Hydrostatic high strain rate loading response of closed-cell polymeric foams as a function of mass density

Closed cell polymeric foams are widely used in naval structures as sandwich core material owing to their lightweight and high energy absorption capabilities. There has been a great push towards understanding their material response under multiple loading scenarios, however, the loading scenarios hav...

Full description

Saved in:
Bibliographic Details
Published inComposites. Part B, Engineering Vol. 247; p. 110318
Main Authors Wanchoo, Piyush, Kishore, Shyamal, Shukla, Arun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2022
Subjects
Online AccessGet full text
ISSN1359-8368
1879-1069
DOI10.1016/j.compositesb.2022.110318

Cover

Abstract Closed cell polymeric foams are widely used in naval structures as sandwich core material owing to their lightweight and high energy absorption capabilities. There has been a great push towards understanding their material response under multiple loading scenarios, however, the loading scenarios have been limited to uniaxial or multiaxial in air loadings at different strain rates. Here, the hydrostatic elastic response and yield behavior of PVC foams with varying mass densities under a high strain rate hydrostatic loading state have been investigated. A novel underwater high strain rate loading facility is utilized to subject these foams to near blast strain rate hydrostatic loading. Using the 3-D Digital Image Correlation (DIC) technique in conjunction with ultra-high-speed photography, full-field volumetric deformation data is obtained. The dynamic loading data is obtained using a piezoelectric pressure sensor. This enables the measurement of material yield strength and bulk modulus for these materials under high strain rate hydrostatic loading conditions. The foams demonstrate increment in bulk modulus and yield strength under high strain rate loading. Further, the increment observed is highly sensitive to the material bulk mass density.
AbstractList Closed cell polymeric foams are widely used in naval structures as sandwich core material owing to their lightweight and high energy absorption capabilities. There has been a great push towards understanding their material response under multiple loading scenarios, however, the loading scenarios have been limited to uniaxial or multiaxial in air loadings at different strain rates. Here, the hydrostatic elastic response and yield behavior of PVC foams with varying mass densities under a high strain rate hydrostatic loading state have been investigated. A novel underwater high strain rate loading facility is utilized to subject these foams to near blast strain rate hydrostatic loading. Using the 3-D Digital Image Correlation (DIC) technique in conjunction with ultra-high-speed photography, full-field volumetric deformation data is obtained. The dynamic loading data is obtained using a piezoelectric pressure sensor. This enables the measurement of material yield strength and bulk modulus for these materials under high strain rate hydrostatic loading conditions. The foams demonstrate increment in bulk modulus and yield strength under high strain rate loading. Further, the increment observed is highly sensitive to the material bulk mass density.
ArticleNumber 110318
Author Wanchoo, Piyush
Shukla, Arun
Kishore, Shyamal
Author_xml – sequence: 1
  givenname: Piyush
  surname: Wanchoo
  fullname: Wanchoo, Piyush
– sequence: 2
  givenname: Shyamal
  surname: Kishore
  fullname: Kishore, Shyamal
– sequence: 3
  givenname: Arun
  surname: Shukla
  fullname: Shukla, Arun
  email: shuklaa@uri.edu
BookMark eNqNkMFKAzEQhoNUsK2-Q3yArcmmu909iRS1QsGLnsPsZNKm7CYlWYW-vbvUg3gqDMwwzP8x_z9jEx88MXYvxUIKWT4cFhi6Y0iup9QscpHnCymFktUVm8pqVWdSlPVkmFVRZ5Uqqxs2S-kghFgWKp-yw-ZkYkg99A753u32PPURnOcReuJtAOP8jkdKx-AT8WA5tiGRyZDalh9De-ooDlIboEschuL2y2Pvgh-PO0iJG_LDf6dbdm2hTXT32-fs8-X5Y73Jtu-vb-unbYYql30GQtlmBSAsmgYQClvalVkpU5Z2WNpaFgKbpaigyFGpomwQwNiScpnjsjJqzh7PXByMpUhWoxv9BT86a7UUeoxOH_Sf6PQYnT5HNxDqf4RjdB3E00Xa9VlLg8VvR1EndOSRjIuEvTbBXUD5AZjrlxg
CitedBy_id crossref_primary_10_1016_j_jmps_2024_105646
crossref_primary_10_1016_j_mechmat_2024_104970
crossref_primary_10_1016_j_eml_2023_102061
crossref_primary_10_1016_j_compositesb_2023_110513
crossref_primary_10_1016_j_mechmat_2023_104685
crossref_primary_10_1016_j_ymssp_2023_110541
crossref_primary_10_1007_s00289_023_04976_2
crossref_primary_10_1002_pen_26700
Cites_doi 10.1016/j.polymertesting.2003.07.002
10.1016/S1359-6454(01)00058-1
10.1016/j.jmps.2017.10.020
10.1016/j.ijimpeng.2019.04.020
10.1016/j.compstruct.2011.04.017
10.1016/j.compositesb.2007.02.005
10.1016/j.compositesb.2012.04.060
10.1016/j.compstruct.2020.113530
10.1016/j.heliyon.2021.e06990
10.1016/j.mechmat.2021.103948
10.1115/1.2812258
10.1177/1099636220909797
10.1177/0021955X14537659
10.1016/j.compositesb.2022.109885
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compositesb.2022.110318
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1069
ExternalDocumentID 10_1016_j_compositesb_2022_110318
S1359836822006916
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
VH1
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c321t-a03fb7aa0fcdbaca5f6f7d73d66fa0ff9150cb408a52c3356bcaadf6e212c48d3
IEDL.DBID .~1
ISSN 1359-8368
IngestDate Thu Apr 24 23:05:28 EDT 2025
Wed Oct 29 21:13:34 EDT 2025
Fri Feb 23 02:41:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords D. Mechanical testing
A.Foams
B. Impact behavior
Digital image correlation
Hydrostatic pressure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-a03fb7aa0fcdbaca5f6f7d73d66fa0ff9150cb408a52c3356bcaadf6e212c48d3
ParticipantIDs crossref_citationtrail_10_1016_j_compositesb_2022_110318
crossref_primary_10_1016_j_compositesb_2022_110318
elsevier_sciencedirect_doi_10_1016_j_compositesb_2022_110318
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Composites. Part B, Engineering
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yee, Lin, Wong, Kikuchi, Li, Nusholtz (bib13) 1997; 119
LeBlanc, Shukla (bib24) 2011; 93
Schreier, Orteu, Sutton (bib22) 2009
Gibson, Ashby (bib5) 2014
Yee, Lin, Wong, Kikuchi, Li, Nusholtz (bib6) 1997; 119
Fox, Kishore, Senol, Shukla (bib19) 2021; 160
Russell DM. Error measures for comparing transient data: Part I: development of a comprehensive error measure Part II: error measures case study electric boat proceedings reprint copy error measures for comparing transient data: Part I: development of a comprehensive error measure. n.d.
Loup, Matteson, Gielen (bib4) 2005
Senol, Shukla (bib18) 2019; 130
Gibson, Ashby (bib21) 2014
Masso Moreu, Mills (bib8) 2004; 23
Viot (bib16) 2008; vol. 36
Senol, Shukla (bib12) 2018
Tang, Zhang, Jiang, Zhao, Xie, Chen (bib14) 2022; 238
Wanchoo, Matos, Rousseau, Shukla, Piyush, Helio (bib1) 2021; 263
Deshpande, Fleck (bib9) 2001; 49
Huber, Gibson (bib20) 1988; 23
Luong, Pinisetty, Gupta (bib15) 2013; 44
Russell (bib25) 1998
Wang, Ko, Huang (bib7) 2013; vol. 67
Bloodworth-Race, Critchley, Hazael, Peare, Temple (bib17) 2021; 7
Hoo Fatt, Chen (bib11) 2015; 51
Fatt, Zhong, Gadepalli, Tong (bib10) 2021; 23
Tagarielli, Deshpande, Fleck (bib3) 2008; 39
DeNardo, Pinto, Shukla (bib2) 2018; 120
Yee (10.1016/j.compositesb.2022.110318_bib13) 1997; 119
Senol (10.1016/j.compositesb.2022.110318_bib18) 2019; 130
Fox (10.1016/j.compositesb.2022.110318_bib19) 2021; 160
Hoo Fatt (10.1016/j.compositesb.2022.110318_bib11) 2015; 51
Schreier (10.1016/j.compositesb.2022.110318_bib22) 2009
Yee (10.1016/j.compositesb.2022.110318_bib6) 1997; 119
10.1016/j.compositesb.2022.110318_bib23
Wang (10.1016/j.compositesb.2022.110318_bib7) 2013; vol. 67
DeNardo (10.1016/j.compositesb.2022.110318_bib2) 2018; 120
Luong (10.1016/j.compositesb.2022.110318_bib15) 2013; 44
Masso Moreu (10.1016/j.compositesb.2022.110318_bib8) 2004; 23
Viot (10.1016/j.compositesb.2022.110318_bib16) 2008; vol. 36
Huber (10.1016/j.compositesb.2022.110318_bib20) 1988; 23
Wanchoo (10.1016/j.compositesb.2022.110318_bib1) 2021; 263
Fatt (10.1016/j.compositesb.2022.110318_bib10) 2021; 23
Gibson (10.1016/j.compositesb.2022.110318_bib5) 2014
Russell (10.1016/j.compositesb.2022.110318_bib25) 1998
Tagarielli (10.1016/j.compositesb.2022.110318_bib3) 2008; 39
Loup (10.1016/j.compositesb.2022.110318_bib4) 2005
Bloodworth-Race (10.1016/j.compositesb.2022.110318_bib17) 2021; 7
Deshpande (10.1016/j.compositesb.2022.110318_bib9) 2001; 49
Senol (10.1016/j.compositesb.2022.110318_bib12) 2018
Gibson (10.1016/j.compositesb.2022.110318_bib21) 2014
Tang (10.1016/j.compositesb.2022.110318_bib14) 2022; 238
LeBlanc (10.1016/j.compositesb.2022.110318_bib24) 2011; 93
References_xml – reference: Russell DM. Error measures for comparing transient data: Part I: development of a comprehensive error measure Part II: error measures case study electric boat proceedings reprint copy error measures for comparing transient data: Part I: development of a comprehensive error measure. n.d.
– volume: 23
  year: 1988
  ident: bib20
  publication-title: Anisotropy of foams
– volume: 23
  start-page: 2028
  year: 2021
  end-page: 2063
  ident: bib10
  article-title: Crushable multiaxial behavior of sandwich foam cores: pressure vessel experiments
  publication-title: J Sandw Struct Mater
– volume: 44
  start-page: 403
  year: 2013
  end-page: 416
  ident: bib15
  article-title: Compressive properties of closed-cell polyvinyl chloride foams at low and high strain rates: experimental investigation and critical review of state of the art
  publication-title: Compos B Eng
– volume: vol. 36
  year: 2008
  ident: bib16
  publication-title: Hydrostatic compression on polypropylene foam
– year: 1998
  ident: bib25
  article-title: DDG53 shock trial simulation acceptance criteria. 69th shock and vibration symposium
– volume: 119
  start-page: 284
  year: 1997
  end-page: 291
  ident: bib13
  article-title: Constitutive modeling and material characterization of polymeric foams
  publication-title: J Eng Mater Technol Transact ASME
– start-page: 87
  year: 2005
  end-page: 96
  ident: bib4
  article-title: Material characterization of PVC foam under static and dynamic loading. Sandwich structures 7: advancing with sandwich structures and materials
– volume: 39
  start-page: 83
  year: 2008
  end-page: 91
  ident: bib3
  article-title: The high strain rate response of PVC foams and end-grain balsa wood
  publication-title: Compos B Eng
– volume: 130
  start-page: 214
  year: 2019
  end-page: 225
  ident: bib18
  article-title: Dynamic response of closed cell PVC foams subjected to underwater shock loading
  publication-title: Int J Impact Eng
– volume: 120
  start-page: 96
  year: 2018
  end-page: 116
  ident: bib2
  article-title: Hydrostatic and shock-initiated instabilities in double-hull composite cylinders
  publication-title: J Mech Phys Solid
– year: 2014
  ident: bib21
  article-title: Cellular solids: structure and properties
– year: 2009
  ident: bib22
  article-title: Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications
– volume: 238
  year: 2022
  ident: bib14
  article-title: Experimental investigations on phenomenological constitutive model of closed-cell PVC foam considering the effects of density, strain rate and anisotropy
  publication-title: Compos B Eng
– volume: 93
  start-page: 3072
  year: 2011
  end-page: 3081
  ident: bib24
  article-title: Dynamic response of curved composite panels to underwater explosive loading: experimental and computational comparisons
  publication-title: Compos Struct
– volume: 7
  year: 2021
  ident: bib17
  article-title: Testing the blast response of foam inserts for helmets
  publication-title: Heliyon
– volume: 49
  start-page: 1859
  year: 2001
  end-page: 1866
  ident: bib9
  article-title: Multi-axial yield behaviour of polymer foams
  publication-title: Acta Mater
– volume: 51
  start-page: 269
  year: 2015
  end-page: 287
  ident: bib11
  article-title: A viscoelastic damage model for hysteresis in PVC H100 foam under cyclic loading
  publication-title: J Cell Plast
– volume: vol. 67
  start-page: 397
  year: 2013
  end-page: 403
  ident: bib7
  article-title: Viscoelastic properties of foam under hydrostatic pressure and uniaxial compression
  publication-title: Procedia engineering
– volume: 263
  year: 2021
  ident: bib1
  article-title: A review of recent investigations on air and underwater blast mitigation in polymeric composite structures
  publication-title: Compos Struct
– year: 2014
  ident: bib5
  article-title: Cellular solids: structure and properties
– volume: 119
  start-page: 284
  year: 1997
  end-page: 291
  ident: bib6
  article-title: Constitutive modeling and material characterization of polymeric foams
  publication-title: J Eng Mater Technol Transact ASME
– volume: 160
  year: 2021
  ident: bib19
  article-title: Experiments in measuring dynamic hydrostatic constitutive properties of soft materials
  publication-title: Mech Mater
– year: 2018
  ident: bib12
  article-title: Underwater mechanical behavior of closed cell PVC foams under hydrostatic loading through 3D DIC technique
– volume: 23
  start-page: 313
  year: 2004
  end-page: 322
  ident: bib8
  article-title: Rapid hydrostatic compression of low-density polymeric foams
  publication-title: Polym Test
– year: 2009
  ident: 10.1016/j.compositesb.2022.110318_bib22
– volume: 23
  start-page: 313
  year: 2004
  ident: 10.1016/j.compositesb.2022.110318_bib8
  article-title: Rapid hydrostatic compression of low-density polymeric foams
  publication-title: Polym Test
  doi: 10.1016/j.polymertesting.2003.07.002
– volume: 49
  start-page: 1859
  year: 2001
  ident: 10.1016/j.compositesb.2022.110318_bib9
  article-title: Multi-axial yield behaviour of polymer foams
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(01)00058-1
– volume: 120
  start-page: 96
  year: 2018
  ident: 10.1016/j.compositesb.2022.110318_bib2
  article-title: Hydrostatic and shock-initiated instabilities in double-hull composite cylinders
  publication-title: J Mech Phys Solid
  doi: 10.1016/j.jmps.2017.10.020
– volume: 130
  start-page: 214
  year: 2019
  ident: 10.1016/j.compositesb.2022.110318_bib18
  article-title: Dynamic response of closed cell PVC foams subjected to underwater shock loading
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2019.04.020
– year: 2018
  ident: 10.1016/j.compositesb.2022.110318_bib12
– volume: 93
  start-page: 3072
  year: 2011
  ident: 10.1016/j.compositesb.2022.110318_bib24
  article-title: Dynamic response of curved composite panels to underwater explosive loading: experimental and computational comparisons
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2011.04.017
– volume: 39
  start-page: 83
  year: 2008
  ident: 10.1016/j.compositesb.2022.110318_bib3
  article-title: The high strain rate response of PVC foams and end-grain balsa wood
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2007.02.005
– volume: vol. 67
  start-page: 397
  year: 2013
  ident: 10.1016/j.compositesb.2022.110318_bib7
  article-title: Viscoelastic properties of foam under hydrostatic pressure and uniaxial compression
– volume: 44
  start-page: 403
  year: 2013
  ident: 10.1016/j.compositesb.2022.110318_bib15
  article-title: Compressive properties of closed-cell polyvinyl chloride foams at low and high strain rates: experimental investigation and critical review of state of the art
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2012.04.060
– volume: 263
  year: 2021
  ident: 10.1016/j.compositesb.2022.110318_bib1
  article-title: A review of recent investigations on air and underwater blast mitigation in polymeric composite structures
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2020.113530
– volume: 7
  year: 2021
  ident: 10.1016/j.compositesb.2022.110318_bib17
  article-title: Testing the blast response of foam inserts for helmets
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2021.e06990
– volume: vol. 36
  year: 2008
  ident: 10.1016/j.compositesb.2022.110318_bib16
– volume: 160
  year: 2021
  ident: 10.1016/j.compositesb.2022.110318_bib19
  article-title: Experiments in measuring dynamic hydrostatic constitutive properties of soft materials
  publication-title: Mech Mater
  doi: 10.1016/j.mechmat.2021.103948
– start-page: 87
  year: 2005
  ident: 10.1016/j.compositesb.2022.110318_bib4
– year: 2014
  ident: 10.1016/j.compositesb.2022.110318_bib5
– volume: 119
  start-page: 284
  year: 1997
  ident: 10.1016/j.compositesb.2022.110318_bib6
  article-title: Constitutive modeling and material characterization of polymeric foams
  publication-title: J Eng Mater Technol Transact ASME
  doi: 10.1115/1.2812258
– volume: 23
  start-page: 2028
  year: 2021
  ident: 10.1016/j.compositesb.2022.110318_bib10
  article-title: Crushable multiaxial behavior of sandwich foam cores: pressure vessel experiments
  publication-title: J Sandw Struct Mater
  doi: 10.1177/1099636220909797
– volume: 51
  start-page: 269
  year: 2015
  ident: 10.1016/j.compositesb.2022.110318_bib11
  article-title: A viscoelastic damage model for hysteresis in PVC H100 foam under cyclic loading
  publication-title: J Cell Plast
  doi: 10.1177/0021955X14537659
– year: 1998
  ident: 10.1016/j.compositesb.2022.110318_bib25
– year: 2014
  ident: 10.1016/j.compositesb.2022.110318_bib21
– volume: 119
  start-page: 284
  year: 1997
  ident: 10.1016/j.compositesb.2022.110318_bib13
  article-title: Constitutive modeling and material characterization of polymeric foams
  publication-title: J Eng Mater Technol Transact ASME
  doi: 10.1115/1.2812258
– ident: 10.1016/j.compositesb.2022.110318_bib23
– volume: 238
  year: 2022
  ident: 10.1016/j.compositesb.2022.110318_bib14
  article-title: Experimental investigations on phenomenological constitutive model of closed-cell PVC foam considering the effects of density, strain rate and anisotropy
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2022.109885
– volume: 23
  year: 1988
  ident: 10.1016/j.compositesb.2022.110318_bib20
  publication-title: Anisotropy of foams
SSID ssj0004532
Score 2.4310808
Snippet Closed cell polymeric foams are widely used in naval structures as sandwich core material owing to their lightweight and high energy absorption capabilities....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110318
SubjectTerms A.Foams
B. Impact behavior
D. Mechanical testing
Digital image correlation
Hydrostatic pressure
Title Hydrostatic high strain rate loading response of closed-cell polymeric foams as a function of mass density
URI https://dx.doi.org/10.1016/j.compositesb.2022.110318
Volume 247
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004532
  issn: 1359-8368
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-1069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004532
  issn: 1359-8368
  databaseCode: ACRLP
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-1069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004532
  issn: 1359-8368
  databaseCode: AIKHN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-1069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004532
  issn: 1359-8368
  databaseCode: .~1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5DQfRBvOK8jAi-1rVNm3TgyxiOqrgXHeyt5Aob3Tq2-rAXf7s5vWgFQUHIS8M50H4JOSfNl-8gdKMZkcLTyhHCM3aD4oVOFAa-o4gAuStCegV5_HlE43HwOAknLTSo78IArbJa-8s1vVitq55uhWZ3OZ12XzwQnyPURjiQ2_VAdjsIGFQxuH33GorhRZEyMHbAegddf3G8gLYN3Ci9Fnar6PtAiidQ_-OnGNWIO8MDtF8ljLhfvtMhaunFEdpryAgeo1m8UXB5A8RXMegP43VR-QGDDAROs4Imj1clG1bjzGCZZmuLHPy1x8ss3RTHNthkfL7G3DYM4Q6GDIznNr_GCoju-eYEjYf3r4PYqWooOJL4Xu5wlxjBOHeNVIJLHhpqmGJEUWpsp-nZhFCKwI146EtCQiok58pQbUOaDCJFTtHWIlvoM4Q108z0fCUNcwNBmG1SUS5tRkUMDWQbRTVqiawExuFr06Rmks2SBuAJAJ6UgLeR_-m6LFU2_uJ0Vw9N8m3KJDYa_O5-_j_3C7QLTyWz5RJt5as3fWXzk1x0ignYQdv9h6d49AETEuoe
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB6shT4OpU9qn1voNdVkk12FXopUbKtequAt7BMUNaL24KW_vTtJbC0UWijsaTMDyewyj-y33wDcGk6V9I32pPStK1D8yKtGYeBpKpHuitJaCh5vd1izFz73o34B6qu7MAirzH1_5tNTb53PlHNrlqeDQfnVR_I5ylyEQ7pdn23AZhgFHCuwu3d_jTI87VKG0h6Kb8HNF8gLcdsIjjJz6WrFIEBUPMUGID8FqbXA09iHvTxjJA_ZSx1AwUwOYXeNR_AIhs2lxtsbyL5KkICYzNPWDwR5IMgoSXHyZJbBYQ1JLFGjZO5Mh7_tyTQZLdNzG2ITMZ4T4QbBeIdrhsJjl2ATjUj3xfIYeo3Hbr3p5U0UPEUDf-GJCrWSC1GxSkuhRGSZ5ZpTzZh1k7bmMkIlw0pVRIGiNGJSCaEtMy6mqbCq6QkUJ8nEnAIx3HBbC7SyvBJKyt1QmgnlUipqWahKUF1ZLVY5wzh-7SheQcmG8ZrBYzR4nBm8BMGn6jSj2fiL0v1qaeJveyZ24eB39bP_qV_DdrPbbsWtp87LOezgkwzmcgHFxezNXLpkZSGv0s34AYf667M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrostatic+high+strain+rate+loading+response+of+closed-cell+polymeric+foams+as+a+function+of+mass+density&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Wanchoo%2C+Piyush&rft.au=Kishore%2C+Shyamal&rft.au=Shukla%2C+Arun&rft.date=2022-12-01&rft.pub=Elsevier+Ltd&rft.issn=1359-8368&rft.eissn=1879-1069&rft.volume=247&rft_id=info:doi/10.1016%2Fj.compositesb.2022.110318&rft.externalDocID=S1359836822006916
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon