Exploring hydraulic fracture behavior in glutenite formation with strong heterogeneity and variable lithology based on DEM simulation
[Display omitted] •A mathematical method for the generation of irregular polygonal gravels is proposed to establish the fracturing model of glutenite.•The coefficient of asymmetric fracture propagation is proposed to characterize the degree of fracture asymmetry.•Reveal the internal mechanical mecha...
Saved in:
Published in | Engineering fracture mechanics Vol. 278; p. 109020 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-7944 |
DOI | 10.1016/j.engfracmech.2022.109020 |
Cover
Abstract | [Display omitted]
•A mathematical method for the generation of irregular polygonal gravels is proposed to establish the fracturing model of glutenite.•The coefficient of asymmetric fracture propagation is proposed to characterize the degree of fracture asymmetry.•Reveal the internal mechanical mechanism of interaction between hydraulic fractures and gravels.•Effects of many influencing factors on the hydraulic fracture behavior in glutenite formation are systematically analyzed.
Glutenite is an important unconventional tight oil and gas reservoir. Due to the glutenite formation with strong heterogeneity and variable lithology which contains a large number of gravels with different sizes, shapes and mineral compositions, the mechanical characteristics of glutenite are more complicated, resulting in more complex fracture morphology. In this paper, a mathematical method for the generation of irregular polygonal gravels is proposed, and the hydraulic fracturing model of glutenite with different gravel characteristics is established based on 2D particle discrete element method. The internal mechanical mechanism of interaction between hydraulic fractures and gravels is first revealed, and the results show that the interaction is mainly affected by the non-uniformly distributed stress field caused by the coordination of deformation of glutenite. The influence of geologic and engineering factors on hydraulic fracture propagation in glutenite is studied. The results show that fracture morpgology in glutenite is mainly affected by injection rate, fracturing fluid viscosity, gravel strength and gravel spatial distribution. High gravel size, low gravel strength, high stress difference, high injection rate and high fracturing fluid viscosity are conducive to the occurrence of gravel penetration. The micro-mechanism of interaction between hydraulic fractures and gravels is mainly affected by the non-uniformly distributed stress field caused by the coordination of deformation of glutenite. This study can provide key technical support and theoretical guidance for oil and gas development in tight glutenite reservoir. |
---|---|
AbstractList | [Display omitted]
•A mathematical method for the generation of irregular polygonal gravels is proposed to establish the fracturing model of glutenite.•The coefficient of asymmetric fracture propagation is proposed to characterize the degree of fracture asymmetry.•Reveal the internal mechanical mechanism of interaction between hydraulic fractures and gravels.•Effects of many influencing factors on the hydraulic fracture behavior in glutenite formation are systematically analyzed.
Glutenite is an important unconventional tight oil and gas reservoir. Due to the glutenite formation with strong heterogeneity and variable lithology which contains a large number of gravels with different sizes, shapes and mineral compositions, the mechanical characteristics of glutenite are more complicated, resulting in more complex fracture morphology. In this paper, a mathematical method for the generation of irregular polygonal gravels is proposed, and the hydraulic fracturing model of glutenite with different gravel characteristics is established based on 2D particle discrete element method. The internal mechanical mechanism of interaction between hydraulic fractures and gravels is first revealed, and the results show that the interaction is mainly affected by the non-uniformly distributed stress field caused by the coordination of deformation of glutenite. The influence of geologic and engineering factors on hydraulic fracture propagation in glutenite is studied. The results show that fracture morpgology in glutenite is mainly affected by injection rate, fracturing fluid viscosity, gravel strength and gravel spatial distribution. High gravel size, low gravel strength, high stress difference, high injection rate and high fracturing fluid viscosity are conducive to the occurrence of gravel penetration. The micro-mechanism of interaction between hydraulic fractures and gravels is mainly affected by the non-uniformly distributed stress field caused by the coordination of deformation of glutenite. This study can provide key technical support and theoretical guidance for oil and gas development in tight glutenite reservoir. |
ArticleNumber | 109020 |
Author | He, Rui Tan, Peng Chen, Weihua Li, Xiaogang Yang, Zhaozhong Cao, Aiwu Huang, Liuke |
Author_xml | – sequence: 1 givenname: Liuke surname: Huang fullname: Huang, Liuke organization: School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu, Sichuan 610500, China – sequence: 2 givenname: Rui surname: He fullname: He, Rui organization: Engineering Technology Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610017, China – sequence: 3 givenname: Zhaozhong surname: Yang fullname: Yang, Zhaozhong organization: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China – sequence: 4 givenname: Peng surname: Tan fullname: Tan, Peng email: tanpeng09jy@163.com organization: CNPC Engineering Technology R&D Company Limited, Beijing 102206, China – sequence: 5 givenname: Weihua surname: Chen fullname: Chen, Weihua organization: Engineering Technology Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610017, China – sequence: 6 givenname: Xiaogang surname: Li fullname: Li, Xiaogang organization: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China – sequence: 7 givenname: Aiwu surname: Cao fullname: Cao, Aiwu organization: Hydro-China Itasca R&D Center, Hangzhou 311122, Zhejiang, China |
BookMark | eNqNkMtOAjEUQLvARED_oX4A2HaGeayMQXwkGDe6bjqdO8MlpSVtQfkA_9sZcGFcsWpy03Ny7xmRgXUWCLnhbMoZz27XU7Bt45XegF5NBROim5dMsAEZMsaTSV6m6SUZhbBmjOVZwYbke_G1Nc6jbenqUHu1M6hp74g7D7SCldqj8xQtbc0ugsUItHF-oyI6Sz8xrmiI3vU4RPCuBQsYD1TZmu6VR1UZoKb75oxrD7RSAWrakQ-LVxpwszNH0RW5aJQJcP37jsnH4-J9_jxZvj29zO-XE50IHieVmDV5kqsCklnGEq5FKWoNrM4LyHkiyrQpi0LkvKyApyLL01mWqaIqhCgandTJmNydvNq7EDw0UmM8bhC9QiM5k31JuZZ_Ssq-pDyV7AzlP8PW40b5w1ns_MRCd-IewcugEayGGj3oKGuHZ1h-AJ8enNM |
CitedBy_id | crossref_primary_10_3389_fenrg_2023_1309591 crossref_primary_10_1155_2023_6668841 crossref_primary_10_32604_cmes_2024_051832 crossref_primary_10_3389_feart_2024_1470723 crossref_primary_10_3390_su151612625 crossref_primary_10_3389_feart_2023_1185936 crossref_primary_10_3389_fenrg_2023_1231958 crossref_primary_10_3389_fenrg_2024_1333686 crossref_primary_10_1016_j_fuel_2024_132657 crossref_primary_10_1016_j_engfracmech_2023_109570 crossref_primary_10_3389_fenrg_2023_1296830 crossref_primary_10_3389_fenrg_2023_1271377 crossref_primary_10_3389_fenrg_2023_1328236 crossref_primary_10_1007_s00603_023_03554_2 crossref_primary_10_1007_s00603_024_04323_5 crossref_primary_10_1016_j_energy_2023_127877 crossref_primary_10_1016_j_petsci_2024_09_004 crossref_primary_10_1007_s40571_024_00722_1 crossref_primary_10_1063_5_0231673 crossref_primary_10_1002_ese3_1808 crossref_primary_10_1016_j_geoen_2023_212443 crossref_primary_10_3390_pr12102279 crossref_primary_10_1016_j_geoen_2023_211436 crossref_primary_10_1016_j_fuel_2023_130790 crossref_primary_10_3389_fenrg_2023_1337069 crossref_primary_10_1007_s12665_024_11648_5 crossref_primary_10_1016_j_fuel_2024_134204 crossref_primary_10_1016_j_petsci_2024_08_004 crossref_primary_10_1155_2024_7883958 crossref_primary_10_1038_s41598_025_86053_4 crossref_primary_10_3389_feart_2022_1116492 crossref_primary_10_1016_j_fuel_2023_129155 crossref_primary_10_1038_s41598_024_63923_x crossref_primary_10_1063_5_0234922 crossref_primary_10_1002_ese3_1664 crossref_primary_10_1016_j_fuel_2023_128468 crossref_primary_10_1002_ese3_1782 crossref_primary_10_1016_j_engfracmech_2024_110039 crossref_primary_10_3389_fenrg_2023_1277648 crossref_primary_10_3390_w15142623 crossref_primary_10_3389_feart_2023_1119946 crossref_primary_10_1002_ese3_1819 crossref_primary_10_1016_j_tafmec_2024_104685 crossref_primary_10_3389_fenrg_2023_1283079 crossref_primary_10_1016_j_geoen_2024_213106 crossref_primary_10_1016_j_geoen_2023_212316 crossref_primary_10_1016_j_geoen_2025_213721 crossref_primary_10_3389_feart_2023_1256150 crossref_primary_10_1021_acsomega_3c08547 crossref_primary_10_1063_5_0230916 crossref_primary_10_1007_s00603_024_04267_w crossref_primary_10_3389_feart_2023_1115054 crossref_primary_10_1016_j_petsci_2024_07_014 crossref_primary_10_1063_5_0240044 crossref_primary_10_1016_j_undsp_2023_03_006 crossref_primary_10_3390_su151914524 crossref_primary_10_1007_s00603_024_04101_3 crossref_primary_10_1155_2024_8876708 crossref_primary_10_3389_fenrg_2023_1217467 crossref_primary_10_1016_j_ijhydene_2024_12_299 crossref_primary_10_1007_s11440_024_02317_9 crossref_primary_10_1016_j_geoen_2023_211856 crossref_primary_10_3389_fenrg_2024_1361290 crossref_primary_10_3390_app13074218 crossref_primary_10_3389_fenrg_2024_1377400 crossref_primary_10_3389_feart_2023_1163295 crossref_primary_10_3389_fenrg_2023_1324934 crossref_primary_10_3390_pr13030692 crossref_primary_10_1007_s40571_023_00662_2 crossref_primary_10_3389_feart_2024_1445254 crossref_primary_10_3390_en17184664 crossref_primary_10_1063_5_0218642 crossref_primary_10_3389_fenrg_2023_1338428 crossref_primary_10_3389_fenrg_2024_1389877 crossref_primary_10_1016_j_compgeo_2024_106619 crossref_primary_10_3390_su151411209 crossref_primary_10_3389_fenrg_2023_1297738 crossref_primary_10_3389_fenrg_2023_1321114 crossref_primary_10_1016_j_compgeo_2023_105263 crossref_primary_10_3389_feart_2025_1567016 |
Cites_doi | 10.1002/jgrb.50204 10.1016/j.engfracmech.2022.108358 10.1007/s10704-017-0192-4 10.1007/s00603-019-01851-3 10.1002/2017JB013989 10.1016/j.compgeo.2018.09.012 10.1016/j.ijrmms.2004.09.011 10.1016/j.petrol.2019.106517 10.1016/j.engfracmech.2020.107206 10.1016/j.ijsolstr.2019.06.018 10.1016/j.engfracmech.2021.108088 10.1016/j.petrol.2019.04.050 10.1080/12269328.2014.998346 10.1016/j.compgeo.2015.06.007 10.1016/j.ijrmms.2017.11.010 10.1016/j.petrol.2022.110160 10.1029/2009JB006496 10.1016/j.cma.2020.113396 10.1002/nag.2682 10.1016/S0045-7949(98)00177-1 10.1016/j.petrol.2021.109798 10.1007/s12665-014-4005-z 10.1016/j.petrol.2020.107169 10.2118/89-PA 10.1016/j.enggeo.2012.11.013 10.1007/s12182-018-0290-6 10.1016/j.ijrmms.2011.04.013 10.1016/j.ijsolstr.2021.111395 10.2113/2022/9708300 10.1007/s00603-018-1715-7 10.1007/s11771-021-4809-4 10.1038/s41598-020-58792-z 10.1016/j.engfracmech.2021.107707 10.1007/s00603-018-1671-2 10.1016/j.asej.2021.03.015 10.1016/j.jngse.2017.10.012 10.1016/j.compgeo.2022.104736 10.1146/annurev-fluid-010814-014736 10.1016/j.ijrmms.2019.03.024 10.1016/j.powtec.2018.07.071 10.1016/j.powtec.2019.05.073 10.1016/j.compgeo.2014.12.011 10.1016/j.marpetgeo.2010.03.009 10.1088/1742-2140/aa7798 10.1016/S1000-9361(11)60231-8 10.1016/j.jsg.2017.02.012 10.1016/j.ijrmms.2010.11.014 10.1016/j.jngse.2016.08.071 10.3390/en10071001 10.1260/0144-5987.32.3.483 10.1016/j.enggeo.2020.105510 10.2118/197054-PA 10.1016/j.petrol.2021.109436 10.1016/j.fuel.2017.05.033 10.1016/j.compgeo.2020.103652 10.1061/(ASCE)1532-3641(2004)4:1(35) 10.1007/s11440-013-0209-8 10.1016/j.compgeo.2022.104892 10.1016/j.jngse.2017.05.015 10.1016/j.cma.2019.03.001 10.1016/j.petlm.2017.09.002 10.1016/j.petsci.2021.09.014 10.1016/j.jngse.2021.104141 10.1016/j.compgeo.2022.104801 10.1016/j.petrol.2017.12.034 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.engfracmech.2022.109020 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_engfracmech_2022_109020 S0013794422007433 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSH SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAQXK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEUPX AFPUW AGCQF AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW VH1 WUQ ZY4 ~HD |
ID | FETCH-LOGICAL-c321t-b25f737a8e356031c292dce0d78e713294f9882719be142674566a8b8228fc3d3 |
IEDL.DBID | AIKHN |
ISSN | 0013-7944 |
IngestDate | Thu Apr 24 23:03:54 EDT 2025 Thu Sep 18 00:15:23 EDT 2025 Sun Apr 06 06:54:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heterogeneity Glutenite Discrete element modeling Fracture asymmetry Hydraulic fracturing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-b25f737a8e356031c292dce0d78e713294f9882719be142674566a8b8228fc3d3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_engfracmech_2022_109020 crossref_primary_10_1016_j_engfracmech_2022_109020 elsevier_sciencedirect_doi_10_1016_j_engfracmech_2022_109020 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Engineering fracture mechanics |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lecampion, Bunger, Zhang (b0120) 2018; 49 Li, Meng, Wang (b0125) 2013; 8 Potyondy (b0195) 2015; 18 Zhao, Ji, Li, Liu, Xiong, Xiao (b0340) 2022; 264 Detournay (b0050) 2004; 4 Potyondy, Cundall (b0190) 2004; 41 Yi, Li, Yang, Yang (b0280) 2020; 236 Wang, Zhang, Xie (b0260) 2020; 10 Dontsov (b0060) 2017; 205 Bakhshi, Rasouli, Ghorbani, Fatehi Marji, Damjanac, Wan (b0005) 2019; 52 Jia, Chen, Jin, Jiang (b0100) 2017; 45 Yang, Yi, Li, He (b0275) 2018; 162 Zhang, Liu, Han, Zhu, Zhang (b0330) 2022; 210 Li, Wang, Li, Zhang, Li (b0135) 2021; 12 Khristianovic SA, Zheltov YP. 1955. Formation of vertical fractures by means of highly viscous liquid. In: 4th World Petroleum Congress. Rome, Italy. Zhang, Damjanac, Maxwell (b0295) 2019; 52 Yi, Waisman, Yang, Li (b0285) 2020; 372 Tang, Wang, Zhang, Li, Zhang, Wu (b0245) 2019; 179 Tan, Jin, Pang (b0235) 2021; 248 Jiang, Shen, Wang (b0105) 2015; 65 Liu, Ju, Ranjith, Zheng, Chen (b0160) 2016; 35 Perkins, Kern (b0185) 1961; 13 Zhang, Dontsov, Mack (b0300) 2017; 41 Itasca Consulting Group Inc., 2018. PFC (Particle Flow Code), version 6.0. Minneapolis, Minnesota, United States. Li, Li, Wang, Ma, Zhang, Li (b0130) 2021; 28 Zheng, He, Huang, Bai, Wang, Chen (b0345) 2022; 146 Deng, Yin, Zhang, Li, Liu, Lu (b0040) 2018; 338 Huang, Liu, Ji, Gong, Qin (b0075) 2018; 4 Zhang, Huang, Yang, Dontsov, Weng (b0305) 2022; 19 Shimizu, Murata, Ishida (b0220) 2011; 48 Tang, Wu, Zuo, Xiao, Sun, Ehlig-Economides (b0250) 2019; 24 Tang, Rutqvist, Hu, Rayudu (b0255) 2019; 52 Qin, Yang, Chen, Yang (b0200) 2021; 258 Chen, Xu, Li, Kong, Wang, Chen (b0020) 2019; 185 Shen, Wu, Wang (b0210) 2017; 14 Detournay (b0045) 2016; 48 Huang, Dontsov, Fu, Lei, Weng, Zhang (b0070) 2022; 238 Renato, Sanchezr, Roehl, Romanel (b0205) 2019; 70 Zhang, Wu, Jeffrey, Connell, Zhang (b0325) 2017; 115 Huang, Liu, Zhang, Dontsov, Damjanac (b0080) 2019; 176 Liu, Ge, Mou, Wang, Wang (b0150) 2022; 208 Basin, Zeng, Jiang, Yang (b0010) 2010; 27 Wang, Kwan, Chan (b0265) 1999; 70 Ivars, Pierce, Darcel, Reyes-Montes, Potyondy, Paul Young (b0095) 2011; 48 Liu, Zhang (b0145) 2010; 17 Ma, Zou, Li, Chen, Zhang, Liu (b0170) 2017; 97 Sherratt, Sharifi Haddad, Wejzerowski, Rafati (b0215) 2021; 94 Zhang, Zhang, Xie, Lee, Zhang, Ding (b0315) 2014; 32 Cheng, Zhang, Zhang, Wu, Chen, Lei (b0030) 2022; 239 Ma, Huang (b0175) 2018; 102 Marina, Derek, Mohamed, Yong, Imo-Imo (b0180) 2015; 73 Simone, Souza, Roehl (b0225) 2019; 118 Zou, Jiao, Tang, Ji, Yan, Wang (b0365) 2020; 125 Zhang, Zhang, Ji (b0320) 2019; 105 Chen, Wang (b0025) 2017; 122 Tan, Jin, Han, Hou, Guo, Gao (b0230) 2017; 206 Zhou, Yang (b0360) 2022; 150 He, Yang, Li, Liu, Sun, Li (b0065) 2020; 4 Zhang, Sun, Chao, Niu, Liu, Li (b0310) 2019; 354 Huang, Liu, Zhang, Fu, Zhu, Damjanac (b0085) 2020; 191 Zhou, Zhang, Braun, Han (b0350) 2017; 10 Zhou, Zhuang, Rabczuk (b0355) 2019; 350 Damjanac, Cundall (b0035) 2016; 71 Lan, Martin, Hu (b0115) 2010; 115 Liu, Zou, Ma, Li, Wu (b0155) 2019; 16 Luo, Xie, Huang, Wu, Shi, Bai (b0165) 2022; 2022 Zhao, Xing, Zhou, Shi, Wang (b0335) 2020; 267 Camones LAM, Vargas E do A, de Figueiredo RP, Velloso RQ. Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism. Eng Geol. 2013;153:80–94. 10.1016/j.enggeo.2012.11.013. Wu, Gao, Feng, Huang (b0270) 2022; 148 Zhang, Damjanac, Huang (b0290) 2013; 118 Tan, Pang, Zhang, Jin, Zhou, Kao (b0240) 2020; 184 Dontsov (b0055) 2022; 1–7 Liao, Hu, Zhang (b0140) 2022; 211 Liu (10.1016/j.engfracmech.2022.109020_b0150) 2022; 208 Tan (10.1016/j.engfracmech.2022.109020_b0240) 2020; 184 10.1016/j.engfracmech.2022.109020_b0090 Yang (10.1016/j.engfracmech.2022.109020_b0275) 2018; 162 Liu (10.1016/j.engfracmech.2022.109020_b0145) 2010; 17 Li (10.1016/j.engfracmech.2022.109020_b0125) 2013; 8 Yi (10.1016/j.engfracmech.2022.109020_b0280) 2020; 236 Tang (10.1016/j.engfracmech.2022.109020_b0250) 2019; 24 Wu (10.1016/j.engfracmech.2022.109020_b0270) 2022; 148 Zhang (10.1016/j.engfracmech.2022.109020_b0325) 2017; 115 Sherratt (10.1016/j.engfracmech.2022.109020_b0215) 2021; 94 Huang (10.1016/j.engfracmech.2022.109020_b0085) 2020; 191 Ivars (10.1016/j.engfracmech.2022.109020_b0095) 2011; 48 Zhang (10.1016/j.engfracmech.2022.109020_b0310) 2019; 354 Ma (10.1016/j.engfracmech.2022.109020_b0170) 2017; 97 Chen (10.1016/j.engfracmech.2022.109020_b0025) 2017; 122 Lan (10.1016/j.engfracmech.2022.109020_b0115) 2010; 115 Tang (10.1016/j.engfracmech.2022.109020_b0255) 2019; 52 Zhang (10.1016/j.engfracmech.2022.109020_b0295) 2019; 52 Shen (10.1016/j.engfracmech.2022.109020_b0210) 2017; 14 Zhang (10.1016/j.engfracmech.2022.109020_b0290) 2013; 118 Detournay (10.1016/j.engfracmech.2022.109020_b0050) 2004; 4 Potyondy (10.1016/j.engfracmech.2022.109020_b0190) 2004; 41 Tan (10.1016/j.engfracmech.2022.109020_b0230) 2017; 206 Zhao (10.1016/j.engfracmech.2022.109020_b0340) 2022; 264 Tan (10.1016/j.engfracmech.2022.109020_b0235) 2021; 248 Wang (10.1016/j.engfracmech.2022.109020_b0260) 2020; 10 Chen (10.1016/j.engfracmech.2022.109020_b0020) 2019; 185 Zou (10.1016/j.engfracmech.2022.109020_b0365) 2020; 125 Li (10.1016/j.engfracmech.2022.109020_b0130) 2021; 28 Detournay (10.1016/j.engfracmech.2022.109020_b0045) 2016; 48 Huang (10.1016/j.engfracmech.2022.109020_b0070) 2022; 238 Liu (10.1016/j.engfracmech.2022.109020_b0160) 2016; 35 Damjanac (10.1016/j.engfracmech.2022.109020_b0035) 2016; 71 Luo (10.1016/j.engfracmech.2022.109020_b0165) 2022; 2022 10.1016/j.engfracmech.2022.109020_b0015 Jia (10.1016/j.engfracmech.2022.109020_b0100) 2017; 45 Jiang (10.1016/j.engfracmech.2022.109020_b0105) 2015; 65 Zhang (10.1016/j.engfracmech.2022.109020_b0330) 2022; 210 Bakhshi (10.1016/j.engfracmech.2022.109020_b0005) 2019; 52 Shimizu (10.1016/j.engfracmech.2022.109020_b0220) 2011; 48 Simone (10.1016/j.engfracmech.2022.109020_b0225) 2019; 118 Perkins (10.1016/j.engfracmech.2022.109020_b0185) 1961; 13 Zhao (10.1016/j.engfracmech.2022.109020_b0335) 2020; 267 Huang (10.1016/j.engfracmech.2022.109020_b0080) 2019; 176 Tang (10.1016/j.engfracmech.2022.109020_b0245) 2019; 179 Zhang (10.1016/j.engfracmech.2022.109020_b0315) 2014; 32 Zheng (10.1016/j.engfracmech.2022.109020_b0345) 2022; 146 Basin (10.1016/j.engfracmech.2022.109020_b0010) 2010; 27 Renato (10.1016/j.engfracmech.2022.109020_b0205) 2019; 70 Huang (10.1016/j.engfracmech.2022.109020_b0075) 2018; 4 Zhou (10.1016/j.engfracmech.2022.109020_b0350) 2017; 10 Marina (10.1016/j.engfracmech.2022.109020_b0180) 2015; 73 Wang (10.1016/j.engfracmech.2022.109020_b0265) 1999; 70 Zhang (10.1016/j.engfracmech.2022.109020_b0300) 2017; 41 Zhang (10.1016/j.engfracmech.2022.109020_b0305) 2022; 19 Li (10.1016/j.engfracmech.2022.109020_b0135) 2021; 12 He (10.1016/j.engfracmech.2022.109020_b0065) 2020; 4 Liu (10.1016/j.engfracmech.2022.109020_b0155) 2019; 16 Potyondy (10.1016/j.engfracmech.2022.109020_b0195) 2015; 18 Liao (10.1016/j.engfracmech.2022.109020_b0140) 2022; 211 Dontsov (10.1016/j.engfracmech.2022.109020_b0060) 2017; 205 Dontsov (10.1016/j.engfracmech.2022.109020_b0055) 2022; 1–7 Lecampion (10.1016/j.engfracmech.2022.109020_b0120) 2018; 49 Deng (10.1016/j.engfracmech.2022.109020_b0040) 2018; 338 Qin (10.1016/j.engfracmech.2022.109020_b0200) 2021; 258 Zhou (10.1016/j.engfracmech.2022.109020_b0360) 2022; 150 10.1016/j.engfracmech.2022.109020_b0110 Zhang (10.1016/j.engfracmech.2022.109020_b0320) 2019; 105 Ma (10.1016/j.engfracmech.2022.109020_b0175) 2018; 102 Zhou (10.1016/j.engfracmech.2022.109020_b0355) 2019; 350 Yi (10.1016/j.engfracmech.2022.109020_b0285) 2020; 372 Cheng (10.1016/j.engfracmech.2022.109020_b0030) 2022; 239 |
References_xml | – volume: 65 start-page: 147 year: 2015 end-page: 163 ident: b0105 article-title: A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances publication-title: Comput Geotech – volume: 97 start-page: 37 year: 2017 end-page: 47 ident: b0170 article-title: Experimental study on the mechanism of hydraulic fracture growth in a glutenite reservoir publication-title: J Struct Geol – volume: 118 start-page: 33 year: 2019 end-page: 41 ident: b0225 article-title: Estimating DEM microparameters for uniaxial compression simulation with genetic programming publication-title: Int J Rock Mech Min Sci – volume: 258 year: 2021 ident: b0200 article-title: Hydraulic fracturing model of a layered rock mass based on peridynamics publication-title: Eng Fract Mech – volume: 115 start-page: 208 year: 2017 end-page: 223 ident: b0325 article-title: A pseudo-3D model for hydraulic fracture growth in a layered rock publication-title: Int J Solids Struct – volume: 184 year: 2020 ident: b0240 article-title: Experimental investigation into hydraulic fracture geometry and proppant migration characteristics for southeastern Sichuan deep shale reservoirs publication-title: J Pet Sci Eng – volume: 372 year: 2020 ident: b0285 article-title: A consistent phase field model for hydraulic fracture propagation in poroelastic media publication-title: Comput Methods Appl Mech Eng – volume: 179 start-page: 378 year: 2019 end-page: 393 ident: b0245 article-title: Analysis of stress interference among multiple hydraulic fractures using a fully three-dimensional displacement discontinuity method publication-title: J Pet Sci Eng – volume: 41 start-page: 1329 year: 2004 end-page: 1364 ident: b0190 article-title: A bonded-particle model for rock publication-title: Int J Rock Mech Min Sci – volume: 122 start-page: 3410 year: 2017 end-page: 3429 ident: b0025 article-title: Pore-scale modeling of hydromechanical coupled mechanics in hydrofracturing process publication-title: J Geophys Res Solid Earth – volume: 71 start-page: 283 year: 2016 end-page: 294 ident: b0035 article-title: Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs publication-title: Comput Geotech – volume: 206 start-page: 482 year: 2017 end-page: 493 ident: b0230 article-title: Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation publication-title: Fuel – volume: 211 year: 2022 ident: b0140 article-title: Investigation on the influence of multiple fracture interference on hydraulic fracture propagation in tight reservoirs publication-title: J Pet Sci Eng – volume: 48 start-page: 712 year: 2011 end-page: 727 ident: b0220 article-title: The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution publication-title: Int J Rock Mech Min Sci – volume: 14 start-page: 1268 year: 2017 end-page: 1274 ident: b0210 article-title: A new method for permeability estimation from conventional well logs in glutenite reservoirs publication-title: J Geophys Eng – volume: 102 start-page: 109 year: 2018 end-page: 119 ident: b0175 article-title: DEM analysis of failure mechanisms in the intact Brazilian test publication-title: Int J Rock Mech Min Sci – volume: 115 start-page: B01202 year: 2010 ident: b0115 article-title: Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading publication-title: J Geophys Res – volume: 338 start-page: 847 year: 2018 end-page: 856 ident: b0040 article-title: Experimental investigation of fracture propagation induced by carbon dioxide and water in coal seam reservoirs publication-title: Powder Technol – volume: 208 year: 2022 ident: b0150 article-title: Characterization of meso-structure of glutenite reservoirs by ultrasonic characteristics and the velocity heterogeneity publication-title: J Pet Sci Eng – volume: 13 start-page: 937 year: 1961 end-page: 949 ident: b0185 article-title: Widths of Hydraulic Fractures publication-title: J Pet Technol – volume: 125 year: 2020 ident: b0365 article-title: Effect of mechanical heterogeneity on hydraulic fracture propagation in unconventional gas reservoirs publication-title: Comput Geotech – volume: 105 start-page: 79 year: 2019 end-page: 93 ident: b0320 article-title: Numerical study of interaction between a hydraulic fracture and a weak plane using the bonded-particle model based on moment tensors publication-title: Comput Geotech – volume: 48 start-page: 219 year: 2011 end-page: 244 ident: b0095 article-title: The synthetic rock mass approach for jointed rock mass modelling publication-title: Int J Rock Mech Min Sci – volume: 32 start-page: 483 year: 2014 end-page: 501 ident: b0315 article-title: Deposition and diagenesis of steep-slope glutenite reservoirs : Shengtuo Field, eastern China publication-title: Energy Explor Exploit – volume: 17 start-page: 159 year: 2010 end-page: 164 ident: b0145 article-title: An new area function for sharp indenter tips in nanoindentation publication-title: Chinese J Aeronaut – volume: 19 start-page: 296 year: 2022 end-page: 308 ident: b0305 article-title: Numerical investigation on the effect of depletion-induced stress reorientation on infill well hydraulic fracture propagation publication-title: Pet Sci – volume: 238 year: 2022 ident: b0070 article-title: Hydraulic fracture height growth in layered rocks : Perspective from DEM simulation of different propagation regimes publication-title: Int J Solids Struct – reference: Camones LAM, Vargas E do A, de Figueiredo RP, Velloso RQ. Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism. Eng Geol. 2013;153:80–94. 10.1016/j.enggeo.2012.11.013. – volume: 148 year: 2022 ident: b0270 article-title: Influence of slip and permeability of bedding interface on hydraulic fracturing: A numerical study using combined finite-discrete element method publication-title: Comput Geotech – volume: 24 start-page: 2292 year: 2019 end-page: 2307 ident: b0250 article-title: Investigation of rupture and slip mechanisms of hydraulic fractures in multiple-layered formations publication-title: SPE J – volume: 70 start-page: 533 year: 1999 end-page: 544 ident: b0265 article-title: Mesoscopic study of concrete I : generation of random aggregate structure and finite element mesh publication-title: Comput Struct – volume: 70 year: 2019 ident: b0205 article-title: Xfem modeling of stress shadowing in multiple hydraulic fractures in multi-layered formations publication-title: J Nat Gas Sci Eng – volume: 264 year: 2022 ident: b0340 article-title: A new pseudo 3D hydraulic fracture propagation model for sandstone reservoirs considering fracture penetrating height publication-title: Eng Fract Mech – volume: 236 year: 2020 ident: b0280 article-title: Phase field modeling of hydraulic fracturing in porous media formation with natural fracture publication-title: Eng Fract Mech – volume: 18 start-page: 1 year: 2015 end-page: 28 ident: b0195 article-title: The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions publication-title: Geosystem Eng – volume: 210 year: 2022 ident: b0330 article-title: Numerical study of hydraulic fracture propagation in inherently laminated rocks accounting for bedding plane properties publication-title: J Pet Sci Eng – volume: 191 year: 2020 ident: b0085 article-title: 3D lattice modeling of hydraulic fracture initiation and near-wellbore propagation for different perforation models publication-title: J Pet Sci Eng – reference: Khristianovic SA, Zheltov YP. 1955. Formation of vertical fractures by means of highly viscous liquid. In: 4th World Petroleum Congress. Rome, Italy. – volume: 350 start-page: 169 year: 2019 end-page: 198 ident: b0355 article-title: Phase-field modeling of fluid-driven dynamic cracking in porous media publication-title: Comput Methods Appl Mech Eng – volume: 41 start-page: 1430 year: 2017 end-page: 1452 ident: b0300 article-title: Fully coupled simulation of a hydraulic fracture interacting with natural fractures with a hybrid discrete-continuum method publication-title: Int J Numer Anal Methods Geomech – volume: 4 start-page: 35 year: 2004 end-page: 45 ident: b0050 article-title: Propagation regimes of fluid-driven fractures in impermeable rocks publication-title: Int J Geomech – volume: 45 start-page: 65 year: 2017 end-page: 74 ident: b0100 article-title: Numerical simulation of failure mechanism of horizontal borehole in transversely isotropic shale gas reservoirs publication-title: J Nat Gas Sci Eng – volume: 49 start-page: 66 year: 2018 end-page: 83 ident: b0120 article-title: Numerical methods for hydraulic fracture propagation: A review of recent trends publication-title: J Nat Gas Sci Eng – volume: 354 start-page: 301 year: 2019 end-page: 313 ident: b0310 article-title: Investigation of the nucleation, propagation and coalescence of hydraulic fractures in glutenite reservoirs using a coupled fluid flow-DEM approach publication-title: Powder Technol – volume: 52 start-page: 5137 year: 2019 end-page: 5160 ident: b0295 article-title: Investigating hydraulic fracturing complexity in naturally fractured rock masses using fully coupled multiscale numerical modeling publication-title: Rock Mech Rock Eng – volume: 52 start-page: 1315 year: 2019 end-page: 1337 ident: b0005 article-title: Lattice numerical simulations of lab-scale hydraulic fracture and natural interface interaction publication-title: Rock Mech Rock Eng – volume: 28 start-page: 2814 year: 2021 end-page: 2829 ident: b0130 article-title: Formation of X-shaped hydraulic fractures in deep thick glutenite reservoirs : A case study in Bohai Bay Basin publication-title: East China J Cent South Univ – volume: 2022 start-page: 9708300 year: 2022 ident: b0165 article-title: Multiscale sensitivity analysis of hydraulic fracturing parameters based on dimensionless analysis method publication-title: Lithosphere – volume: 10 start-page: 1001 year: 2017 ident: b0350 article-title: Investigation of processes of interaction between hydraulic and natural fractures by PFC modeling comparing against laboratory experiments and analytical models publication-title: Energies – volume: 35 start-page: 541 year: 2016 end-page: 554 ident: b0160 article-title: Experimental investigation of the effects of heterogeneity and geostress difference on the 3D growth and distribution of hydrofracturing cracks in unconventional reservoir rocks publication-title: J Nat Gas Sci Eng – volume: 16 start-page: 396 year: 2019 end-page: 408 ident: b0155 article-title: Study of hydraulic fracture growth behavior in heterogeneous tight sandstone formations using CT scanning and acoustic emission monitoring publication-title: Pet Sci – volume: 162 start-page: 190 year: 2018 end-page: 213 ident: b0275 article-title: Pseudo-three-dimensional numerical model and investigation of multi-cluster fracturing within a stage in a horizontal well publication-title: J Pet Sci Eng – reference: Itasca Consulting Group Inc., 2018. PFC (Particle Flow Code), version 6.0. Minneapolis, Minnesota, United States. – volume: 118 start-page: 2703 year: 2013 end-page: 2722 ident: b0290 article-title: Coupled discrete element modeling of fluid injection into dense granular media publication-title: J Geophys Res Solid Earth – volume: 185 year: 2019 ident: b0020 article-title: Understanding the performance of hydraulically fractured wells in the laumontite-rich tight glutenite formation publication-title: J Pet Sci Eng – volume: 8 start-page: 597 year: 2013 end-page: 618 ident: b0125 article-title: A numerical investigation of the hydraulic fracturing behaviour of conglomerate in Glutenite formation publication-title: Acta Geotech – volume: 1–7 year: 2022 ident: b0055 article-title: Morphology of multiple constant height hydraulic fractures versus propagation regime publication-title: Int J Numer Anal Methods Geomech – volume: 205 start-page: 221 year: 2017 end-page: 237 ident: b0060 article-title: An approximate solution for a plane strain hydraulic fracture that accounts for fracture toughness, fluid viscosity, and leak-off publication-title: Int J Fract – volume: 94 year: 2021 ident: b0215 article-title: Optimising well orientation in hydraulic fracturing of naturally fractured shale gas formations publication-title: J Nat Gas Sci Eng – volume: 239 year: 2022 ident: b0030 article-title: Numerical study of hydraulic fracturing near a wellbore using dual boundary element method publication-title: Int J Solids Struct – volume: 10 start-page: 1839 year: 2020 ident: b0260 article-title: Influencing factors and application prospects of CO2 flooding in heterogeneous glutenite reservoirs publication-title: Sci Rep – volume: 146 year: 2022 ident: b0345 article-title: Exploring the effect of engineering parameters on the penetration of hydraulic fractures through bedding planes in different propagation regimes publication-title: Comput Geotech – volume: 4 start-page: 1 year: 2020 end-page: 29 ident: b0065 article-title: Numerical investigation of interaction between hydraulic and natural fractures under various geologic and engineering parameters using particle flow code method. Energy Sources publication-title: Part A Recover Util Environ Eff – volume: 48 start-page: 311 year: 2016 end-page: 339 ident: b0045 article-title: Mechanics of hydraulic fractures publication-title: Annu Rev Fluid Mech – volume: 267 year: 2020 ident: b0335 article-title: Experimental investigation on hydraulic fracturing of granite specimens with double flaws based on DIC publication-title: Eng Geol – volume: 73 start-page: 8451 year: 2015 end-page: 8469 ident: b0180 article-title: Simulation of the hydraulic fracturing process of fractured rocks by the discrete element method publication-title: Environ Earth Sci – volume: 52 start-page: 611 year: 2019 end-page: 627 ident: b0255 article-title: Modeling three-dimensional fluid-driven propagation of multiple fractures using TOUGH-FEMM publication-title: Rock Mech Rock Eng – volume: 150 year: 2022 ident: b0360 article-title: A fast simulation method for hydraulic-fracture-network generation in fractured rock based on fully coupled XFEM publication-title: Comput Geotech – volume: 176 start-page: 207 year: 2019 end-page: 220 ident: b0080 article-title: Exploring the influence of rock inherent heterogeneity and grain size on hydraulic fracturing using discrete element modeling publication-title: Int J Solids Struct – volume: 248 year: 2021 ident: b0235 article-title: Hydraulic fracture vertical propagation behavior in transversely isotropic layered shale formation with transition zone using XFEM-based CZM method publication-title: Eng Fract Mech – volume: 27 start-page: 1642 year: 2010 end-page: 1650 ident: b0010 article-title: Fractures in the low porosity and ultra-low permeability glutenite reservoirs : A case study of the late Eocene Hetaoyuan formation in the Anpeng Oil field publication-title: Mar Pet Geol – volume: 12 start-page: 3419 year: 2021 end-page: 3427 ident: b0135 article-title: Numerical simulation of brittleness effect on propagation behavior of glutenite hydraulic fractures publication-title: Ain Shams Eng J – volume: 4 start-page: 115 year: 2018 end-page: 125 ident: b0075 article-title: A review of multiscale expansion of low permeability reservoir cracks publication-title: Petroleum – volume: 118 start-page: 2703 year: 2013 ident: 10.1016/j.engfracmech.2022.109020_b0290 article-title: Coupled discrete element modeling of fluid injection into dense granular media publication-title: J Geophys Res Solid Earth doi: 10.1002/jgrb.50204 – volume: 264 year: 2022 ident: 10.1016/j.engfracmech.2022.109020_b0340 article-title: A new pseudo 3D hydraulic fracture propagation model for sandstone reservoirs considering fracture penetrating height publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2022.108358 – volume: 205 start-page: 221 year: 2017 ident: 10.1016/j.engfracmech.2022.109020_b0060 article-title: An approximate solution for a plane strain hydraulic fracture that accounts for fracture toughness, fluid viscosity, and leak-off publication-title: Int J Fract doi: 10.1007/s10704-017-0192-4 – volume: 52 start-page: 5137 year: 2019 ident: 10.1016/j.engfracmech.2022.109020_b0295 article-title: Investigating hydraulic fracturing complexity in naturally fractured rock masses using fully coupled multiscale numerical modeling publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-019-01851-3 – volume: 122 start-page: 3410 year: 2017 ident: 10.1016/j.engfracmech.2022.109020_b0025 article-title: Pore-scale modeling of hydromechanical coupled mechanics in hydrofracturing process publication-title: J Geophys Res Solid Earth doi: 10.1002/2017JB013989 – volume: 105 start-page: 79 year: 2019 ident: 10.1016/j.engfracmech.2022.109020_b0320 article-title: Numerical study of interaction between a hydraulic fracture and a weak plane using the bonded-particle model based on moment tensors publication-title: Comput Geotech doi: 10.1016/j.compgeo.2018.09.012 – volume: 41 start-page: 1329 year: 2004 ident: 10.1016/j.engfracmech.2022.109020_b0190 article-title: A bonded-particle model for rock publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2004.09.011 – volume: 184 year: 2020 ident: 10.1016/j.engfracmech.2022.109020_b0240 article-title: Experimental investigation into hydraulic fracture geometry and proppant migration characteristics for southeastern Sichuan deep shale reservoirs publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2019.106517 – volume: 236 year: 2020 ident: 10.1016/j.engfracmech.2022.109020_b0280 article-title: Phase field modeling of hydraulic fracturing in porous media formation with natural fracture publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2020.107206 – volume: 176 start-page: 207 year: 2019 ident: 10.1016/j.engfracmech.2022.109020_b0080 article-title: Exploring the influence of rock inherent heterogeneity and grain size on hydraulic fracturing using discrete element modeling publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2019.06.018 – volume: 258 year: 2021 ident: 10.1016/j.engfracmech.2022.109020_b0200 article-title: Hydraulic fracturing model of a layered rock mass based on peridynamics publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2021.108088 – volume: 179 start-page: 378 year: 2019 ident: 10.1016/j.engfracmech.2022.109020_b0245 article-title: Analysis of stress interference among multiple hydraulic fractures using a fully three-dimensional displacement discontinuity method publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2019.04.050 – volume: 18 start-page: 1 year: 2015 ident: 10.1016/j.engfracmech.2022.109020_b0195 article-title: The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions publication-title: Geosystem Eng doi: 10.1080/12269328.2014.998346 – volume: 71 start-page: 283 year: 2016 ident: 10.1016/j.engfracmech.2022.109020_b0035 article-title: Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs publication-title: Comput Geotech doi: 10.1016/j.compgeo.2015.06.007 – ident: 10.1016/j.engfracmech.2022.109020_b0090 – volume: 102 start-page: 109 year: 2018 ident: 10.1016/j.engfracmech.2022.109020_b0175 article-title: DEM analysis of failure mechanisms in the intact Brazilian test publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2017.11.010 – volume: 211 year: 2022 ident: 10.1016/j.engfracmech.2022.109020_b0140 article-title: Investigation on the influence of multiple fracture interference on hydraulic fracture propagation in tight reservoirs publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2022.110160 – volume: 115 start-page: B01202 year: 2010 ident: 10.1016/j.engfracmech.2022.109020_b0115 article-title: Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading publication-title: J Geophys Res doi: 10.1029/2009JB006496 – volume: 372 year: 2020 ident: 10.1016/j.engfracmech.2022.109020_b0285 article-title: A consistent phase field model for hydraulic fracture propagation in poroelastic media publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113396 – volume: 41 start-page: 1430 year: 2017 ident: 10.1016/j.engfracmech.2022.109020_b0300 article-title: Fully coupled simulation of a hydraulic fracture interacting with natural fractures with a hybrid discrete-continuum method publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2682 – volume: 70 start-page: 533 year: 1999 ident: 10.1016/j.engfracmech.2022.109020_b0265 article-title: Mesoscopic study of concrete I : generation of random aggregate structure and finite element mesh publication-title: Comput Struct doi: 10.1016/S0045-7949(98)00177-1 – volume: 210 year: 2022 ident: 10.1016/j.engfracmech.2022.109020_b0330 article-title: Numerical study of hydraulic fracture propagation in inherently laminated rocks accounting for bedding plane properties publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2021.109798 – volume: 73 start-page: 8451 year: 2015 ident: 10.1016/j.engfracmech.2022.109020_b0180 article-title: Simulation of the hydraulic fracturing process of fractured rocks by the discrete element method publication-title: Environ Earth Sci doi: 10.1007/s12665-014-4005-z – volume: 70 year: 2019 ident: 10.1016/j.engfracmech.2022.109020_b0205 article-title: Xfem modeling of stress shadowing in multiple hydraulic fractures in multi-layered formations publication-title: J Nat Gas Sci Eng – volume: 239 year: 2022 ident: 10.1016/j.engfracmech.2022.109020_b0030 article-title: Numerical study of hydraulic fracturing near a wellbore using dual boundary element method publication-title: Int J Solids Struct – volume: 191 year: 2020 ident: 10.1016/j.engfracmech.2022.109020_b0085 article-title: 3D lattice modeling of hydraulic fracture initiation and near-wellbore propagation for different perforation models publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2020.107169 – volume: 115 start-page: 208 year: 2017 ident: 10.1016/j.engfracmech.2022.109020_b0325 article-title: A pseudo-3D model for hydraulic fracture growth in a layered rock publication-title: Int J Solids Struct – volume: 13 start-page: 937 year: 1961 ident: 10.1016/j.engfracmech.2022.109020_b0185 article-title: Widths of Hydraulic Fractures publication-title: J Pet Technol doi: 10.2118/89-PA – ident: 10.1016/j.engfracmech.2022.109020_b0015 doi: 10.1016/j.enggeo.2012.11.013 – volume: 16 start-page: 396 year: 2019 ident: 10.1016/j.engfracmech.2022.109020_b0155 article-title: Study of hydraulic fracture growth behavior in heterogeneous tight sandstone formations using CT scanning and acoustic emission monitoring publication-title: Pet Sci doi: 10.1007/s12182-018-0290-6 – volume: 48 start-page: 712 year: 2011 ident: 10.1016/j.engfracmech.2022.109020_b0220 article-title: The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2011.04.013 – ident: 10.1016/j.engfracmech.2022.109020_b0110 – volume: 238 year: 2022 ident: 10.1016/j.engfracmech.2022.109020_b0070 article-title: Hydraulic fracture height growth in layered rocks : Perspective from DEM simulation of different propagation regimes publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2021.111395 – volume: 4 start-page: 1 year: 2020 ident: 10.1016/j.engfracmech.2022.109020_b0065 article-title: Numerical investigation of interaction between hydraulic and natural fractures under various geologic and engineering parameters using particle flow code method. Energy Sources publication-title: Part A Recover Util Environ Eff – volume: 2022 start-page: 9708300 year: 2022 ident: 10.1016/j.engfracmech.2022.109020_b0165 article-title: Multiscale sensitivity analysis of hydraulic fracturing parameters based on dimensionless analysis method publication-title: Lithosphere doi: 10.2113/2022/9708300 – volume: 52 start-page: 611 year: 2019 ident: 10.1016/j.engfracmech.2022.109020_b0255 article-title: Modeling three-dimensional fluid-driven propagation of multiple fractures using TOUGH-FEMM publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-018-1715-7 – volume: 28 start-page: 2814 year: 2021 ident: 10.1016/j.engfracmech.2022.109020_b0130 article-title: Formation of X-shaped hydraulic fractures in deep thick glutenite reservoirs : A case study in Bohai Bay Basin publication-title: East China J Cent South Univ doi: 10.1007/s11771-021-4809-4 – volume: 10 start-page: 1839 year: 2020 ident: 10.1016/j.engfracmech.2022.109020_b0260 article-title: Influencing factors and application prospects of CO2 flooding in heterogeneous glutenite reservoirs publication-title: Sci Rep doi: 10.1038/s41598-020-58792-z – volume: 185 year: 2019 ident: 10.1016/j.engfracmech.2022.109020_b0020 article-title: Understanding the performance of hydraulically fractured wells in the laumontite-rich tight glutenite formation publication-title: J Pet Sci Eng – volume: 248 year: 2021 ident: 10.1016/j.engfracmech.2022.109020_b0235 article-title: Hydraulic fracture vertical propagation behavior in transversely isotropic layered shale formation with transition zone using XFEM-based CZM method publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2021.107707 – volume: 52 start-page: 1315 year: 2019 ident: 10.1016/j.engfracmech.2022.109020_b0005 article-title: Lattice numerical simulations of lab-scale hydraulic fracture and natural interface interaction publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-018-1671-2 – volume: 12 start-page: 3419 year: 2021 ident: 10.1016/j.engfracmech.2022.109020_b0135 article-title: Numerical simulation of brittleness effect on propagation behavior of glutenite hydraulic fractures publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2021.03.015 – volume: 49 start-page: 66 year: 2018 ident: 10.1016/j.engfracmech.2022.109020_b0120 article-title: Numerical methods for hydraulic fracture propagation: A review of recent trends publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2017.10.012 – volume: 146 year: 2022 ident: 10.1016/j.engfracmech.2022.109020_b0345 article-title: Exploring the effect of engineering parameters on the penetration of hydraulic fractures through bedding planes in different propagation regimes publication-title: Comput Geotech doi: 10.1016/j.compgeo.2022.104736 – volume: 48 start-page: 311 year: 2016 ident: 10.1016/j.engfracmech.2022.109020_b0045 article-title: Mechanics of hydraulic fractures publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-010814-014736 – volume: 118 start-page: 33 year: 2019 ident: 10.1016/j.engfracmech.2022.109020_b0225 article-title: Estimating DEM microparameters for uniaxial compression simulation with genetic programming publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2019.03.024 – volume: 338 start-page: 847 year: 2018 ident: 10.1016/j.engfracmech.2022.109020_b0040 article-title: Experimental investigation of fracture propagation induced by carbon dioxide and water in coal seam reservoirs publication-title: Powder Technol doi: 10.1016/j.powtec.2018.07.071 – volume: 354 start-page: 301 year: 2019 ident: 10.1016/j.engfracmech.2022.109020_b0310 article-title: Investigation of the nucleation, propagation and coalescence of hydraulic fractures in glutenite reservoirs using a coupled fluid flow-DEM approach publication-title: Powder Technol doi: 10.1016/j.powtec.2019.05.073 – volume: 1–7 year: 2022 ident: 10.1016/j.engfracmech.2022.109020_b0055 article-title: Morphology of multiple constant height hydraulic fractures versus propagation regime publication-title: Int J Numer Anal Methods Geomech – volume: 65 start-page: 147 year: 2015 ident: 10.1016/j.engfracmech.2022.109020_b0105 article-title: A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances publication-title: Comput Geotech doi: 10.1016/j.compgeo.2014.12.011 – volume: 27 start-page: 1642 year: 2010 ident: 10.1016/j.engfracmech.2022.109020_b0010 article-title: Fractures in the low porosity and ultra-low permeability glutenite reservoirs : A case study of the late Eocene Hetaoyuan formation in the Anpeng Oil field publication-title: Mar Pet Geol doi: 10.1016/j.marpetgeo.2010.03.009 – volume: 14 start-page: 1268 year: 2017 ident: 10.1016/j.engfracmech.2022.109020_b0210 article-title: A new method for permeability estimation from conventional well logs in glutenite reservoirs publication-title: J Geophys Eng doi: 10.1088/1742-2140/aa7798 – volume: 17 start-page: 159 year: 2010 ident: 10.1016/j.engfracmech.2022.109020_b0145 article-title: An new area function for sharp indenter tips in nanoindentation publication-title: Chinese J Aeronaut doi: 10.1016/S1000-9361(11)60231-8 – volume: 97 start-page: 37 year: 2017 ident: 10.1016/j.engfracmech.2022.109020_b0170 article-title: Experimental study on the mechanism of hydraulic fracture growth in a glutenite reservoir publication-title: J Struct Geol doi: 10.1016/j.jsg.2017.02.012 – volume: 48 start-page: 219 year: 2011 ident: 10.1016/j.engfracmech.2022.109020_b0095 article-title: The synthetic rock mass approach for jointed rock mass modelling publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2010.11.014 – volume: 35 start-page: 541 year: 2016 ident: 10.1016/j.engfracmech.2022.109020_b0160 article-title: Experimental investigation of the effects of heterogeneity and geostress difference on the 3D growth and distribution of hydrofracturing cracks in unconventional reservoir rocks publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2016.08.071 – volume: 10 start-page: 1001 year: 2017 ident: 10.1016/j.engfracmech.2022.109020_b0350 article-title: Investigation of processes of interaction between hydraulic and natural fractures by PFC modeling comparing against laboratory experiments and analytical models publication-title: Energies doi: 10.3390/en10071001 – volume: 32 start-page: 483 year: 2014 ident: 10.1016/j.engfracmech.2022.109020_b0315 article-title: Deposition and diagenesis of steep-slope glutenite reservoirs : Shengtuo Field, eastern China publication-title: Energy Explor Exploit doi: 10.1260/0144-5987.32.3.483 – volume: 267 year: 2020 ident: 10.1016/j.engfracmech.2022.109020_b0335 article-title: Experimental investigation on hydraulic fracturing of granite specimens with double flaws based on DIC publication-title: Eng Geol doi: 10.1016/j.enggeo.2020.105510 – volume: 24 start-page: 2292 year: 2019 ident: 10.1016/j.engfracmech.2022.109020_b0250 article-title: Investigation of rupture and slip mechanisms of hydraulic fractures in multiple-layered formations publication-title: SPE J doi: 10.2118/197054-PA – volume: 208 year: 2022 ident: 10.1016/j.engfracmech.2022.109020_b0150 article-title: Characterization of meso-structure of glutenite reservoirs by ultrasonic characteristics and the velocity heterogeneity publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2021.109436 – volume: 206 start-page: 482 year: 2017 ident: 10.1016/j.engfracmech.2022.109020_b0230 article-title: Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation publication-title: Fuel doi: 10.1016/j.fuel.2017.05.033 – volume: 125 year: 2020 ident: 10.1016/j.engfracmech.2022.109020_b0365 article-title: Effect of mechanical heterogeneity on hydraulic fracture propagation in unconventional gas reservoirs publication-title: Comput Geotech doi: 10.1016/j.compgeo.2020.103652 – volume: 4 start-page: 35 year: 2004 ident: 10.1016/j.engfracmech.2022.109020_b0050 article-title: Propagation regimes of fluid-driven fractures in impermeable rocks publication-title: Int J Geomech doi: 10.1061/(ASCE)1532-3641(2004)4:1(35) – volume: 8 start-page: 597 year: 2013 ident: 10.1016/j.engfracmech.2022.109020_b0125 article-title: A numerical investigation of the hydraulic fracturing behaviour of conglomerate in Glutenite formation publication-title: Acta Geotech doi: 10.1007/s11440-013-0209-8 – volume: 150 year: 2022 ident: 10.1016/j.engfracmech.2022.109020_b0360 article-title: A fast simulation method for hydraulic-fracture-network generation in fractured rock based on fully coupled XFEM publication-title: Comput Geotech doi: 10.1016/j.compgeo.2022.104892 – volume: 45 start-page: 65 year: 2017 ident: 10.1016/j.engfracmech.2022.109020_b0100 article-title: Numerical simulation of failure mechanism of horizontal borehole in transversely isotropic shale gas reservoirs publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2017.05.015 – volume: 350 start-page: 169 year: 2019 ident: 10.1016/j.engfracmech.2022.109020_b0355 article-title: Phase-field modeling of fluid-driven dynamic cracking in porous media publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2019.03.001 – volume: 4 start-page: 115 year: 2018 ident: 10.1016/j.engfracmech.2022.109020_b0075 article-title: A review of multiscale expansion of low permeability reservoir cracks publication-title: Petroleum doi: 10.1016/j.petlm.2017.09.002 – volume: 19 start-page: 296 year: 2022 ident: 10.1016/j.engfracmech.2022.109020_b0305 article-title: Numerical investigation on the effect of depletion-induced stress reorientation on infill well hydraulic fracture propagation publication-title: Pet Sci doi: 10.1016/j.petsci.2021.09.014 – volume: 94 year: 2021 ident: 10.1016/j.engfracmech.2022.109020_b0215 article-title: Optimising well orientation in hydraulic fracturing of naturally fractured shale gas formations publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2021.104141 – volume: 148 year: 2022 ident: 10.1016/j.engfracmech.2022.109020_b0270 article-title: Influence of slip and permeability of bedding interface on hydraulic fracturing: A numerical study using combined finite-discrete element method publication-title: Comput Geotech doi: 10.1016/j.compgeo.2022.104801 – volume: 162 start-page: 190 year: 2018 ident: 10.1016/j.engfracmech.2022.109020_b0275 article-title: Pseudo-three-dimensional numerical model and investigation of multi-cluster fracturing within a stage in a horizontal well publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2017.12.034 |
SSID | ssj0007680 |
Score | 2.6368446 |
Snippet | [Display omitted]
•A mathematical method for the generation of irregular polygonal gravels is proposed to establish the fracturing model of glutenite.•The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109020 |
SubjectTerms | Discrete element modeling Fracture asymmetry Glutenite Heterogeneity Hydraulic fracturing |
Title | Exploring hydraulic fracture behavior in glutenite formation with strong heterogeneity and variable lithology based on DEM simulation |
URI | https://dx.doi.org/10.1016/j.engfracmech.2022.109020 |
Volume | 278 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qBdGD-MT6YgWvaZvNYzfgRcRSFT0p9BY2m02NtGnpQ_Dizf_tTB61gqDgNfCRZWeY-XZ3Zj6A80jHPEIeb9lK0m0V963Aldry4oAnnq0Vzwdp3z_43Sf3tuf1anBV9cJQWWUZ-4uYnkfr8kur3M3WOE2px9d20JtczvM86KzAKncC36vD6uXNXfdhEZCRUbcrIQMCrMHZV5mXyfrJROmhyZ8mOG_mlYrtn9PUUurpbMFmyRnZZbGsbaiZbAc2liYJ7sLHopaOPb_FEzUfpJrRH-mBgFW9-CzNWB9dzRDRZIu-RUaXsWxKl-IIp_qYEbqVQX7OVBazVzxOU4MVQ8aex8o3RrkvZohEM7JpOiw1wPbgqXP9eNW1SoUFSzvcnlkR9xLhCCWN45HctOYBj7Vpx0IaQRL0bhIgBRd2EBkbc7lAuuUrGSGrkIl2Ymcf6tkoMwfAFJ4dPV8LNEXkapVEQmjpC-1JxPqB2wBZbWioy_HjpIIxCKs6s5dwyRYh2SIsbNEAvoCOixkcfwFdVFYLvzlUiLnid_jh_-BHsE669EV59zHUZ5O5OUH2MotOYaX5bp-WPvoJfQ7xyQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6qgo-D-MT6XMFr2mbz2A14kWKpz5OCt7DZbGqkxtKH4MWb_9uZPGoFQcFryJCwM8x8u_vNfAAnkY55hDjespWk0yruW4ErteXFAU88WyueD9K-ufW79-7lg_dQg3bVC0O0yjL3Fzk9z9blk2a5ms1BmlKPr-1gNLmc53XQmYMF13ME8foa7188D8TTrUrGgF5fhOMvkpfJeslQ6WeTX0xw3sh5iq2fi9RM4emswWqJGNlZ8VPrUDPZBqzMzBHchI8pk449vsVDNemnmtEX6XqAVZ34LM1YDwPNEMxk065FRkexbERH4mhO7JgXDCqD6JypLGavuJmm9iqGeD3PlG-MKl_M0BKdyEbpc6kAtgX3nfO7dtcq9RUs7XB7bEXcS4QjlDSOR2LTmgc81qYVC2kECdC7SYAAXNhBZGys5ALBlq9khJhCJtqJnW2Yz14yswNM4c7R87VAR0SuVkkkhJa-0J5EWz9w6yCrBQ11OXycNDD6YcUyewpnfBGSL8LCF3XgU9NBMYHjL0anldfCb-EUYqX43Xz3f-ZHsNS9u7kOry9ur_ZgmRTqC6L3PsyPhxNzgDhmHB3mcfoJjnXylA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+hydraulic+fracture+behavior+in+glutenite+formation+with+strong+heterogeneity+and+variable+lithology+based+on+DEM+simulation&rft.jtitle=Engineering+fracture+mechanics&rft.au=Huang%2C+Liuke&rft.au=He%2C+Rui&rft.au=Yang%2C+Zhaozhong&rft.au=Tan%2C+Peng&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0013-7944&rft.volume=278&rft_id=info:doi/10.1016%2Fj.engfracmech.2022.109020&rft.externalDocID=S0013794422007433 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon |