A Prediction Model for Methane Concentration in the Buertai Coal Mine Based on Improved Black Kite Algorithm–Informer–Bidirectional Long Short-Term Memory
Accurate prediction of methane concentration in mine roadways is crucial for ensuring miner safety and enhancing the economic benefits of mining enterprises in the field of coal mine safety. Taking the Buertai Coal Mine as an example, this study employs laser methane concentration monitoring sensors...
Saved in:
| Published in | Processes Vol. 13; no. 1; p. 205 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.01.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2227-9717 2227-9717 |
| DOI | 10.3390/pr13010205 |
Cover
| Abstract | Accurate prediction of methane concentration in mine roadways is crucial for ensuring miner safety and enhancing the economic benefits of mining enterprises in the field of coal mine safety. Taking the Buertai Coal Mine as an example, this study employs laser methane concentration monitoring sensors to conduct precise real-time measurements of methane concentration in coal mine roadways. A prediction model for methane concentration in coal mine roadways, based on an Improved Black Kite Algorithm (IBKA) coupled with Informer-BiLSTM, is proposed. Initially, the traditional Black Kite Algorithm (BKA) is enhanced by introducing Tent chaotic mapping, integrating dynamic convex lens imaging, and adopting a Fraunhofer diffraction search strategy. Experimental results demonstrate that the proposed improvements effectively enhance the algorithm’s performance, resulting in the IBKA exhibiting higher search accuracy, faster convergence speed, and robust practicality. Subsequently, seven hyperparameters in the Informer-BiLSTM prediction model are optimized to further refine the model’s predictive accuracy. Finally, the prediction results of the IBKA-Informer-BiLSTM model are compared with those of six reference models. The research findings indicate that the coupled model achieves Mean Absolute Errors (MAE) of 0.00067624 and 0.0005971 for the training and test sets, respectively, Root Mean Square Errors (RMSE) of 0.00088187 and 0.0008005, and Coefficient of Determination (R2) values of 0.9769 and 0.9589. These results are significantly superior to those of the other compared models. Furthermore, when applied to additional methane concentration datasets from the Buertai Coal Mine roadways, the model demonstrates R2 values exceeding 0.95 for both the training and test sets, validating its excellent generalization ability, predictive performance, and potential for practical applications. |
|---|---|
| AbstractList | Accurate prediction of methane concentration in mine roadways is crucial for ensuring miner safety and enhancing the economic benefits of mining enterprises in the field of coal mine safety. Taking the Buertai Coal Mine as an example, this study employs laser methane concentration monitoring sensors to conduct precise real-time measurements of methane concentration in coal mine roadways. A prediction model for methane concentration in coal mine roadways, based on an Improved Black Kite Algorithm (IBKA) coupled with Informer-BiLSTM, is proposed. Initially, the traditional Black Kite Algorithm (BKA) is enhanced by introducing Tent chaotic mapping, integrating dynamic convex lens imaging, and adopting a Fraunhofer diffraction search strategy. Experimental results demonstrate that the proposed improvements effectively enhance the algorithm’s performance, resulting in the IBKA exhibiting higher search accuracy, faster convergence speed, and robust practicality. Subsequently, seven hyperparameters in the Informer-BiLSTM prediction model are optimized to further refine the model’s predictive accuracy. Finally, the prediction results of the IBKA-Informer-BiLSTM model are compared with those of six reference models. The research findings indicate that the coupled model achieves Mean Absolute Errors (MAE) of 0.00067624 and 0.0005971 for the training and test sets, respectively, Root Mean Square Errors (RMSE) of 0.00088187 and 0.0008005, and Coefficient of Determination (R2) values of 0.9769 and 0.9589. These results are significantly superior to those of the other compared models. Furthermore, when applied to additional methane concentration datasets from the Buertai Coal Mine roadways, the model demonstrates R2 values exceeding 0.95 for both the training and test sets, validating its excellent generalization ability, predictive performance, and potential for practical applications. Accurate prediction of methane concentration in mine roadways is crucial for ensuring miner safety and enhancing the economic benefits of mining enterprises in the field of coal mine safety. Taking the Buertai Coal Mine as an example, this study employs laser methane concentration monitoring sensors to conduct precise real-time measurements of methane concentration in coal mine roadways. A prediction model for methane concentration in coal mine roadways, based on an Improved Black Kite Algorithm (IBKA) coupled with Informer-BiLSTM, is proposed. Initially, the traditional Black Kite Algorithm (BKA) is enhanced by introducing Tent chaotic mapping, integrating dynamic convex lens imaging, and adopting a Fraunhofer diffraction search strategy. Experimental results demonstrate that the proposed improvements effectively enhance the algorithm’s performance, resulting in the IBKA exhibiting higher search accuracy, faster convergence speed, and robust practicality. Subsequently, seven hyperparameters in the Informer-BiLSTM prediction model are optimized to further refine the model’s predictive accuracy. Finally, the prediction results of the IBKA-Informer-BiLSTM model are compared with those of six reference models. The research findings indicate that the coupled model achieves Mean Absolute Errors (MAE) of 0.00067624 and 0.0005971 for the training and test sets, respectively, Root Mean Square Errors (RMSE) of 0.00088187 and 0.0008005, and Coefficient of Determination (R[sup.2]) values of 0.9769 and 0.9589. These results are significantly superior to those of the other compared models. Furthermore, when applied to additional methane concentration datasets from the Buertai Coal Mine roadways, the model demonstrates R[sup.2] values exceeding 0.95 for both the training and test sets, validating its excellent generalization ability, predictive performance, and potential for practical applications. |
| Audience | Academic |
| Author | Qu, Hu Shao, Xuming Chen, Qiaojun Liu, Chun Gao, Huanqi Guang, Jiahe |
| Author_xml | – sequence: 1 givenname: Hu surname: Qu fullname: Qu, Hu – sequence: 2 givenname: Xuming surname: Shao fullname: Shao, Xuming – sequence: 3 givenname: Huanqi surname: Gao fullname: Gao, Huanqi – sequence: 4 givenname: Qiaojun orcidid: 0009-0001-1758-5100 surname: Chen fullname: Chen, Qiaojun – sequence: 5 givenname: Jiahe surname: Guang fullname: Guang, Jiahe – sequence: 6 givenname: Chun surname: Liu fullname: Liu, Chun |
| BookMark | eNp9kctuEzEUhi3USpTSDU9giR1oWns8nhkvk4hLRKIiUdYjj30mcZmxg-2AsuMd2PNwPAmnDeIiIeyFf53znasfkRMfPBDyhLNLIRS72kUuGGclkw_IWVmWTaEa3pz8oR-Si5RuGR7FRSvrM_JtRt9GsM5kFzxdBwsjHUKka8hb7YEugjfgc9T3fudp3gKd7yFm7dCpR7p2iM11AkuRWE67GD6hno_afKBvXAY6Gzchurydvn_5uvSYfYKIcu6si3BfGNOsgt_Qd9sQc3EDccIGphAPj8npoMcEFz_fc_L-5Yubxetidf1quZitCiNKngtT67YSUmrZ9hpMr5mqBi6UEMBB9rY2NRPGNj1UrbZVUykJqoJW2Yb3pgZxTp4f8-79Th8-63HsdtFNOh46zrq77Xa_t4v00yONs37cQ8rdbdhHnCJ1gkslq1Zi7V_URo_QORwc12gml0w3a0vVikbULVKX_6DwWpicwQ8eHNr_Cnh2DDAxpBRh-F-nPwANU6e0 |
| Cites_doi | 10.1016/j.energy.2022.126208 10.1088/1755-1315/526/1/012158 10.1016/j.jbi.2024.104715 10.1016/j.eswa.2023.121438 10.1016/j.ijggc.2017.11.018 10.1016/j.ijheatmasstransfer.2020.119392 10.1007/s11831-021-09694-4 10.1007/s10489-024-05537-4 10.1080/03610918.2022.2057540 10.1016/j.jngse.2021.103930 10.1016/j.swevo.2023.101447 10.1007/s10462-016-9471-0 10.1016/j.sysarc.2023.102871 10.1007/s11227-021-04255-9 10.1016/j.energy.2024.133980 10.1016/j.coal.2024.104471 10.1016/j.resourpol.2023.104425 10.3390/rs13030510 10.1016/j.eswa.2023.122316 10.1016/B978-0-323-88423-5.00070-4 10.1016/j.heliyon.2024.e37819 10.1016/j.enconman.2014.05.058 10.1177/14759217231219436 10.1109/TCI.2022.3212837 10.1016/j.jgsce.2023.205106 10.1007/978-3-319-08840-2 10.1016/j.asoc.2023.110296 10.1016/j.soildyn.2023.108302 10.1016/j.psep.2022.05.048 10.1007/s10462-024-10723-4 10.1016/j.measurement.2024.116152 10.1080/15567036.2021.1936692 10.1088/1674-1056/24/10/100501 10.1016/j.compeleceng.2024.109632 10.1016/j.aej.2022.08.013 10.1016/j.rse.2023.113499 10.1007/s11831-021-09562-1 10.1016/j.scitotenv.2023.164701 10.1016/j.asej.2023.102510 10.3390/s24134423 10.1016/j.eswa.2023.122080 10.1007/s11356-014-3561-9 10.1016/j.jenvman.2022.116892 10.1109/MLBDBI60823.2023.10481909 10.1007/s11203-023-09305-y 10.1016/j.asoc.2014.08.025 10.1007/BF00864914 10.1016/j.knosys.2019.01.018 10.1016/j.psep.2019.10.014 10.1016/B978-0-323-90300-4.00045-8 10.1038/s41598-024-57518-9 10.20944/preprints202405.1020.v1 10.1016/j.eurpolymj.2015.01.015 10.1016/j.energy.2024.133535 10.1016/j.eswa.2022.117255 10.1016/j.ijmst.2022.02.001 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/pr13010205 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database (Proquest) Biological Sciences Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2227-9717 |
| ExternalDocumentID | 10.3390/pr13010205 A829837368 10_3390_pr13010205 |
| GeographicLocations | United States China |
| GeographicLocations_xml | – name: China – name: United States |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC RNS 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c321t-c6a84355a58baecba094f13933e1e5bd6c603cd7be48ad47495e94e89d71bc6e3 |
| IEDL.DBID | BENPR |
| ISSN | 2227-9717 |
| IngestDate | Tue Aug 19 23:21:43 EDT 2025 Fri Jul 25 11:57:49 EDT 2025 Mon Oct 20 22:42:50 EDT 2025 Mon Oct 20 16:55:54 EDT 2025 Thu Oct 16 04:30:55 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c321t-c6a84355a58baecba094f13933e1e5bd6c603cd7be48ad47495e94e89d71bc6e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-1758-5100 |
| OpenAccessLink | https://www.proquest.com/docview/3159548539?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3159548539 |
| PQPubID | 2032344 |
| ParticipantIDs | unpaywall_primary_10_3390_pr13010205 proquest_journals_3159548539 gale_infotracmisc_A829837368 gale_infotracacademiconefile_A829837368 crossref_primary_10_3390_pr13010205 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Processes |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Naanaa (ref_52) 2015; 269 Conrad (ref_63) 2023; 288 Gad (ref_25) 2022; 29 Luo (ref_19) 2024; 33 Wang (ref_31) 2024; 57 Tan (ref_59) 2024; 312 Pandey (ref_32) 2014; 24 ref_57 Mirjalili (ref_65) 2023; 139 ref_12 ref_56 Wang (ref_1) 2024; 88 ref_10 Anggraeni (ref_41) 2024; 237 ref_54 Fu (ref_20) 2021; 34 Macedo (ref_43) 2024; 53 Mardashov (ref_48) 2020; 17 Chen (ref_66) 2025; 314 Goodarzian (ref_68) 2023; 328 Michell (ref_26) 2015; 65 Yang (ref_60) 2024; 23 ref_61 Zhang (ref_49) 2024; 242 Zhang (ref_2) 2020; 133 Li (ref_21) 2021; 28 Cheng (ref_24) 2016; 46 ref_69 Guo (ref_18) 2013; 23 ref_22 Anani (ref_15) 2024; 285 Cao (ref_51) 2015; 24 Li (ref_58) 2024; 120 Feitz (ref_64) 2018; 70 Xie (ref_3) 2022; 164 Ye (ref_35) 2024; 54 Soni (ref_46) 2015; 22 Qiao (ref_28) 2024; 241 ref_70 Bas (ref_42) 2024; 238 Liu (ref_7) 2021; 90 ref_33 Song (ref_34) 2024; 84 Zhang (ref_14) 2023; 118 Jahan (ref_11) 2024; 132 Liu (ref_9) 2020; 150 Jamshidzadeh (ref_62) 2024; 15 ref_39 Zhang (ref_13) 2023; 893 ref_37 Long (ref_36) 2022; 202 Khalid (ref_27) 2023; 63 Xie (ref_50) 2024; 10 Su (ref_23) 2014; 85 Zhang (ref_29) 2022; 78 Bondarenko (ref_5) 2020; 20 Wang (ref_53) 2022; 8 Tol (ref_44) 1993; 48 ref_45 Wen (ref_16) 2023; 264 ref_40 Islamov (ref_47) 2019; 10 Niu (ref_30) 2019; 171 Nie (ref_17) 2020; 526 ref_8 Soukarieh (ref_38) 2024; 27 Acampora (ref_67) 2023; 142 Cao (ref_55) 2024; 176 Ray (ref_4) 2022; 32 ref_6 |
| References_xml | – volume: 264 start-page: 126208 year: 2023 ident: ref_16 article-title: Coalbed methane concentration prediction and early-warning in fully mechanized mining face based on deep learning publication-title: Energy doi: 10.1016/j.energy.2022.126208 – volume: 526 start-page: 012158 year: 2020 ident: ref_17 article-title: Research on Gaussian Plume Model of Gas Diffusion in Coal Mine Roadway Based on BP Neural Network Optimized by Genetic Algorithm publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/526/1/012158 – ident: ref_57 doi: 10.1016/j.jbi.2024.104715 – volume: 237 start-page: 121438 year: 2024 ident: ref_41 article-title: A hybrid EMD-GRNN-PSO in intermittent time-series data for dengue fever forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121438 – volume: 70 start-page: 202 year: 2018 ident: ref_64 article-title: The Ginninderra CH4 and CO2 release experiment: An evaluation of gas detection and quantification techniques publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2017.11.018 – volume: 150 start-page: 119392 year: 2020 ident: ref_9 article-title: Predicting fugitive gas emissions from gob-to-face in longwall coal mines: Coupled analytical and numerical modeling publication-title: Int. J. Heat Mass. Transf. doi: 10.1016/j.ijheatmasstransfer.2020.119392 – volume: 29 start-page: 2531 year: 2022 ident: ref_25 article-title: Particle swarm optimization algorithm and its applications: A systematic review publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-021-09694-4 – volume: 54 start-page: 6888 year: 2024 ident: ref_35 article-title: An ensemble algorithm based on adaptive chaotic quantum-behaved particle swarm optimization with weibull distribution and hunger games search and its financial application in parameter identification publication-title: Appl. Intell. doi: 10.1007/s10489-024-05537-4 – volume: 53 start-page: 518 year: 2024 ident: ref_43 article-title: A two-stage maximum entropy approach for time series regression publication-title: Commun. Stat.-Simul. Comput. doi: 10.1080/03610918.2022.2057540 – volume: 90 start-page: 103930 year: 2021 ident: ref_7 article-title: Natural gas consumption forecasting: A discussion on forecasting history and future challenges publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2021.103930 – volume: 84 start-page: 101447 year: 2024 ident: ref_34 article-title: Differential Evolution with perturbation mechanism and covariance matrix based stagnation indicator for numerical optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101447 – volume: 46 start-page: 445 year: 2016 ident: ref_24 article-title: Brain storm optimization algorithm: A review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-016-9471-0 – volume: 139 start-page: 102871 year: 2023 ident: ref_65 article-title: MEALPY: An open-source library for latest meta-heuristic algorithms in Python publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2023.102871 – ident: ref_39 – volume: 78 start-page: 10950 year: 2022 ident: ref_29 article-title: Chaotic adaptive sailfish optimizer with genetic characteristics for global optimization publication-title: J. Supercomput. doi: 10.1007/s11227-021-04255-9 – volume: 314 start-page: 133980 year: 2025 ident: ref_66 article-title: Spontaneous coal combustion temperature prediction based on an improved grey wolf optimizer-gated recurrent unit model publication-title: Energy doi: 10.1016/j.energy.2024.133980 – volume: 132 start-page: 104018 year: 2024 ident: ref_11 article-title: Deep Learning-Based quantifications of methane emissions with field applications publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 33 start-page: 359 year: 2024 ident: ref_19 article-title: Incorporating multi-features and XGBoost algorithm for gas concentration prediction publication-title: China Min. Mag. – volume: 285 start-page: 104471 year: 2024 ident: ref_15 article-title: Advancements in machine learning techniques for coal and gas outburst prediction in underground mines publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2024.104471 – volume: 88 start-page: 104425 year: 2024 ident: ref_1 article-title: Accident case-driven study on the causal modeling and prevention strategies of coal-mine gas-explosion accidents: A systematic analysis of coal-mine accidents in China publication-title: Resour. Policy doi: 10.1016/j.resourpol.2023.104425 – ident: ref_12 doi: 10.3390/rs13030510 – volume: 241 start-page: 122316 year: 2024 ident: ref_28 article-title: A multi-level thresholding image segmentation method using hybrid Arithmetic Optimization and Harris Hawks Optimizer algorithms publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122316 – ident: ref_70 doi: 10.1016/B978-0-323-88423-5.00070-4 – volume: 10 start-page: e37819 year: 2024 ident: ref_50 article-title: An enhanced snow ablation optimizer for UAV swarm path planning and engineering design problems publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e37819 – volume: 20 start-page: 37 year: 2020 ident: ref_5 article-title: Laboratory studies of polymer compositions for well-kill under increased fracturing publication-title: Perm J. Pet. Min. Eng. – volume: 85 start-page: 443 year: 2014 ident: ref_23 article-title: A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.05.058 – ident: ref_56 – volume: 17 start-page: 782 year: 2020 ident: ref_48 article-title: Specifics of well killing technology during well service operation in complicated conditions publication-title: Period. Tche Quim. – volume: 23 start-page: 3007 year: 2024 ident: ref_60 article-title: Segmented sequence decomposition-Informer model for deformation of arch dams publication-title: Struct. Health Monit. doi: 10.1177/14759217231219436 – volume: 269 start-page: 402 year: 2015 ident: ref_52 article-title: Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization publication-title: Appl. Math. Comput. – volume: 8 start-page: 905 year: 2022 ident: ref_53 article-title: do: A differentiable engine for deep lens design of computational imaging systems publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2022.3212837 – volume: 118 start-page: 205106 year: 2023 ident: ref_14 article-title: Risk identification for coal and gas outburst in underground coal mines: A critical review and future directions publication-title: Gas Sci. Eng. doi: 10.1016/j.jgsce.2023.205106 – ident: ref_45 – volume: 10 start-page: 2697 year: 2019 ident: ref_47 article-title: Complex algorithm for developing effective kill fluids for oil and gas condensate reservoirs publication-title: Int. J. Civ. Eng. Technol – ident: ref_22 doi: 10.1007/978-3-319-08840-2 – volume: 142 start-page: 110296 year: 2023 ident: ref_67 article-title: Genetic algorithms as classical optimizer for the quantum approximate optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110296 – volume: 176 start-page: 108302 year: 2024 ident: ref_55 article-title: Experimental and numerical investigations on adaptive stiffness double friction pendulum systems for seismic protection of bridges publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2023.108302 – volume: 164 start-page: 67 year: 2022 ident: ref_3 article-title: Accident case data–accident cause model hybrid-driven coal and gas outburst accident analysis: Evidence from 84 accidents in China during 2008–2018 publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.05.048 – volume: 57 start-page: 98 year: 2024 ident: ref_31 article-title: Black-winged kite algorithm: A nature-inspired meta-heuristic for solving benchmark functions and engineering problems publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10723-4 – volume: 242 start-page: 116152 year: 2024 ident: ref_49 article-title: A hybrid algorithm for predicting the remaining service life of hybrid bearings based on bidirectional feature extraction publication-title: Measurement doi: 10.1016/j.measurement.2024.116152 – volume: 34 start-page: 784 year: 2021 ident: ref_20 article-title: Research on gas concentration prediction based on multi-sensor-deep long short-term memory network fusion publication-title: Chin. J. Sens. Actuators – ident: ref_8 doi: 10.1080/15567036.2021.1936692 – volume: 24 start-page: 100501 year: 2015 ident: ref_51 article-title: A perturbation method to the tent map based on Lyapunov exponent and its application publication-title: Chin. Phys. B doi: 10.1088/1674-1056/24/10/100501 – volume: 120 start-page: 109632 year: 2024 ident: ref_58 article-title: A novel ultra-short-term wind power forecasting method based on TCN and Informer models publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2024.109632 – volume: 63 start-page: 487 year: 2023 ident: ref_27 article-title: Emperor penguin optimizer: A comprehensive review based on state-of-the-art meta-heuristic algorithms publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.08.013 – volume: 288 start-page: 113499 year: 2023 ident: ref_63 article-title: Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2023.113499 – volume: 28 start-page: 3781 year: 2021 ident: ref_21 article-title: A survey of learning-based intelligent optimization algorithms publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-021-09562-1 – ident: ref_40 – volume: 893 start-page: 164701 year: 2023 ident: ref_13 article-title: Atmospheric remote sensing for anthropogenic methane emissions: Applications and research opportunities publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.164701 – volume: 15 start-page: 102510 year: 2024 ident: ref_62 article-title: Bidirectional Long Short-Term Memory (BILSTM)-Support Vector Machine: A new machine learning model for predicting water quality parameters publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2023.102510 – ident: ref_10 doi: 10.3390/s24134423 – volume: 238 start-page: 122080 year: 2024 ident: ref_42 article-title: Robust training of median dendritic artificial neural networks for time series forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122080 – volume: 22 start-page: 3652 year: 2015 ident: ref_46 article-title: Time series model prediction and trend variability of aerosol optical depth over coal mines in India publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3561-9 – volume: 328 start-page: 116892 year: 2023 ident: ref_68 article-title: A sustainable-circular citrus closed-loop supply chain configuration: Pareto-based algorithms publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2022.116892 – ident: ref_54 doi: 10.1109/MLBDBI60823.2023.10481909 – volume: 27 start-page: 227 year: 2024 ident: ref_38 article-title: Weak convergence of the conditional U-statistics for locally stationary functional time series publication-title: Stat. Inference Stoch. Process. doi: 10.1007/s11203-023-09305-y – ident: ref_6 – volume: 24 start-page: 1047 year: 2014 ident: ref_32 article-title: A comparative review of approaches to prevent premature convergence in GA publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.08.025 – ident: ref_33 – volume: 23 start-page: 34 year: 2013 ident: ref_18 article-title: Research on coal mine gas concentration multi-sensor prediction model based on information fusion and GA-SVM publication-title: China Saf. Sci. J. – volume: 48 start-page: 63 year: 1993 ident: ref_44 article-title: Greenhouse statistics-time series analysis publication-title: Theor. Appl. Climatol. doi: 10.1007/BF00864914 – volume: 171 start-page: 37 year: 2019 ident: ref_30 article-title: The defect of the Grey Wolf optimization algorithm and its verification method publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.01.018 – volume: 133 start-page: 332 year: 2020 ident: ref_2 article-title: Statistical analysis the characteristics of extraordinarily severe coal mine accidents (ESCMAs) in China from 1950 to 2018 publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2019.10.014 – ident: ref_69 doi: 10.1016/B978-0-323-90300-4.00045-8 – ident: ref_37 doi: 10.1038/s41598-024-57518-9 – ident: ref_61 doi: 10.20944/preprints202405.1020.v1 – volume: 65 start-page: 132 year: 2015 ident: ref_26 article-title: Successive Self-nucleation and Annealing (SSA): Correct design of thermal protocol and applications publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2015.01.015 – volume: 312 start-page: 133535 year: 2024 ident: ref_59 article-title: Short-term heating load forecasting model based on SVMD and improved informer publication-title: Energy doi: 10.1016/j.energy.2024.133535 – volume: 202 start-page: 117255 year: 2022 ident: ref_36 article-title: Lens-imaging learning Harris hawks optimizer for global optimization and its application to feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117255 – volume: 32 start-page: 471 year: 2022 ident: ref_4 article-title: Review of preventive and constructive measures for coal mine explosions: An Indian perspective publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2022.02.001 |
| SSID | ssj0000913856 |
| Score | 2.2879727 |
| Snippet | Accurate prediction of methane concentration in mine roadways is crucial for ensuring miner safety and enhancing the economic benefits of mining enterprises in... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 205 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Coal Coal industry Coal mines Coal mining Errors Genetic algorithms Long short-term memory Methane Occupational health and safety Occupational safety Prediction models Predictions Real time Search methods Sensors Support vector machines Test sets |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB5BeoAegBYQgYJWohJwcBN7vY73hJyKqgJSVaKRysnan3EbkTqR44DKiXfgzsPxJMzaG0h7QIjbSrvWrr0zO9833pkB2OUqMaGVKohsUQRkr3kgU4wCLVH3pR5oFC5QeHSUHI7jt6fi1DvcFv5aJVHxSXNIuzjNQBLh6IW8FxJPF725LV5_9p6kcMCTNJYhFzdhIxGExTuwMT46zj66inKrZ9ucpJy4fW9e0YlNFtXVqluzQtfP4k24tSzn6vKLmk7XjM3BXchXy2zvmHzaW9Z6z3y9lsHx_9_jHtzxOJRlreBswQ0st2FzLTvhNmx5vV-wlz459av78CNjx5X7ueM2lLlKalNGuJeN0Pngke27MMjS5-Jlk5IRwGTDZXPxgDppyhHNwIZkPC2jEa1Tg9qNJ5G9IwTMsunZrJrU5xc_v31vw6WwouZw0trfxnnJ3s_KM_bhnNhDcELWhRZwMasuH8D44M3J_mHgazwEhkdhHZhEpYTYhBKpVmi0IrpZECrlHEMU2iYm6XNjSWbiVNl4QHwOZYyptINQmwT5Q-iUsxIfAZNCIeErVEVo4n5M1BUTHBSKMGRsbV914flqz_N5m8ojJwrkJCP_IxldeOHEIXf6TR_LKB-mQHO4TFl5lkaSSD3tWBd2rowkvTRXu1cClftzYZFzQo_EEQWXXdj9LWR_Wc7jfxv2BG5HrjBx4xvagU5dLfEpoaVaP_Mq8QuvrRJL priority: 102 providerName: Unpaywall |
| Title | A Prediction Model for Methane Concentration in the Buertai Coal Mine Based on Improved Black Kite Algorithm–Informer–Bidirectional Long Short-Term Memory |
| URI | https://www.proquest.com/docview/3159548539 https://www.mdpi.com/2227-9717/13/1/205/pdf?version=1736849135 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: ADMLS dateStart: 20150601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-9717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Pb9MwFH_augPsMLEBWtmYLDEJOERr4iSNDwilU8sEtKpglcYp8p-XbVKXlqwV2gXxHbjz4fgkPCfO1nHYzVas2PKz_X7v2e_3AA65jLVvhPQCk-ce6WvuiQQDTwlUHaG6CiMbKDwcxSeT8ONZdLYGoyYWxj6rbM7E6qA2M2195Eec9C6h64iL9_Pvns0aZW9XmxQa0qVWMO8qirF12AgsM1YLNnr90fjLrdfFsmAmUVzzlHKy94_mJZ3ipGVt_roVzfT_-bwJj5bFXN78kNPpigIaPIEthxxZWot6G9aw2IHNFT7BHdh2O_WavXF00m-fwp-UjUt7HWNFwGzusykjpMqGaL3myI5t4GLh2HPZZcEIErLesnoqQB-pyyH1wHqk7gyjFrUbgsqV7499ovlh6fSc5mpxcfX31-86wAlLKvYua41ZuRvZ51lxzr5eEN73Tkkf0ACuZuXNM5gM-qfHJ57LyuBpHvgLT8cyIYwVyShRErWSZCDmhCM5Rx8jZWIdd7g2JOUwkSbskgWGIsREmK6vdIz8ObSKWYG7wEQkkRARytzXYSckYxNj7OaSUF9oTEe24VUjkWxek29kZLRYuWV3cmvDayuszO5ImiwtXWAB9WG5rbI0CQSZ4TxO2rB_ryXtJH3_cyPuzO3k6-xu3bXh8HYJPDCcFw__ZQ8eBzaFcOXF2YfWolziS8I1C3UA68ngw4FbslQb_uxTbTIap9_-AZjW_3M |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9lB6QLSACBRYiSLgYNX22o73UKGktErJjypIpd7MenfcVkqd4CSqcuMduPMoPAxPwqy9blMOvfVmaVfelb_1fN-MPTMAO1xGytNCOr7OMof4mjsiRt9JBaauSJsphiZRuD-IOifBl9PwdAX-1Lkw5rfK2iaWhlqPlYmR73LiXVLXIRefJj8c0zXKfF2tW2hI21pB75UlxmxiRxcXV-TCTfeOPhPe73z_8GC433FslwFHcd-bOSqSMWmGUIZxKlGlkhyejHQR5-hhmOpIRS5XmnYdxFIHTfIoUAQYC930UhUhp_s-gLWAB4Kcv7X2weD463WUx1TdjMOoqovKuXB3JwWxBrG66Ze3xIT_88EGrM_ziVxcydFoifAOH8Mjq1RZqzpam7CC-RZsLNUv3IJNaxmm7IMtX_3xCfxusePCfP4xkDPTa23ESBmzPpooPbJ9kyiZ22q97CJnJEFZe17-mkCDtGSfVmBtolfNaEYV9qDrMtbIuoQHa43OCJvZ-eXfn7-qhCos6LJ9UTF0Gd5kvXF-xr6dk3_hDIl_aAOX42LxFE7uBZ9nsJqPc3wOTIQSSYGhzDwVuAE5txhhM5OkMgOtXdmAtzUiyaQq9pGQk2RwS25wa8B7A1ZiLAA9LCVtIgOtYWppJa3YF-T28yhuwPatmfTmqtvDNdyJtRzT5OacN2Dn-gjcsZ0Xd9_lDax3hv1e0jsadF_CQ9-0Ly4jSNuwOivm-Io01Sx9bQ8ug-_3_a78AzxWOas |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIgE9IFpApBRYiSLgYMX2-m8PCCUtoSVNVYlW6s3sz7itlDqpk6jKjXfgzoPwODwJs_5pUw699WbJlnflb3a_b8Y7MwCbXEbaM0I6vskyh_iaOyJB31EClStUrDC0icKD_WjnKPh2HB4vwZ8mF8Yeq2z2xHKjNiNtY-RtTrxL6jrkop3VxyIOtnufxxeO7SBl_7Q27TQqE-nj_JLct8mn3W3C-p3v974cbu04dYcBR3Pfmzo6kgnphVCGiZKolSRnJyNNxDl6GCoT6cjl2tCMg0SaICZvAkWAiTCxp3SEnN57D-7Htoq7zVLvfb2K79h6m0kYVRVRORdue1wQXxCf2055Cxz4PxOswMNZPpbzSzkcLlBd7wk8rjUq61RGtQpLmK_BykLlwjVYrfeECftQF67--BR-d9hBYX_8WLCZ7bI2ZKSJ2QBtfB7Zlk2RzOs6vewsZyQ-WXdWHkqgmzTkgEZgXSJWw-iJKuBB12WUkfXp67PO8ISQmJ6e__35q0qlwoIuu2cVN5eBTbY3yk_Y91PyLJxDYh6awPmomD-DoztB5zks56McXwAToUTSXigzTwduQG4tRhhnkvRlYIwrW_C2QSQdV2U-UnKPLG7pNW4teG_BSu3ap4-lZZ3CQGPYKlppJ_EFOfxkDS3YuPEkrVl983YDd1rvGZP02sJbsHllArdMZ_32t7yBB7RC0r3d_f5LeOTbvsVl6GgDlqfFDF-RmJqq16XVMvhx18vkH7xkN0U |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB5BeoAegBYQgYJWohJwcBN7vY73hJyKqgJSVaKRysnan3EbkTqR44DKiXfgzsPxJMzaG0h7QIjbSrvWrr0zO9833pkB2OUqMaGVKohsUQRkr3kgU4wCLVH3pR5oFC5QeHSUHI7jt6fi1DvcFv5aJVHxSXNIuzjNQBLh6IW8FxJPF725LV5_9p6kcMCTNJYhFzdhIxGExTuwMT46zj66inKrZ9ucpJy4fW9e0YlNFtXVqluzQtfP4k24tSzn6vKLmk7XjM3BXchXy2zvmHzaW9Z6z3y9lsHx_9_jHtzxOJRlreBswQ0st2FzLTvhNmx5vV-wlz459av78CNjx5X7ueM2lLlKalNGuJeN0Pngke27MMjS5-Jlk5IRwGTDZXPxgDppyhHNwIZkPC2jEa1Tg9qNJ5G9IwTMsunZrJrU5xc_v31vw6WwouZw0trfxnnJ3s_KM_bhnNhDcELWhRZwMasuH8D44M3J_mHgazwEhkdhHZhEpYTYhBKpVmi0IrpZECrlHEMU2iYm6XNjSWbiVNl4QHwOZYyptINQmwT5Q-iUsxIfAZNCIeErVEVo4n5M1BUTHBSKMGRsbV914flqz_N5m8ojJwrkJCP_IxldeOHEIXf6TR_LKB-mQHO4TFl5lkaSSD3tWBd2rowkvTRXu1cClftzYZFzQo_EEQWXXdj9LWR_Wc7jfxv2BG5HrjBx4xvagU5dLfEpoaVaP_Mq8QuvrRJL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Prediction+Model+for+Methane+Concentration+in+the+Buertai+Coal+Mine+Based+on+Improved+Black+Kite+Algorithm%E2%80%93Informer%E2%80%93Bidirectional+Long+Short-Term+Memory&rft.jtitle=Processes&rft.au=Qu%2C+Hu&rft.au=Shao%2C+Xuming&rft.au=Gao%2C+Huanqi&rft.au=Chen%2C+Qiaojun&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=13&rft.issue=1&rft.spage=205&rft_id=info:doi/10.3390%2Fpr13010205&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |