An Automatic Patient-Adapted ECG Heartbeat Classifier Allowing Expert Assistance

In this paper, we present a patient-adaptable algorithm for ECG heartbeat classification, based on a previously developed automatic classifier and a clustering algorithm. Both classifier and clustering algorithms include features from the RR interval series and morphology descriptors calculated from...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 59; no. 8; pp. 2312 - 2320
Main Authors Llamedo, Mariano, Martinez, Juan Pablo
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2012
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2012.2202662

Cover

Abstract In this paper, we present a patient-adaptable algorithm for ECG heartbeat classification, based on a previously developed automatic classifier and a clustering algorithm. Both classifier and clustering algorithms include features from the RR interval series and morphology descriptors calculated from the wavelet transform. Integrating the decisions of both classifiers, the presented algorithm can work either automatically or with several degrees of assistance. The algorithm was comprehensively evaluated in several ECG databases for comparison purposes. Even in the fully automatic mode, the algorithm slightly improved the performance figures of the original automatic classifier; just with less than two manually annotated heartbeats (MAHB) per recording, the algorithm obtained a mean improvement for all databases of 6.9% in accuracy A, of 6.5% in global sensitivity S and of 8.9% in global positive predictive value P + . An assistance of just 12 MAHB per recording resulted in a mean improvement of 13.1% in A, of 13.9% in S, and of 36.1% in P + . For the assisted mode, the algorithm outperformed other state-of-the-art classifiers with less expert annotation effort. The results presented in this paper represent an improvement in the field of automatic and patient-adaptable heartbeats classification, concluding that the performance of an automatic classifier can be improved with an efficient handling of the expert assistance.
AbstractList In this paper, we present a patient-adaptable algorithm for ECG heartbeat classification, based on a previously developed automatic classifier and a clustering algorithm. Both classifier and clustering algorithms include features from the RR interval series and morphology descriptors calculated from the wavelet transform. Integrating the decisions of both classifiers, the presented algorithm can work either automatically or with several degrees of assistance. The algorithm was comprehensively evaluated in several ECG databases for comparison purposes. Even in the fully automatic mode, the algorithm slightly improved the performance figures of the original automatic classifier; just with less than two manually annotated heartbeats (MAHB) per recording, the algorithm obtained a mean improvement for all databases of 6.9% in accuracy A, of 6.5% in global sensitivity S and of 8.9% in global positive predictive value P(+). An assistance of just 12 MAHB per recording resulted in a mean improvement of 13.1% in A, of 13.9% in S, and of 36.1% in P(+). For the assisted mode, the algorithm outperformed other state-of-the-art classifiers with less expert annotation effort. The results presented in this paper represent an improvement in the field of automatic and patient-adaptable heartbeats classification, concluding that the performance of an automatic classifier can be improved with an efficient handling of the expert assistance.
In this paper, we present a patient-adaptable algorithm for ECG heartbeat classification, based on a previously developed automatic classifier and a clustering algorithm. Both classifier and clustering algorithms include features from the RR interval series and morphology descriptors calculated from the wavelet transform. Integrating the decisions of both classifiers, the presented algorithm can work either automatically or with several degrees of assistance. The algorithm was comprehensively evaluated in several ECG databases for comparison purposes. Even in the fully automatic mode, the algorithm slightly improved the performance figures of the original automatic classifier; just with less than two manually annotated heartbeats (MAHB) per recording, the algorithm obtained a mean improvement for all databases of 6.9% in accuracy A, of 6.5% in global sensitivity S and of 8.9% in global positive predictive value P(+). An assistance of just 12 MAHB per recording resulted in a mean improvement of 13.1% in A, of 13.9% in S, and of 36.1% in P(+). For the assisted mode, the algorithm outperformed other state-of-the-art classifiers with less expert annotation effort. The results presented in this paper represent an improvement in the field of automatic and patient-adaptable heartbeats classification, concluding that the performance of an automatic classifier can be improved with an efficient handling of the expert assistance.In this paper, we present a patient-adaptable algorithm for ECG heartbeat classification, based on a previously developed automatic classifier and a clustering algorithm. Both classifier and clustering algorithms include features from the RR interval series and morphology descriptors calculated from the wavelet transform. Integrating the decisions of both classifiers, the presented algorithm can work either automatically or with several degrees of assistance. The algorithm was comprehensively evaluated in several ECG databases for comparison purposes. Even in the fully automatic mode, the algorithm slightly improved the performance figures of the original automatic classifier; just with less than two manually annotated heartbeats (MAHB) per recording, the algorithm obtained a mean improvement for all databases of 6.9% in accuracy A, of 6.5% in global sensitivity S and of 8.9% in global positive predictive value P(+). An assistance of just 12 MAHB per recording resulted in a mean improvement of 13.1% in A, of 13.9% in S, and of 36.1% in P(+). For the assisted mode, the algorithm outperformed other state-of-the-art classifiers with less expert annotation effort. The results presented in this paper represent an improvement in the field of automatic and patient-adaptable heartbeats classification, concluding that the performance of an automatic classifier can be improved with an efficient handling of the expert assistance.
Author Martinez, Juan Pablo
Llamedo, Mariano
Author_xml – sequence: 1
  givenname: Mariano
  surname: Llamedo
  fullname: Llamedo, Mariano
  email: llamedom@electron.frba.utn.edu.ar
  organization: Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
– sequence: 2
  givenname: Juan Pablo
  surname: Martinez
  fullname: Martinez, Juan Pablo
  email: jpmart@unizar.es
  organization: Communications Technology Group, Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza , Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22692868$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1Lw0AQhhdRtFZ_gAiSo5fU3dlksznGEj-gYg_1HCbJRFbyUXe3qP_elFYPHrzMMMzzzsBzyg77oSfGLgSfCcHTm9XtUz4DLmAGwEEpOGATEcc6hFiKQzbhXOgwhTQ6YafOvY1jpCN1zE4AVApa6QlbZn2QbfzQoTdVsBwr9T7Malx7qoN8fh88EFpfEvpg3qJzpjFkg6xthw_Tvwb555qsD7Jx4Tz2FZ2xowZbR-f7PmUvd_lq_hAunu8f59kirCQIHxLqpAGhm0Q2CpNaR5WiSFSlxDStkbhKlY4TLKUirXgDUCZKC0SqJQHFcsqud3fXdnjfkPNFZ1xFbYs9DRtXjH5iJSMZixG92qObsqO6WFvTof0qfiyMgNgBlR2cs9T8IoIXW9PF1nSxNV3sTY-Z5E-mMn7UN_Teomn_TV7ukoaIfj8pEBAnQn4DmQKJ_A
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106097
crossref_primary_10_1016_j_cmpb_2017_08_013
crossref_primary_10_1007_s11042_019_08132_9
crossref_primary_10_1088_1361_6579_ab6f9a
crossref_primary_10_3390_app9040702
crossref_primary_10_1038_s41598_018_29690_2
crossref_primary_10_1093_ehjdh_ztae025
crossref_primary_10_1016_j_bbe_2020_08_001
crossref_primary_10_1016_j_bspc_2022_103663
crossref_primary_10_1109_ACCESS_2019_2937875
crossref_primary_10_1109_ACCESS_2018_2807700
crossref_primary_10_1142_S0218001417580046
crossref_primary_10_1016_j_neucom_2018_06_068
crossref_primary_10_1109_ACCESS_2018_2833841
crossref_primary_10_32604_cmc_2022_015474
crossref_primary_10_5334_jors_86
crossref_primary_10_1016_j_knosys_2013_02_007
crossref_primary_10_1016_j_medengphy_2017_11_004
crossref_primary_10_1016_j_eswa_2021_114809
crossref_primary_10_1109_JTEHM_2024_3397739
crossref_primary_10_32604_cmc_2022_021987
crossref_primary_10_1016_j_bspc_2024_106265
crossref_primary_10_1155_2017_4108720
crossref_primary_10_1016_j_cmpb_2021_105931
crossref_primary_10_1016_j_jbi_2017_12_003
crossref_primary_10_1016_j_neucom_2017_02_056
crossref_primary_10_1016_j_cmpb_2015_12_008
crossref_primary_10_1016_j_eswa_2020_113411
crossref_primary_10_1016_j_artmed_2018_04_003
crossref_primary_10_1016_j_jelectrocard_2020_11_014
crossref_primary_10_1088_2057_1976_acf222
crossref_primary_10_1109_ACCESS_2023_3236189
crossref_primary_10_3390_app11156711
crossref_primary_10_1109_ACCESS_2019_2938617
crossref_primary_10_1007_s13534_014_0158_7
crossref_primary_10_1049_iet_spr_2015_0274
crossref_primary_10_1155_2022_2323625
crossref_primary_10_1016_j_neucom_2021_04_104
crossref_primary_10_1016_j_irbm_2019_12_001
crossref_primary_10_1016_j_procs_2022_09_406
crossref_primary_10_1080_10255842_2024_2332942
crossref_primary_10_1109_TIM_2022_3186355
crossref_primary_10_1016_j_knosys_2023_111006
crossref_primary_10_1007_s11704_014_2398_1
crossref_primary_10_1007_s00521_021_05820_2
crossref_primary_10_1016_j_bspc_2024_105983
crossref_primary_10_1016_j_bspc_2016_12_017
crossref_primary_10_1016_j_bspc_2018_03_003
crossref_primary_10_1109_TBME_2015_2468589
crossref_primary_10_1109_JBHI_2015_2468224
crossref_primary_10_3389_fphys_2021_678558
crossref_primary_10_1109_TCE_2018_2875799
crossref_primary_10_1109_TBME_2021_3135622
crossref_primary_10_1109_ACCESS_2019_2960116
crossref_primary_10_1016_j_neucom_2020_05_063
crossref_primary_10_2139_ssrn_4017037
crossref_primary_10_1016_j_cmpb_2018_11_005
crossref_primary_10_1093_europace_euv320
crossref_primary_10_1049_htl_2014_0072
crossref_primary_10_1109_TBME_2015_2402236
crossref_primary_10_1088_1742_6596_1717_1_012040
crossref_primary_10_1016_j_bspc_2013_01_005
crossref_primary_10_3389_fphy_2019_00103
crossref_primary_10_1166_jctn_2020_9240
crossref_primary_10_1016_j_bspc_2023_104756
crossref_primary_10_1016_j_cmpb_2018_04_021
crossref_primary_10_1109_JBHI_2016_2631247
crossref_primary_10_1007_s13246_021_01072_5
crossref_primary_10_1098_rsif_2017_0821
crossref_primary_10_1016_j_ins_2018_06_062
crossref_primary_10_1038_s41598_017_09544_z
crossref_primary_10_1016_j_compbiomed_2013_11_019
Cites_doi 10.1109/10.623058
10.1109/TBME.2004.827359
10.1109/TBME.2011.2113395
10.1109/10.846677
10.1109/TBME.2009.2013934
10.1109/TBME.2006.883802
10.1007/s10439-007-9368-9
10.1088/0967-3334/30/7/010
10.1161/01.CIR.101.23.e215
10.1109/CIC.1995.482614
10.1016/j.eswa.2010.09.010
10.1016/0167-8655(94)90127-9
10.1109/TBME.2010.2068048
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TBME.2012.2202662
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2320
ExternalDocumentID 22692868
10_1109_TBME_2012_2202662
6212571
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c321t-ea87f218f73f6a7d84c6e41cb3a99dae0696857ab36e860f22b7681aaed3e2e53
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Sun Sep 28 11:31:49 EDT 2025
Thu Apr 03 07:08:19 EDT 2025
Wed Oct 01 02:57:15 EDT 2025
Thu Apr 24 22:54:57 EDT 2025
Wed Aug 27 02:53:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-ea87f218f73f6a7d84c6e41cb3a99dae0696857ab36e860f22b7681aaed3e2e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22692868
PQID 1095634351
PQPubID 23479
PageCount 9
ParticipantIDs ieee_primary_6212571
crossref_citationtrail_10_1109_TBME_2012_2202662
crossref_primary_10_1109_TBME_2012_2202662
pubmed_primary_22692868
proquest_miscellaneous_1095634351
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-01
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
References (ref18) 0
ref12
ref15
van der heijden (ref17) 2005
(ref20) 0
taylor (ref2) 2002
jiang (ref5) 2007; 18
ref11
ref22
ref10
goldberger (ref7) 2000; 101
(ref13) 0
(ref8) 0
ref16
ref19
(ref1) 0
ref9
ref4
ref3
ref6
hu (ref14) 1997; 44
(ref21) 0
(ref23) 0
References_xml – volume: 44
  start-page: 891
  year: 1997
  ident: ref14
  article-title: A patient-adaptable ECG beat classifier using mixture of experts approach
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.623058
– ident: ref3
  doi: 10.1109/TBME.2004.827359
– volume: 18
  start-page: 1750
  year: 2007
  ident: ref5
  article-title: Block-based neural networks for personalized ECG signal classification
  publication-title: IEEE Trans Biomed Eng
– year: 0
  ident: ref8
– ident: ref19
  doi: 10.1109/TBME.2011.2113395
– year: 0
  ident: ref23
– year: 0
  ident: ref13
– year: 2005
  ident: ref17
  publication-title: Classification Parameter Estimation and State Estimation
– ident: ref16
  doi: 10.1109/10.846677
– ident: ref6
  doi: 10.1109/TBME.2009.2013934
– year: 2002
  ident: ref2
  publication-title: 150 Practice ECGs Interpretation and Review
– ident: ref15
  doi: 10.1109/TBME.2006.883802
– ident: ref12
  doi: 10.1007/s10439-007-9368-9
– ident: ref11
  doi: 10.1088/0967-3334/30/7/010
– year: 0
  ident: ref18
– year: 0
  ident: ref21
– volume: 101
  start-page: 215e
  year: 2000
  ident: ref7
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– year: 0
  ident: ref1
– ident: ref9
  doi: 10.1109/CIC.1995.482614
– ident: ref10
  doi: 10.1016/j.eswa.2010.09.010
– ident: ref22
  doi: 10.1016/0167-8655(94)90127-9
– year: 0
  ident: ref20
– ident: ref4
  doi: 10.1109/TBME.2010.2068048
SSID ssj0014846
Score 2.3809004
Snippet In this paper, we present a patient-adaptable algorithm for ECG heartbeat classification, based on a previously developed automatic classifier and a clustering...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2312
SubjectTerms Algorithms
Cluster Analysis
Clustering
Clustering algorithms
Databases, Factual
Electrocardiography
Electrocardiography - methods
Electromagnetic compatibility
Heart beat
Heart Rate - physiology
heartbeat classification
Humans
linear classifier
Morphology
patient adaptable
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Vectors
Title An Automatic Patient-Adapted ECG Heartbeat Classifier Allowing Expert Assistance
URI https://ieeexplore.ieee.org/document/6212571
https://www.ncbi.nlm.nih.gov/pubmed/22692868
https://www.proquest.com/docview/1095634351
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-UwEB_Uw7Ie1PVj97kfRPAk9tkmbdIeu_Lcx8ITDwreSppMQXy0stsi-Nc7SfuKLKt4KPSQpGlnJvmlM_MbgGNlQl2l2gR08SAm0w5KniWBpK1WCmlR-XJvi0s5v4l_3ya3a3A65sIgog8-w6m79b5825jO_So7k7TOJi5hfF2lss_VGj0Gcdon5YQRGTDP4sGDGYXZ2fXPxcwFcfEpp6M-zcIxAHOZ8dQRrL7Yjnx9ldehpt9yLrZhsZpsH2lyP-3acmqe_uFxfO_b7MDWgD1Z3ivLJ1jDehc2XzAS7sKHxeBr34OrvGZ51zae05Vd9fyrQW71A4FUNjv_xeZkJW1JiznzpTXvKtpiWb5cNo80FvMkyi0j-TuISrq1DzcXs-vzeTDUXwiM4FEboE5VRRCgUqKSWtk0NhLjyJRCZ5nVGDpinUTpUkhMZVhxXtLhJdIarUCOiTiAjbqp8QswMnXCXVxHhuu4sjJLrELCXkpqjiK2EwhXYijMQE7uamQsC39ICbPCCbFwQiwGIU7gZOzy0DNzvNV4zwlgbDh8-wkcrWRdkFk5X4musen-Osd8IgVhSWrzuVeCsfNKdw7_P-hX-Oge3UcJfoON9k-H3wm5tOUPr7LPb6Tlfw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB5CCn0c-kj62D5V6KnUG1sv20c3bLpt45DDBnIzsjSG0sUOrU2hv74j2WtCaUsPBh8kIXtmPJ88M98AvEltbJrM2IguHkky7ajmuYo0uVottMM0tHsrz_T6Qn66VJd78G6uhUHEkHyGS38bYvmus4P_VXak6TurfMH4DSWlVGO11hwzkNlYlhMnZMI8l1MMM4nzo837cuXTuPiS02Gf9uE5gLnOeeYpVq85pNBh5e9gMzidk3tQ7rY75pp8XQ59vbQ_f2Ny_N_nuQ93J_TJilFdHsAetgdw5xon4QHcLKdo-yGcFy0rhr4LrK7sfGRgjQpnrgimstXxB7YmO-lr-pyz0FzzS0NOlhXbbfeD1mKBRrlnpAEepJJ2PYSLk9XmeB1NHRgiK3jSR2iytCEQ0KSi0SZ1mbQaZWJrYfLcGYw9tY5KTS00ZjpuOK_p-JIYg04gRyUewX7btfgEGBk7IS9uEsuNbJzOlUuR0FeqDUch3QLinRgqO9GT-y4Z2yocU-K88kKsvBCrSYgLeDtPuRq5Of41-NALYB44vfsFvN7JuiLD8tES02I3fPeheaUFoUka83hUgnnyTnee_nnRV3BrvSlPq9OPZ5-fwW2_jTFn8Dns998GfEE4pq9fBvX9BZ906Mw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+automatic+patient-adapted+ECG+heartbeat+classifier+allowing+expert+assistance&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Llamedo%2C+M&rft.au=Martinez%2C+J+P&rft.date=2012-08-01&rft.eissn=1558-2531&rft.volume=59&rft.issue=8&rft.spage=2312&rft_id=info:doi/10.1109%2FTBME.2012.2202662&rft_id=info%3Apmid%2F22692868&rft.externalDocID=22692868
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon