A fusion algorithm for mass flow rate measurement based on neural network and electrical capacitance tomography

•Five non-iterative image reconstruction techniques are compared experimentally.•Each reconstruction algorithm has its own pros and cons for special test in phantom.•A new NN fusion reconstruction algorithm is designed and developed.•The developed algorithm would decrease the concentration error by...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 231; p. 114573
Main Authors Mousazadeh, Hossein, Tarabi, Nazilla, Taghizadeh-Tameh, Jalil
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 31.05.2024
Subjects
Online AccessGet full text
ISSN0263-2241
DOI10.1016/j.measurement.2024.114573

Cover

Abstract •Five non-iterative image reconstruction techniques are compared experimentally.•Each reconstruction algorithm has its own pros and cons for special test in phantom.•A new NN fusion reconstruction algorithm is designed and developed.•The developed algorithm would decrease the concentration error by 7–10 folds. The process tomography has received a noticeable attention in industry due to non-invasive and non-intrusive characterise. To asses the potential of electrical capacitance tomography for gravity-fallen mass flow rate measurement, a fusion algorithm based on neural network is designed and implemented. The hardware of instrument is composed of a pipe as circular phantom with 200 mm internal diameter and the front-end electronics. The specially programmed software, runs five well-known, non-iterative reconstruction algorithms (LBP, Tikhonov, SVD, ART and SIRT) and fusions the results in a MLP-NN. The sensor experimentally evaluated by wheat grains. Five implemented algorithms, and the fusion NN are compared using RMSE and concentration error parameters. According to evaluated results in whole of tests, the fusion algorithm reduces RMSE and concentration error by approximately 2–3 and 7–10 folds respectively. Since these five algorithms are completely independent, running the program in parallel by Multi-Thread mode, do not adds run-time.
AbstractList •Five non-iterative image reconstruction techniques are compared experimentally.•Each reconstruction algorithm has its own pros and cons for special test in phantom.•A new NN fusion reconstruction algorithm is designed and developed.•The developed algorithm would decrease the concentration error by 7–10 folds. The process tomography has received a noticeable attention in industry due to non-invasive and non-intrusive characterise. To asses the potential of electrical capacitance tomography for gravity-fallen mass flow rate measurement, a fusion algorithm based on neural network is designed and implemented. The hardware of instrument is composed of a pipe as circular phantom with 200 mm internal diameter and the front-end electronics. The specially programmed software, runs five well-known, non-iterative reconstruction algorithms (LBP, Tikhonov, SVD, ART and SIRT) and fusions the results in a MLP-NN. The sensor experimentally evaluated by wheat grains. Five implemented algorithms, and the fusion NN are compared using RMSE and concentration error parameters. According to evaluated results in whole of tests, the fusion algorithm reduces RMSE and concentration error by approximately 2–3 and 7–10 folds respectively. Since these five algorithms are completely independent, running the program in parallel by Multi-Thread mode, do not adds run-time.
ArticleNumber 114573
Author Taghizadeh-Tameh, Jalil
Tarabi, Nazilla
Mousazadeh, Hossein
Author_xml – sequence: 1
  givenname: Hossein
  surname: Mousazadeh
  fullname: Mousazadeh, Hossein
  email: hmousazade@ut.ac.ir
– sequence: 2
  givenname: Nazilla
  surname: Tarabi
  fullname: Tarabi, Nazilla
– sequence: 3
  givenname: Jalil
  surname: Taghizadeh-Tameh
  fullname: Taghizadeh-Tameh, Jalil
BookMark eNqNkMtqAjEYhbOwULV9h_QBZprLOOOsikhvIHTTrsM_mT8aOzORJFZ8-0bsQrpydeDA-eB8EzIa3ICEPHCWc8bLx23eI4S9xx6HmAsmipzzYlbJERkzUcpMiILfkkkIW8ZYKetyTNyCmn2wbqDQrZ23cdNT4zztIQRqOnegHiLSCzBtIGBL02LAvYcuRTw4_01haCl2qKO3OtUadqBthEEjja53aw-7zfGO3BjoAt7_5ZR8vTx_Lt-y1cfr-3KxyrQUPGaaC93UbCaKpjAN1HxutEAjZCvFrOKlFrWWbQu8wAoLQF1KqZtWM-ANq-ZCTkl95mrvQvBo1M7bHvxRcaZOttRWXZxSJ1vqbCttn_5tTz9ikhQ92O4qwvJMwHTxx6JXQVtMJlrrkyDVOnsF5RddaJaE
CitedBy_id crossref_primary_10_1016_j_measurement_2025_117335
crossref_primary_10_1016_j_advengsoft_2024_103767
crossref_primary_10_1016_j_cjche_2025_02_010
Cites_doi 10.13005/bpj/1513
10.1109/JSEN.2017.2667716
10.1049/iet-smt.2014.0252
10.1049/el:19981176
10.11591/telkomnika.v11i12.3611
10.3390/s6091118
10.3390/s130202076
10.1088/0957-0233/20/10/104028
10.1177/0020294013517445
10.1088/0957-0233/14/1/201
10.1088/0957-0233/7/3/003
10.1016/j.flowmeasinst.2021.101986
10.1088/1742-2132/2/1/005
10.1093/ietfec/e89-a.6.1578
10.1098/rsta.2015.0331
10.4028/b-430auQ
10.1049/ip-g-2.1992.0014
10.1051/matecconf/201817601032
10.1088/0957-0233/18/1/004
10.1016/j.flowmeasinst.2021.102087
10.3390/s18113701
10.1109/ICIAS.2014.6869489
10.1088/0957-0233/18/11/004
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2024.114573
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_measurement_2024_114573
S0263224124004585
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFRF
ABJNI
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
AATTM
AAYWO
AAYXX
ABFNM
ABXDB
ACLOT
ACNNM
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
WUQ
XPP
~HD
ID FETCH-LOGICAL-c321t-c12cb90524b4fba918fc2ef23d325716c29c3dda14e7e4aec633cbdc0a1b07823
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Wed Oct 01 01:37:49 EDT 2025
Thu Apr 24 23:09:53 EDT 2025
Sat Feb 08 15:51:32 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Fusion algorithm
Reconstruction algorithm
Multi-Layer Perceptron
Concentration
Forward problem
Inverse problem
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-c12cb90524b4fba918fc2ef23d325716c29c3dda14e7e4aec633cbdc0a1b07823
ParticipantIDs crossref_primary_10_1016_j_measurement_2024_114573
crossref_citationtrail_10_1016_j_measurement_2024_114573
elsevier_sciencedirect_doi_10_1016_j_measurement_2024_114573
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-31
PublicationDateYYYYMMDD 2024-05-31
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-31
  day: 31
PublicationDecade 2020
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mokhtar, K.Z.
Mousazadeh, H. Evaluation number of elements in electrical capacitance tomography. in 7th National Conference on New Idea on Electrical Engineering. 2022. Civilica.
Marashdeh (b0050) 2006
Basu (b0010) 2018
Li, Y.
Saied, Meribout (b0065) 2016; 374
Abd (b0060) 2011; 135
Yang (b0110) 1996; 7
Dong, Guo (b0075) 2013
2009.
Mousazadeh, H. Comparison five image reconstruction algorithms in electrical capacitance tomography; applicable in biomedical engineering. in 15th International Conference on Science and Technology Advances. 2022. Mashhad: Civilica.
Vol. 1. 2015: Woodhead Publishing.
Tian (b0240) 2017; 17
Kim, Choi, Kim (b0145) 2006; 89
Yang, W. and M. Byars. An improved normalisation approach for electrical capacitance tomography. in 1st World Congress on Industrial Process Tomography. 1999. Citeseer.
Ali (b0260) 2022; 17
Soleimani (b0160) 2007; 18
in
Fan, Gao, Wang (b0095) 2011
Ortiz-Alemán, Martin (b0150) 2005; 2
Brandisky (b0245) 2010; 14
Zheng (b0055) 2018; 18
2015, The University of Manchester (United Kingdom).
Lei (b0130) 2013; 13
Ambika, Kumar (b0185) 2018; 11
Shafquet, A., I. Ismail, and A. Jaafar.
1999.
Tarabi (b0040) 2021; 80
Wang, M.
Yang, Peng (b0125) 2002; 14
Jiang (b0255) 2013; 11
Alhosani (b0120) 2016
Schwab (b0205) 1988; Springer
Shafquet, a.s. (b0025) 2011
Grzegorz, Przemyslaw, Konrad (b0035) 2023; 99
2018. EDP Sciences.
Eyub, Ali, Sefik (b0220) 2021; 9
Zhang, Wang (b0030) 2009; 20
Yan (b0250) 2015; 9
2008: The University of Manchester (United Kingdom).
2018, UNIVERSITY OF MANCHESTER.
Jiangbao, Y., et al.
Mousazadeh (b0225) 2021
Pradeep, C.
Malik, B.
Styra, Babout (b0090) 2010; 103
2015.
Chen, Yuanqing (b0180) 2022; 176
Pusppanathan (b0265) 2018; 10
Chen, Wanze, Yuanqing (b0270) 2024; 73
Wajman, Nowakowski, Styra (b0115) 2010; 121
Manual, o. (b0195) 2009; 1
Frias, M. and R. Antonio
Huang (b0085) 1992; 139
Yan, H., F. Shao, and S. Wang.
Ramli, M.F., Multiphase Flow Measurement with Electrical Capacitance Tomography and Microwave Sensors. 2017.
Yan, Shao, Wang (b0230) 1998; 34
Olmos, Primicia, Marron (b0200) 2006; 6
Watzenig, Brandner, Steiner (b0155) 2006; 18
20IEEE.
Sun (b0170) 1999; 6
Hunt (b0015) 2014; 47
Yang, Shi (b0135) 2024
Tarabi (b0045) 2022; 83
Soleimani, Movafeghi (b0165) 2005. 2005.
10.1016/j.measurement.2024.114573_b0105
Pusppanathan (10.1016/j.measurement.2024.114573_b0265) 2018; 10
Ambika (10.1016/j.measurement.2024.114573_b0185) 2018; 11
Schwab (10.1016/j.measurement.2024.114573_b0205) 1988; Springer
Tarabi (10.1016/j.measurement.2024.114573_b0045) 2022; 83
Fan (10.1016/j.measurement.2024.114573_b0095) 2011
Chen (10.1016/j.measurement.2024.114573_b0180) 2022; 176
Brandisky (10.1016/j.measurement.2024.114573_b0245) 2010; 14
10.1016/j.measurement.2024.114573_b0070
10.1016/j.measurement.2024.114573_b0190
Sun (10.1016/j.measurement.2024.114573_b0170) 1999; 6
10.1016/j.measurement.2024.114573_b0235
Yan (10.1016/j.measurement.2024.114573_b0230) 1998; 34
Chen (10.1016/j.measurement.2024.114573_b0270) 2024; 73
Styra (10.1016/j.measurement.2024.114573_b0090) 2010; 103
Hunt (10.1016/j.measurement.2024.114573_b0015) 2014; 47
Abd (10.1016/j.measurement.2024.114573_b0060) 2011; 135
10.1016/j.measurement.2024.114573_b0080
Yang (10.1016/j.measurement.2024.114573_b0135) 2024
Soleimani (10.1016/j.measurement.2024.114573_b0165) 2005
Wajman (10.1016/j.measurement.2024.114573_b0115) 2010; 121
10.1016/j.measurement.2024.114573_bib271
Yang (10.1016/j.measurement.2024.114573_b0110) 1996; 7
Basu (10.1016/j.measurement.2024.114573_b0010) 2018
Ortiz-Alemán (10.1016/j.measurement.2024.114573_b0150) 2005; 2
10.1016/j.measurement.2024.114573_b0005
Alhosani (10.1016/j.measurement.2024.114573_b0120) 2016
Marashdeh (10.1016/j.measurement.2024.114573_b0050) 2006
Soleimani (10.1016/j.measurement.2024.114573_b0160) 2007; 18
Shafquet, a.s. (10.1016/j.measurement.2024.114573_b0025) 2011
Manual, o. (10.1016/j.measurement.2024.114573_b0195) 2009; 1
Zheng (10.1016/j.measurement.2024.114573_b0055) 2018; 18
Olmos (10.1016/j.measurement.2024.114573_b0200) 2006; 6
Jiang (10.1016/j.measurement.2024.114573_b0255) 2013; 11
Zhang (10.1016/j.measurement.2024.114573_b0030) 2009; 20
Yan (10.1016/j.measurement.2024.114573_b0250) 2015; 9
Saied (10.1016/j.measurement.2024.114573_b0065) 2016; 374
Dong (10.1016/j.measurement.2024.114573_b0075) 2013
10.1016/j.measurement.2024.114573_b0175
Lei (10.1016/j.measurement.2024.114573_b0130) 2013; 13
10.1016/j.measurement.2024.114573_b0210
10.1016/j.measurement.2024.114573_b0215
Kim (10.1016/j.measurement.2024.114573_b0145) 2006; 89
Watzenig (10.1016/j.measurement.2024.114573_b0155) 2006; 18
Grzegorz (10.1016/j.measurement.2024.114573_b0035) 2023; 99
Eyub (10.1016/j.measurement.2024.114573_b0220) 2021; 9
Tian (10.1016/j.measurement.2024.114573_b0240) 2017; 17
Tarabi (10.1016/j.measurement.2024.114573_b0040) 2021; 80
Huang (10.1016/j.measurement.2024.114573_b0085) 1992; 139
Ali (10.1016/j.measurement.2024.114573_b0260) 2022; 17
10.1016/j.measurement.2024.114573_b0020
Yang (10.1016/j.measurement.2024.114573_b0125) 2002; 14
10.1016/j.measurement.2024.114573_b0140
Mousazadeh (10.1016/j.measurement.2024.114573_b0225) 2021
10.1016/j.measurement.2024.114573_b0100
References_xml – reference: . in
– reference: , in
– reference: 2015.
– reference: . 2009.
– volume: 6
  start-page: 6
  year: 1999
  ident: b0170
  article-title: Image reconstruction of an electrical capacitance tomography system using an artificial neural network
  publication-title: System
– year: 2006
  ident: b0050
  article-title: Advances in electrical capacitance tomography
– year: 2016
  ident: b0120
  article-title: Electrical capacitance tomography for real-time monitoring of process pipelines
– reference: Li, Y.,
– volume: 73
  year: 2024
  ident: b0270
  article-title: Positioning Accuracy analysis of industrial robots based on non-probabilistic time-dependent reliability
  publication-title: IEEE Trans. Reliab.
– volume: 2
  start-page: 32
  year: 2005
  end-page: 37
  ident: b0150
  article-title: Two-phase oil–gas pipe flow imaging by simulated annealing
  publication-title: J. Geophys. Eng.
– volume: 99
  start-page: 161
  year: 2023
  end-page: 164
  ident: b0035
  article-title: Combining electrical capacitance and impedance tomography in monitoring processes
  publication-title: Przeglad Elektrotechniczny
– volume: 7
  start-page: 225
  year: 1996
  ident: b0110
  article-title: Hardware design of electrical capacitance tomography systems
  publication-title: Meas. Sci. Technol.
– year: 2018
  ident: b0010
  article-title: Plant flow measurement and control handbook: fluid, solid, slurry and multiphase flow
– reference: . Vol. 1. 2015: Woodhead Publishing.
– volume: 83
  year: 2022
  ident: b0045
  article-title: Experimental evaluation of some current injection-voltage reading patterns in electrical impedance tomography (EIT) and comparison to simulation results-case study: large scales
  publication-title: Flow Meas. Instrum.
– reference: Mousazadeh, H. Evaluation number of elements in electrical capacitance tomography. in 7th National Conference on New Idea on Electrical Engineering. 2022. Civilica.
– reference: . 20IEEE.
– volume: 139
  start-page: 83
  year: 1992
  end-page: 88
  ident: b0085
  article-title: Design of sensor electronics for electrical capacitance tomography
  publication-title: IEE Proceedings G (circuits, Devices and Systems)
– volume: 14
  start-page: 655
  year: 2010
  end-page: 669
  ident: b0245
  article-title: automatyka/akademia górniczo-hutnicza im
  publication-title: Stanisława Staszica w Krakowie
– reference: Mousazadeh, H. Comparison five image reconstruction algorithms in electrical capacitance tomography; applicable in biomedical engineering. in 15th International Conference on Science and Technology Advances. 2022. Mashhad: Civilica.
– reference: . 2008: The University of Manchester (United Kingdom).
– volume: 89
  start-page: 1578
  year: 2006
  end-page: 1584
  ident: b0145
  article-title: Novel iterative image reconstruction algorithm for electrical capacitance tomography: directional algebraic reconstruction technique
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
– volume: 13
  start-page: 2076
  year: 2013
  end-page: 2092
  ident: b0130
  article-title: An image reconstruction algorithm for electrical capacitance tomography based on robust principle component analysis
  publication-title: Sensors
– volume: 18
  start-page: 3701
  year: 2018
  ident: b0055
  article-title: A benchmark dataset and deep learning-based image reconstruction for electrical capacitance tomography
  publication-title: Sensors
– volume: Springer
  start-page: 25
  year: 1988
  ident: b0205
  article-title: Numerical calculation of potential fields
  publication-title: Field Theory Concepts
– volume: 103
  start-page: 47
  year: 2010
  end-page: 50
  ident: b0090
  article-title: Improvement of AC-based electrical capacitance tomography hardware
  publication-title: Elektronika Ir Elektrotechnika
– volume: 10
  year: 2018
  ident: b0265
  article-title: international journal of integrated
  publication-title: Engineering
– reference: Wang, M.,
– reference: Pradeep, C.,
– volume: 6
  start-page: 1118
  year: 2006
  end-page: 1127
  ident: b0200
  article-title: Influence of shielding arrangement on ECT sensors
  publication-title: Sensors
– start-page: 436
  year: 2024
  ident: b0135
  article-title: An interval perturbation method for singular value decomposition (SVD) with unknown-but-bounded (UBB) parameters
  publication-title: J. Comput. Appl. Math.
– volume: 1
  year: 2009
  ident: b0195
  article-title: ELECTRICAL CAPACITANCE TOMOGRAPHY SYSTEM
  publication-title: TYPE TFLR5000
– reference: Malik, B.,
– volume: 17
  start-page: 3286
  year: 2022
  end-page: 3309
  ident: b0260
  article-title: Data-driven assessment of artificial neural network and regression curve fitting approches for dimensionless turbulent flow heat transfer performance of a hexagonal duct
  publication-title: J. Eng. Sci. Technol.
– volume: 135
  start-page: 20
  year: 2011
  ident: b0060
  article-title: An overview: effectiveness of different Arrangement for electrode Guard in electrical capacitance tomography
  publication-title: Sensors & Transducers
– reference: Ramli, M.F., Multiphase Flow Measurement with Electrical Capacitance Tomography and Microwave Sensors. 2017.
– reference: Frias, M. and R. Antonio,
– reference: Yang, W. and M. Byars. An improved normalisation approach for electrical capacitance tomography. in 1st World Congress on Industrial Process Tomography. 1999. Citeseer.
– volume: 18
  start-page: 30
  year: 2006
  ident: b0155
  article-title: A particle filter approach for tomographic imaging based on different state-space representations
  publication-title: Meas. Sci. Technol.
– year: 2013
  ident: b0075
  article-title: Analytical method of generating sensitivity map for electrical capacitance tomography sensor with internal electrode
  publication-title: Applied Mechanics and Materials
– reference: Jiangbao, Y., et al.
– volume: 34
  start-page: 1936
  year: 1998
  end-page: 1937
  ident: b0230
  article-title: Fast calculation of sensitivity distributions in capacitance tomography sensors
  publication-title: Electron. Lett
– reference: Mokhtar, K.Z.,
– reference: . 1999.
– volume: 121
  start-page: 201
  year: 2010
  end-page: 221
  ident: b0115
  article-title: Improvement of electrical capacitance tomography hardware
  publication-title: Zeszyty Naukowe. Elektryka/politechnika Łódzka
– volume: 80
  year: 2021
  ident: b0040
  article-title: Developing and evaluation of an electrical impedance tomography system for measuring solid volumetric concentration in dredging scale
  publication-title: Flow Meas. Instrum.
– volume: 9
  start-page: 615
  year: 2015
  end-page: 620
  ident: b0250
  article-title: Comparisons of three modelling methods for the forward problem in three-dimensional electrical capacitance tomography
  publication-title: IET Sci. Meas. Technol.
– volume: 374
  start-page: 20150331
  year: 2016
  ident: b0065
  article-title: Electronic hardware design of electrical capacitance tomography systems
  publication-title: Philos. Trans. r. Soc. A Math. Phys. Eng. Sci.
– volume: 9
  start-page: 332
  year: 2021
  end-page: 353
  ident: b0220
  article-title: Developing turbulent flow in pipes and analysis of entrance region
  publication-title: Academic Platform Journal of Engineering and Science
– reference: Yan, H., F. Shao, and S. Wang.
– volume: 176
  year: 2022
  ident: b0180
  article-title: A novel two-step strategy of non-probabilistic multi-objective optimization for load-dependent sensor placement with interval uncertainties
  publication-title: Mech. Syst. Sig. Process.
– year: 2011
  ident: b0025
  article-title: Measurement of void Fraction using electrical capacitance tomography for air-water co-current bubble column
– volume: 11
  start-page: 1471
  year: 2018
  end-page: 1477
  ident: b0185
  article-title: Modeling and calibration of electrical capacitance tomography sensor for medical imaging
  publication-title: Biomedical and Pharmacology Journal
– year: 2005. 2005.
  ident: b0165
  article-title: Electrical permittivity shape identification using electrical capacitance tomography data and level set formulation
  publication-title: In
– reference: . 2018. EDP Sciences.
– volume: 14
  start-page: R1
  year: 2002
  ident: b0125
  article-title: Image reconstruction algorithms for electrical capacitance tomography
  publication-title: Meas. Sci. Technol.
– volume: 17
  start-page: 2089
  year: 2017
  end-page: 2099
  ident: b0240
  article-title: An electrical capacitance tomography sensor with variable diameter
  publication-title: IEEE Sens. J.
– start-page: 1
  year: 2011
  ident: b0095
  article-title: Virtual instrument for online electrical capacitance tomography
  publication-title: Practical Applications and Solutions Using LabVIEW™ Software
– volume: 18
  start-page: 3287
  year: 2007
  ident: b0160
  article-title: Dynamic imaging in electrical capacitance tomography and electromagnetic induction tomography using a Kalman filter
  publication-title: Meas. Sci. Technol.
– reference: . 2018, UNIVERSITY OF MANCHESTER.
– reference: . 2015, The University of Manchester (United Kingdom).
– volume: 20
  year: 2009
  ident: b0030
  article-title: A new normalization method based on electrical field lines for electrical capacitance tomography
  publication-title: Meas. Sci. Technol.
– reference: Shafquet, A., I. Ismail, and A. Jaafar.
– volume: 11
  start-page: 7088
  year: 2013
  end-page: 7093
  ident: b0255
  article-title: Investigation on the sensitivity distribution in electrical capacitance tomography system
  publication-title: TELKOMNIKA Indonesian Journal of Electrical Engineering
– year: 2021
  ident: b0225
  article-title: in
– volume: 47
  start-page: 19
  year: 2014
  end-page: 25
  ident: b0015
  article-title: Weighing without touching: applying electrical capacitance tomography to mass flowrate measurement in multiphase flows
  publication-title: Measurement and Control
– volume: 11
  start-page: 1471
  issue: 3
  year: 2018
  ident: 10.1016/j.measurement.2024.114573_b0185
  article-title: Modeling and calibration of electrical capacitance tomography sensor for medical imaging
  publication-title: Biomedical and Pharmacology Journal
  doi: 10.13005/bpj/1513
– ident: 10.1016/j.measurement.2024.114573_b0215
– volume: 176
  year: 2022
  ident: 10.1016/j.measurement.2024.114573_b0180
  article-title: A novel two-step strategy of non-probabilistic multi-objective optimization for load-dependent sensor placement with interval uncertainties
  publication-title: Mech. Syst. Sig. Process.
– ident: 10.1016/j.measurement.2024.114573_b0080
– volume: 17
  start-page: 2089
  issue: 7
  year: 2017
  ident: 10.1016/j.measurement.2024.114573_b0240
  article-title: An electrical capacitance tomography sensor with variable diameter
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2667716
– ident: 10.1016/j.measurement.2024.114573_bib271
– year: 2011
  ident: 10.1016/j.measurement.2024.114573_b0025
– volume: 121
  start-page: 201
  year: 2010
  ident: 10.1016/j.measurement.2024.114573_b0115
  article-title: Improvement of electrical capacitance tomography hardware
  publication-title: Zeszyty Naukowe. Elektryka/politechnika Łódzka
– volume: 9
  start-page: 615
  issue: 5
  year: 2015
  ident: 10.1016/j.measurement.2024.114573_b0250
  article-title: Comparisons of three modelling methods for the forward problem in three-dimensional electrical capacitance tomography
  publication-title: IET Sci. Meas. Technol.
  doi: 10.1049/iet-smt.2014.0252
– volume: 9
  start-page: 332
  issue: 2
  year: 2021
  ident: 10.1016/j.measurement.2024.114573_b0220
  article-title: Developing turbulent flow in pipes and analysis of entrance region
  publication-title: Academic Platform Journal of Engineering and Science
– volume: 34
  start-page: 1936
  issue: 20
  year: 1998
  ident: 10.1016/j.measurement.2024.114573_b0230
  article-title: Fast calculation of sensitivity distributions in capacitance tomography sensors
  publication-title: Electron. Lett
  doi: 10.1049/el:19981176
– year: 2021
  ident: 10.1016/j.measurement.2024.114573_b0225
– volume: 73
  issue: 1
  year: 2024
  ident: 10.1016/j.measurement.2024.114573_b0270
  article-title: Positioning Accuracy analysis of industrial robots based on non-probabilistic time-dependent reliability
  publication-title: IEEE Trans. Reliab.
– ident: 10.1016/j.measurement.2024.114573_b0210
– volume: 11
  start-page: 7088
  issue: 12
  year: 2013
  ident: 10.1016/j.measurement.2024.114573_b0255
  article-title: Investigation on the sensitivity distribution in electrical capacitance tomography system
  publication-title: TELKOMNIKA Indonesian Journal of Electrical Engineering
  doi: 10.11591/telkomnika.v11i12.3611
– year: 2016
  ident: 10.1016/j.measurement.2024.114573_b0120
– volume: 6
  start-page: 1118
  issue: 9
  year: 2006
  ident: 10.1016/j.measurement.2024.114573_b0200
  article-title: Influence of shielding arrangement on ECT sensors
  publication-title: Sensors
  doi: 10.3390/s6091118
– volume: 13
  start-page: 2076
  issue: 2
  year: 2013
  ident: 10.1016/j.measurement.2024.114573_b0130
  article-title: An image reconstruction algorithm for electrical capacitance tomography based on robust principle component analysis
  publication-title: Sensors
  doi: 10.3390/s130202076
– volume: 10
  issue: 4
  year: 2018
  ident: 10.1016/j.measurement.2024.114573_b0265
  article-title: Sensitivity mapping for electrical tomography using finite element method. international journal of integrated
  publication-title: Engineering
– volume: 20
  issue: 10
  year: 2009
  ident: 10.1016/j.measurement.2024.114573_b0030
  article-title: A new normalization method based on electrical field lines for electrical capacitance tomography
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/20/10/104028
– volume: 47
  start-page: 19
  issue: 1
  year: 2014
  ident: 10.1016/j.measurement.2024.114573_b0015
  article-title: Weighing without touching: applying electrical capacitance tomography to mass flowrate measurement in multiphase flows
  publication-title: Measurement and Control
  doi: 10.1177/0020294013517445
– volume: 14
  start-page: R1
  issue: 1
  year: 2002
  ident: 10.1016/j.measurement.2024.114573_b0125
  article-title: Image reconstruction algorithms for electrical capacitance tomography
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/14/1/201
– volume: 7
  start-page: 225
  issue: 3
  year: 1996
  ident: 10.1016/j.measurement.2024.114573_b0110
  article-title: Hardware design of electrical capacitance tomography systems
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/7/3/003
– ident: 10.1016/j.measurement.2024.114573_b0235
– ident: 10.1016/j.measurement.2024.114573_b0105
– year: 2005
  ident: 10.1016/j.measurement.2024.114573_b0165
  article-title: Electrical permittivity shape identification using electrical capacitance tomography data and level set formulation
– year: 2006
  ident: 10.1016/j.measurement.2024.114573_b0050
– volume: 14
  start-page: 655
  year: 2010
  ident: 10.1016/j.measurement.2024.114573_b0245
  article-title: Electrostatic field simulations in the analysis and design of electrical capacitance tomography sensors. automatyka/akademia górniczo-hutnicza im
  publication-title: Stanisława Staszica w Krakowie
– start-page: 1
  year: 2011
  ident: 10.1016/j.measurement.2024.114573_b0095
  article-title: Virtual instrument for online electrical capacitance tomography
  publication-title: Practical Applications and Solutions Using LabVIEW™ Software
– ident: 10.1016/j.measurement.2024.114573_b0175
– ident: 10.1016/j.measurement.2024.114573_b0005
– ident: 10.1016/j.measurement.2024.114573_b0020
– volume: 80
  year: 2021
  ident: 10.1016/j.measurement.2024.114573_b0040
  article-title: Developing and evaluation of an electrical impedance tomography system for measuring solid volumetric concentration in dredging scale
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2021.101986
– volume: 6
  start-page: 6
  year: 1999
  ident: 10.1016/j.measurement.2024.114573_b0170
  article-title: Image reconstruction of an electrical capacitance tomography system using an artificial neural network
  publication-title: System
– volume: 1
  year: 2009
  ident: 10.1016/j.measurement.2024.114573_b0195
  article-title: PROCESS TOMOGRAPHY ltd. ELECTRICAL CAPACITANCE TOMOGRAPHY SYSTEM
  publication-title: TYPE TFLR5000
– volume: 2
  start-page: 32
  issue: 1
  year: 2005
  ident: 10.1016/j.measurement.2024.114573_b0150
  article-title: Two-phase oil–gas pipe flow imaging by simulated annealing
  publication-title: J. Geophys. Eng.
  doi: 10.1088/1742-2132/2/1/005
– volume: 103
  start-page: 47
  issue: 7
  year: 2010
  ident: 10.1016/j.measurement.2024.114573_b0090
  article-title: Improvement of AC-based electrical capacitance tomography hardware
  publication-title: Elektronika Ir Elektrotechnika
– ident: 10.1016/j.measurement.2024.114573_b0100
– volume: 89
  start-page: 1578
  issue: 6
  year: 2006
  ident: 10.1016/j.measurement.2024.114573_b0145
  article-title: Novel iterative image reconstruction algorithm for electrical capacitance tomography: directional algebraic reconstruction technique
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
  doi: 10.1093/ietfec/e89-a.6.1578
– volume: 374
  start-page: 20150331
  issue: 2070
  year: 2016
  ident: 10.1016/j.measurement.2024.114573_b0065
  article-title: Electronic hardware design of electrical capacitance tomography systems
  publication-title: Philos. Trans. r. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2015.0331
– volume: 99
  start-page: 161
  issue: 2
  year: 2023
  ident: 10.1016/j.measurement.2024.114573_b0035
  article-title: Combining electrical capacitance and impedance tomography in monitoring processes
  publication-title: Przeglad Elektrotechniczny
– start-page: 436
  year: 2024
  ident: 10.1016/j.measurement.2024.114573_b0135
  article-title: An interval perturbation method for singular value decomposition (SVD) with unknown-but-bounded (UBB) parameters
  publication-title: J. Comput. Appl. Math.
– year: 2013
  ident: 10.1016/j.measurement.2024.114573_b0075
  article-title: Analytical method of generating sensitivity map for electrical capacitance tomography sensor with internal electrode
  doi: 10.4028/b-430auQ
– volume: 139
  start-page: 83
  issue: 1
  year: 1992
  ident: 10.1016/j.measurement.2024.114573_b0085
  article-title: Design of sensor electronics for electrical capacitance tomography
  publication-title: IEE Proceedings G (circuits, Devices and Systems)
  doi: 10.1049/ip-g-2.1992.0014
– ident: 10.1016/j.measurement.2024.114573_b0190
– ident: 10.1016/j.measurement.2024.114573_b0140
  doi: 10.1051/matecconf/201817601032
– volume: 18
  start-page: 30
  issue: 1
  year: 2006
  ident: 10.1016/j.measurement.2024.114573_b0155
  article-title: A particle filter approach for tomographic imaging based on different state-space representations
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/18/1/004
– volume: 83
  year: 2022
  ident: 10.1016/j.measurement.2024.114573_b0045
  article-title: Experimental evaluation of some current injection-voltage reading patterns in electrical impedance tomography (EIT) and comparison to simulation results-case study: large scales
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2021.102087
– volume: 18
  start-page: 3701
  issue: 11
  year: 2018
  ident: 10.1016/j.measurement.2024.114573_b0055
  article-title: A benchmark dataset and deep learning-based image reconstruction for electrical capacitance tomography
  publication-title: Sensors
  doi: 10.3390/s18113701
– volume: 135
  start-page: 20
  issue: 12
  year: 2011
  ident: 10.1016/j.measurement.2024.114573_b0060
  article-title: An overview: effectiveness of different Arrangement for electrode Guard in electrical capacitance tomography
  publication-title: Sensors & Transducers
– volume: 17
  start-page: 3286
  issue: 5
  year: 2022
  ident: 10.1016/j.measurement.2024.114573_b0260
  article-title: Data-driven assessment of artificial neural network and regression curve fitting approches for dimensionless turbulent flow heat transfer performance of a hexagonal duct
  publication-title: J. Eng. Sci. Technol.
– ident: 10.1016/j.measurement.2024.114573_b0070
  doi: 10.1109/ICIAS.2014.6869489
– year: 2018
  ident: 10.1016/j.measurement.2024.114573_b0010
– volume: Springer
  start-page: 25
  year: 1988
  ident: 10.1016/j.measurement.2024.114573_b0205
  article-title: Numerical calculation of potential fields
– volume: 18
  start-page: 3287
  issue: 11
  year: 2007
  ident: 10.1016/j.measurement.2024.114573_b0160
  article-title: Dynamic imaging in electrical capacitance tomography and electromagnetic induction tomography using a Kalman filter
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/18/11/004
SSID ssj0006396
Score 2.4162102
Snippet •Five non-iterative image reconstruction techniques are compared experimentally.•Each reconstruction algorithm has its own pros and cons for special test in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 114573
SubjectTerms Concentration
Forward problem
Fusion algorithm
Inverse problem
Multi-Layer Perceptron
Reconstruction algorithm
Title A fusion algorithm for mass flow rate measurement based on neural network and electrical capacitance tomography
URI https://dx.doi.org/10.1016/j.measurement.2024.114573
Volume 231
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0263-2241
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006396
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0263-2241
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006396
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0263-2241
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006396
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0263-2241
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006396
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0263-2241
  databaseCode: AKRWK
  dateStart: 19830101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED5Cy0r7ULb-YGm3okJf3diS4tjQlxAWso3lpS30zUgnuU1J7LA69K1_e-9iZ0lh0MEeLXS2dDrrTsen7wAulE-MDxMbGEMWrFObBibqMcQKNcVyHqNlvuPXOB7d6h933bsWDFZ3YRhW2ez99Z6-3K2blk6jzc58Mulch0w1Lrl6MsclCV801_R-sunLlzXMgzxwXOdZVMC9d-B8jfGarfNwdFSUmplzuz31dx-14XeGH2G_CRhFvx7TJ2j54gD2NmgED-DDEsaJT4dQ9kW-4PyXMNP7ks79DzNBUamYUYgs8mn5LJgZQmwMSLAbc4IkmNmSPlTUuHBhCifqGjm8jALJqeKkYhsRVTlriK6P4Hb47WYwCpqSCgEqGVUBRhJtGnaltjq3Jo2SHKXPpXKK_t0oRpmics5E2ve8Nh5jpdA6DE1kOZhQx7BVlIX_DIK6W6dU6KRCnbqejTF2OlWx9Z6akjYkKyVm2PCNc9mLabYClj1mG9PNWP9Zrf82yD-i85p041-ErlYrlb2xoIycw_viJ_8nfgq7_FTjCr7AVvV74b9SuFLZs6U9nsF2__vP0fgVEfPuNA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB584OsgPvFtBK912yR9gRcRZX1eVPBWkkmqK7utaMWbv93MtuuuICh4bTM0nUwzX4av3wDsC5so6yfaU8pFsEx16qkgJooVSoflLAb9esfVddS-k-f34f0YHA_-hSFaZbP313t6f7durrQab7aeO53WjU9S45y6JxMuScJxmJQhj-kEdvAx5Hm4FBzVhRbh0fBp2BuSvHrDQpw7K3JJ0rlhLH5OUiOJ53QB5hvEyI7qSS3CmC2WYG5ER3AJpvo8TnxdhvKI5W9UAGOq-1C6g_9jjzlYynoOI7O8W74zkoZgIxNilMcMcxYkbekeVNTEcKYKw-omObSODF1WxU5FQcKqstcoXa_A3enJ7XHba3oqeCh4UHkYcNSpH3KpZa5VGiQ5cptzYYT7eIMIeYrCGBVIG1upLEZCoDboq0ATmhCrMFGUhV0D5oZrI4RvuECZmlhHGBmZikhb6y4l65AMnJhhIzhOfS-62YBZ9pSNvG5G_s9q_68D_zJ9rlU3_mJ0OFip7FsIZS47_G6-8T_zXZhp315dZpdn1xebMEt3apLBFkxUL29222GXSu_0Y_MTml7vyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fusion+algorithm+for+mass+flow+rate+measurement+based+on+neural+network+and+electrical+capacitance+tomography&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Mousazadeh%2C+Hossein&rft.au=Tarabi%2C+Nazilla&rft.au=Taghizadeh-Tameh%2C+Jalil&rft.date=2024-05-31&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.volume=231&rft_id=info:doi/10.1016%2Fj.measurement.2024.114573&rft.externalDocID=S0263224124004585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon