A fusion algorithm for mass flow rate measurement based on neural network and electrical capacitance tomography
•Five non-iterative image reconstruction techniques are compared experimentally.•Each reconstruction algorithm has its own pros and cons for special test in phantom.•A new NN fusion reconstruction algorithm is designed and developed.•The developed algorithm would decrease the concentration error by...
        Saved in:
      
    
          | Published in | Measurement : journal of the International Measurement Confederation Vol. 231; p. 114573 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        31.05.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0263-2241 | 
| DOI | 10.1016/j.measurement.2024.114573 | 
Cover
| Abstract | •Five non-iterative image reconstruction techniques are compared experimentally.•Each reconstruction algorithm has its own pros and cons for special test in phantom.•A new NN fusion reconstruction algorithm is designed and developed.•The developed algorithm would decrease the concentration error by 7–10 folds.
The process tomography has received a noticeable attention in industry due to non-invasive and non-intrusive characterise. To asses the potential of electrical capacitance tomography for gravity-fallen mass flow rate measurement, a fusion algorithm based on neural network is designed and implemented. The hardware of instrument is composed of a pipe as circular phantom with 200 mm internal diameter and the front-end electronics. The specially programmed software, runs five well-known, non-iterative reconstruction algorithms (LBP, Tikhonov, SVD, ART and SIRT) and fusions the results in a MLP-NN. The sensor experimentally evaluated by wheat grains. Five implemented algorithms, and the fusion NN are compared using RMSE and concentration error parameters. According to evaluated results in whole of tests, the fusion algorithm reduces RMSE and concentration error by approximately 2–3 and 7–10 folds respectively. Since these five algorithms are completely independent, running the program in parallel by Multi-Thread mode, do not adds run-time. | 
    
|---|---|
| AbstractList | •Five non-iterative image reconstruction techniques are compared experimentally.•Each reconstruction algorithm has its own pros and cons for special test in phantom.•A new NN fusion reconstruction algorithm is designed and developed.•The developed algorithm would decrease the concentration error by 7–10 folds.
The process tomography has received a noticeable attention in industry due to non-invasive and non-intrusive characterise. To asses the potential of electrical capacitance tomography for gravity-fallen mass flow rate measurement, a fusion algorithm based on neural network is designed and implemented. The hardware of instrument is composed of a pipe as circular phantom with 200 mm internal diameter and the front-end electronics. The specially programmed software, runs five well-known, non-iterative reconstruction algorithms (LBP, Tikhonov, SVD, ART and SIRT) and fusions the results in a MLP-NN. The sensor experimentally evaluated by wheat grains. Five implemented algorithms, and the fusion NN are compared using RMSE and concentration error parameters. According to evaluated results in whole of tests, the fusion algorithm reduces RMSE and concentration error by approximately 2–3 and 7–10 folds respectively. Since these five algorithms are completely independent, running the program in parallel by Multi-Thread mode, do not adds run-time. | 
    
| ArticleNumber | 114573 | 
    
| Author | Taghizadeh-Tameh, Jalil Tarabi, Nazilla Mousazadeh, Hossein  | 
    
| Author_xml | – sequence: 1 givenname: Hossein surname: Mousazadeh fullname: Mousazadeh, Hossein email: hmousazade@ut.ac.ir – sequence: 2 givenname: Nazilla surname: Tarabi fullname: Tarabi, Nazilla – sequence: 3 givenname: Jalil surname: Taghizadeh-Tameh fullname: Taghizadeh-Tameh, Jalil  | 
    
| BookMark | eNqNkMtqAjEYhbOwULV9h_QBZprLOOOsikhvIHTTrsM_mT8aOzORJFZ8-0bsQrpydeDA-eB8EzIa3ICEPHCWc8bLx23eI4S9xx6HmAsmipzzYlbJERkzUcpMiILfkkkIW8ZYKetyTNyCmn2wbqDQrZ23cdNT4zztIQRqOnegHiLSCzBtIGBL02LAvYcuRTw4_01haCl2qKO3OtUadqBthEEjja53aw-7zfGO3BjoAt7_5ZR8vTx_Lt-y1cfr-3KxyrQUPGaaC93UbCaKpjAN1HxutEAjZCvFrOKlFrWWbQu8wAoLQF1KqZtWM-ANq-ZCTkl95mrvQvBo1M7bHvxRcaZOttRWXZxSJ1vqbCttn_5tTz9ikhQ92O4qwvJMwHTxx6JXQVtMJlrrkyDVOnsF5RddaJaE | 
    
| CitedBy_id | crossref_primary_10_1016_j_measurement_2025_117335 crossref_primary_10_1016_j_advengsoft_2024_103767 crossref_primary_10_1016_j_cjche_2025_02_010  | 
    
| Cites_doi | 10.13005/bpj/1513 10.1109/JSEN.2017.2667716 10.1049/iet-smt.2014.0252 10.1049/el:19981176 10.11591/telkomnika.v11i12.3611 10.3390/s6091118 10.3390/s130202076 10.1088/0957-0233/20/10/104028 10.1177/0020294013517445 10.1088/0957-0233/14/1/201 10.1088/0957-0233/7/3/003 10.1016/j.flowmeasinst.2021.101986 10.1088/1742-2132/2/1/005 10.1093/ietfec/e89-a.6.1578 10.1098/rsta.2015.0331 10.4028/b-430auQ 10.1049/ip-g-2.1992.0014 10.1051/matecconf/201817601032 10.1088/0957-0233/18/1/004 10.1016/j.flowmeasinst.2021.102087 10.3390/s18113701 10.1109/ICIAS.2014.6869489 10.1088/0957-0233/18/11/004  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2024 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.measurement.2024.114573 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics  | 
    
| ExternalDocumentID | 10_1016_j_measurement_2024_114573 S0263224124004585  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFRF ABJNI ABMAC ABNEU ACDAQ ACFVG ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GS5 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SST SSZ T5K ZMT ~G- 29M AATTM AAYWO AAYXX ABFNM ABXDB ACLOT ACNNM ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET WUQ XPP ~HD  | 
    
| ID | FETCH-LOGICAL-c321t-c12cb90524b4fba918fc2ef23d325716c29c3dda14e7e4aec633cbdc0a1b07823 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0263-2241 | 
    
| IngestDate | Wed Oct 01 01:37:49 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 Sat Feb 08 15:51:32 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Fusion algorithm Reconstruction algorithm Multi-Layer Perceptron Concentration Forward problem Inverse problem  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c321t-c12cb90524b4fba918fc2ef23d325716c29c3dda14e7e4aec633cbdc0a1b07823 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_measurement_2024_114573 crossref_citationtrail_10_1016_j_measurement_2024_114573 elsevier_sciencedirect_doi_10_1016_j_measurement_2024_114573  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-05-31 | 
    
| PublicationDateYYYYMMDD | 2024-05-31 | 
    
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-31 day: 31  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Measurement : journal of the International Measurement Confederation | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Mokhtar, K.Z. Mousazadeh, H. Evaluation number of elements in electrical capacitance tomography. in 7th National Conference on New Idea on Electrical Engineering. 2022. Civilica. Marashdeh (b0050) 2006 Basu (b0010) 2018 Li, Y. Saied, Meribout (b0065) 2016; 374 Abd (b0060) 2011; 135 Yang (b0110) 1996; 7 Dong, Guo (b0075) 2013 2009. Mousazadeh, H. Comparison five image reconstruction algorithms in electrical capacitance tomography; applicable in biomedical engineering. in 15th International Conference on Science and Technology Advances. 2022. Mashhad: Civilica. Vol. 1. 2015: Woodhead Publishing. Tian (b0240) 2017; 17 Kim, Choi, Kim (b0145) 2006; 89 Yang, W. and M. Byars. An improved normalisation approach for electrical capacitance tomography. in 1st World Congress on Industrial Process Tomography. 1999. Citeseer. Ali (b0260) 2022; 17 Soleimani (b0160) 2007; 18 in Fan, Gao, Wang (b0095) 2011 Ortiz-Alemán, Martin (b0150) 2005; 2 Brandisky (b0245) 2010; 14 Zheng (b0055) 2018; 18 2015, The University of Manchester (United Kingdom). Lei (b0130) 2013; 13 Ambika, Kumar (b0185) 2018; 11 Shafquet, A., I. Ismail, and A. Jaafar. 1999. Tarabi (b0040) 2021; 80 Wang, M. Yang, Peng (b0125) 2002; 14 Jiang (b0255) 2013; 11 Alhosani (b0120) 2016 Schwab (b0205) 1988; Springer Shafquet, a.s. (b0025) 2011 Grzegorz, Przemyslaw, Konrad (b0035) 2023; 99 2018. EDP Sciences. Eyub, Ali, Sefik (b0220) 2021; 9 Zhang, Wang (b0030) 2009; 20 Yan (b0250) 2015; 9 2008: The University of Manchester (United Kingdom). 2018, UNIVERSITY OF MANCHESTER. Jiangbao, Y., et al. Mousazadeh (b0225) 2021 Pradeep, C. Malik, B. Styra, Babout (b0090) 2010; 103 2015. Chen, Yuanqing (b0180) 2022; 176 Pusppanathan (b0265) 2018; 10 Chen, Wanze, Yuanqing (b0270) 2024; 73 Wajman, Nowakowski, Styra (b0115) 2010; 121 Manual, o. (b0195) 2009; 1 Frias, M. and R. Antonio Huang (b0085) 1992; 139 Yan, H., F. Shao, and S. Wang. Ramli, M.F., Multiphase Flow Measurement with Electrical Capacitance Tomography and Microwave Sensors. 2017. Yan, Shao, Wang (b0230) 1998; 34 Olmos, Primicia, Marron (b0200) 2006; 6 Watzenig, Brandner, Steiner (b0155) 2006; 18 20IEEE. Sun (b0170) 1999; 6 Hunt (b0015) 2014; 47 Yang, Shi (b0135) 2024 Tarabi (b0045) 2022; 83 Soleimani, Movafeghi (b0165) 2005. 2005. 10.1016/j.measurement.2024.114573_b0105 Pusppanathan (10.1016/j.measurement.2024.114573_b0265) 2018; 10 Ambika (10.1016/j.measurement.2024.114573_b0185) 2018; 11 Schwab (10.1016/j.measurement.2024.114573_b0205) 1988; Springer Tarabi (10.1016/j.measurement.2024.114573_b0045) 2022; 83 Fan (10.1016/j.measurement.2024.114573_b0095) 2011 Chen (10.1016/j.measurement.2024.114573_b0180) 2022; 176 Brandisky (10.1016/j.measurement.2024.114573_b0245) 2010; 14 10.1016/j.measurement.2024.114573_b0070 10.1016/j.measurement.2024.114573_b0190 Sun (10.1016/j.measurement.2024.114573_b0170) 1999; 6 10.1016/j.measurement.2024.114573_b0235 Yan (10.1016/j.measurement.2024.114573_b0230) 1998; 34 Chen (10.1016/j.measurement.2024.114573_b0270) 2024; 73 Styra (10.1016/j.measurement.2024.114573_b0090) 2010; 103 Hunt (10.1016/j.measurement.2024.114573_b0015) 2014; 47 Abd (10.1016/j.measurement.2024.114573_b0060) 2011; 135 10.1016/j.measurement.2024.114573_b0080 Yang (10.1016/j.measurement.2024.114573_b0135) 2024 Soleimani (10.1016/j.measurement.2024.114573_b0165) 2005 Wajman (10.1016/j.measurement.2024.114573_b0115) 2010; 121 10.1016/j.measurement.2024.114573_bib271 Yang (10.1016/j.measurement.2024.114573_b0110) 1996; 7 Basu (10.1016/j.measurement.2024.114573_b0010) 2018 Ortiz-Alemán (10.1016/j.measurement.2024.114573_b0150) 2005; 2 10.1016/j.measurement.2024.114573_b0005 Alhosani (10.1016/j.measurement.2024.114573_b0120) 2016 Marashdeh (10.1016/j.measurement.2024.114573_b0050) 2006 Soleimani (10.1016/j.measurement.2024.114573_b0160) 2007; 18 Shafquet, a.s. (10.1016/j.measurement.2024.114573_b0025) 2011 Manual, o. (10.1016/j.measurement.2024.114573_b0195) 2009; 1 Zheng (10.1016/j.measurement.2024.114573_b0055) 2018; 18 Olmos (10.1016/j.measurement.2024.114573_b0200) 2006; 6 Jiang (10.1016/j.measurement.2024.114573_b0255) 2013; 11 Zhang (10.1016/j.measurement.2024.114573_b0030) 2009; 20 Yan (10.1016/j.measurement.2024.114573_b0250) 2015; 9 Saied (10.1016/j.measurement.2024.114573_b0065) 2016; 374 Dong (10.1016/j.measurement.2024.114573_b0075) 2013 10.1016/j.measurement.2024.114573_b0175 Lei (10.1016/j.measurement.2024.114573_b0130) 2013; 13 10.1016/j.measurement.2024.114573_b0210 10.1016/j.measurement.2024.114573_b0215 Kim (10.1016/j.measurement.2024.114573_b0145) 2006; 89 Watzenig (10.1016/j.measurement.2024.114573_b0155) 2006; 18 Grzegorz (10.1016/j.measurement.2024.114573_b0035) 2023; 99 Eyub (10.1016/j.measurement.2024.114573_b0220) 2021; 9 Tian (10.1016/j.measurement.2024.114573_b0240) 2017; 17 Tarabi (10.1016/j.measurement.2024.114573_b0040) 2021; 80 Huang (10.1016/j.measurement.2024.114573_b0085) 1992; 139 Ali (10.1016/j.measurement.2024.114573_b0260) 2022; 17 10.1016/j.measurement.2024.114573_b0020 Yang (10.1016/j.measurement.2024.114573_b0125) 2002; 14 10.1016/j.measurement.2024.114573_b0140 Mousazadeh (10.1016/j.measurement.2024.114573_b0225) 2021 10.1016/j.measurement.2024.114573_b0100  | 
    
| References_xml | – reference: . in – reference: , in – reference: 2015. – reference: . 2009. – volume: 6 start-page: 6 year: 1999 ident: b0170 article-title: Image reconstruction of an electrical capacitance tomography system using an artificial neural network publication-title: System – year: 2006 ident: b0050 article-title: Advances in electrical capacitance tomography – year: 2016 ident: b0120 article-title: Electrical capacitance tomography for real-time monitoring of process pipelines – reference: Li, Y., – volume: 73 year: 2024 ident: b0270 article-title: Positioning Accuracy analysis of industrial robots based on non-probabilistic time-dependent reliability publication-title: IEEE Trans. Reliab. – volume: 2 start-page: 32 year: 2005 end-page: 37 ident: b0150 article-title: Two-phase oil–gas pipe flow imaging by simulated annealing publication-title: J. Geophys. Eng. – volume: 99 start-page: 161 year: 2023 end-page: 164 ident: b0035 article-title: Combining electrical capacitance and impedance tomography in monitoring processes publication-title: Przeglad Elektrotechniczny – volume: 7 start-page: 225 year: 1996 ident: b0110 article-title: Hardware design of electrical capacitance tomography systems publication-title: Meas. Sci. Technol. – year: 2018 ident: b0010 article-title: Plant flow measurement and control handbook: fluid, solid, slurry and multiphase flow – reference: . Vol. 1. 2015: Woodhead Publishing. – volume: 83 year: 2022 ident: b0045 article-title: Experimental evaluation of some current injection-voltage reading patterns in electrical impedance tomography (EIT) and comparison to simulation results-case study: large scales publication-title: Flow Meas. Instrum. – reference: Mousazadeh, H. Evaluation number of elements in electrical capacitance tomography. in 7th National Conference on New Idea on Electrical Engineering. 2022. Civilica. – reference: . 20IEEE. – volume: 139 start-page: 83 year: 1992 end-page: 88 ident: b0085 article-title: Design of sensor electronics for electrical capacitance tomography publication-title: IEE Proceedings G (circuits, Devices and Systems) – volume: 14 start-page: 655 year: 2010 end-page: 669 ident: b0245 article-title: automatyka/akademia górniczo-hutnicza im publication-title: Stanisława Staszica w Krakowie – reference: Mousazadeh, H. Comparison five image reconstruction algorithms in electrical capacitance tomography; applicable in biomedical engineering. in 15th International Conference on Science and Technology Advances. 2022. Mashhad: Civilica. – reference: . 2008: The University of Manchester (United Kingdom). – volume: 89 start-page: 1578 year: 2006 end-page: 1584 ident: b0145 article-title: Novel iterative image reconstruction algorithm for electrical capacitance tomography: directional algebraic reconstruction technique publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. – volume: 13 start-page: 2076 year: 2013 end-page: 2092 ident: b0130 article-title: An image reconstruction algorithm for electrical capacitance tomography based on robust principle component analysis publication-title: Sensors – volume: 18 start-page: 3701 year: 2018 ident: b0055 article-title: A benchmark dataset and deep learning-based image reconstruction for electrical capacitance tomography publication-title: Sensors – volume: Springer start-page: 25 year: 1988 ident: b0205 article-title: Numerical calculation of potential fields publication-title: Field Theory Concepts – volume: 103 start-page: 47 year: 2010 end-page: 50 ident: b0090 article-title: Improvement of AC-based electrical capacitance tomography hardware publication-title: Elektronika Ir Elektrotechnika – volume: 10 year: 2018 ident: b0265 article-title: international journal of integrated publication-title: Engineering – reference: Wang, M., – reference: Pradeep, C., – volume: 6 start-page: 1118 year: 2006 end-page: 1127 ident: b0200 article-title: Influence of shielding arrangement on ECT sensors publication-title: Sensors – start-page: 436 year: 2024 ident: b0135 article-title: An interval perturbation method for singular value decomposition (SVD) with unknown-but-bounded (UBB) parameters publication-title: J. Comput. Appl. Math. – volume: 1 year: 2009 ident: b0195 article-title: ELECTRICAL CAPACITANCE TOMOGRAPHY SYSTEM publication-title: TYPE TFLR5000 – reference: Malik, B., – volume: 17 start-page: 3286 year: 2022 end-page: 3309 ident: b0260 article-title: Data-driven assessment of artificial neural network and regression curve fitting approches for dimensionless turbulent flow heat transfer performance of a hexagonal duct publication-title: J. Eng. Sci. Technol. – volume: 135 start-page: 20 year: 2011 ident: b0060 article-title: An overview: effectiveness of different Arrangement for electrode Guard in electrical capacitance tomography publication-title: Sensors & Transducers – reference: Ramli, M.F., Multiphase Flow Measurement with Electrical Capacitance Tomography and Microwave Sensors. 2017. – reference: Frias, M. and R. Antonio, – reference: Yang, W. and M. Byars. An improved normalisation approach for electrical capacitance tomography. in 1st World Congress on Industrial Process Tomography. 1999. Citeseer. – volume: 18 start-page: 30 year: 2006 ident: b0155 article-title: A particle filter approach for tomographic imaging based on different state-space representations publication-title: Meas. Sci. Technol. – year: 2013 ident: b0075 article-title: Analytical method of generating sensitivity map for electrical capacitance tomography sensor with internal electrode publication-title: Applied Mechanics and Materials – reference: Jiangbao, Y., et al. – volume: 34 start-page: 1936 year: 1998 end-page: 1937 ident: b0230 article-title: Fast calculation of sensitivity distributions in capacitance tomography sensors publication-title: Electron. Lett – reference: Mokhtar, K.Z., – reference: . 1999. – volume: 121 start-page: 201 year: 2010 end-page: 221 ident: b0115 article-title: Improvement of electrical capacitance tomography hardware publication-title: Zeszyty Naukowe. Elektryka/politechnika Łódzka – volume: 80 year: 2021 ident: b0040 article-title: Developing and evaluation of an electrical impedance tomography system for measuring solid volumetric concentration in dredging scale publication-title: Flow Meas. Instrum. – volume: 9 start-page: 615 year: 2015 end-page: 620 ident: b0250 article-title: Comparisons of three modelling methods for the forward problem in three-dimensional electrical capacitance tomography publication-title: IET Sci. Meas. Technol. – volume: 374 start-page: 20150331 year: 2016 ident: b0065 article-title: Electronic hardware design of electrical capacitance tomography systems publication-title: Philos. Trans. r. Soc. A Math. Phys. Eng. Sci. – volume: 9 start-page: 332 year: 2021 end-page: 353 ident: b0220 article-title: Developing turbulent flow in pipes and analysis of entrance region publication-title: Academic Platform Journal of Engineering and Science – reference: Yan, H., F. Shao, and S. Wang. – volume: 176 year: 2022 ident: b0180 article-title: A novel two-step strategy of non-probabilistic multi-objective optimization for load-dependent sensor placement with interval uncertainties publication-title: Mech. Syst. Sig. Process. – year: 2011 ident: b0025 article-title: Measurement of void Fraction using electrical capacitance tomography for air-water co-current bubble column – volume: 11 start-page: 1471 year: 2018 end-page: 1477 ident: b0185 article-title: Modeling and calibration of electrical capacitance tomography sensor for medical imaging publication-title: Biomedical and Pharmacology Journal – year: 2005. 2005. ident: b0165 article-title: Electrical permittivity shape identification using electrical capacitance tomography data and level set formulation publication-title: In – reference: . 2018. EDP Sciences. – volume: 14 start-page: R1 year: 2002 ident: b0125 article-title: Image reconstruction algorithms for electrical capacitance tomography publication-title: Meas. Sci. Technol. – volume: 17 start-page: 2089 year: 2017 end-page: 2099 ident: b0240 article-title: An electrical capacitance tomography sensor with variable diameter publication-title: IEEE Sens. J. – start-page: 1 year: 2011 ident: b0095 article-title: Virtual instrument for online electrical capacitance tomography publication-title: Practical Applications and Solutions Using LabVIEW™ Software – volume: 18 start-page: 3287 year: 2007 ident: b0160 article-title: Dynamic imaging in electrical capacitance tomography and electromagnetic induction tomography using a Kalman filter publication-title: Meas. Sci. Technol. – reference: . 2018, UNIVERSITY OF MANCHESTER. – reference: . 2015, The University of Manchester (United Kingdom). – volume: 20 year: 2009 ident: b0030 article-title: A new normalization method based on electrical field lines for electrical capacitance tomography publication-title: Meas. Sci. Technol. – reference: Shafquet, A., I. Ismail, and A. Jaafar. – volume: 11 start-page: 7088 year: 2013 end-page: 7093 ident: b0255 article-title: Investigation on the sensitivity distribution in electrical capacitance tomography system publication-title: TELKOMNIKA Indonesian Journal of Electrical Engineering – year: 2021 ident: b0225 article-title: in – volume: 47 start-page: 19 year: 2014 end-page: 25 ident: b0015 article-title: Weighing without touching: applying electrical capacitance tomography to mass flowrate measurement in multiphase flows publication-title: Measurement and Control – volume: 11 start-page: 1471 issue: 3 year: 2018 ident: 10.1016/j.measurement.2024.114573_b0185 article-title: Modeling and calibration of electrical capacitance tomography sensor for medical imaging publication-title: Biomedical and Pharmacology Journal doi: 10.13005/bpj/1513 – ident: 10.1016/j.measurement.2024.114573_b0215 – volume: 176 year: 2022 ident: 10.1016/j.measurement.2024.114573_b0180 article-title: A novel two-step strategy of non-probabilistic multi-objective optimization for load-dependent sensor placement with interval uncertainties publication-title: Mech. Syst. Sig. Process. – ident: 10.1016/j.measurement.2024.114573_b0080 – volume: 17 start-page: 2089 issue: 7 year: 2017 ident: 10.1016/j.measurement.2024.114573_b0240 article-title: An electrical capacitance tomography sensor with variable diameter publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2667716 – ident: 10.1016/j.measurement.2024.114573_bib271 – year: 2011 ident: 10.1016/j.measurement.2024.114573_b0025 – volume: 121 start-page: 201 year: 2010 ident: 10.1016/j.measurement.2024.114573_b0115 article-title: Improvement of electrical capacitance tomography hardware publication-title: Zeszyty Naukowe. Elektryka/politechnika Łódzka – volume: 9 start-page: 615 issue: 5 year: 2015 ident: 10.1016/j.measurement.2024.114573_b0250 article-title: Comparisons of three modelling methods for the forward problem in three-dimensional electrical capacitance tomography publication-title: IET Sci. Meas. Technol. doi: 10.1049/iet-smt.2014.0252 – volume: 9 start-page: 332 issue: 2 year: 2021 ident: 10.1016/j.measurement.2024.114573_b0220 article-title: Developing turbulent flow in pipes and analysis of entrance region publication-title: Academic Platform Journal of Engineering and Science – volume: 34 start-page: 1936 issue: 20 year: 1998 ident: 10.1016/j.measurement.2024.114573_b0230 article-title: Fast calculation of sensitivity distributions in capacitance tomography sensors publication-title: Electron. Lett doi: 10.1049/el:19981176 – year: 2021 ident: 10.1016/j.measurement.2024.114573_b0225 – volume: 73 issue: 1 year: 2024 ident: 10.1016/j.measurement.2024.114573_b0270 article-title: Positioning Accuracy analysis of industrial robots based on non-probabilistic time-dependent reliability publication-title: IEEE Trans. Reliab. – ident: 10.1016/j.measurement.2024.114573_b0210 – volume: 11 start-page: 7088 issue: 12 year: 2013 ident: 10.1016/j.measurement.2024.114573_b0255 article-title: Investigation on the sensitivity distribution in electrical capacitance tomography system publication-title: TELKOMNIKA Indonesian Journal of Electrical Engineering doi: 10.11591/telkomnika.v11i12.3611 – year: 2016 ident: 10.1016/j.measurement.2024.114573_b0120 – volume: 6 start-page: 1118 issue: 9 year: 2006 ident: 10.1016/j.measurement.2024.114573_b0200 article-title: Influence of shielding arrangement on ECT sensors publication-title: Sensors doi: 10.3390/s6091118 – volume: 13 start-page: 2076 issue: 2 year: 2013 ident: 10.1016/j.measurement.2024.114573_b0130 article-title: An image reconstruction algorithm for electrical capacitance tomography based on robust principle component analysis publication-title: Sensors doi: 10.3390/s130202076 – volume: 10 issue: 4 year: 2018 ident: 10.1016/j.measurement.2024.114573_b0265 article-title: Sensitivity mapping for electrical tomography using finite element method. international journal of integrated publication-title: Engineering – volume: 20 issue: 10 year: 2009 ident: 10.1016/j.measurement.2024.114573_b0030 article-title: A new normalization method based on electrical field lines for electrical capacitance tomography publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/20/10/104028 – volume: 47 start-page: 19 issue: 1 year: 2014 ident: 10.1016/j.measurement.2024.114573_b0015 article-title: Weighing without touching: applying electrical capacitance tomography to mass flowrate measurement in multiphase flows publication-title: Measurement and Control doi: 10.1177/0020294013517445 – volume: 14 start-page: R1 issue: 1 year: 2002 ident: 10.1016/j.measurement.2024.114573_b0125 article-title: Image reconstruction algorithms for electrical capacitance tomography publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/14/1/201 – volume: 7 start-page: 225 issue: 3 year: 1996 ident: 10.1016/j.measurement.2024.114573_b0110 article-title: Hardware design of electrical capacitance tomography systems publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/7/3/003 – ident: 10.1016/j.measurement.2024.114573_b0235 – ident: 10.1016/j.measurement.2024.114573_b0105 – year: 2005 ident: 10.1016/j.measurement.2024.114573_b0165 article-title: Electrical permittivity shape identification using electrical capacitance tomography data and level set formulation – year: 2006 ident: 10.1016/j.measurement.2024.114573_b0050 – volume: 14 start-page: 655 year: 2010 ident: 10.1016/j.measurement.2024.114573_b0245 article-title: Electrostatic field simulations in the analysis and design of electrical capacitance tomography sensors. automatyka/akademia górniczo-hutnicza im publication-title: Stanisława Staszica w Krakowie – start-page: 1 year: 2011 ident: 10.1016/j.measurement.2024.114573_b0095 article-title: Virtual instrument for online electrical capacitance tomography publication-title: Practical Applications and Solutions Using LabVIEW™ Software – ident: 10.1016/j.measurement.2024.114573_b0175 – ident: 10.1016/j.measurement.2024.114573_b0005 – ident: 10.1016/j.measurement.2024.114573_b0020 – volume: 80 year: 2021 ident: 10.1016/j.measurement.2024.114573_b0040 article-title: Developing and evaluation of an electrical impedance tomography system for measuring solid volumetric concentration in dredging scale publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2021.101986 – volume: 6 start-page: 6 year: 1999 ident: 10.1016/j.measurement.2024.114573_b0170 article-title: Image reconstruction of an electrical capacitance tomography system using an artificial neural network publication-title: System – volume: 1 year: 2009 ident: 10.1016/j.measurement.2024.114573_b0195 article-title: PROCESS TOMOGRAPHY ltd. ELECTRICAL CAPACITANCE TOMOGRAPHY SYSTEM publication-title: TYPE TFLR5000 – volume: 2 start-page: 32 issue: 1 year: 2005 ident: 10.1016/j.measurement.2024.114573_b0150 article-title: Two-phase oil–gas pipe flow imaging by simulated annealing publication-title: J. Geophys. Eng. doi: 10.1088/1742-2132/2/1/005 – volume: 103 start-page: 47 issue: 7 year: 2010 ident: 10.1016/j.measurement.2024.114573_b0090 article-title: Improvement of AC-based electrical capacitance tomography hardware publication-title: Elektronika Ir Elektrotechnika – ident: 10.1016/j.measurement.2024.114573_b0100 – volume: 89 start-page: 1578 issue: 6 year: 2006 ident: 10.1016/j.measurement.2024.114573_b0145 article-title: Novel iterative image reconstruction algorithm for electrical capacitance tomography: directional algebraic reconstruction technique publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. doi: 10.1093/ietfec/e89-a.6.1578 – volume: 374 start-page: 20150331 issue: 2070 year: 2016 ident: 10.1016/j.measurement.2024.114573_b0065 article-title: Electronic hardware design of electrical capacitance tomography systems publication-title: Philos. Trans. r. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2015.0331 – volume: 99 start-page: 161 issue: 2 year: 2023 ident: 10.1016/j.measurement.2024.114573_b0035 article-title: Combining electrical capacitance and impedance tomography in monitoring processes publication-title: Przeglad Elektrotechniczny – start-page: 436 year: 2024 ident: 10.1016/j.measurement.2024.114573_b0135 article-title: An interval perturbation method for singular value decomposition (SVD) with unknown-but-bounded (UBB) parameters publication-title: J. Comput. Appl. Math. – year: 2013 ident: 10.1016/j.measurement.2024.114573_b0075 article-title: Analytical method of generating sensitivity map for electrical capacitance tomography sensor with internal electrode doi: 10.4028/b-430auQ – volume: 139 start-page: 83 issue: 1 year: 1992 ident: 10.1016/j.measurement.2024.114573_b0085 article-title: Design of sensor electronics for electrical capacitance tomography publication-title: IEE Proceedings G (circuits, Devices and Systems) doi: 10.1049/ip-g-2.1992.0014 – ident: 10.1016/j.measurement.2024.114573_b0190 – ident: 10.1016/j.measurement.2024.114573_b0140 doi: 10.1051/matecconf/201817601032 – volume: 18 start-page: 30 issue: 1 year: 2006 ident: 10.1016/j.measurement.2024.114573_b0155 article-title: A particle filter approach for tomographic imaging based on different state-space representations publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/18/1/004 – volume: 83 year: 2022 ident: 10.1016/j.measurement.2024.114573_b0045 article-title: Experimental evaluation of some current injection-voltage reading patterns in electrical impedance tomography (EIT) and comparison to simulation results-case study: large scales publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2021.102087 – volume: 18 start-page: 3701 issue: 11 year: 2018 ident: 10.1016/j.measurement.2024.114573_b0055 article-title: A benchmark dataset and deep learning-based image reconstruction for electrical capacitance tomography publication-title: Sensors doi: 10.3390/s18113701 – volume: 135 start-page: 20 issue: 12 year: 2011 ident: 10.1016/j.measurement.2024.114573_b0060 article-title: An overview: effectiveness of different Arrangement for electrode Guard in electrical capacitance tomography publication-title: Sensors & Transducers – volume: 17 start-page: 3286 issue: 5 year: 2022 ident: 10.1016/j.measurement.2024.114573_b0260 article-title: Data-driven assessment of artificial neural network and regression curve fitting approches for dimensionless turbulent flow heat transfer performance of a hexagonal duct publication-title: J. Eng. Sci. Technol. – ident: 10.1016/j.measurement.2024.114573_b0070 doi: 10.1109/ICIAS.2014.6869489 – year: 2018 ident: 10.1016/j.measurement.2024.114573_b0010 – volume: Springer start-page: 25 year: 1988 ident: 10.1016/j.measurement.2024.114573_b0205 article-title: Numerical calculation of potential fields – volume: 18 start-page: 3287 issue: 11 year: 2007 ident: 10.1016/j.measurement.2024.114573_b0160 article-title: Dynamic imaging in electrical capacitance tomography and electromagnetic induction tomography using a Kalman filter publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/18/11/004  | 
    
| SSID | ssj0006396 | 
    
| Score | 2.4162102 | 
    
| Snippet | •Five non-iterative image reconstruction techniques are compared experimentally.•Each reconstruction algorithm has its own pros and cons for special test in... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 114573 | 
    
| SubjectTerms | Concentration Forward problem Fusion algorithm Inverse problem Multi-Layer Perceptron Reconstruction algorithm  | 
    
| Title | A fusion algorithm for mass flow rate measurement based on neural network and electrical capacitance tomography | 
    
| URI | https://dx.doi.org/10.1016/j.measurement.2024.114573 | 
    
| Volume | 231 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0263-2241 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006396 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0263-2241 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006396 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0263-2241 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006396 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0263-2241 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006396 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0263-2241 databaseCode: AKRWK dateStart: 19830101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED5Cy0r7ULb-YGm3okJf3diS4tjQlxAWso3lpS30zUgnuU1J7LA69K1_e-9iZ0lh0MEeLXS2dDrrTsen7wAulE-MDxMbGEMWrFObBibqMcQKNcVyHqNlvuPXOB7d6h933bsWDFZ3YRhW2ez99Z6-3K2blk6jzc58Mulch0w1Lrl6MsclCV801_R-sunLlzXMgzxwXOdZVMC9d-B8jfGarfNwdFSUmplzuz31dx-14XeGH2G_CRhFvx7TJ2j54gD2NmgED-DDEsaJT4dQ9kW-4PyXMNP7ks79DzNBUamYUYgs8mn5LJgZQmwMSLAbc4IkmNmSPlTUuHBhCifqGjm8jALJqeKkYhsRVTlriK6P4Hb47WYwCpqSCgEqGVUBRhJtGnaltjq3Jo2SHKXPpXKK_t0oRpmics5E2ve8Nh5jpdA6DE1kOZhQx7BVlIX_DIK6W6dU6KRCnbqejTF2OlWx9Z6akjYkKyVm2PCNc9mLabYClj1mG9PNWP9Zrf82yD-i85p041-ErlYrlb2xoIycw_viJ_8nfgq7_FTjCr7AVvV74b9SuFLZs6U9nsF2__vP0fgVEfPuNA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB584OsgPvFtBK912yR9gRcRZX1eVPBWkkmqK7utaMWbv93MtuuuICh4bTM0nUwzX4av3wDsC5so6yfaU8pFsEx16qkgJooVSoflLAb9esfVddS-k-f34f0YHA_-hSFaZbP313t6f7durrQab7aeO53WjU9S45y6JxMuScJxmJQhj-kEdvAx5Hm4FBzVhRbh0fBp2BuSvHrDQpw7K3JJ0rlhLH5OUiOJ53QB5hvEyI7qSS3CmC2WYG5ER3AJpvo8TnxdhvKI5W9UAGOq-1C6g_9jjzlYynoOI7O8W74zkoZgIxNilMcMcxYkbekeVNTEcKYKw-omObSODF1WxU5FQcKqstcoXa_A3enJ7XHba3oqeCh4UHkYcNSpH3KpZa5VGiQ5cptzYYT7eIMIeYrCGBVIG1upLEZCoDboq0ATmhCrMFGUhV0D5oZrI4RvuECZmlhHGBmZikhb6y4l65AMnJhhIzhOfS-62YBZ9pSNvG5G_s9q_68D_zJ9rlU3_mJ0OFip7FsIZS47_G6-8T_zXZhp315dZpdn1xebMEt3apLBFkxUL29222GXSu_0Y_MTml7vyQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fusion+algorithm+for+mass+flow+rate+measurement+based+on+neural+network+and+electrical+capacitance+tomography&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Mousazadeh%2C+Hossein&rft.au=Tarabi%2C+Nazilla&rft.au=Taghizadeh-Tameh%2C+Jalil&rft.date=2024-05-31&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.volume=231&rft_id=info:doi/10.1016%2Fj.measurement.2024.114573&rft.externalDocID=S0263224124004585 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |