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/TBME.2012.2202662 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 2320 |
| ExternalDocumentID | 22692868 10_1109_TBME_2012_2202662 6212571 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c321t-ea87f218f73f6a7d84c6e41cb3a99dae0696857ab36e860f22b7681aaed3e2e53 |
| IEDL.DBID | RIE |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Sun Sep 28 11:31:49 EDT 2025 Thu Apr 03 07:08:19 EDT 2025 Wed Oct 01 02:57:15 EDT 2025 Thu Apr 24 22:54:57 EDT 2025 Wed Aug 27 02:53:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c321t-ea87f218f73f6a7d84c6e41cb3a99dae0696857ab36e860f22b7681aaed3e2e53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 22692868 |
| PQID | 1095634351 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_6212571 crossref_citationtrail_10_1109_TBME_2012_2202662 crossref_primary_10_1109_TBME_2012_2202662 pubmed_primary_22692868 proquest_miscellaneous_1095634351 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2012-08-01 |
| PublicationDateYYYYMMDD | 2012-08-01 |
| PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2012 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | (ref18) 0 ref12 ref15 van der heijden (ref17) 2005 (ref20) 0 taylor (ref2) 2002 jiang (ref5) 2007; 18 ref11 ref22 ref10 goldberger (ref7) 2000; 101 (ref13) 0 (ref8) 0 ref16 ref19 (ref1) 0 ref9 ref4 ref3 ref6 hu (ref14) 1997; 44 (ref21) 0 (ref23) 0 |
| References_xml | – volume: 44 start-page: 891 year: 1997 ident: ref14 article-title: A patient-adaptable ECG beat classifier using mixture of experts approach publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.623058 – ident: ref3 doi: 10.1109/TBME.2004.827359 – volume: 18 start-page: 1750 year: 2007 ident: ref5 article-title: Block-based neural networks for personalized ECG signal classification publication-title: IEEE Trans Biomed Eng – year: 0 ident: ref8 – ident: ref19 doi: 10.1109/TBME.2011.2113395 – year: 0 ident: ref23 – year: 0 ident: ref13 – year: 2005 ident: ref17 publication-title: Classification Parameter Estimation and State Estimation – ident: ref16 doi: 10.1109/10.846677 – ident: ref6 doi: 10.1109/TBME.2009.2013934 – year: 2002 ident: ref2 publication-title: 150 Practice ECGs Interpretation and Review – ident: ref15 doi: 10.1109/TBME.2006.883802 – ident: ref12 doi: 10.1007/s10439-007-9368-9 – ident: ref11 doi: 10.1088/0967-3334/30/7/010 – year: 0 ident: ref18 – year: 0 ident: ref21 – volume: 101 start-page: 215e year: 2000 ident: ref7 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – year: 0 ident: ref1 – ident: ref9 doi: 10.1109/CIC.1995.482614 – ident: ref10 doi: 10.1016/j.eswa.2010.09.010 – ident: ref22 doi: 10.1016/0167-8655(94)90127-9 – year: 0 ident: ref20 – ident: ref4 doi: 10.1109/TBME.2010.2068048 |
| SSID | ssj0014846 |
| Score | 2.3809004 |
| Snippet | In this paper, we present a patient-adaptable algorithm for ECG heartbeat classification, based on a previously developed automatic classifier and a clustering... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2312 |
| SubjectTerms | Algorithms Cluster Analysis Clustering Clustering algorithms Databases, Factual Electrocardiography Electrocardiography - methods Electromagnetic compatibility Heart beat Heart Rate - physiology heartbeat classification Humans linear classifier Morphology patient adaptable Sensitivity and Specificity Signal Processing, Computer-Assisted Vectors |
| Title | An Automatic Patient-Adapted ECG Heartbeat Classifier Allowing Expert Assistance |
| URI | https://ieeexplore.ieee.org/document/6212571 https://www.ncbi.nlm.nih.gov/pubmed/22692868 https://www.proquest.com/docview/1095634351 |
| Volume | 59 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-UwEB_Uw7Ie1PVj97kfRPAk9tkmbdIeu_Lcx8ITDwreSppMQXy0stsi-Nc7SfuKLKt4KPSQpGlnJvmlM_MbgGNlQl2l2gR08SAm0w5KniWBpK1WCmlR-XJvi0s5v4l_3ya3a3A65sIgog8-w6m79b5825jO_So7k7TOJi5hfF2lss_VGj0Gcdon5YQRGTDP4sGDGYXZ2fXPxcwFcfEpp6M-zcIxAHOZ8dQRrL7Yjnx9ldehpt9yLrZhsZpsH2lyP-3acmqe_uFxfO_b7MDWgD1Z3ivLJ1jDehc2XzAS7sKHxeBr34OrvGZ51zae05Vd9fyrQW71A4FUNjv_xeZkJW1JiznzpTXvKtpiWb5cNo80FvMkyi0j-TuISrq1DzcXs-vzeTDUXwiM4FEboE5VRRCgUqKSWtk0NhLjyJRCZ5nVGDpinUTpUkhMZVhxXtLhJdIarUCOiTiAjbqp8QswMnXCXVxHhuu4sjJLrELCXkpqjiK2EwhXYijMQE7uamQsC39ICbPCCbFwQiwGIU7gZOzy0DNzvNV4zwlgbDh8-wkcrWRdkFk5X4musen-Osd8IgVhSWrzuVeCsfNKdw7_P-hX-Oge3UcJfoON9k-H3wm5tOUPr7LPb6Tlfw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB5CCn0c-kj62D5V6KnUG1sv20c3bLpt45DDBnIzsjSG0sUOrU2hv74j2WtCaUsPBh8kIXtmPJ88M98AvEltbJrM2IguHkky7ajmuYo0uVottMM0tHsrz_T6Qn66VJd78G6uhUHEkHyGS38bYvmus4P_VXak6TurfMH4DSWlVGO11hwzkNlYlhMnZMI8l1MMM4nzo837cuXTuPiS02Gf9uE5gLnOeeYpVq85pNBh5e9gMzidk3tQ7rY75pp8XQ59vbQ_f2Ny_N_nuQ93J_TJilFdHsAetgdw5xon4QHcLKdo-yGcFy0rhr4LrK7sfGRgjQpnrgimstXxB7YmO-lr-pyz0FzzS0NOlhXbbfeD1mKBRrlnpAEepJJ2PYSLk9XmeB1NHRgiK3jSR2iytCEQ0KSi0SZ1mbQaZWJrYfLcGYw9tY5KTS00ZjpuOK_p-JIYg04gRyUewX7btfgEGBk7IS9uEsuNbJzOlUuR0FeqDUch3QLinRgqO9GT-y4Z2yocU-K88kKsvBCrSYgLeDtPuRq5Of41-NALYB44vfsFvN7JuiLD8tES02I3fPeheaUFoUka83hUgnnyTnee_nnRV3BrvSlPq9OPZ5-fwW2_jTFn8Dns998GfEE4pq9fBvX9BZ906Mw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+automatic+patient-adapted+ECG+heartbeat+classifier+allowing+expert+assistance&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Llamedo%2C+M&rft.au=Martinez%2C+J+P&rft.date=2012-08-01&rft.eissn=1558-2531&rft.volume=59&rft.issue=8&rft.spage=2312&rft_id=info:doi/10.1109%2FTBME.2012.2202662&rft_id=info%3Apmid%2F22692868&rft.externalDocID=22692868 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |