Exploring hydraulic fracture behavior in glutenite formation with strong heterogeneity and variable lithology based on DEM simulation

[Display omitted] •A mathematical method for the generation of irregular polygonal gravels is proposed to establish the fracturing model of glutenite.•The coefficient of asymmetric fracture propagation is proposed to characterize the degree of fracture asymmetry.•Reveal the internal mechanical mecha...

Full description

Saved in:
Bibliographic Details
Published inEngineering fracture mechanics Vol. 278; p. 109020
Main Authors Huang, Liuke, He, Rui, Yang, Zhaozhong, Tan, Peng, Chen, Weihua, Li, Xiaogang, Cao, Aiwu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2023
Subjects
Online AccessGet full text
ISSN0013-7944
DOI10.1016/j.engfracmech.2022.109020

Cover

Abstract [Display omitted] •A mathematical method for the generation of irregular polygonal gravels is proposed to establish the fracturing model of glutenite.•The coefficient of asymmetric fracture propagation is proposed to characterize the degree of fracture asymmetry.•Reveal the internal mechanical mechanism of interaction between hydraulic fractures and gravels.•Effects of many influencing factors on the hydraulic fracture behavior in glutenite formation are systematically analyzed. Glutenite is an important unconventional tight oil and gas reservoir. Due to the glutenite formation with strong heterogeneity and variable lithology which contains a large number of gravels with different sizes, shapes and mineral compositions, the mechanical characteristics of glutenite are more complicated, resulting in more complex fracture morphology. In this paper, a mathematical method for the generation of irregular polygonal gravels is proposed, and the hydraulic fracturing model of glutenite with different gravel characteristics is established based on 2D particle discrete element method. The internal mechanical mechanism of interaction between hydraulic fractures and gravels is first revealed, and the results show that the interaction is mainly affected by the non-uniformly distributed stress field caused by the coordination of deformation of glutenite. The influence of geologic and engineering factors on hydraulic fracture propagation in glutenite is studied. The results show that fracture morpgology in glutenite is mainly affected by injection rate, fracturing fluid viscosity, gravel strength and gravel spatial distribution. High gravel size, low gravel strength, high stress difference, high injection rate and high fracturing fluid viscosity are conducive to the occurrence of gravel penetration. The micro-mechanism of interaction between hydraulic fractures and gravels is mainly affected by the non-uniformly distributed stress field caused by the coordination of deformation of glutenite. This study can provide key technical support and theoretical guidance for oil and gas development in tight glutenite reservoir.
AbstractList [Display omitted] •A mathematical method for the generation of irregular polygonal gravels is proposed to establish the fracturing model of glutenite.•The coefficient of asymmetric fracture propagation is proposed to characterize the degree of fracture asymmetry.•Reveal the internal mechanical mechanism of interaction between hydraulic fractures and gravels.•Effects of many influencing factors on the hydraulic fracture behavior in glutenite formation are systematically analyzed. Glutenite is an important unconventional tight oil and gas reservoir. Due to the glutenite formation with strong heterogeneity and variable lithology which contains a large number of gravels with different sizes, shapes and mineral compositions, the mechanical characteristics of glutenite are more complicated, resulting in more complex fracture morphology. In this paper, a mathematical method for the generation of irregular polygonal gravels is proposed, and the hydraulic fracturing model of glutenite with different gravel characteristics is established based on 2D particle discrete element method. The internal mechanical mechanism of interaction between hydraulic fractures and gravels is first revealed, and the results show that the interaction is mainly affected by the non-uniformly distributed stress field caused by the coordination of deformation of glutenite. The influence of geologic and engineering factors on hydraulic fracture propagation in glutenite is studied. The results show that fracture morpgology in glutenite is mainly affected by injection rate, fracturing fluid viscosity, gravel strength and gravel spatial distribution. High gravel size, low gravel strength, high stress difference, high injection rate and high fracturing fluid viscosity are conducive to the occurrence of gravel penetration. The micro-mechanism of interaction between hydraulic fractures and gravels is mainly affected by the non-uniformly distributed stress field caused by the coordination of deformation of glutenite. This study can provide key technical support and theoretical guidance for oil and gas development in tight glutenite reservoir.
ArticleNumber 109020
Author He, Rui
Tan, Peng
Chen, Weihua
Li, Xiaogang
Yang, Zhaozhong
Cao, Aiwu
Huang, Liuke
Author_xml – sequence: 1
  givenname: Liuke
  surname: Huang
  fullname: Huang, Liuke
  organization: School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu, Sichuan 610500, China
– sequence: 2
  givenname: Rui
  surname: He
  fullname: He, Rui
  organization: Engineering Technology Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610017, China
– sequence: 3
  givenname: Zhaozhong
  surname: Yang
  fullname: Yang, Zhaozhong
  organization: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
– sequence: 4
  givenname: Peng
  surname: Tan
  fullname: Tan, Peng
  email: tanpeng09jy@163.com
  organization: CNPC Engineering Technology R&D Company Limited, Beijing 102206, China
– sequence: 5
  givenname: Weihua
  surname: Chen
  fullname: Chen, Weihua
  organization: Engineering Technology Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610017, China
– sequence: 6
  givenname: Xiaogang
  surname: Li
  fullname: Li, Xiaogang
  organization: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
– sequence: 7
  givenname: Aiwu
  surname: Cao
  fullname: Cao, Aiwu
  organization: Hydro-China Itasca R&D Center, Hangzhou 311122, Zhejiang, China
BookMark eNqNkMtOAjEUQLvARED_oX4A2HaGeayMQXwkGDe6bjqdO8MlpSVtQfkA_9sZcGFcsWpy03Ny7xmRgXUWCLnhbMoZz27XU7Bt45XegF5NBROim5dMsAEZMsaTSV6m6SUZhbBmjOVZwYbke_G1Nc6jbenqUHu1M6hp74g7D7SCldqj8xQtbc0ugsUItHF-oyI6Sz8xrmiI3vU4RPCuBQsYD1TZmu6VR1UZoKb75oxrD7RSAWrakQ-LVxpwszNH0RW5aJQJcP37jsnH4-J9_jxZvj29zO-XE50IHieVmDV5kqsCklnGEq5FKWoNrM4LyHkiyrQpi0LkvKyApyLL01mWqaIqhCgandTJmNydvNq7EDw0UmM8bhC9QiM5k31JuZZ_Ssq-pDyV7AzlP8PW40b5w1ns_MRCd-IewcugEayGGj3oKGuHZ1h-AJ8enNM
CitedBy_id crossref_primary_10_3389_fenrg_2023_1309591
crossref_primary_10_1155_2023_6668841
crossref_primary_10_32604_cmes_2024_051832
crossref_primary_10_3389_feart_2024_1470723
crossref_primary_10_3390_su151612625
crossref_primary_10_3389_feart_2023_1185936
crossref_primary_10_3389_fenrg_2023_1231958
crossref_primary_10_3389_fenrg_2024_1333686
crossref_primary_10_1016_j_fuel_2024_132657
crossref_primary_10_1016_j_engfracmech_2023_109570
crossref_primary_10_3389_fenrg_2023_1296830
crossref_primary_10_3389_fenrg_2023_1271377
crossref_primary_10_3389_fenrg_2023_1328236
crossref_primary_10_1007_s00603_023_03554_2
crossref_primary_10_1007_s00603_024_04323_5
crossref_primary_10_1016_j_energy_2023_127877
crossref_primary_10_1016_j_petsci_2024_09_004
crossref_primary_10_1007_s40571_024_00722_1
crossref_primary_10_1063_5_0231673
crossref_primary_10_1002_ese3_1808
crossref_primary_10_1016_j_geoen_2023_212443
crossref_primary_10_3390_pr12102279
crossref_primary_10_1016_j_geoen_2023_211436
crossref_primary_10_1016_j_fuel_2023_130790
crossref_primary_10_3389_fenrg_2023_1337069
crossref_primary_10_1007_s12665_024_11648_5
crossref_primary_10_1016_j_fuel_2024_134204
crossref_primary_10_1016_j_petsci_2024_08_004
crossref_primary_10_1155_2024_7883958
crossref_primary_10_1038_s41598_025_86053_4
crossref_primary_10_3389_feart_2022_1116492
crossref_primary_10_1016_j_fuel_2023_129155
crossref_primary_10_1038_s41598_024_63923_x
crossref_primary_10_1063_5_0234922
crossref_primary_10_1002_ese3_1664
crossref_primary_10_1016_j_fuel_2023_128468
crossref_primary_10_1002_ese3_1782
crossref_primary_10_1016_j_engfracmech_2024_110039
crossref_primary_10_3389_fenrg_2023_1277648
crossref_primary_10_3390_w15142623
crossref_primary_10_3389_feart_2023_1119946
crossref_primary_10_1002_ese3_1819
crossref_primary_10_1016_j_tafmec_2024_104685
crossref_primary_10_3389_fenrg_2023_1283079
crossref_primary_10_1016_j_geoen_2024_213106
crossref_primary_10_1016_j_geoen_2023_212316
crossref_primary_10_1016_j_geoen_2025_213721
crossref_primary_10_3389_feart_2023_1256150
crossref_primary_10_1021_acsomega_3c08547
crossref_primary_10_1063_5_0230916
crossref_primary_10_1007_s00603_024_04267_w
crossref_primary_10_3389_feart_2023_1115054
crossref_primary_10_1016_j_petsci_2024_07_014
crossref_primary_10_1063_5_0240044
crossref_primary_10_1016_j_undsp_2023_03_006
crossref_primary_10_3390_su151914524
crossref_primary_10_1007_s00603_024_04101_3
crossref_primary_10_1155_2024_8876708
crossref_primary_10_3389_fenrg_2023_1217467
crossref_primary_10_1016_j_ijhydene_2024_12_299
crossref_primary_10_1007_s11440_024_02317_9
crossref_primary_10_1016_j_geoen_2023_211856
crossref_primary_10_3389_fenrg_2024_1361290
crossref_primary_10_3390_app13074218
crossref_primary_10_3389_fenrg_2024_1377400
crossref_primary_10_3389_feart_2023_1163295
crossref_primary_10_3389_fenrg_2023_1324934
crossref_primary_10_3390_pr13030692
crossref_primary_10_1007_s40571_023_00662_2
crossref_primary_10_3389_feart_2024_1445254
crossref_primary_10_3390_en17184664
crossref_primary_10_1063_5_0218642
crossref_primary_10_3389_fenrg_2023_1338428
crossref_primary_10_3389_fenrg_2024_1389877
crossref_primary_10_1016_j_compgeo_2024_106619
crossref_primary_10_3390_su151411209
crossref_primary_10_3389_fenrg_2023_1297738
crossref_primary_10_3389_fenrg_2023_1321114
crossref_primary_10_1016_j_compgeo_2023_105263
crossref_primary_10_3389_feart_2025_1567016
Cites_doi 10.1002/jgrb.50204
10.1016/j.engfracmech.2022.108358
10.1007/s10704-017-0192-4
10.1007/s00603-019-01851-3
10.1002/2017JB013989
10.1016/j.compgeo.2018.09.012
10.1016/j.ijrmms.2004.09.011
10.1016/j.petrol.2019.106517
10.1016/j.engfracmech.2020.107206
10.1016/j.ijsolstr.2019.06.018
10.1016/j.engfracmech.2021.108088
10.1016/j.petrol.2019.04.050
10.1080/12269328.2014.998346
10.1016/j.compgeo.2015.06.007
10.1016/j.ijrmms.2017.11.010
10.1016/j.petrol.2022.110160
10.1029/2009JB006496
10.1016/j.cma.2020.113396
10.1002/nag.2682
10.1016/S0045-7949(98)00177-1
10.1016/j.petrol.2021.109798
10.1007/s12665-014-4005-z
10.1016/j.petrol.2020.107169
10.2118/89-PA
10.1016/j.enggeo.2012.11.013
10.1007/s12182-018-0290-6
10.1016/j.ijrmms.2011.04.013
10.1016/j.ijsolstr.2021.111395
10.2113/2022/9708300
10.1007/s00603-018-1715-7
10.1007/s11771-021-4809-4
10.1038/s41598-020-58792-z
10.1016/j.engfracmech.2021.107707
10.1007/s00603-018-1671-2
10.1016/j.asej.2021.03.015
10.1016/j.jngse.2017.10.012
10.1016/j.compgeo.2022.104736
10.1146/annurev-fluid-010814-014736
10.1016/j.ijrmms.2019.03.024
10.1016/j.powtec.2018.07.071
10.1016/j.powtec.2019.05.073
10.1016/j.compgeo.2014.12.011
10.1016/j.marpetgeo.2010.03.009
10.1088/1742-2140/aa7798
10.1016/S1000-9361(11)60231-8
10.1016/j.jsg.2017.02.012
10.1016/j.ijrmms.2010.11.014
10.1016/j.jngse.2016.08.071
10.3390/en10071001
10.1260/0144-5987.32.3.483
10.1016/j.enggeo.2020.105510
10.2118/197054-PA
10.1016/j.petrol.2021.109436
10.1016/j.fuel.2017.05.033
10.1016/j.compgeo.2020.103652
10.1061/(ASCE)1532-3641(2004)4:1(35)
10.1007/s11440-013-0209-8
10.1016/j.compgeo.2022.104892
10.1016/j.jngse.2017.05.015
10.1016/j.cma.2019.03.001
10.1016/j.petlm.2017.09.002
10.1016/j.petsci.2021.09.014
10.1016/j.jngse.2021.104141
10.1016/j.compgeo.2022.104801
10.1016/j.petrol.2017.12.034
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engfracmech.2022.109020
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_engfracmech_2022_109020
S0013794422007433
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAQXK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEUPX
AFPUW
AGCQF
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
VH1
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c321t-b25f737a8e356031c292dce0d78e713294f9882719be142674566a8b8228fc3d3
IEDL.DBID AIKHN
ISSN 0013-7944
IngestDate Thu Apr 24 23:03:54 EDT 2025
Thu Sep 18 00:15:23 EDT 2025
Sun Apr 06 06:54:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Heterogeneity
Glutenite
Discrete element modeling
Fracture asymmetry
Hydraulic fracturing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-b25f737a8e356031c292dce0d78e713294f9882719be142674566a8b8228fc3d3
ParticipantIDs crossref_citationtrail_10_1016_j_engfracmech_2022_109020
crossref_primary_10_1016_j_engfracmech_2022_109020
elsevier_sciencedirect_doi_10_1016_j_engfracmech_2022_109020
PublicationCentury 2000
PublicationDate 2023-02-01
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering fracture mechanics
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lecampion, Bunger, Zhang (b0120) 2018; 49
Li, Meng, Wang (b0125) 2013; 8
Potyondy (b0195) 2015; 18
Zhao, Ji, Li, Liu, Xiong, Xiao (b0340) 2022; 264
Detournay (b0050) 2004; 4
Potyondy, Cundall (b0190) 2004; 41
Yi, Li, Yang, Yang (b0280) 2020; 236
Wang, Zhang, Xie (b0260) 2020; 10
Dontsov (b0060) 2017; 205
Bakhshi, Rasouli, Ghorbani, Fatehi Marji, Damjanac, Wan (b0005) 2019; 52
Jia, Chen, Jin, Jiang (b0100) 2017; 45
Yang, Yi, Li, He (b0275) 2018; 162
Zhang, Liu, Han, Zhu, Zhang (b0330) 2022; 210
Li, Wang, Li, Zhang, Li (b0135) 2021; 12
Khristianovic SA, Zheltov YP. 1955. Formation of vertical fractures by means of highly viscous liquid. In: 4th World Petroleum Congress. Rome, Italy.
Zhang, Damjanac, Maxwell (b0295) 2019; 52
Yi, Waisman, Yang, Li (b0285) 2020; 372
Tang, Wang, Zhang, Li, Zhang, Wu (b0245) 2019; 179
Tan, Jin, Pang (b0235) 2021; 248
Jiang, Shen, Wang (b0105) 2015; 65
Liu, Ju, Ranjith, Zheng, Chen (b0160) 2016; 35
Perkins, Kern (b0185) 1961; 13
Zhang, Dontsov, Mack (b0300) 2017; 41
Itasca Consulting Group Inc., 2018. PFC (Particle Flow Code), version 6.0. Minneapolis, Minnesota, United States.
Li, Li, Wang, Ma, Zhang, Li (b0130) 2021; 28
Zheng, He, Huang, Bai, Wang, Chen (b0345) 2022; 146
Deng, Yin, Zhang, Li, Liu, Lu (b0040) 2018; 338
Huang, Liu, Ji, Gong, Qin (b0075) 2018; 4
Zhang, Huang, Yang, Dontsov, Weng (b0305) 2022; 19
Shimizu, Murata, Ishida (b0220) 2011; 48
Tang, Wu, Zuo, Xiao, Sun, Ehlig-Economides (b0250) 2019; 24
Tang, Rutqvist, Hu, Rayudu (b0255) 2019; 52
Qin, Yang, Chen, Yang (b0200) 2021; 258
Chen, Xu, Li, Kong, Wang, Chen (b0020) 2019; 185
Shen, Wu, Wang (b0210) 2017; 14
Detournay (b0045) 2016; 48
Huang, Dontsov, Fu, Lei, Weng, Zhang (b0070) 2022; 238
Renato, Sanchezr, Roehl, Romanel (b0205) 2019; 70
Zhang, Wu, Jeffrey, Connell, Zhang (b0325) 2017; 115
Huang, Liu, Zhang, Dontsov, Damjanac (b0080) 2019; 176
Liu, Ge, Mou, Wang, Wang (b0150) 2022; 208
Basin, Zeng, Jiang, Yang (b0010) 2010; 27
Wang, Kwan, Chan (b0265) 1999; 70
Ivars, Pierce, Darcel, Reyes-Montes, Potyondy, Paul Young (b0095) 2011; 48
Liu, Zhang (b0145) 2010; 17
Ma, Zou, Li, Chen, Zhang, Liu (b0170) 2017; 97
Sherratt, Sharifi Haddad, Wejzerowski, Rafati (b0215) 2021; 94
Zhang, Zhang, Xie, Lee, Zhang, Ding (b0315) 2014; 32
Cheng, Zhang, Zhang, Wu, Chen, Lei (b0030) 2022; 239
Ma, Huang (b0175) 2018; 102
Marina, Derek, Mohamed, Yong, Imo-Imo (b0180) 2015; 73
Simone, Souza, Roehl (b0225) 2019; 118
Zou, Jiao, Tang, Ji, Yan, Wang (b0365) 2020; 125
Zhang, Zhang, Ji (b0320) 2019; 105
Chen, Wang (b0025) 2017; 122
Tan, Jin, Han, Hou, Guo, Gao (b0230) 2017; 206
Zhou, Yang (b0360) 2022; 150
He, Yang, Li, Liu, Sun, Li (b0065) 2020; 4
Zhang, Sun, Chao, Niu, Liu, Li (b0310) 2019; 354
Huang, Liu, Zhang, Fu, Zhu, Damjanac (b0085) 2020; 191
Zhou, Zhang, Braun, Han (b0350) 2017; 10
Zhou, Zhuang, Rabczuk (b0355) 2019; 350
Damjanac, Cundall (b0035) 2016; 71
Lan, Martin, Hu (b0115) 2010; 115
Liu, Zou, Ma, Li, Wu (b0155) 2019; 16
Luo, Xie, Huang, Wu, Shi, Bai (b0165) 2022; 2022
Zhao, Xing, Zhou, Shi, Wang (b0335) 2020; 267
Camones LAM, Vargas E do A, de Figueiredo RP, Velloso RQ. Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism. Eng Geol. 2013;153:80–94. 10.1016/j.enggeo.2012.11.013.
Wu, Gao, Feng, Huang (b0270) 2022; 148
Zhang, Damjanac, Huang (b0290) 2013; 118
Tan, Pang, Zhang, Jin, Zhou, Kao (b0240) 2020; 184
Dontsov (b0055) 2022; 1–7
Liao, Hu, Zhang (b0140) 2022; 211
Liu (10.1016/j.engfracmech.2022.109020_b0150) 2022; 208
Tan (10.1016/j.engfracmech.2022.109020_b0240) 2020; 184
10.1016/j.engfracmech.2022.109020_b0090
Yang (10.1016/j.engfracmech.2022.109020_b0275) 2018; 162
Liu (10.1016/j.engfracmech.2022.109020_b0145) 2010; 17
Li (10.1016/j.engfracmech.2022.109020_b0125) 2013; 8
Yi (10.1016/j.engfracmech.2022.109020_b0280) 2020; 236
Tang (10.1016/j.engfracmech.2022.109020_b0250) 2019; 24
Wu (10.1016/j.engfracmech.2022.109020_b0270) 2022; 148
Zhang (10.1016/j.engfracmech.2022.109020_b0325) 2017; 115
Sherratt (10.1016/j.engfracmech.2022.109020_b0215) 2021; 94
Huang (10.1016/j.engfracmech.2022.109020_b0085) 2020; 191
Ivars (10.1016/j.engfracmech.2022.109020_b0095) 2011; 48
Zhang (10.1016/j.engfracmech.2022.109020_b0310) 2019; 354
Ma (10.1016/j.engfracmech.2022.109020_b0170) 2017; 97
Chen (10.1016/j.engfracmech.2022.109020_b0025) 2017; 122
Lan (10.1016/j.engfracmech.2022.109020_b0115) 2010; 115
Tang (10.1016/j.engfracmech.2022.109020_b0255) 2019; 52
Zhang (10.1016/j.engfracmech.2022.109020_b0295) 2019; 52
Shen (10.1016/j.engfracmech.2022.109020_b0210) 2017; 14
Zhang (10.1016/j.engfracmech.2022.109020_b0290) 2013; 118
Detournay (10.1016/j.engfracmech.2022.109020_b0050) 2004; 4
Potyondy (10.1016/j.engfracmech.2022.109020_b0190) 2004; 41
Tan (10.1016/j.engfracmech.2022.109020_b0230) 2017; 206
Zhao (10.1016/j.engfracmech.2022.109020_b0340) 2022; 264
Tan (10.1016/j.engfracmech.2022.109020_b0235) 2021; 248
Wang (10.1016/j.engfracmech.2022.109020_b0260) 2020; 10
Chen (10.1016/j.engfracmech.2022.109020_b0020) 2019; 185
Zou (10.1016/j.engfracmech.2022.109020_b0365) 2020; 125
Li (10.1016/j.engfracmech.2022.109020_b0130) 2021; 28
Detournay (10.1016/j.engfracmech.2022.109020_b0045) 2016; 48
Huang (10.1016/j.engfracmech.2022.109020_b0070) 2022; 238
Liu (10.1016/j.engfracmech.2022.109020_b0160) 2016; 35
Damjanac (10.1016/j.engfracmech.2022.109020_b0035) 2016; 71
Luo (10.1016/j.engfracmech.2022.109020_b0165) 2022; 2022
10.1016/j.engfracmech.2022.109020_b0015
Jia (10.1016/j.engfracmech.2022.109020_b0100) 2017; 45
Jiang (10.1016/j.engfracmech.2022.109020_b0105) 2015; 65
Zhang (10.1016/j.engfracmech.2022.109020_b0330) 2022; 210
Bakhshi (10.1016/j.engfracmech.2022.109020_b0005) 2019; 52
Shimizu (10.1016/j.engfracmech.2022.109020_b0220) 2011; 48
Simone (10.1016/j.engfracmech.2022.109020_b0225) 2019; 118
Perkins (10.1016/j.engfracmech.2022.109020_b0185) 1961; 13
Zhao (10.1016/j.engfracmech.2022.109020_b0335) 2020; 267
Huang (10.1016/j.engfracmech.2022.109020_b0080) 2019; 176
Tang (10.1016/j.engfracmech.2022.109020_b0245) 2019; 179
Zhang (10.1016/j.engfracmech.2022.109020_b0315) 2014; 32
Zheng (10.1016/j.engfracmech.2022.109020_b0345) 2022; 146
Basin (10.1016/j.engfracmech.2022.109020_b0010) 2010; 27
Renato (10.1016/j.engfracmech.2022.109020_b0205) 2019; 70
Huang (10.1016/j.engfracmech.2022.109020_b0075) 2018; 4
Zhou (10.1016/j.engfracmech.2022.109020_b0350) 2017; 10
Marina (10.1016/j.engfracmech.2022.109020_b0180) 2015; 73
Wang (10.1016/j.engfracmech.2022.109020_b0265) 1999; 70
Zhang (10.1016/j.engfracmech.2022.109020_b0300) 2017; 41
Zhang (10.1016/j.engfracmech.2022.109020_b0305) 2022; 19
Li (10.1016/j.engfracmech.2022.109020_b0135) 2021; 12
He (10.1016/j.engfracmech.2022.109020_b0065) 2020; 4
Liu (10.1016/j.engfracmech.2022.109020_b0155) 2019; 16
Potyondy (10.1016/j.engfracmech.2022.109020_b0195) 2015; 18
Liao (10.1016/j.engfracmech.2022.109020_b0140) 2022; 211
Dontsov (10.1016/j.engfracmech.2022.109020_b0060) 2017; 205
Dontsov (10.1016/j.engfracmech.2022.109020_b0055) 2022; 1–7
Lecampion (10.1016/j.engfracmech.2022.109020_b0120) 2018; 49
Deng (10.1016/j.engfracmech.2022.109020_b0040) 2018; 338
Qin (10.1016/j.engfracmech.2022.109020_b0200) 2021; 258
Zhou (10.1016/j.engfracmech.2022.109020_b0360) 2022; 150
10.1016/j.engfracmech.2022.109020_b0110
Zhang (10.1016/j.engfracmech.2022.109020_b0320) 2019; 105
Ma (10.1016/j.engfracmech.2022.109020_b0175) 2018; 102
Zhou (10.1016/j.engfracmech.2022.109020_b0355) 2019; 350
Yi (10.1016/j.engfracmech.2022.109020_b0285) 2020; 372
Cheng (10.1016/j.engfracmech.2022.109020_b0030) 2022; 239
References_xml – volume: 65
  start-page: 147
  year: 2015
  end-page: 163
  ident: b0105
  article-title: A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances
  publication-title: Comput Geotech
– volume: 97
  start-page: 37
  year: 2017
  end-page: 47
  ident: b0170
  article-title: Experimental study on the mechanism of hydraulic fracture growth in a glutenite reservoir
  publication-title: J Struct Geol
– volume: 118
  start-page: 33
  year: 2019
  end-page: 41
  ident: b0225
  article-title: Estimating DEM microparameters for uniaxial compression simulation with genetic programming
  publication-title: Int J Rock Mech Min Sci
– volume: 258
  year: 2021
  ident: b0200
  article-title: Hydraulic fracturing model of a layered rock mass based on peridynamics
  publication-title: Eng Fract Mech
– volume: 115
  start-page: 208
  year: 2017
  end-page: 223
  ident: b0325
  article-title: A pseudo-3D model for hydraulic fracture growth in a layered rock
  publication-title: Int J Solids Struct
– volume: 184
  year: 2020
  ident: b0240
  article-title: Experimental investigation into hydraulic fracture geometry and proppant migration characteristics for southeastern Sichuan deep shale reservoirs
  publication-title: J Pet Sci Eng
– volume: 372
  year: 2020
  ident: b0285
  article-title: A consistent phase field model for hydraulic fracture propagation in poroelastic media
  publication-title: Comput Methods Appl Mech Eng
– volume: 179
  start-page: 378
  year: 2019
  end-page: 393
  ident: b0245
  article-title: Analysis of stress interference among multiple hydraulic fractures using a fully three-dimensional displacement discontinuity method
  publication-title: J Pet Sci Eng
– volume: 41
  start-page: 1329
  year: 2004
  end-page: 1364
  ident: b0190
  article-title: A bonded-particle model for rock
  publication-title: Int J Rock Mech Min Sci
– volume: 122
  start-page: 3410
  year: 2017
  end-page: 3429
  ident: b0025
  article-title: Pore-scale modeling of hydromechanical coupled mechanics in hydrofracturing process
  publication-title: J Geophys Res Solid Earth
– volume: 71
  start-page: 283
  year: 2016
  end-page: 294
  ident: b0035
  article-title: Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs
  publication-title: Comput Geotech
– volume: 206
  start-page: 482
  year: 2017
  end-page: 493
  ident: b0230
  article-title: Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation
  publication-title: Fuel
– volume: 211
  year: 2022
  ident: b0140
  article-title: Investigation on the influence of multiple fracture interference on hydraulic fracture propagation in tight reservoirs
  publication-title: J Pet Sci Eng
– volume: 48
  start-page: 712
  year: 2011
  end-page: 727
  ident: b0220
  article-title: The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution
  publication-title: Int J Rock Mech Min Sci
– volume: 14
  start-page: 1268
  year: 2017
  end-page: 1274
  ident: b0210
  article-title: A new method for permeability estimation from conventional well logs in glutenite reservoirs
  publication-title: J Geophys Eng
– volume: 102
  start-page: 109
  year: 2018
  end-page: 119
  ident: b0175
  article-title: DEM analysis of failure mechanisms in the intact Brazilian test
  publication-title: Int J Rock Mech Min Sci
– volume: 115
  start-page: B01202
  year: 2010
  ident: b0115
  article-title: Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading
  publication-title: J Geophys Res
– volume: 338
  start-page: 847
  year: 2018
  end-page: 856
  ident: b0040
  article-title: Experimental investigation of fracture propagation induced by carbon dioxide and water in coal seam reservoirs
  publication-title: Powder Technol
– volume: 208
  year: 2022
  ident: b0150
  article-title: Characterization of meso-structure of glutenite reservoirs by ultrasonic characteristics and the velocity heterogeneity
  publication-title: J Pet Sci Eng
– volume: 13
  start-page: 937
  year: 1961
  end-page: 949
  ident: b0185
  article-title: Widths of Hydraulic Fractures
  publication-title: J Pet Technol
– volume: 125
  year: 2020
  ident: b0365
  article-title: Effect of mechanical heterogeneity on hydraulic fracture propagation in unconventional gas reservoirs
  publication-title: Comput Geotech
– volume: 105
  start-page: 79
  year: 2019
  end-page: 93
  ident: b0320
  article-title: Numerical study of interaction between a hydraulic fracture and a weak plane using the bonded-particle model based on moment tensors
  publication-title: Comput Geotech
– volume: 48
  start-page: 219
  year: 2011
  end-page: 244
  ident: b0095
  article-title: The synthetic rock mass approach for jointed rock mass modelling
  publication-title: Int J Rock Mech Min Sci
– volume: 32
  start-page: 483
  year: 2014
  end-page: 501
  ident: b0315
  article-title: Deposition and diagenesis of steep-slope glutenite reservoirs : Shengtuo Field, eastern China
  publication-title: Energy Explor Exploit
– volume: 17
  start-page: 159
  year: 2010
  end-page: 164
  ident: b0145
  article-title: An new area function for sharp indenter tips in nanoindentation
  publication-title: Chinese J Aeronaut
– volume: 19
  start-page: 296
  year: 2022
  end-page: 308
  ident: b0305
  article-title: Numerical investigation on the effect of depletion-induced stress reorientation on infill well hydraulic fracture propagation
  publication-title: Pet Sci
– volume: 238
  year: 2022
  ident: b0070
  article-title: Hydraulic fracture height growth in layered rocks : Perspective from DEM simulation of different propagation regimes
  publication-title: Int J Solids Struct
– reference: Camones LAM, Vargas E do A, de Figueiredo RP, Velloso RQ. Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism. Eng Geol. 2013;153:80–94. 10.1016/j.enggeo.2012.11.013.
– volume: 148
  year: 2022
  ident: b0270
  article-title: Influence of slip and permeability of bedding interface on hydraulic fracturing: A numerical study using combined finite-discrete element method
  publication-title: Comput Geotech
– volume: 24
  start-page: 2292
  year: 2019
  end-page: 2307
  ident: b0250
  article-title: Investigation of rupture and slip mechanisms of hydraulic fractures in multiple-layered formations
  publication-title: SPE J
– volume: 70
  start-page: 533
  year: 1999
  end-page: 544
  ident: b0265
  article-title: Mesoscopic study of concrete I : generation of random aggregate structure and finite element mesh
  publication-title: Comput Struct
– volume: 70
  year: 2019
  ident: b0205
  article-title: Xfem modeling of stress shadowing in multiple hydraulic fractures in multi-layered formations
  publication-title: J Nat Gas Sci Eng
– volume: 264
  year: 2022
  ident: b0340
  article-title: A new pseudo 3D hydraulic fracture propagation model for sandstone reservoirs considering fracture penetrating height
  publication-title: Eng Fract Mech
– volume: 236
  year: 2020
  ident: b0280
  article-title: Phase field modeling of hydraulic fracturing in porous media formation with natural fracture
  publication-title: Eng Fract Mech
– volume: 18
  start-page: 1
  year: 2015
  end-page: 28
  ident: b0195
  article-title: The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions
  publication-title: Geosystem Eng
– volume: 210
  year: 2022
  ident: b0330
  article-title: Numerical study of hydraulic fracture propagation in inherently laminated rocks accounting for bedding plane properties
  publication-title: J Pet Sci Eng
– volume: 191
  year: 2020
  ident: b0085
  article-title: 3D lattice modeling of hydraulic fracture initiation and near-wellbore propagation for different perforation models
  publication-title: J Pet Sci Eng
– reference: Khristianovic SA, Zheltov YP. 1955. Formation of vertical fractures by means of highly viscous liquid. In: 4th World Petroleum Congress. Rome, Italy.
– volume: 350
  start-page: 169
  year: 2019
  end-page: 198
  ident: b0355
  article-title: Phase-field modeling of fluid-driven dynamic cracking in porous media
  publication-title: Comput Methods Appl Mech Eng
– volume: 41
  start-page: 1430
  year: 2017
  end-page: 1452
  ident: b0300
  article-title: Fully coupled simulation of a hydraulic fracture interacting with natural fractures with a hybrid discrete-continuum method
  publication-title: Int J Numer Anal Methods Geomech
– volume: 4
  start-page: 35
  year: 2004
  end-page: 45
  ident: b0050
  article-title: Propagation regimes of fluid-driven fractures in impermeable rocks
  publication-title: Int J Geomech
– volume: 45
  start-page: 65
  year: 2017
  end-page: 74
  ident: b0100
  article-title: Numerical simulation of failure mechanism of horizontal borehole in transversely isotropic shale gas reservoirs
  publication-title: J Nat Gas Sci Eng
– volume: 49
  start-page: 66
  year: 2018
  end-page: 83
  ident: b0120
  article-title: Numerical methods for hydraulic fracture propagation: A review of recent trends
  publication-title: J Nat Gas Sci Eng
– volume: 354
  start-page: 301
  year: 2019
  end-page: 313
  ident: b0310
  article-title: Investigation of the nucleation, propagation and coalescence of hydraulic fractures in glutenite reservoirs using a coupled fluid flow-DEM approach
  publication-title: Powder Technol
– volume: 52
  start-page: 5137
  year: 2019
  end-page: 5160
  ident: b0295
  article-title: Investigating hydraulic fracturing complexity in naturally fractured rock masses using fully coupled multiscale numerical modeling
  publication-title: Rock Mech Rock Eng
– volume: 52
  start-page: 1315
  year: 2019
  end-page: 1337
  ident: b0005
  article-title: Lattice numerical simulations of lab-scale hydraulic fracture and natural interface interaction
  publication-title: Rock Mech Rock Eng
– volume: 28
  start-page: 2814
  year: 2021
  end-page: 2829
  ident: b0130
  article-title: Formation of X-shaped hydraulic fractures in deep thick glutenite reservoirs : A case study in Bohai Bay Basin
  publication-title: East China J Cent South Univ
– volume: 2022
  start-page: 9708300
  year: 2022
  ident: b0165
  article-title: Multiscale sensitivity analysis of hydraulic fracturing parameters based on dimensionless analysis method
  publication-title: Lithosphere
– volume: 10
  start-page: 1001
  year: 2017
  ident: b0350
  article-title: Investigation of processes of interaction between hydraulic and natural fractures by PFC modeling comparing against laboratory experiments and analytical models
  publication-title: Energies
– volume: 35
  start-page: 541
  year: 2016
  end-page: 554
  ident: b0160
  article-title: Experimental investigation of the effects of heterogeneity and geostress difference on the 3D growth and distribution of hydrofracturing cracks in unconventional reservoir rocks
  publication-title: J Nat Gas Sci Eng
– volume: 16
  start-page: 396
  year: 2019
  end-page: 408
  ident: b0155
  article-title: Study of hydraulic fracture growth behavior in heterogeneous tight sandstone formations using CT scanning and acoustic emission monitoring
  publication-title: Pet Sci
– volume: 162
  start-page: 190
  year: 2018
  end-page: 213
  ident: b0275
  article-title: Pseudo-three-dimensional numerical model and investigation of multi-cluster fracturing within a stage in a horizontal well
  publication-title: J Pet Sci Eng
– reference: Itasca Consulting Group Inc., 2018. PFC (Particle Flow Code), version 6.0. Minneapolis, Minnesota, United States.
– volume: 118
  start-page: 2703
  year: 2013
  end-page: 2722
  ident: b0290
  article-title: Coupled discrete element modeling of fluid injection into dense granular media
  publication-title: J Geophys Res Solid Earth
– volume: 185
  year: 2019
  ident: b0020
  article-title: Understanding the performance of hydraulically fractured wells in the laumontite-rich tight glutenite formation
  publication-title: J Pet Sci Eng
– volume: 8
  start-page: 597
  year: 2013
  end-page: 618
  ident: b0125
  article-title: A numerical investigation of the hydraulic fracturing behaviour of conglomerate in Glutenite formation
  publication-title: Acta Geotech
– volume: 1–7
  year: 2022
  ident: b0055
  article-title: Morphology of multiple constant height hydraulic fractures versus propagation regime
  publication-title: Int J Numer Anal Methods Geomech
– volume: 205
  start-page: 221
  year: 2017
  end-page: 237
  ident: b0060
  article-title: An approximate solution for a plane strain hydraulic fracture that accounts for fracture toughness, fluid viscosity, and leak-off
  publication-title: Int J Fract
– volume: 94
  year: 2021
  ident: b0215
  article-title: Optimising well orientation in hydraulic fracturing of naturally fractured shale gas formations
  publication-title: J Nat Gas Sci Eng
– volume: 239
  year: 2022
  ident: b0030
  article-title: Numerical study of hydraulic fracturing near a wellbore using dual boundary element method
  publication-title: Int J Solids Struct
– volume: 10
  start-page: 1839
  year: 2020
  ident: b0260
  article-title: Influencing factors and application prospects of CO2 flooding in heterogeneous glutenite reservoirs
  publication-title: Sci Rep
– volume: 146
  year: 2022
  ident: b0345
  article-title: Exploring the effect of engineering parameters on the penetration of hydraulic fractures through bedding planes in different propagation regimes
  publication-title: Comput Geotech
– volume: 4
  start-page: 1
  year: 2020
  end-page: 29
  ident: b0065
  article-title: Numerical investigation of interaction between hydraulic and natural fractures under various geologic and engineering parameters using particle flow code method. Energy Sources
  publication-title: Part A Recover Util Environ Eff
– volume: 48
  start-page: 311
  year: 2016
  end-page: 339
  ident: b0045
  article-title: Mechanics of hydraulic fractures
  publication-title: Annu Rev Fluid Mech
– volume: 267
  year: 2020
  ident: b0335
  article-title: Experimental investigation on hydraulic fracturing of granite specimens with double flaws based on DIC
  publication-title: Eng Geol
– volume: 73
  start-page: 8451
  year: 2015
  end-page: 8469
  ident: b0180
  article-title: Simulation of the hydraulic fracturing process of fractured rocks by the discrete element method
  publication-title: Environ Earth Sci
– volume: 52
  start-page: 611
  year: 2019
  end-page: 627
  ident: b0255
  article-title: Modeling three-dimensional fluid-driven propagation of multiple fractures using TOUGH-FEMM
  publication-title: Rock Mech Rock Eng
– volume: 150
  year: 2022
  ident: b0360
  article-title: A fast simulation method for hydraulic-fracture-network generation in fractured rock based on fully coupled XFEM
  publication-title: Comput Geotech
– volume: 176
  start-page: 207
  year: 2019
  end-page: 220
  ident: b0080
  article-title: Exploring the influence of rock inherent heterogeneity and grain size on hydraulic fracturing using discrete element modeling
  publication-title: Int J Solids Struct
– volume: 248
  year: 2021
  ident: b0235
  article-title: Hydraulic fracture vertical propagation behavior in transversely isotropic layered shale formation with transition zone using XFEM-based CZM method
  publication-title: Eng Fract Mech
– volume: 27
  start-page: 1642
  year: 2010
  end-page: 1650
  ident: b0010
  article-title: Fractures in the low porosity and ultra-low permeability glutenite reservoirs : A case study of the late Eocene Hetaoyuan formation in the Anpeng Oil field
  publication-title: Mar Pet Geol
– volume: 12
  start-page: 3419
  year: 2021
  end-page: 3427
  ident: b0135
  article-title: Numerical simulation of brittleness effect on propagation behavior of glutenite hydraulic fractures
  publication-title: Ain Shams Eng J
– volume: 4
  start-page: 115
  year: 2018
  end-page: 125
  ident: b0075
  article-title: A review of multiscale expansion of low permeability reservoir cracks
  publication-title: Petroleum
– volume: 118
  start-page: 2703
  year: 2013
  ident: 10.1016/j.engfracmech.2022.109020_b0290
  article-title: Coupled discrete element modeling of fluid injection into dense granular media
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/jgrb.50204
– volume: 264
  year: 2022
  ident: 10.1016/j.engfracmech.2022.109020_b0340
  article-title: A new pseudo 3D hydraulic fracture propagation model for sandstone reservoirs considering fracture penetrating height
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2022.108358
– volume: 205
  start-page: 221
  year: 2017
  ident: 10.1016/j.engfracmech.2022.109020_b0060
  article-title: An approximate solution for a plane strain hydraulic fracture that accounts for fracture toughness, fluid viscosity, and leak-off
  publication-title: Int J Fract
  doi: 10.1007/s10704-017-0192-4
– volume: 52
  start-page: 5137
  year: 2019
  ident: 10.1016/j.engfracmech.2022.109020_b0295
  article-title: Investigating hydraulic fracturing complexity in naturally fractured rock masses using fully coupled multiscale numerical modeling
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-019-01851-3
– volume: 122
  start-page: 3410
  year: 2017
  ident: 10.1016/j.engfracmech.2022.109020_b0025
  article-title: Pore-scale modeling of hydromechanical coupled mechanics in hydrofracturing process
  publication-title: J Geophys Res Solid Earth
  doi: 10.1002/2017JB013989
– volume: 105
  start-page: 79
  year: 2019
  ident: 10.1016/j.engfracmech.2022.109020_b0320
  article-title: Numerical study of interaction between a hydraulic fracture and a weak plane using the bonded-particle model based on moment tensors
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2018.09.012
– volume: 41
  start-page: 1329
  year: 2004
  ident: 10.1016/j.engfracmech.2022.109020_b0190
  article-title: A bonded-particle model for rock
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2004.09.011
– volume: 184
  year: 2020
  ident: 10.1016/j.engfracmech.2022.109020_b0240
  article-title: Experimental investigation into hydraulic fracture geometry and proppant migration characteristics for southeastern Sichuan deep shale reservoirs
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2019.106517
– volume: 236
  year: 2020
  ident: 10.1016/j.engfracmech.2022.109020_b0280
  article-title: Phase field modeling of hydraulic fracturing in porous media formation with natural fracture
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2020.107206
– volume: 176
  start-page: 207
  year: 2019
  ident: 10.1016/j.engfracmech.2022.109020_b0080
  article-title: Exploring the influence of rock inherent heterogeneity and grain size on hydraulic fracturing using discrete element modeling
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2019.06.018
– volume: 258
  year: 2021
  ident: 10.1016/j.engfracmech.2022.109020_b0200
  article-title: Hydraulic fracturing model of a layered rock mass based on peridynamics
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2021.108088
– volume: 179
  start-page: 378
  year: 2019
  ident: 10.1016/j.engfracmech.2022.109020_b0245
  article-title: Analysis of stress interference among multiple hydraulic fractures using a fully three-dimensional displacement discontinuity method
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2019.04.050
– volume: 18
  start-page: 1
  year: 2015
  ident: 10.1016/j.engfracmech.2022.109020_b0195
  article-title: The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions
  publication-title: Geosystem Eng
  doi: 10.1080/12269328.2014.998346
– volume: 71
  start-page: 283
  year: 2016
  ident: 10.1016/j.engfracmech.2022.109020_b0035
  article-title: Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2015.06.007
– ident: 10.1016/j.engfracmech.2022.109020_b0090
– volume: 102
  start-page: 109
  year: 2018
  ident: 10.1016/j.engfracmech.2022.109020_b0175
  article-title: DEM analysis of failure mechanisms in the intact Brazilian test
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2017.11.010
– volume: 211
  year: 2022
  ident: 10.1016/j.engfracmech.2022.109020_b0140
  article-title: Investigation on the influence of multiple fracture interference on hydraulic fracture propagation in tight reservoirs
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2022.110160
– volume: 115
  start-page: B01202
  year: 2010
  ident: 10.1016/j.engfracmech.2022.109020_b0115
  article-title: Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading
  publication-title: J Geophys Res
  doi: 10.1029/2009JB006496
– volume: 372
  year: 2020
  ident: 10.1016/j.engfracmech.2022.109020_b0285
  article-title: A consistent phase field model for hydraulic fracture propagation in poroelastic media
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113396
– volume: 41
  start-page: 1430
  year: 2017
  ident: 10.1016/j.engfracmech.2022.109020_b0300
  article-title: Fully coupled simulation of a hydraulic fracture interacting with natural fractures with a hybrid discrete-continuum method
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2682
– volume: 70
  start-page: 533
  year: 1999
  ident: 10.1016/j.engfracmech.2022.109020_b0265
  article-title: Mesoscopic study of concrete I : generation of random aggregate structure and finite element mesh
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(98)00177-1
– volume: 210
  year: 2022
  ident: 10.1016/j.engfracmech.2022.109020_b0330
  article-title: Numerical study of hydraulic fracture propagation in inherently laminated rocks accounting for bedding plane properties
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2021.109798
– volume: 73
  start-page: 8451
  year: 2015
  ident: 10.1016/j.engfracmech.2022.109020_b0180
  article-title: Simulation of the hydraulic fracturing process of fractured rocks by the discrete element method
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-014-4005-z
– volume: 70
  year: 2019
  ident: 10.1016/j.engfracmech.2022.109020_b0205
  article-title: Xfem modeling of stress shadowing in multiple hydraulic fractures in multi-layered formations
  publication-title: J Nat Gas Sci Eng
– volume: 239
  year: 2022
  ident: 10.1016/j.engfracmech.2022.109020_b0030
  article-title: Numerical study of hydraulic fracturing near a wellbore using dual boundary element method
  publication-title: Int J Solids Struct
– volume: 191
  year: 2020
  ident: 10.1016/j.engfracmech.2022.109020_b0085
  article-title: 3D lattice modeling of hydraulic fracture initiation and near-wellbore propagation for different perforation models
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2020.107169
– volume: 115
  start-page: 208
  year: 2017
  ident: 10.1016/j.engfracmech.2022.109020_b0325
  article-title: A pseudo-3D model for hydraulic fracture growth in a layered rock
  publication-title: Int J Solids Struct
– volume: 13
  start-page: 937
  year: 1961
  ident: 10.1016/j.engfracmech.2022.109020_b0185
  article-title: Widths of Hydraulic Fractures
  publication-title: J Pet Technol
  doi: 10.2118/89-PA
– ident: 10.1016/j.engfracmech.2022.109020_b0015
  doi: 10.1016/j.enggeo.2012.11.013
– volume: 16
  start-page: 396
  year: 2019
  ident: 10.1016/j.engfracmech.2022.109020_b0155
  article-title: Study of hydraulic fracture growth behavior in heterogeneous tight sandstone formations using CT scanning and acoustic emission monitoring
  publication-title: Pet Sci
  doi: 10.1007/s12182-018-0290-6
– volume: 48
  start-page: 712
  year: 2011
  ident: 10.1016/j.engfracmech.2022.109020_b0220
  article-title: The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2011.04.013
– ident: 10.1016/j.engfracmech.2022.109020_b0110
– volume: 238
  year: 2022
  ident: 10.1016/j.engfracmech.2022.109020_b0070
  article-title: Hydraulic fracture height growth in layered rocks : Perspective from DEM simulation of different propagation regimes
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2021.111395
– volume: 4
  start-page: 1
  year: 2020
  ident: 10.1016/j.engfracmech.2022.109020_b0065
  article-title: Numerical investigation of interaction between hydraulic and natural fractures under various geologic and engineering parameters using particle flow code method. Energy Sources
  publication-title: Part A Recover Util Environ Eff
– volume: 2022
  start-page: 9708300
  year: 2022
  ident: 10.1016/j.engfracmech.2022.109020_b0165
  article-title: Multiscale sensitivity analysis of hydraulic fracturing parameters based on dimensionless analysis method
  publication-title: Lithosphere
  doi: 10.2113/2022/9708300
– volume: 52
  start-page: 611
  year: 2019
  ident: 10.1016/j.engfracmech.2022.109020_b0255
  article-title: Modeling three-dimensional fluid-driven propagation of multiple fractures using TOUGH-FEMM
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-018-1715-7
– volume: 28
  start-page: 2814
  year: 2021
  ident: 10.1016/j.engfracmech.2022.109020_b0130
  article-title: Formation of X-shaped hydraulic fractures in deep thick glutenite reservoirs : A case study in Bohai Bay Basin
  publication-title: East China J Cent South Univ
  doi: 10.1007/s11771-021-4809-4
– volume: 10
  start-page: 1839
  year: 2020
  ident: 10.1016/j.engfracmech.2022.109020_b0260
  article-title: Influencing factors and application prospects of CO2 flooding in heterogeneous glutenite reservoirs
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-58792-z
– volume: 185
  year: 2019
  ident: 10.1016/j.engfracmech.2022.109020_b0020
  article-title: Understanding the performance of hydraulically fractured wells in the laumontite-rich tight glutenite formation
  publication-title: J Pet Sci Eng
– volume: 248
  year: 2021
  ident: 10.1016/j.engfracmech.2022.109020_b0235
  article-title: Hydraulic fracture vertical propagation behavior in transversely isotropic layered shale formation with transition zone using XFEM-based CZM method
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2021.107707
– volume: 52
  start-page: 1315
  year: 2019
  ident: 10.1016/j.engfracmech.2022.109020_b0005
  article-title: Lattice numerical simulations of lab-scale hydraulic fracture and natural interface interaction
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-018-1671-2
– volume: 12
  start-page: 3419
  year: 2021
  ident: 10.1016/j.engfracmech.2022.109020_b0135
  article-title: Numerical simulation of brittleness effect on propagation behavior of glutenite hydraulic fractures
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2021.03.015
– volume: 49
  start-page: 66
  year: 2018
  ident: 10.1016/j.engfracmech.2022.109020_b0120
  article-title: Numerical methods for hydraulic fracture propagation: A review of recent trends
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2017.10.012
– volume: 146
  year: 2022
  ident: 10.1016/j.engfracmech.2022.109020_b0345
  article-title: Exploring the effect of engineering parameters on the penetration of hydraulic fractures through bedding planes in different propagation regimes
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2022.104736
– volume: 48
  start-page: 311
  year: 2016
  ident: 10.1016/j.engfracmech.2022.109020_b0045
  article-title: Mechanics of hydraulic fractures
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-010814-014736
– volume: 118
  start-page: 33
  year: 2019
  ident: 10.1016/j.engfracmech.2022.109020_b0225
  article-title: Estimating DEM microparameters for uniaxial compression simulation with genetic programming
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2019.03.024
– volume: 338
  start-page: 847
  year: 2018
  ident: 10.1016/j.engfracmech.2022.109020_b0040
  article-title: Experimental investigation of fracture propagation induced by carbon dioxide and water in coal seam reservoirs
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2018.07.071
– volume: 354
  start-page: 301
  year: 2019
  ident: 10.1016/j.engfracmech.2022.109020_b0310
  article-title: Investigation of the nucleation, propagation and coalescence of hydraulic fractures in glutenite reservoirs using a coupled fluid flow-DEM approach
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2019.05.073
– volume: 1–7
  year: 2022
  ident: 10.1016/j.engfracmech.2022.109020_b0055
  article-title: Morphology of multiple constant height hydraulic fractures versus propagation regime
  publication-title: Int J Numer Anal Methods Geomech
– volume: 65
  start-page: 147
  year: 2015
  ident: 10.1016/j.engfracmech.2022.109020_b0105
  article-title: A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2014.12.011
– volume: 27
  start-page: 1642
  year: 2010
  ident: 10.1016/j.engfracmech.2022.109020_b0010
  article-title: Fractures in the low porosity and ultra-low permeability glutenite reservoirs : A case study of the late Eocene Hetaoyuan formation in the Anpeng Oil field
  publication-title: Mar Pet Geol
  doi: 10.1016/j.marpetgeo.2010.03.009
– volume: 14
  start-page: 1268
  year: 2017
  ident: 10.1016/j.engfracmech.2022.109020_b0210
  article-title: A new method for permeability estimation from conventional well logs in glutenite reservoirs
  publication-title: J Geophys Eng
  doi: 10.1088/1742-2140/aa7798
– volume: 17
  start-page: 159
  year: 2010
  ident: 10.1016/j.engfracmech.2022.109020_b0145
  article-title: An new area function for sharp indenter tips in nanoindentation
  publication-title: Chinese J Aeronaut
  doi: 10.1016/S1000-9361(11)60231-8
– volume: 97
  start-page: 37
  year: 2017
  ident: 10.1016/j.engfracmech.2022.109020_b0170
  article-title: Experimental study on the mechanism of hydraulic fracture growth in a glutenite reservoir
  publication-title: J Struct Geol
  doi: 10.1016/j.jsg.2017.02.012
– volume: 48
  start-page: 219
  year: 2011
  ident: 10.1016/j.engfracmech.2022.109020_b0095
  article-title: The synthetic rock mass approach for jointed rock mass modelling
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2010.11.014
– volume: 35
  start-page: 541
  year: 2016
  ident: 10.1016/j.engfracmech.2022.109020_b0160
  article-title: Experimental investigation of the effects of heterogeneity and geostress difference on the 3D growth and distribution of hydrofracturing cracks in unconventional reservoir rocks
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2016.08.071
– volume: 10
  start-page: 1001
  year: 2017
  ident: 10.1016/j.engfracmech.2022.109020_b0350
  article-title: Investigation of processes of interaction between hydraulic and natural fractures by PFC modeling comparing against laboratory experiments and analytical models
  publication-title: Energies
  doi: 10.3390/en10071001
– volume: 32
  start-page: 483
  year: 2014
  ident: 10.1016/j.engfracmech.2022.109020_b0315
  article-title: Deposition and diagenesis of steep-slope glutenite reservoirs : Shengtuo Field, eastern China
  publication-title: Energy Explor Exploit
  doi: 10.1260/0144-5987.32.3.483
– volume: 267
  year: 2020
  ident: 10.1016/j.engfracmech.2022.109020_b0335
  article-title: Experimental investigation on hydraulic fracturing of granite specimens with double flaws based on DIC
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2020.105510
– volume: 24
  start-page: 2292
  year: 2019
  ident: 10.1016/j.engfracmech.2022.109020_b0250
  article-title: Investigation of rupture and slip mechanisms of hydraulic fractures in multiple-layered formations
  publication-title: SPE J
  doi: 10.2118/197054-PA
– volume: 208
  year: 2022
  ident: 10.1016/j.engfracmech.2022.109020_b0150
  article-title: Characterization of meso-structure of glutenite reservoirs by ultrasonic characteristics and the velocity heterogeneity
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2021.109436
– volume: 206
  start-page: 482
  year: 2017
  ident: 10.1016/j.engfracmech.2022.109020_b0230
  article-title: Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.05.033
– volume: 125
  year: 2020
  ident: 10.1016/j.engfracmech.2022.109020_b0365
  article-title: Effect of mechanical heterogeneity on hydraulic fracture propagation in unconventional gas reservoirs
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2020.103652
– volume: 4
  start-page: 35
  year: 2004
  ident: 10.1016/j.engfracmech.2022.109020_b0050
  article-title: Propagation regimes of fluid-driven fractures in impermeable rocks
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)1532-3641(2004)4:1(35)
– volume: 8
  start-page: 597
  year: 2013
  ident: 10.1016/j.engfracmech.2022.109020_b0125
  article-title: A numerical investigation of the hydraulic fracturing behaviour of conglomerate in Glutenite formation
  publication-title: Acta Geotech
  doi: 10.1007/s11440-013-0209-8
– volume: 150
  year: 2022
  ident: 10.1016/j.engfracmech.2022.109020_b0360
  article-title: A fast simulation method for hydraulic-fracture-network generation in fractured rock based on fully coupled XFEM
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2022.104892
– volume: 45
  start-page: 65
  year: 2017
  ident: 10.1016/j.engfracmech.2022.109020_b0100
  article-title: Numerical simulation of failure mechanism of horizontal borehole in transversely isotropic shale gas reservoirs
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2017.05.015
– volume: 350
  start-page: 169
  year: 2019
  ident: 10.1016/j.engfracmech.2022.109020_b0355
  article-title: Phase-field modeling of fluid-driven dynamic cracking in porous media
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2019.03.001
– volume: 4
  start-page: 115
  year: 2018
  ident: 10.1016/j.engfracmech.2022.109020_b0075
  article-title: A review of multiscale expansion of low permeability reservoir cracks
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2017.09.002
– volume: 19
  start-page: 296
  year: 2022
  ident: 10.1016/j.engfracmech.2022.109020_b0305
  article-title: Numerical investigation on the effect of depletion-induced stress reorientation on infill well hydraulic fracture propagation
  publication-title: Pet Sci
  doi: 10.1016/j.petsci.2021.09.014
– volume: 94
  year: 2021
  ident: 10.1016/j.engfracmech.2022.109020_b0215
  article-title: Optimising well orientation in hydraulic fracturing of naturally fractured shale gas formations
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2021.104141
– volume: 148
  year: 2022
  ident: 10.1016/j.engfracmech.2022.109020_b0270
  article-title: Influence of slip and permeability of bedding interface on hydraulic fracturing: A numerical study using combined finite-discrete element method
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2022.104801
– volume: 162
  start-page: 190
  year: 2018
  ident: 10.1016/j.engfracmech.2022.109020_b0275
  article-title: Pseudo-three-dimensional numerical model and investigation of multi-cluster fracturing within a stage in a horizontal well
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2017.12.034
SSID ssj0007680
Score 2.6368446
Snippet [Display omitted] •A mathematical method for the generation of irregular polygonal gravels is proposed to establish the fracturing model of glutenite.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109020
SubjectTerms Discrete element modeling
Fracture asymmetry
Glutenite
Heterogeneity
Hydraulic fracturing
Title Exploring hydraulic fracture behavior in glutenite formation with strong heterogeneity and variable lithology based on DEM simulation
URI https://dx.doi.org/10.1016/j.engfracmech.2022.109020
Volume 278
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qBdGD-MT6YgWvaZvNYzfgRcRSFT0p9BY2m02NtGnpQ_Dizf_tTB61gqDgNfCRZWeY-XZ3Zj6A80jHPEIeb9lK0m0V963Aldry4oAnnq0Vzwdp3z_43Sf3tuf1anBV9cJQWWUZ-4uYnkfr8kur3M3WOE2px9d20JtczvM86KzAKncC36vD6uXNXfdhEZCRUbcrIQMCrMHZV5mXyfrJROmhyZ8mOG_mlYrtn9PUUurpbMFmyRnZZbGsbaiZbAc2liYJ7sLHopaOPb_FEzUfpJrRH-mBgFW9-CzNWB9dzRDRZIu-RUaXsWxKl-IIp_qYEbqVQX7OVBazVzxOU4MVQ8aex8o3RrkvZohEM7JpOiw1wPbgqXP9eNW1SoUFSzvcnlkR9xLhCCWN45HctOYBj7Vpx0IaQRL0bhIgBRd2EBkbc7lAuuUrGSGrkIl2Ymcf6tkoMwfAFJ4dPV8LNEXkapVEQmjpC-1JxPqB2wBZbWioy_HjpIIxCKs6s5dwyRYh2SIsbNEAvoCOixkcfwFdVFYLvzlUiLnid_jh_-BHsE669EV59zHUZ5O5OUH2MotOYaX5bp-WPvoJfQ7xyQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6qgo-D-MT6XMFr2mbz2A14kWKpz5OCt7DZbGqkxtKH4MWb_9uZPGoFQcFryJCwM8x8u_vNfAAnkY55hDjespWk0yruW4ErteXFAU88WyueD9K-ufW79-7lg_dQg3bVC0O0yjL3Fzk9z9blk2a5ms1BmlKPr-1gNLmc53XQmYMF13ME8foa7188D8TTrUrGgF5fhOMvkpfJeslQ6WeTX0xw3sh5iq2fi9RM4emswWqJGNlZ8VPrUDPZBqzMzBHchI8pk449vsVDNemnmtEX6XqAVZ34LM1YDwPNEMxk065FRkexbERH4mhO7JgXDCqD6JypLGavuJmm9iqGeD3PlG-MKl_M0BKdyEbpc6kAtgX3nfO7dtcq9RUs7XB7bEXcS4QjlDSOR2LTmgc81qYVC2kECdC7SYAAXNhBZGys5ALBlq9khJhCJtqJnW2Yz14yswNM4c7R87VAR0SuVkkkhJa-0J5EWz9w6yCrBQ11OXycNDD6YcUyewpnfBGSL8LCF3XgU9NBMYHjL0anldfCb-EUYqX43Xz3f-ZHsNS9u7kOry9ur_ZgmRTqC6L3PsyPhxNzgDhmHB3mcfoJjnXylA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+hydraulic+fracture+behavior+in+glutenite+formation+with+strong+heterogeneity+and+variable+lithology+based+on+DEM+simulation&rft.jtitle=Engineering+fracture+mechanics&rft.au=Huang%2C+Liuke&rft.au=He%2C+Rui&rft.au=Yang%2C+Zhaozhong&rft.au=Tan%2C+Peng&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0013-7944&rft.volume=278&rft_id=info:doi/10.1016%2Fj.engfracmech.2022.109020&rft.externalDocID=S0013794422007433
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon