A Prediction Model for Methane Concentration in the Buertai Coal Mine Based on Improved Black Kite Algorithm–Informer–Bidirectional Long Short-Term Memory

Accurate prediction of methane concentration in mine roadways is crucial for ensuring miner safety and enhancing the economic benefits of mining enterprises in the field of coal mine safety. Taking the Buertai Coal Mine as an example, this study employs laser methane concentration monitoring sensors...

Full description

Saved in:
Bibliographic Details
Published inProcesses Vol. 13; no. 1; p. 205
Main Authors Qu, Hu, Shao, Xuming, Gao, Huanqi, Chen, Qiaojun, Guang, Jiahe, Liu, Chun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2025
Subjects
Online AccessGet full text
ISSN2227-9717
2227-9717
DOI10.3390/pr13010205

Cover

Abstract Accurate prediction of methane concentration in mine roadways is crucial for ensuring miner safety and enhancing the economic benefits of mining enterprises in the field of coal mine safety. Taking the Buertai Coal Mine as an example, this study employs laser methane concentration monitoring sensors to conduct precise real-time measurements of methane concentration in coal mine roadways. A prediction model for methane concentration in coal mine roadways, based on an Improved Black Kite Algorithm (IBKA) coupled with Informer-BiLSTM, is proposed. Initially, the traditional Black Kite Algorithm (BKA) is enhanced by introducing Tent chaotic mapping, integrating dynamic convex lens imaging, and adopting a Fraunhofer diffraction search strategy. Experimental results demonstrate that the proposed improvements effectively enhance the algorithm’s performance, resulting in the IBKA exhibiting higher search accuracy, faster convergence speed, and robust practicality. Subsequently, seven hyperparameters in the Informer-BiLSTM prediction model are optimized to further refine the model’s predictive accuracy. Finally, the prediction results of the IBKA-Informer-BiLSTM model are compared with those of six reference models. The research findings indicate that the coupled model achieves Mean Absolute Errors (MAE) of 0.00067624 and 0.0005971 for the training and test sets, respectively, Root Mean Square Errors (RMSE) of 0.00088187 and 0.0008005, and Coefficient of Determination (R2) values of 0.9769 and 0.9589. These results are significantly superior to those of the other compared models. Furthermore, when applied to additional methane concentration datasets from the Buertai Coal Mine roadways, the model demonstrates R2 values exceeding 0.95 for both the training and test sets, validating its excellent generalization ability, predictive performance, and potential for practical applications.
AbstractList Accurate prediction of methane concentration in mine roadways is crucial for ensuring miner safety and enhancing the economic benefits of mining enterprises in the field of coal mine safety. Taking the Buertai Coal Mine as an example, this study employs laser methane concentration monitoring sensors to conduct precise real-time measurements of methane concentration in coal mine roadways. A prediction model for methane concentration in coal mine roadways, based on an Improved Black Kite Algorithm (IBKA) coupled with Informer-BiLSTM, is proposed. Initially, the traditional Black Kite Algorithm (BKA) is enhanced by introducing Tent chaotic mapping, integrating dynamic convex lens imaging, and adopting a Fraunhofer diffraction search strategy. Experimental results demonstrate that the proposed improvements effectively enhance the algorithm’s performance, resulting in the IBKA exhibiting higher search accuracy, faster convergence speed, and robust practicality. Subsequently, seven hyperparameters in the Informer-BiLSTM prediction model are optimized to further refine the model’s predictive accuracy. Finally, the prediction results of the IBKA-Informer-BiLSTM model are compared with those of six reference models. The research findings indicate that the coupled model achieves Mean Absolute Errors (MAE) of 0.00067624 and 0.0005971 for the training and test sets, respectively, Root Mean Square Errors (RMSE) of 0.00088187 and 0.0008005, and Coefficient of Determination (R2) values of 0.9769 and 0.9589. These results are significantly superior to those of the other compared models. Furthermore, when applied to additional methane concentration datasets from the Buertai Coal Mine roadways, the model demonstrates R2 values exceeding 0.95 for both the training and test sets, validating its excellent generalization ability, predictive performance, and potential for practical applications.
Accurate prediction of methane concentration in mine roadways is crucial for ensuring miner safety and enhancing the economic benefits of mining enterprises in the field of coal mine safety. Taking the Buertai Coal Mine as an example, this study employs laser methane concentration monitoring sensors to conduct precise real-time measurements of methane concentration in coal mine roadways. A prediction model for methane concentration in coal mine roadways, based on an Improved Black Kite Algorithm (IBKA) coupled with Informer-BiLSTM, is proposed. Initially, the traditional Black Kite Algorithm (BKA) is enhanced by introducing Tent chaotic mapping, integrating dynamic convex lens imaging, and adopting a Fraunhofer diffraction search strategy. Experimental results demonstrate that the proposed improvements effectively enhance the algorithm’s performance, resulting in the IBKA exhibiting higher search accuracy, faster convergence speed, and robust practicality. Subsequently, seven hyperparameters in the Informer-BiLSTM prediction model are optimized to further refine the model’s predictive accuracy. Finally, the prediction results of the IBKA-Informer-BiLSTM model are compared with those of six reference models. The research findings indicate that the coupled model achieves Mean Absolute Errors (MAE) of 0.00067624 and 0.0005971 for the training and test sets, respectively, Root Mean Square Errors (RMSE) of 0.00088187 and 0.0008005, and Coefficient of Determination (R[sup.2]) values of 0.9769 and 0.9589. These results are significantly superior to those of the other compared models. Furthermore, when applied to additional methane concentration datasets from the Buertai Coal Mine roadways, the model demonstrates R[sup.2] values exceeding 0.95 for both the training and test sets, validating its excellent generalization ability, predictive performance, and potential for practical applications.
Audience Academic
Author Qu, Hu
Shao, Xuming
Chen, Qiaojun
Liu, Chun
Gao, Huanqi
Guang, Jiahe
Author_xml – sequence: 1
  givenname: Hu
  surname: Qu
  fullname: Qu, Hu
– sequence: 2
  givenname: Xuming
  surname: Shao
  fullname: Shao, Xuming
– sequence: 3
  givenname: Huanqi
  surname: Gao
  fullname: Gao, Huanqi
– sequence: 4
  givenname: Qiaojun
  orcidid: 0009-0001-1758-5100
  surname: Chen
  fullname: Chen, Qiaojun
– sequence: 5
  givenname: Jiahe
  surname: Guang
  fullname: Guang, Jiahe
– sequence: 6
  givenname: Chun
  surname: Liu
  fullname: Liu, Chun
BookMark eNp9kctuEzEUhi3USpTSDU9giR1oWns8nhkvk4hLRKIiUdYjj30mcZmxg-2AsuMd2PNwPAmnDeIiIeyFf53znasfkRMfPBDyhLNLIRS72kUuGGclkw_IWVmWTaEa3pz8oR-Si5RuGR7FRSvrM_JtRt9GsM5kFzxdBwsjHUKka8hb7YEugjfgc9T3fudp3gKd7yFm7dCpR7p2iM11AkuRWE67GD6hno_afKBvXAY6Gzchurydvn_5uvSYfYKIcu6si3BfGNOsgt_Qd9sQc3EDccIGphAPj8npoMcEFz_fc_L-5Yubxetidf1quZitCiNKngtT67YSUmrZ9hpMr5mqBi6UEMBB9rY2NRPGNj1UrbZVUykJqoJW2Yb3pgZxTp4f8-79Th8-63HsdtFNOh46zrq77Xa_t4v00yONs37cQ8rdbdhHnCJ1gkslq1Zi7V_URo_QORwc12gml0w3a0vVikbULVKX_6DwWpicwQ8eHNr_Cnh2DDAxpBRh-F-nPwANU6e0
Cites_doi 10.1016/j.energy.2022.126208
10.1088/1755-1315/526/1/012158
10.1016/j.jbi.2024.104715
10.1016/j.eswa.2023.121438
10.1016/j.ijggc.2017.11.018
10.1016/j.ijheatmasstransfer.2020.119392
10.1007/s11831-021-09694-4
10.1007/s10489-024-05537-4
10.1080/03610918.2022.2057540
10.1016/j.jngse.2021.103930
10.1016/j.swevo.2023.101447
10.1007/s10462-016-9471-0
10.1016/j.sysarc.2023.102871
10.1007/s11227-021-04255-9
10.1016/j.energy.2024.133980
10.1016/j.coal.2024.104471
10.1016/j.resourpol.2023.104425
10.3390/rs13030510
10.1016/j.eswa.2023.122316
10.1016/B978-0-323-88423-5.00070-4
10.1016/j.heliyon.2024.e37819
10.1016/j.enconman.2014.05.058
10.1177/14759217231219436
10.1109/TCI.2022.3212837
10.1016/j.jgsce.2023.205106
10.1007/978-3-319-08840-2
10.1016/j.asoc.2023.110296
10.1016/j.soildyn.2023.108302
10.1016/j.psep.2022.05.048
10.1007/s10462-024-10723-4
10.1016/j.measurement.2024.116152
10.1080/15567036.2021.1936692
10.1088/1674-1056/24/10/100501
10.1016/j.compeleceng.2024.109632
10.1016/j.aej.2022.08.013
10.1016/j.rse.2023.113499
10.1007/s11831-021-09562-1
10.1016/j.scitotenv.2023.164701
10.1016/j.asej.2023.102510
10.3390/s24134423
10.1016/j.eswa.2023.122080
10.1007/s11356-014-3561-9
10.1016/j.jenvman.2022.116892
10.1109/MLBDBI60823.2023.10481909
10.1007/s11203-023-09305-y
10.1016/j.asoc.2014.08.025
10.1007/BF00864914
10.1016/j.knosys.2019.01.018
10.1016/j.psep.2019.10.014
10.1016/B978-0-323-90300-4.00045-8
10.1038/s41598-024-57518-9
10.20944/preprints202405.1020.v1
10.1016/j.eurpolymj.2015.01.015
10.1016/j.energy.2024.133535
10.1016/j.eswa.2022.117255
10.1016/j.ijmst.2022.02.001
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/pr13010205
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database (Proquest)
Biological Sciences
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID 10.3390/pr13010205
A829837368
10_3390_pr13010205
GeographicLocations United States
China
GeographicLocations_xml – name: China
– name: United States
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c321t-c6a84355a58baecba094f13933e1e5bd6c603cd7be48ad47495e94e89d71bc6e3
IEDL.DBID BENPR
ISSN 2227-9717
IngestDate Tue Aug 19 23:21:43 EDT 2025
Fri Jul 25 11:57:49 EDT 2025
Mon Oct 20 22:42:50 EDT 2025
Mon Oct 20 16:55:54 EDT 2025
Thu Oct 16 04:30:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-c6a84355a58baecba094f13933e1e5bd6c603cd7be48ad47495e94e89d71bc6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-1758-5100
OpenAccessLink https://www.proquest.com/docview/3159548539?pq-origsite=%requestingapplication%&accountid=15518
PQID 3159548539
PQPubID 2032344
ParticipantIDs unpaywall_primary_10_3390_pr13010205
proquest_journals_3159548539
gale_infotracmisc_A829837368
gale_infotracacademiconefile_A829837368
crossref_primary_10_3390_pr13010205
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Naanaa (ref_52) 2015; 269
Conrad (ref_63) 2023; 288
Gad (ref_25) 2022; 29
Luo (ref_19) 2024; 33
Wang (ref_31) 2024; 57
Tan (ref_59) 2024; 312
Pandey (ref_32) 2014; 24
ref_57
Mirjalili (ref_65) 2023; 139
ref_12
ref_56
Wang (ref_1) 2024; 88
ref_10
Anggraeni (ref_41) 2024; 237
ref_54
Fu (ref_20) 2021; 34
Macedo (ref_43) 2024; 53
Mardashov (ref_48) 2020; 17
Chen (ref_66) 2025; 314
Goodarzian (ref_68) 2023; 328
Michell (ref_26) 2015; 65
Yang (ref_60) 2024; 23
ref_61
Zhang (ref_49) 2024; 242
Zhang (ref_2) 2020; 133
Li (ref_21) 2021; 28
Cheng (ref_24) 2016; 46
ref_69
Guo (ref_18) 2013; 23
ref_22
Anani (ref_15) 2024; 285
Cao (ref_51) 2015; 24
Li (ref_58) 2024; 120
Feitz (ref_64) 2018; 70
Xie (ref_3) 2022; 164
Ye (ref_35) 2024; 54
Soni (ref_46) 2015; 22
Qiao (ref_28) 2024; 241
ref_70
Bas (ref_42) 2024; 238
Liu (ref_7) 2021; 90
ref_33
Song (ref_34) 2024; 84
Zhang (ref_14) 2023; 118
Jahan (ref_11) 2024; 132
Liu (ref_9) 2020; 150
Jamshidzadeh (ref_62) 2024; 15
ref_39
Zhang (ref_13) 2023; 893
ref_37
Long (ref_36) 2022; 202
Khalid (ref_27) 2023; 63
Xie (ref_50) 2024; 10
Su (ref_23) 2014; 85
Zhang (ref_29) 2022; 78
Bondarenko (ref_5) 2020; 20
Wang (ref_53) 2022; 8
Tol (ref_44) 1993; 48
ref_45
Wen (ref_16) 2023; 264
ref_40
Islamov (ref_47) 2019; 10
Niu (ref_30) 2019; 171
Nie (ref_17) 2020; 526
ref_8
Soukarieh (ref_38) 2024; 27
Acampora (ref_67) 2023; 142
Cao (ref_55) 2024; 176
Ray (ref_4) 2022; 32
ref_6
References_xml – volume: 264
  start-page: 126208
  year: 2023
  ident: ref_16
  article-title: Coalbed methane concentration prediction and early-warning in fully mechanized mining face based on deep learning
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126208
– volume: 526
  start-page: 012158
  year: 2020
  ident: ref_17
  article-title: Research on Gaussian Plume Model of Gas Diffusion in Coal Mine Roadway Based on BP Neural Network Optimized by Genetic Algorithm
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/526/1/012158
– ident: ref_57
  doi: 10.1016/j.jbi.2024.104715
– volume: 237
  start-page: 121438
  year: 2024
  ident: ref_41
  article-title: A hybrid EMD-GRNN-PSO in intermittent time-series data for dengue fever forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121438
– volume: 70
  start-page: 202
  year: 2018
  ident: ref_64
  article-title: The Ginninderra CH4 and CO2 release experiment: An evaluation of gas detection and quantification techniques
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2017.11.018
– volume: 150
  start-page: 119392
  year: 2020
  ident: ref_9
  article-title: Predicting fugitive gas emissions from gob-to-face in longwall coal mines: Coupled analytical and numerical modeling
  publication-title: Int. J. Heat Mass. Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.119392
– volume: 29
  start-page: 2531
  year: 2022
  ident: ref_25
  article-title: Particle swarm optimization algorithm and its applications: A systematic review
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-021-09694-4
– volume: 54
  start-page: 6888
  year: 2024
  ident: ref_35
  article-title: An ensemble algorithm based on adaptive chaotic quantum-behaved particle swarm optimization with weibull distribution and hunger games search and its financial application in parameter identification
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-024-05537-4
– volume: 53
  start-page: 518
  year: 2024
  ident: ref_43
  article-title: A two-stage maximum entropy approach for time series regression
  publication-title: Commun. Stat.-Simul. Comput.
  doi: 10.1080/03610918.2022.2057540
– volume: 90
  start-page: 103930
  year: 2021
  ident: ref_7
  article-title: Natural gas consumption forecasting: A discussion on forecasting history and future challenges
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2021.103930
– volume: 84
  start-page: 101447
  year: 2024
  ident: ref_34
  article-title: Differential Evolution with perturbation mechanism and covariance matrix based stagnation indicator for numerical optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101447
– volume: 46
  start-page: 445
  year: 2016
  ident: ref_24
  article-title: Brain storm optimization algorithm: A review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-016-9471-0
– volume: 139
  start-page: 102871
  year: 2023
  ident: ref_65
  article-title: MEALPY: An open-source library for latest meta-heuristic algorithms in Python
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2023.102871
– ident: ref_39
– volume: 78
  start-page: 10950
  year: 2022
  ident: ref_29
  article-title: Chaotic adaptive sailfish optimizer with genetic characteristics for global optimization
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-04255-9
– volume: 314
  start-page: 133980
  year: 2025
  ident: ref_66
  article-title: Spontaneous coal combustion temperature prediction based on an improved grey wolf optimizer-gated recurrent unit model
  publication-title: Energy
  doi: 10.1016/j.energy.2024.133980
– volume: 132
  start-page: 104018
  year: 2024
  ident: ref_11
  article-title: Deep Learning-Based quantifications of methane emissions with field applications
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 33
  start-page: 359
  year: 2024
  ident: ref_19
  article-title: Incorporating multi-features and XGBoost algorithm for gas concentration prediction
  publication-title: China Min. Mag.
– volume: 285
  start-page: 104471
  year: 2024
  ident: ref_15
  article-title: Advancements in machine learning techniques for coal and gas outburst prediction in underground mines
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2024.104471
– volume: 88
  start-page: 104425
  year: 2024
  ident: ref_1
  article-title: Accident case-driven study on the causal modeling and prevention strategies of coal-mine gas-explosion accidents: A systematic analysis of coal-mine accidents in China
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2023.104425
– ident: ref_12
  doi: 10.3390/rs13030510
– volume: 241
  start-page: 122316
  year: 2024
  ident: ref_28
  article-title: A multi-level thresholding image segmentation method using hybrid Arithmetic Optimization and Harris Hawks Optimizer algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122316
– ident: ref_70
  doi: 10.1016/B978-0-323-88423-5.00070-4
– volume: 10
  start-page: e37819
  year: 2024
  ident: ref_50
  article-title: An enhanced snow ablation optimizer for UAV swarm path planning and engineering design problems
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e37819
– volume: 20
  start-page: 37
  year: 2020
  ident: ref_5
  article-title: Laboratory studies of polymer compositions for well-kill under increased fracturing
  publication-title: Perm J. Pet. Min. Eng.
– volume: 85
  start-page: 443
  year: 2014
  ident: ref_23
  article-title: A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.05.058
– ident: ref_56
– volume: 17
  start-page: 782
  year: 2020
  ident: ref_48
  article-title: Specifics of well killing technology during well service operation in complicated conditions
  publication-title: Period. Tche Quim.
– volume: 23
  start-page: 3007
  year: 2024
  ident: ref_60
  article-title: Segmented sequence decomposition-Informer model for deformation of arch dams
  publication-title: Struct. Health Monit.
  doi: 10.1177/14759217231219436
– volume: 269
  start-page: 402
  year: 2015
  ident: ref_52
  article-title: Fast chaotic optimization algorithm based on spatiotemporal maps for global optimization
  publication-title: Appl. Math. Comput.
– volume: 8
  start-page: 905
  year: 2022
  ident: ref_53
  article-title: do: A differentiable engine for deep lens design of computational imaging systems
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2022.3212837
– volume: 118
  start-page: 205106
  year: 2023
  ident: ref_14
  article-title: Risk identification for coal and gas outburst in underground coal mines: A critical review and future directions
  publication-title: Gas Sci. Eng.
  doi: 10.1016/j.jgsce.2023.205106
– ident: ref_45
– volume: 10
  start-page: 2697
  year: 2019
  ident: ref_47
  article-title: Complex algorithm for developing effective kill fluids for oil and gas condensate reservoirs
  publication-title: Int. J. Civ. Eng. Technol
– ident: ref_22
  doi: 10.1007/978-3-319-08840-2
– volume: 142
  start-page: 110296
  year: 2023
  ident: ref_67
  article-title: Genetic algorithms as classical optimizer for the quantum approximate optimization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110296
– volume: 176
  start-page: 108302
  year: 2024
  ident: ref_55
  article-title: Experimental and numerical investigations on adaptive stiffness double friction pendulum systems for seismic protection of bridges
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2023.108302
– volume: 164
  start-page: 67
  year: 2022
  ident: ref_3
  article-title: Accident case data–accident cause model hybrid-driven coal and gas outburst accident analysis: Evidence from 84 accidents in China during 2008–2018
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.05.048
– volume: 57
  start-page: 98
  year: 2024
  ident: ref_31
  article-title: Black-winged kite algorithm: A nature-inspired meta-heuristic for solving benchmark functions and engineering problems
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-10723-4
– volume: 242
  start-page: 116152
  year: 2024
  ident: ref_49
  article-title: A hybrid algorithm for predicting the remaining service life of hybrid bearings based on bidirectional feature extraction
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.116152
– volume: 34
  start-page: 784
  year: 2021
  ident: ref_20
  article-title: Research on gas concentration prediction based on multi-sensor-deep long short-term memory network fusion
  publication-title: Chin. J. Sens. Actuators
– ident: ref_8
  doi: 10.1080/15567036.2021.1936692
– volume: 24
  start-page: 100501
  year: 2015
  ident: ref_51
  article-title: A perturbation method to the tent map based on Lyapunov exponent and its application
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/24/10/100501
– volume: 120
  start-page: 109632
  year: 2024
  ident: ref_58
  article-title: A novel ultra-short-term wind power forecasting method based on TCN and Informer models
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2024.109632
– volume: 63
  start-page: 487
  year: 2023
  ident: ref_27
  article-title: Emperor penguin optimizer: A comprehensive review based on state-of-the-art meta-heuristic algorithms
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.08.013
– volume: 288
  start-page: 113499
  year: 2023
  ident: ref_63
  article-title: Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113499
– volume: 28
  start-page: 3781
  year: 2021
  ident: ref_21
  article-title: A survey of learning-based intelligent optimization algorithms
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-021-09562-1
– ident: ref_40
– volume: 893
  start-page: 164701
  year: 2023
  ident: ref_13
  article-title: Atmospheric remote sensing for anthropogenic methane emissions: Applications and research opportunities
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.164701
– volume: 15
  start-page: 102510
  year: 2024
  ident: ref_62
  article-title: Bidirectional Long Short-Term Memory (BILSTM)-Support Vector Machine: A new machine learning model for predicting water quality parameters
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2023.102510
– ident: ref_10
  doi: 10.3390/s24134423
– volume: 238
  start-page: 122080
  year: 2024
  ident: ref_42
  article-title: Robust training of median dendritic artificial neural networks for time series forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122080
– volume: 22
  start-page: 3652
  year: 2015
  ident: ref_46
  article-title: Time series model prediction and trend variability of aerosol optical depth over coal mines in India
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3561-9
– volume: 328
  start-page: 116892
  year: 2023
  ident: ref_68
  article-title: A sustainable-circular citrus closed-loop supply chain configuration: Pareto-based algorithms
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.116892
– ident: ref_54
  doi: 10.1109/MLBDBI60823.2023.10481909
– volume: 27
  start-page: 227
  year: 2024
  ident: ref_38
  article-title: Weak convergence of the conditional U-statistics for locally stationary functional time series
  publication-title: Stat. Inference Stoch. Process.
  doi: 10.1007/s11203-023-09305-y
– ident: ref_6
– volume: 24
  start-page: 1047
  year: 2014
  ident: ref_32
  article-title: A comparative review of approaches to prevent premature convergence in GA
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.08.025
– ident: ref_33
– volume: 23
  start-page: 34
  year: 2013
  ident: ref_18
  article-title: Research on coal mine gas concentration multi-sensor prediction model based on information fusion and GA-SVM
  publication-title: China Saf. Sci. J.
– volume: 48
  start-page: 63
  year: 1993
  ident: ref_44
  article-title: Greenhouse statistics-time series analysis
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/BF00864914
– volume: 171
  start-page: 37
  year: 2019
  ident: ref_30
  article-title: The defect of the Grey Wolf optimization algorithm and its verification method
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.01.018
– volume: 133
  start-page: 332
  year: 2020
  ident: ref_2
  article-title: Statistical analysis the characteristics of extraordinarily severe coal mine accidents (ESCMAs) in China from 1950 to 2018
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2019.10.014
– ident: ref_69
  doi: 10.1016/B978-0-323-90300-4.00045-8
– ident: ref_37
  doi: 10.1038/s41598-024-57518-9
– ident: ref_61
  doi: 10.20944/preprints202405.1020.v1
– volume: 65
  start-page: 132
  year: 2015
  ident: ref_26
  article-title: Successive Self-nucleation and Annealing (SSA): Correct design of thermal protocol and applications
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2015.01.015
– volume: 312
  start-page: 133535
  year: 2024
  ident: ref_59
  article-title: Short-term heating load forecasting model based on SVMD and improved informer
  publication-title: Energy
  doi: 10.1016/j.energy.2024.133535
– volume: 202
  start-page: 117255
  year: 2022
  ident: ref_36
  article-title: Lens-imaging learning Harris hawks optimizer for global optimization and its application to feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117255
– volume: 32
  start-page: 471
  year: 2022
  ident: ref_4
  article-title: Review of preventive and constructive measures for coal mine explosions: An Indian perspective
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2022.02.001
SSID ssj0000913856
Score 2.2879727
Snippet Accurate prediction of methane concentration in mine roadways is crucial for ensuring miner safety and enhancing the economic benefits of mining enterprises in...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 205
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Coal
Coal industry
Coal mines
Coal mining
Errors
Genetic algorithms
Long short-term memory
Methane
Occupational health and safety
Occupational safety
Prediction models
Predictions
Real time
Search methods
Sensors
Support vector machines
Test sets
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB5BeoAegBYQgYJWohJwcBN7vY73hJyKqgJSVaKRysnan3EbkTqR44DKiXfgzsPxJMzaG0h7QIjbSrvWrr0zO9833pkB2OUqMaGVKohsUQRkr3kgU4wCLVH3pR5oFC5QeHSUHI7jt6fi1DvcFv5aJVHxSXNIuzjNQBLh6IW8FxJPF725LV5_9p6kcMCTNJYhFzdhIxGExTuwMT46zj66inKrZ9ucpJy4fW9e0YlNFtXVqluzQtfP4k24tSzn6vKLmk7XjM3BXchXy2zvmHzaW9Z6z3y9lsHx_9_jHtzxOJRlreBswQ0st2FzLTvhNmx5vV-wlz459av78CNjx5X7ueM2lLlKalNGuJeN0Pngke27MMjS5-Jlk5IRwGTDZXPxgDppyhHNwIZkPC2jEa1Tg9qNJ5G9IwTMsunZrJrU5xc_v31vw6WwouZw0trfxnnJ3s_KM_bhnNhDcELWhRZwMasuH8D44M3J_mHgazwEhkdhHZhEpYTYhBKpVmi0IrpZECrlHEMU2iYm6XNjSWbiVNl4QHwOZYyptINQmwT5Q-iUsxIfAZNCIeErVEVo4n5M1BUTHBSKMGRsbV914flqz_N5m8ojJwrkJCP_IxldeOHEIXf6TR_LKB-mQHO4TFl5lkaSSD3tWBd2rowkvTRXu1cClftzYZFzQo_EEQWXXdj9LWR_Wc7jfxv2BG5HrjBx4xvagU5dLfEpoaVaP_Mq8QuvrRJL
  priority: 102
  providerName: Unpaywall
Title A Prediction Model for Methane Concentration in the Buertai Coal Mine Based on Improved Black Kite Algorithm–Informer–Bidirectional Long Short-Term Memory
URI https://www.proquest.com/docview/3159548539
https://www.mdpi.com/2227-9717/13/1/205/pdf?version=1736849135
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: ADMLS
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Pb9MwFH_augPsMLEBWtmYLDEJOERr4iSNDwilU8sEtKpglcYp8p-XbVKXlqwV2gXxHbjz4fgkPCfO1nHYzVas2PKz_X7v2e_3AA65jLVvhPQCk-ce6WvuiQQDTwlUHaG6CiMbKDwcxSeT8ONZdLYGoyYWxj6rbM7E6qA2M2195Eec9C6h64iL9_Pvns0aZW9XmxQa0qVWMO8qirF12AgsM1YLNnr90fjLrdfFsmAmUVzzlHKy94_mJZ3ipGVt_roVzfT_-bwJj5bFXN78kNPpigIaPIEthxxZWot6G9aw2IHNFT7BHdh2O_WavXF00m-fwp-UjUt7HWNFwGzusykjpMqGaL3myI5t4GLh2HPZZcEIErLesnoqQB-pyyH1wHqk7gyjFrUbgsqV7499ovlh6fSc5mpxcfX31-86wAlLKvYua41ZuRvZ51lxzr5eEN73Tkkf0ACuZuXNM5gM-qfHJ57LyuBpHvgLT8cyIYwVyShRErWSZCDmhCM5Rx8jZWIdd7g2JOUwkSbskgWGIsREmK6vdIz8ObSKWYG7wEQkkRARytzXYSckYxNj7OaSUF9oTEe24VUjkWxek29kZLRYuWV3cmvDayuszO5ImiwtXWAB9WG5rbI0CQSZ4TxO2rB_ryXtJH3_cyPuzO3k6-xu3bXh8HYJPDCcFw__ZQ8eBzaFcOXF2YfWolziS8I1C3UA68ngw4FbslQb_uxTbTIap9_-AZjW_3M
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9lB6QLSACBRYiSLgYNX22o73UKGktErJjypIpd7MenfcVkqd4CSqcuMduPMoPAxPwqy9blMOvfVmaVfelb_1fN-MPTMAO1xGytNCOr7OMof4mjsiRt9JBaauSJsphiZRuD-IOifBl9PwdAX-1Lkw5rfK2iaWhlqPlYmR73LiXVLXIRefJj8c0zXKfF2tW2hI21pB75UlxmxiRxcXV-TCTfeOPhPe73z_8GC433FslwFHcd-bOSqSMWmGUIZxKlGlkhyejHQR5-hhmOpIRS5XmnYdxFIHTfIoUAQYC930UhUhp_s-gLWAB4Kcv7X2weD463WUx1TdjMOoqovKuXB3JwWxBrG66Ze3xIT_88EGrM_ziVxcydFoifAOH8Mjq1RZqzpam7CC-RZsLNUv3IJNaxmm7IMtX_3xCfxusePCfP4xkDPTa23ESBmzPpooPbJ9kyiZ22q97CJnJEFZe17-mkCDtGSfVmBtolfNaEYV9qDrMtbIuoQHa43OCJvZ-eXfn7-qhCos6LJ9UTF0Gd5kvXF-xr6dk3_hDIl_aAOX42LxFE7uBZ9nsJqPc3wOTIQSSYGhzDwVuAE5txhhM5OkMgOtXdmAtzUiyaQq9pGQk2RwS25wa8B7A1ZiLAA9LCVtIgOtYWppJa3YF-T28yhuwPatmfTmqtvDNdyJtRzT5OacN2Dn-gjcsZ0Xd9_lDax3hv1e0jsadF_CQ9-0Ly4jSNuwOivm-Io01Sx9bQ8ug-_3_a78AzxWOas
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIgE9IFpApBRYiSLgYMX2-m8PCCUtoSVNVYlW6s3sz7itlDqpk6jKjXfgzoPwODwJs_5pUw699WbJlnflb3a_b8Y7MwCbXEbaM0I6vskyh_iaOyJB31EClStUrDC0icKD_WjnKPh2HB4vwZ8mF8Yeq2z2xHKjNiNtY-RtTrxL6jrkop3VxyIOtnufxxeO7SBl_7Q27TQqE-nj_JLct8mn3W3C-p3v974cbu04dYcBR3Pfmzo6kgnphVCGiZKolSRnJyNNxDl6GCoT6cjl2tCMg0SaICZvAkWAiTCxp3SEnN57D-7Htoq7zVLvfb2K79h6m0kYVRVRORdue1wQXxCf2055Cxz4PxOswMNZPpbzSzkcLlBd7wk8rjUq61RGtQpLmK_BykLlwjVYrfeECftQF67--BR-d9hBYX_8WLCZ7bI2ZKSJ2QBtfB7Zlk2RzOs6vewsZyQ-WXdWHkqgmzTkgEZgXSJWw-iJKuBB12WUkfXp67PO8ISQmJ6e__35q0qlwoIuu2cVN5eBTbY3yk_Y91PyLJxDYh6awPmomD-DoztB5zks56McXwAToUTSXigzTwduQG4tRhhnkvRlYIwrW_C2QSQdV2U-UnKPLG7pNW4teG_BSu3ap4-lZZ3CQGPYKlppJ_EFOfxkDS3YuPEkrVl983YDd1rvGZP02sJbsHllArdMZ_32t7yBB7RC0r3d_f5LeOTbvsVl6GgDlqfFDF-RmJqq16XVMvhx18vkH7xkN0U
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB5BeoAegBYQgYJWohJwcBN7vY73hJyKqgJSVaKRysnan3EbkTqR44DKiXfgzsPxJMzaG0h7QIjbSrvWrr0zO9833pkB2OUqMaGVKohsUQRkr3kgU4wCLVH3pR5oFC5QeHSUHI7jt6fi1DvcFv5aJVHxSXNIuzjNQBLh6IW8FxJPF725LV5_9p6kcMCTNJYhFzdhIxGExTuwMT46zj66inKrZ9ucpJy4fW9e0YlNFtXVqluzQtfP4k24tSzn6vKLmk7XjM3BXchXy2zvmHzaW9Z6z3y9lsHx_9_jHtzxOJRlreBswQ0st2FzLTvhNmx5vV-wlz459av78CNjx5X7ueM2lLlKalNGuJeN0Pngke27MMjS5-Jlk5IRwGTDZXPxgDppyhHNwIZkPC2jEa1Tg9qNJ5G9IwTMsunZrJrU5xc_v31vw6WwouZw0trfxnnJ3s_KM_bhnNhDcELWhRZwMasuH8D44M3J_mHgazwEhkdhHZhEpYTYhBKpVmi0IrpZECrlHEMU2iYm6XNjSWbiVNl4QHwOZYyptINQmwT5Q-iUsxIfAZNCIeErVEVo4n5M1BUTHBSKMGRsbV914flqz_N5m8ojJwrkJCP_IxldeOHEIXf6TR_LKB-mQHO4TFl5lkaSSD3tWBd2rowkvTRXu1cClftzYZFzQo_EEQWXXdj9LWR_Wc7jfxv2BG5HrjBx4xvagU5dLfEpoaVaP_Mq8QuvrRJL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Prediction+Model+for+Methane+Concentration+in+the+Buertai+Coal+Mine+Based+on+Improved+Black+Kite+Algorithm%E2%80%93Informer%E2%80%93Bidirectional+Long+Short-Term+Memory&rft.jtitle=Processes&rft.au=Qu%2C+Hu&rft.au=Shao%2C+Xuming&rft.au=Gao%2C+Huanqi&rft.au=Chen%2C+Qiaojun&rft.date=2025-01-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=13&rft.issue=1&rft.spage=205&rft_id=info:doi/10.3390%2Fpr13010205&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon