Hydrostatic high strain rate loading response of closed-cell polymeric foams as a function of mass density
Closed cell polymeric foams are widely used in naval structures as sandwich core material owing to their lightweight and high energy absorption capabilities. There has been a great push towards understanding their material response under multiple loading scenarios, however, the loading scenarios hav...
Saved in:
| Published in | Composites. Part B, Engineering Vol. 247; p. 110318 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.12.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1359-8368 1879-1069 |
| DOI | 10.1016/j.compositesb.2022.110318 |
Cover
| Abstract | Closed cell polymeric foams are widely used in naval structures as sandwich core material owing to their lightweight and high energy absorption capabilities. There has been a great push towards understanding their material response under multiple loading scenarios, however, the loading scenarios have been limited to uniaxial or multiaxial in air loadings at different strain rates. Here, the hydrostatic elastic response and yield behavior of PVC foams with varying mass densities under a high strain rate hydrostatic loading state have been investigated. A novel underwater high strain rate loading facility is utilized to subject these foams to near blast strain rate hydrostatic loading. Using the 3-D Digital Image Correlation (DIC) technique in conjunction with ultra-high-speed photography, full-field volumetric deformation data is obtained. The dynamic loading data is obtained using a piezoelectric pressure sensor. This enables the measurement of material yield strength and bulk modulus for these materials under high strain rate hydrostatic loading conditions. The foams demonstrate increment in bulk modulus and yield strength under high strain rate loading. Further, the increment observed is highly sensitive to the material bulk mass density. |
|---|---|
| AbstractList | Closed cell polymeric foams are widely used in naval structures as sandwich core material owing to their lightweight and high energy absorption capabilities. There has been a great push towards understanding their material response under multiple loading scenarios, however, the loading scenarios have been limited to uniaxial or multiaxial in air loadings at different strain rates. Here, the hydrostatic elastic response and yield behavior of PVC foams with varying mass densities under a high strain rate hydrostatic loading state have been investigated. A novel underwater high strain rate loading facility is utilized to subject these foams to near blast strain rate hydrostatic loading. Using the 3-D Digital Image Correlation (DIC) technique in conjunction with ultra-high-speed photography, full-field volumetric deformation data is obtained. The dynamic loading data is obtained using a piezoelectric pressure sensor. This enables the measurement of material yield strength and bulk modulus for these materials under high strain rate hydrostatic loading conditions. The foams demonstrate increment in bulk modulus and yield strength under high strain rate loading. Further, the increment observed is highly sensitive to the material bulk mass density. |
| ArticleNumber | 110318 |
| Author | Wanchoo, Piyush Shukla, Arun Kishore, Shyamal |
| Author_xml | – sequence: 1 givenname: Piyush surname: Wanchoo fullname: Wanchoo, Piyush – sequence: 2 givenname: Shyamal surname: Kishore fullname: Kishore, Shyamal – sequence: 3 givenname: Arun surname: Shukla fullname: Shukla, Arun email: shuklaa@uri.edu |
| BookMark | eNqNkMFKAzEQhoNUsK2-Q3yArcmmu909iRS1QsGLnsPsZNKm7CYlWYW-vbvUg3gqDMwwzP8x_z9jEx88MXYvxUIKWT4cFhi6Y0iup9QscpHnCymFktUVm8pqVWdSlPVkmFVRZ5Uqqxs2S-kghFgWKp-yw-ZkYkg99A753u32PPURnOcReuJtAOP8jkdKx-AT8WA5tiGRyZDalh9De-ooDlIboEschuL2y2Pvgh-PO0iJG_LDf6dbdm2hTXT32-fs8-X5Y73Jtu-vb-unbYYql30GQtlmBSAsmgYQClvalVkpU5Z2WNpaFgKbpaigyFGpomwQwNiScpnjsjJqzh7PXByMpUhWoxv9BT86a7UUeoxOH_Sf6PQYnT5HNxDqf4RjdB3E00Xa9VlLg8VvR1EndOSRjIuEvTbBXUD5AZjrlxg |
| CitedBy_id | crossref_primary_10_1016_j_jmps_2024_105646 crossref_primary_10_1016_j_mechmat_2024_104970 crossref_primary_10_1016_j_eml_2023_102061 crossref_primary_10_1016_j_compositesb_2023_110513 crossref_primary_10_1016_j_mechmat_2023_104685 crossref_primary_10_1016_j_ymssp_2023_110541 crossref_primary_10_1007_s00289_023_04976_2 crossref_primary_10_1002_pen_26700 |
| Cites_doi | 10.1016/j.polymertesting.2003.07.002 10.1016/S1359-6454(01)00058-1 10.1016/j.jmps.2017.10.020 10.1016/j.ijimpeng.2019.04.020 10.1016/j.compstruct.2011.04.017 10.1016/j.compositesb.2007.02.005 10.1016/j.compositesb.2012.04.060 10.1016/j.compstruct.2020.113530 10.1016/j.heliyon.2021.e06990 10.1016/j.mechmat.2021.103948 10.1115/1.2812258 10.1177/1099636220909797 10.1177/0021955X14537659 10.1016/j.compositesb.2022.109885 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compositesb.2022.110318 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1069 |
| ExternalDocumentID | 10_1016_j_compositesb_2022_110318 S1359836822006916 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSM SST SSZ T5K VH1 ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c321t-a03fb7aa0fcdbaca5f6f7d73d66fa0ff9150cb408a52c3356bcaadf6e212c48d3 |
| IEDL.DBID | .~1 |
| ISSN | 1359-8368 |
| IngestDate | Thu Apr 24 23:05:28 EDT 2025 Wed Oct 29 21:13:34 EDT 2025 Fri Feb 23 02:41:43 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | D. Mechanical testing A.Foams B. Impact behavior Digital image correlation Hydrostatic pressure |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c321t-a03fb7aa0fcdbaca5f6f7d73d66fa0ff9150cb408a52c3356bcaadf6e212c48d3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_compositesb_2022_110318 crossref_primary_10_1016_j_compositesb_2022_110318 elsevier_sciencedirect_doi_10_1016_j_compositesb_2022_110318 |
| PublicationCentury | 2000 |
| PublicationDate | December 2022 2022-12-00 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Composites. Part B, Engineering |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Yee, Lin, Wong, Kikuchi, Li, Nusholtz (bib13) 1997; 119 LeBlanc, Shukla (bib24) 2011; 93 Schreier, Orteu, Sutton (bib22) 2009 Gibson, Ashby (bib5) 2014 Yee, Lin, Wong, Kikuchi, Li, Nusholtz (bib6) 1997; 119 Fox, Kishore, Senol, Shukla (bib19) 2021; 160 Russell DM. Error measures for comparing transient data: Part I: development of a comprehensive error measure Part II: error measures case study electric boat proceedings reprint copy error measures for comparing transient data: Part I: development of a comprehensive error measure. n.d. Loup, Matteson, Gielen (bib4) 2005 Senol, Shukla (bib18) 2019; 130 Gibson, Ashby (bib21) 2014 Masso Moreu, Mills (bib8) 2004; 23 Viot (bib16) 2008; vol. 36 Senol, Shukla (bib12) 2018 Tang, Zhang, Jiang, Zhao, Xie, Chen (bib14) 2022; 238 Wanchoo, Matos, Rousseau, Shukla, Piyush, Helio (bib1) 2021; 263 Deshpande, Fleck (bib9) 2001; 49 Huber, Gibson (bib20) 1988; 23 Luong, Pinisetty, Gupta (bib15) 2013; 44 Russell (bib25) 1998 Wang, Ko, Huang (bib7) 2013; vol. 67 Bloodworth-Race, Critchley, Hazael, Peare, Temple (bib17) 2021; 7 Hoo Fatt, Chen (bib11) 2015; 51 Fatt, Zhong, Gadepalli, Tong (bib10) 2021; 23 Tagarielli, Deshpande, Fleck (bib3) 2008; 39 DeNardo, Pinto, Shukla (bib2) 2018; 120 Yee (10.1016/j.compositesb.2022.110318_bib13) 1997; 119 Senol (10.1016/j.compositesb.2022.110318_bib18) 2019; 130 Fox (10.1016/j.compositesb.2022.110318_bib19) 2021; 160 Hoo Fatt (10.1016/j.compositesb.2022.110318_bib11) 2015; 51 Schreier (10.1016/j.compositesb.2022.110318_bib22) 2009 Yee (10.1016/j.compositesb.2022.110318_bib6) 1997; 119 10.1016/j.compositesb.2022.110318_bib23 Wang (10.1016/j.compositesb.2022.110318_bib7) 2013; vol. 67 DeNardo (10.1016/j.compositesb.2022.110318_bib2) 2018; 120 Luong (10.1016/j.compositesb.2022.110318_bib15) 2013; 44 Masso Moreu (10.1016/j.compositesb.2022.110318_bib8) 2004; 23 Viot (10.1016/j.compositesb.2022.110318_bib16) 2008; vol. 36 Huber (10.1016/j.compositesb.2022.110318_bib20) 1988; 23 Wanchoo (10.1016/j.compositesb.2022.110318_bib1) 2021; 263 Fatt (10.1016/j.compositesb.2022.110318_bib10) 2021; 23 Gibson (10.1016/j.compositesb.2022.110318_bib5) 2014 Russell (10.1016/j.compositesb.2022.110318_bib25) 1998 Tagarielli (10.1016/j.compositesb.2022.110318_bib3) 2008; 39 Loup (10.1016/j.compositesb.2022.110318_bib4) 2005 Bloodworth-Race (10.1016/j.compositesb.2022.110318_bib17) 2021; 7 Deshpande (10.1016/j.compositesb.2022.110318_bib9) 2001; 49 Senol (10.1016/j.compositesb.2022.110318_bib12) 2018 Gibson (10.1016/j.compositesb.2022.110318_bib21) 2014 Tang (10.1016/j.compositesb.2022.110318_bib14) 2022; 238 LeBlanc (10.1016/j.compositesb.2022.110318_bib24) 2011; 93 |
| References_xml | – reference: Russell DM. Error measures for comparing transient data: Part I: development of a comprehensive error measure Part II: error measures case study electric boat proceedings reprint copy error measures for comparing transient data: Part I: development of a comprehensive error measure. n.d. – volume: 23 year: 1988 ident: bib20 publication-title: Anisotropy of foams – volume: 23 start-page: 2028 year: 2021 end-page: 2063 ident: bib10 article-title: Crushable multiaxial behavior of sandwich foam cores: pressure vessel experiments publication-title: J Sandw Struct Mater – volume: 44 start-page: 403 year: 2013 end-page: 416 ident: bib15 article-title: Compressive properties of closed-cell polyvinyl chloride foams at low and high strain rates: experimental investigation and critical review of state of the art publication-title: Compos B Eng – volume: vol. 36 year: 2008 ident: bib16 publication-title: Hydrostatic compression on polypropylene foam – year: 1998 ident: bib25 article-title: DDG53 shock trial simulation acceptance criteria. 69th shock and vibration symposium – volume: 119 start-page: 284 year: 1997 end-page: 291 ident: bib13 article-title: Constitutive modeling and material characterization of polymeric foams publication-title: J Eng Mater Technol Transact ASME – start-page: 87 year: 2005 end-page: 96 ident: bib4 article-title: Material characterization of PVC foam under static and dynamic loading. Sandwich structures 7: advancing with sandwich structures and materials – volume: 39 start-page: 83 year: 2008 end-page: 91 ident: bib3 article-title: The high strain rate response of PVC foams and end-grain balsa wood publication-title: Compos B Eng – volume: 130 start-page: 214 year: 2019 end-page: 225 ident: bib18 article-title: Dynamic response of closed cell PVC foams subjected to underwater shock loading publication-title: Int J Impact Eng – volume: 120 start-page: 96 year: 2018 end-page: 116 ident: bib2 article-title: Hydrostatic and shock-initiated instabilities in double-hull composite cylinders publication-title: J Mech Phys Solid – year: 2014 ident: bib21 article-title: Cellular solids: structure and properties – year: 2009 ident: bib22 article-title: Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications – volume: 238 year: 2022 ident: bib14 article-title: Experimental investigations on phenomenological constitutive model of closed-cell PVC foam considering the effects of density, strain rate and anisotropy publication-title: Compos B Eng – volume: 93 start-page: 3072 year: 2011 end-page: 3081 ident: bib24 article-title: Dynamic response of curved composite panels to underwater explosive loading: experimental and computational comparisons publication-title: Compos Struct – volume: 7 year: 2021 ident: bib17 article-title: Testing the blast response of foam inserts for helmets publication-title: Heliyon – volume: 49 start-page: 1859 year: 2001 end-page: 1866 ident: bib9 article-title: Multi-axial yield behaviour of polymer foams publication-title: Acta Mater – volume: 51 start-page: 269 year: 2015 end-page: 287 ident: bib11 article-title: A viscoelastic damage model for hysteresis in PVC H100 foam under cyclic loading publication-title: J Cell Plast – volume: vol. 67 start-page: 397 year: 2013 end-page: 403 ident: bib7 article-title: Viscoelastic properties of foam under hydrostatic pressure and uniaxial compression publication-title: Procedia engineering – volume: 263 year: 2021 ident: bib1 article-title: A review of recent investigations on air and underwater blast mitigation in polymeric composite structures publication-title: Compos Struct – year: 2014 ident: bib5 article-title: Cellular solids: structure and properties – volume: 119 start-page: 284 year: 1997 end-page: 291 ident: bib6 article-title: Constitutive modeling and material characterization of polymeric foams publication-title: J Eng Mater Technol Transact ASME – volume: 160 year: 2021 ident: bib19 article-title: Experiments in measuring dynamic hydrostatic constitutive properties of soft materials publication-title: Mech Mater – year: 2018 ident: bib12 article-title: Underwater mechanical behavior of closed cell PVC foams under hydrostatic loading through 3D DIC technique – volume: 23 start-page: 313 year: 2004 end-page: 322 ident: bib8 article-title: Rapid hydrostatic compression of low-density polymeric foams publication-title: Polym Test – year: 2009 ident: 10.1016/j.compositesb.2022.110318_bib22 – volume: 23 start-page: 313 year: 2004 ident: 10.1016/j.compositesb.2022.110318_bib8 article-title: Rapid hydrostatic compression of low-density polymeric foams publication-title: Polym Test doi: 10.1016/j.polymertesting.2003.07.002 – volume: 49 start-page: 1859 year: 2001 ident: 10.1016/j.compositesb.2022.110318_bib9 article-title: Multi-axial yield behaviour of polymer foams publication-title: Acta Mater doi: 10.1016/S1359-6454(01)00058-1 – volume: 120 start-page: 96 year: 2018 ident: 10.1016/j.compositesb.2022.110318_bib2 article-title: Hydrostatic and shock-initiated instabilities in double-hull composite cylinders publication-title: J Mech Phys Solid doi: 10.1016/j.jmps.2017.10.020 – volume: 130 start-page: 214 year: 2019 ident: 10.1016/j.compositesb.2022.110318_bib18 article-title: Dynamic response of closed cell PVC foams subjected to underwater shock loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2019.04.020 – year: 2018 ident: 10.1016/j.compositesb.2022.110318_bib12 – volume: 93 start-page: 3072 year: 2011 ident: 10.1016/j.compositesb.2022.110318_bib24 article-title: Dynamic response of curved composite panels to underwater explosive loading: experimental and computational comparisons publication-title: Compos Struct doi: 10.1016/j.compstruct.2011.04.017 – volume: 39 start-page: 83 year: 2008 ident: 10.1016/j.compositesb.2022.110318_bib3 article-title: The high strain rate response of PVC foams and end-grain balsa wood publication-title: Compos B Eng doi: 10.1016/j.compositesb.2007.02.005 – volume: vol. 67 start-page: 397 year: 2013 ident: 10.1016/j.compositesb.2022.110318_bib7 article-title: Viscoelastic properties of foam under hydrostatic pressure and uniaxial compression – volume: 44 start-page: 403 year: 2013 ident: 10.1016/j.compositesb.2022.110318_bib15 article-title: Compressive properties of closed-cell polyvinyl chloride foams at low and high strain rates: experimental investigation and critical review of state of the art publication-title: Compos B Eng doi: 10.1016/j.compositesb.2012.04.060 – volume: 263 year: 2021 ident: 10.1016/j.compositesb.2022.110318_bib1 article-title: A review of recent investigations on air and underwater blast mitigation in polymeric composite structures publication-title: Compos Struct doi: 10.1016/j.compstruct.2020.113530 – volume: 7 year: 2021 ident: 10.1016/j.compositesb.2022.110318_bib17 article-title: Testing the blast response of foam inserts for helmets publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e06990 – volume: vol. 36 year: 2008 ident: 10.1016/j.compositesb.2022.110318_bib16 – volume: 160 year: 2021 ident: 10.1016/j.compositesb.2022.110318_bib19 article-title: Experiments in measuring dynamic hydrostatic constitutive properties of soft materials publication-title: Mech Mater doi: 10.1016/j.mechmat.2021.103948 – start-page: 87 year: 2005 ident: 10.1016/j.compositesb.2022.110318_bib4 – year: 2014 ident: 10.1016/j.compositesb.2022.110318_bib5 – volume: 119 start-page: 284 year: 1997 ident: 10.1016/j.compositesb.2022.110318_bib6 article-title: Constitutive modeling and material characterization of polymeric foams publication-title: J Eng Mater Technol Transact ASME doi: 10.1115/1.2812258 – volume: 23 start-page: 2028 year: 2021 ident: 10.1016/j.compositesb.2022.110318_bib10 article-title: Crushable multiaxial behavior of sandwich foam cores: pressure vessel experiments publication-title: J Sandw Struct Mater doi: 10.1177/1099636220909797 – volume: 51 start-page: 269 year: 2015 ident: 10.1016/j.compositesb.2022.110318_bib11 article-title: A viscoelastic damage model for hysteresis in PVC H100 foam under cyclic loading publication-title: J Cell Plast doi: 10.1177/0021955X14537659 – year: 1998 ident: 10.1016/j.compositesb.2022.110318_bib25 – year: 2014 ident: 10.1016/j.compositesb.2022.110318_bib21 – volume: 119 start-page: 284 year: 1997 ident: 10.1016/j.compositesb.2022.110318_bib13 article-title: Constitutive modeling and material characterization of polymeric foams publication-title: J Eng Mater Technol Transact ASME doi: 10.1115/1.2812258 – ident: 10.1016/j.compositesb.2022.110318_bib23 – volume: 238 year: 2022 ident: 10.1016/j.compositesb.2022.110318_bib14 article-title: Experimental investigations on phenomenological constitutive model of closed-cell PVC foam considering the effects of density, strain rate and anisotropy publication-title: Compos B Eng doi: 10.1016/j.compositesb.2022.109885 – volume: 23 year: 1988 ident: 10.1016/j.compositesb.2022.110318_bib20 publication-title: Anisotropy of foams |
| SSID | ssj0004532 |
| Score | 2.4310808 |
| Snippet | Closed cell polymeric foams are widely used in naval structures as sandwich core material owing to their lightweight and high energy absorption capabilities.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110318 |
| SubjectTerms | A.Foams B. Impact behavior D. Mechanical testing Digital image correlation Hydrostatic pressure |
| Title | Hydrostatic high strain rate loading response of closed-cell polymeric foams as a function of mass density |
| URI | https://dx.doi.org/10.1016/j.compositesb.2022.110318 |
| Volume | 247 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004532 issn: 1359-8368 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-1069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004532 issn: 1359-8368 databaseCode: ACRLP dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-1069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004532 issn: 1359-8368 databaseCode: AIKHN dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-1069 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004532 issn: 1359-8368 databaseCode: .~1 dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5DQfRBvOK8jAi-1rVNm3TgyxiOqrgXHeyt5Aob3Tq2-rAXf7s5vWgFQUHIS8M50H4JOSfNl-8gdKMZkcLTyhHCM3aD4oVOFAa-o4gAuStCegV5_HlE43HwOAknLTSo78IArbJa-8s1vVitq55uhWZ3OZ12XzwQnyPURjiQ2_VAdjsIGFQxuH33GorhRZEyMHbAegddf3G8gLYN3Ci9Fnar6PtAiidQ_-OnGNWIO8MDtF8ljLhfvtMhaunFEdpryAgeo1m8UXB5A8RXMegP43VR-QGDDAROs4Imj1clG1bjzGCZZmuLHPy1x8ss3RTHNthkfL7G3DYM4Q6GDIznNr_GCoju-eYEjYf3r4PYqWooOJL4Xu5wlxjBOHeNVIJLHhpqmGJEUWpsp-nZhFCKwI146EtCQiok58pQbUOaDCJFTtHWIlvoM4Q108z0fCUNcwNBmG1SUS5tRkUMDWQbRTVqiawExuFr06Rmks2SBuAJAJ6UgLeR_-m6LFU2_uJ0Vw9N8m3KJDYa_O5-_j_3C7QLTyWz5RJt5as3fWXzk1x0ignYQdv9h6d49AETEuoe |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB6shT4OpU9qn1voNdVkk12FXopUbKtequAt7BMUNaL24KW_vTtJbC0UWijsaTMDyewyj-y33wDcGk6V9I32pPStK1D8yKtGYeBpKpHuitJaCh5vd1izFz73o34B6qu7MAirzH1_5tNTb53PlHNrlqeDQfnVR_I5ylyEQ7pdn23AZhgFHCuwu3d_jTI87VKG0h6Kb8HNF8gLcdsIjjJz6WrFIEBUPMUGID8FqbXA09iHvTxjJA_ZSx1AwUwOYXeNR_AIhs2lxtsbyL5KkICYzNPWDwR5IMgoSXHyZJbBYQ1JLFGjZO5Mh7_tyTQZLdNzG2ITMZ4T4QbBeIdrhsJjl2ATjUj3xfIYeo3Hbr3p5U0UPEUDf-GJCrWSC1GxSkuhRGSZ5ZpTzZh1k7bmMkIlw0pVRIGiNGJSCaEtMy6mqbCq6QkUJ8nEnAIx3HBbC7SyvBJKyt1QmgnlUipqWahKUF1ZLVY5wzh-7SheQcmG8ZrBYzR4nBm8BMGn6jSj2fiL0v1qaeJveyZ24eB39bP_qV_DdrPbbsWtp87LOezgkwzmcgHFxezNXLpkZSGv0s34AYf667M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrostatic+high+strain+rate+loading+response+of+closed-cell+polymeric+foams+as+a+function+of+mass+density&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Wanchoo%2C+Piyush&rft.au=Kishore%2C+Shyamal&rft.au=Shukla%2C+Arun&rft.date=2022-12-01&rft.pub=Elsevier+Ltd&rft.issn=1359-8368&rft.eissn=1879-1069&rft.volume=247&rft_id=info:doi/10.1016%2Fj.compositesb.2022.110318&rft.externalDocID=S1359836822006916 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon |