Hybrid ANN models for durability of GFRP rebars in alkaline concrete environment using three swarm-based optimization algorithms
•Hybrid ANN models for estimating the durability of GFRP rebars in alkaline environment.•ANN-GWO was selected for calculating environmental reduction factor based on higher accuracy.•The rate of degradation in GFRP rebars changes with change in temperature.•Guidelines regarding environmental reducti...
Saved in:
Published in | Construction & building materials Vol. 352; p. 128862 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
17.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0950-0618 1879-0526 |
DOI | 10.1016/j.conbuildmat.2022.128862 |
Cover
Abstract | •Hybrid ANN models for estimating the durability of GFRP rebars in alkaline environment.•ANN-GWO was selected for calculating environmental reduction factor based on higher accuracy.•The rate of degradation in GFRP rebars changes with change in temperature.•Guidelines regarding environmental reduction factor to reflect long-term durability of GFRP rebars.
This study investigates the non-linearity of GFRP degradation in terms of tensile strength retention (TSR) encompassing five input variables (i.e., diameter of GFRP rebar, volume fraction of fibers, pH of surrounding solution, temperature of surrounding solution, and duration of conditioning). Additionally, the degradation models were extrapolated to calculate environmental reduction factor (CE). Based on high non-linear capabilities of artificial neural network (ANN) models, hybrid ANN models were created by deploying particle swarm optimization (PSO), grey wolf optimization (GWO) and marine predators algorithm (MPA) to predict the TSR of GFRP rebars conditioned at variable temperatures and durations. Trial and error procedure was adopted to select the optimal hyperparameter of the hybrid models. The developed models were subjected to statistical, accuracy, sensitivity and uncertainty analyses. ANN-GWO model yielded the highest correlation (R ≈ 0.89 and 0.88, MAE = 0.0558 % and 0.0914 %, and RMSE = 7.86 % and 11.67 %) for the training and testing datasets, respectively. Furthermore, Taylor diagram and accuracy matrix revealed that the performance of the models followed the order; ANN-GWO (Roverall = 0.885) > ANN-PSO (Roverall = 0.806) > ANN-MPA (Roverall = 0.821). For GFRP rebars, made of E-glass fibers (volume fraction = 0.62) impregnated in vinyl ester resin conditioned at 28 °C with surrounding pH of 13, the values of CE for bar sizes 9.5 mm, 12.7 mm and 15.9 mm were recorded as 0.75, 0.87 and 0.95, respectively. It is highly recommended to consider the effect of bar size as an important variable in the design of GFRP reinforced concrete structures and keep CE ≈ 0.75 at 28 °C in alkaline environment. |
---|---|
AbstractList | •Hybrid ANN models for estimating the durability of GFRP rebars in alkaline environment.•ANN-GWO was selected for calculating environmental reduction factor based on higher accuracy.•The rate of degradation in GFRP rebars changes with change in temperature.•Guidelines regarding environmental reduction factor to reflect long-term durability of GFRP rebars.
This study investigates the non-linearity of GFRP degradation in terms of tensile strength retention (TSR) encompassing five input variables (i.e., diameter of GFRP rebar, volume fraction of fibers, pH of surrounding solution, temperature of surrounding solution, and duration of conditioning). Additionally, the degradation models were extrapolated to calculate environmental reduction factor (CE). Based on high non-linear capabilities of artificial neural network (ANN) models, hybrid ANN models were created by deploying particle swarm optimization (PSO), grey wolf optimization (GWO) and marine predators algorithm (MPA) to predict the TSR of GFRP rebars conditioned at variable temperatures and durations. Trial and error procedure was adopted to select the optimal hyperparameter of the hybrid models. The developed models were subjected to statistical, accuracy, sensitivity and uncertainty analyses. ANN-GWO model yielded the highest correlation (R ≈ 0.89 and 0.88, MAE = 0.0558 % and 0.0914 %, and RMSE = 7.86 % and 11.67 %) for the training and testing datasets, respectively. Furthermore, Taylor diagram and accuracy matrix revealed that the performance of the models followed the order; ANN-GWO (Roverall = 0.885) > ANN-PSO (Roverall = 0.806) > ANN-MPA (Roverall = 0.821). For GFRP rebars, made of E-glass fibers (volume fraction = 0.62) impregnated in vinyl ester resin conditioned at 28 °C with surrounding pH of 13, the values of CE for bar sizes 9.5 mm, 12.7 mm and 15.9 mm were recorded as 0.75, 0.87 and 0.95, respectively. It is highly recommended to consider the effect of bar size as an important variable in the design of GFRP reinforced concrete structures and keep CE ≈ 0.75 at 28 °C in alkaline environment. |
ArticleNumber | 128862 |
Author | Bardhan, Abidhan Jalal, Fazal E. Iqbal, Mudassir Nasir Amin, Muhammad Khan, Kaffayatullah Waqas Alam, Mir |
Author_xml | – sequence: 1 givenname: Kaffayatullah surname: Khan fullname: Khan, Kaffayatullah email: kkhan@kfu.edu.sa organization: Department of Civil and Environmental Engineering, College of Engineering, King Faisal University (KFU), P. O. Box 380, Al-Hofuf, Al-Ahsa 31982, Kingdom of Saudi Arabia – sequence: 2 givenname: Mudassir surname: Iqbal fullname: Iqbal, Mudassir organization: Department of Civil Engineering, University of Engineering and Technology Peshawar, Pakistan – sequence: 3 givenname: Fazal E. surname: Jalal fullname: Jalal, Fazal E. organization: Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 4 givenname: Muhammad surname: Nasir Amin fullname: Nasir Amin, Muhammad organization: Department of Civil and Environmental Engineering, College of Engineering, King Faisal University (KFU), P. O. Box 380, Al-Hofuf, Al-Ahsa 31982, Kingdom of Saudi Arabia – sequence: 5 givenname: Mir surname: Waqas Alam fullname: Waqas Alam, Mir organization: Department of Physics, College of Science, King Faisal University, P. O. Box 380, Al-Hofuf, Al-Ahsa 31982, Kingdom of Saudi Arabia – sequence: 6 givenname: Abidhan surname: Bardhan fullname: Bardhan, Abidhan organization: Department of Civil Engineering, National Institute of Technology (NIT) Patna, India |
BookMark | eNqNkM1OGzEUha2KSg2Ud3AfYILtZDyZFUIRP5UQrRCsrWv7Gm6YsZHtgMKKR2_SdIG6YnVW5zs63yE7iCkiYz-kmEoh9clq6lK0axr8CHWqhFJTqRYLrb6wiVx0fSNapQ_YRPStaISWi2_ssJSVEEIrrSbs_WpjM3l-dnPDx-RxKDykzP06g6WB6oanwC8vbn_zjBZy4RQ5DE8wUES-nXYZK3KML5RTHDFWvi4UH3h9zIi8vEIeGwsFPU_PlUZ6g0pph3hImerjWL6zrwGGgsf_8ojdX5zfLa-a61-XP5dn142bKVmbft4qbKET0gblZyCtA9t3EkLbBeeDn3kloe8Q0c5hLr3WEmWwbZDzVrdidsT6PdflVErGYJ4zjZA3RgqzU2lW5oNKs1Np9iq33dP_uo7q3yM1Aw2fIiz3hK1gfCHMpjjC6NBTRleNT_QJyh8cB55e |
CitedBy_id | crossref_primary_10_1016_j_jobe_2024_109844 crossref_primary_10_1007_s40808_023_01774_7 crossref_primary_10_1080_10298436_2023_2191198 crossref_primary_10_1063_5_0228503 crossref_primary_10_1177_03611981241248166 crossref_primary_10_1016_j_conbuildmat_2023_132885 crossref_primary_10_1002_eng2_12676 crossref_primary_10_3390_app13053038 crossref_primary_10_1061_JMCEE7_MTENG_15589 crossref_primary_10_1016_j_conbuildmat_2023_133835 crossref_primary_10_1007_s41062_022_00966_x crossref_primary_10_1007_s40515_023_00343_w crossref_primary_10_1007_s40515_024_00436_0 crossref_primary_10_1007_s41024_024_00386_7 crossref_primary_10_3390_axioms12010081 crossref_primary_10_1007_s40808_022_01610_4 crossref_primary_10_1007_s12046_024_02545_5 crossref_primary_10_1080_10298436_2023_2295899 crossref_primary_10_3390_ma16031277 crossref_primary_10_1007_s40891_024_00578_8 crossref_primary_10_1016_j_cscm_2023_e02766 crossref_primary_10_1016_j_matpr_2024_04_054 |
Cites_doi | 10.1016/j.conbuildmat.2012.08.021 10.1016/j.conbuildmat.2016.04.052 10.1016/j.conbuildmat.2022.126500 10.1016/j.conbuildmat.2021.123451 10.1061/(ASCE)1090-0268(2002)6:3(143) 10.1016/j.compstruc.2020.106376 10.3390/ijgi8090391 10.1016/j.compositesa.2013.11.002 10.1016/j.patrec.2019.11.017 10.1016/j.gsf.2020.05.003 10.1016/j.compstruct.2005.08.015 10.1177/0021998311427777 10.1007/s00521-019-04280-z 10.1016/j.compositesb.2017.02.002 10.1016/j.soildyn.2020.106195 10.1061/(ASCE)HY.1943-7900.0001062 10.1016/j.petlm.2021.12.002 10.1061/(ASCE)1090-0268(2006)10:4(279) 10.1007/s41939-021-00092-8 10.1016/j.jhydrol.2019.124435 10.1016/j.compositesb.2018.08.054 10.1016/j.asoc.2009.08.006 10.1016/j.catena.2020.104802 10.1016/j.engappai.2022.104722 10.1016/j.conbuildmat.2012.02.038 10.1016/j.compositesb.2018.11.047 10.1002/bimj.201800270 10.1007/s10462-017-9605-z 10.1038/s41598-017-18223-y 10.1016/j.conbuildmat.2018.03.092 10.3390/app9183755 10.3390/jmse8010026 10.1061/(ASCE)CC.1943-5614.0000102 10.1617/s11527-021-01783-x 10.1177/1369433217732664 10.1016/j.cemconcomp.2020.103564 10.1016/j.conbuildmat.2017.05.046 10.1080/10916466.2021.1974882 10.1177/0021998318755866 10.1016/j.jenvman.2021.112420 10.1016/j.polymertesting.2018.05.038 10.1007/s12652-019-01317-y 10.1080/13287982.2019.1659213 10.1080/01430750.2014.986289 10.1016/j.trgeo.2021.100588 10.1016/j.asoc.2020.107026 10.1016/j.compstruct.2019.110959 10.1016/j.compositesb.2005.01.006 10.1016/j.trgeo.2022.100783 10.1504/IJHM.2019.104386 10.1016/j.compstruct.2007.03.005 10.1016/j.oceaneng.2021.109134 10.1016/j.conbuildmat.2019.01.003 10.1038/s41893-017-0006-8 10.3354/cr030079 10.1061/(ASCE)1090-0268(2003)7:3(238) 10.1016/j.engappai.2017.01.013 10.3390/app9163221 10.1016/j.future.2020.03.055 10.1016/j.aei.2018.09.005 10.1007/s12665-017-7064-0 10.1109/4235.585893 10.1016/j.corsci.2018.06.022 10.58845/jstt.utt.2022.en.2.1-12 10.1007/s00366-018-0596-4 10.1061/(ASCE)0899-1561(2002)14:3(191) 10.1002/joc.5972 10.1061/(ASCE)CC.1943-5614.0000814 10.1007/s11629-019-5839-3 10.1061/(ASCE)CC.1943-5614.0001040 10.1016/j.chemolab.2015.08.020 10.1016/j.ress.2020.106931 10.1016/j.trgeo.2020.100372 10.1007/s10706-022-02196-5 10.1016/j.conbuildmat.2017.09.160 10.1080/17597269.2021.1894780 10.1088/1755-1315/169/1/012067 10.1016/j.conbuildmat.2021.124335 10.1016/j.compositesb.2007.11.002 10.7717/peerj-cs.623 10.1016/j.proeng.2015.11.045 10.1016/j.geotexmem.2021.04.007 10.3390/polym12112600 10.1061/(ASCE)CC.1943-5614.0000122 10.1016/j.flowmeasinst.2021.101916 10.1016/j.tws.2016.05.014 10.1016/j.conbuildmat.2017.12.058 10.1016/j.eswa.2021.115795 10.1016/j.eswa.2020.113377 10.5902/2179460X42724 10.1016/j.conbuildmat.2019.117266 10.1061/(ASCE)1090-0268(2009)13:2(66) 10.1007/s11440-021-01358-8 10.1016/j.compositesb.2016.06.019 10.1016/j.compositesb.2012.05.004 10.1016/j.molp.2019.08.006 10.1080/10106049.2018.1559885 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.conbuildmat.2022.128862 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0526 |
ExternalDocumentID | 10_1016_j_conbuildmat_2022_128862 S0950061822025193 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADHUB ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAAKF BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IAO IEA IGG IHE IHM IOF ISM J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N95 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PV9 Q38 ROL RPZ RZL SDF SDG SES SPC SPCBC SSM SST SSZ T5K UNMZH XI7 ~G- AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHDLI AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ ITC R2- RIG RNS SET SEW SMS SSH VH1 WUQ ZMT |
ID | FETCH-LOGICAL-c321t-9452e5a701bf2d3a1bcab971af57fcdfd3d21a97eeeb4a41d661e1fb5f1456503 |
IEDL.DBID | .~1 |
ISSN | 0950-0618 |
IngestDate | Tue Jul 01 04:33:42 EDT 2025 Thu Apr 24 23:13:03 EDT 2025 Fri Feb 23 02:37:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ANN Hybrid algorithms Environmental reduction factor Durability Swarm intelligence GFRP rebars |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-9452e5a701bf2d3a1bcab971af57fcdfd3d21a97eeeb4a41d661e1fb5f1456503 |
ParticipantIDs | crossref_primary_10_1016_j_conbuildmat_2022_128862 crossref_citationtrail_10_1016_j_conbuildmat_2022_128862 elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2022_128862 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-17 |
PublicationDateYYYYMMDD | 2022-10-17 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | Construction & building materials |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Benmokrane, Ali, Mohamed, ElSafty, Manalo (b0175) 2017; 114 Association CS (2002) Design and construction of building components with fibre-reinforced polymers. vol 2. Canadian Standards Association. Bazli, Ashrafi, Oskouei (b0125) 2017; 148 Hasthi, Nouman Amjad Raja, Hegde, Kumar Shukla (b0230) 2022; 35 Standard N. Norwegian Council for building standardization. NS3473, Norway, 1998. X-q, CAO, Y ZHANG, Y-j HE, Y-c, JIANG, X-j YUAN Retrospect and discussion of surveys for construction sand in China offshore area. Mar. Geol. Quarter. Geol. 28, 3, 2008. 121-125. Nourani, Arvanaghi, Salmasi (b0335) 2021; 79 M.S.M. Alfatni, A.R.M. Shariff, S.K. Bejo, O.M.B. Saaed, A. Mustapha, Real-time oil palm FFB ripeness grading system based on ANN, KNN and SVM classifiers. In: IOP conference series: earth and environmental science, 2018. vol 1. IOP Publishing, pp. 012067. Jalal, Xu, Iqbal, Javed, Jamhiri (b0485) 2021; 289 Sharif, Amin, Raza, Yasmin, Satapathy (b0525) 2020; 129 Jiang, Kolstein, Bijlaard, Qiang (b0105) 2014; 57 Guo, Al-Saadi, Raman, Zhao (b0060) 2018; 141 Huang, Aboutaha (b0170) 2010; 14 de Morais Danelichen, Pereira, Biudes, de Souza (b0595) 2021; 43 440 ACIC Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars: ACI 440.1 R-06. In, 2006. American Concrete Institute. V. Beiser, The deadly global war for sand. Wired website retrieved 26th March, 2015. Roy, Samui, Nagtode, Jain, Shivaramakrishnan, Mohammadi-Ivatloo (b0575) 2020; 11 Piepho (b0580) 2019; 61 Pham, Phong, Nguyen-Thoi, Parial, Singh, Ly, Nguyen, Ho, Le, Prakash (b0500) 2020 Ojha, Abraham, Snášel (b0325) 2017; 60 Ray, Kumar, Samui, Roy, Goh, Zhang (b0560) 2021; 12 Bazli, Heitzmann, Hernandez (b0020) 2021; 301 Chen, Davalos, Ray, Kim (b0395) 2007; 78 Li, He, Zhang, Yang (b0520) 2016; 2016 Robert, Wang, Cousin, Benmokrane (b0605) 2010; 14 Robert, Cousin, Benmokrane (b0435) 2009; 13 Kaloop, Kumar, Samui, Gabr, Hu, Jin, Roy (b0535) 2019; 9 Asteris, Lourenço, Roussis, Elpida Adami, Armaghani, Cavaleri, Chalioris, Hajihassani, Lemonis, Mohammed, Pilakoutas (b0255) 2022; 322 ACI Guide for the design and construction of structural concrete reinforced with FRP bars (ACI 440.1 R-15). In, 2015. American Concrete Institute. Nguyen, Pham, Ho, Ly, Le, Qi, Le, Le, Prakash, Son, Bui (b0330) 2020; 195 Shariati, Mafipour, Mehrabi, Ahmadi, Wakil, Trung, Toghroli (b0465) 2020; 25 Hu, Chen, Zhou, Chen, Li (b0600) 2019; 39 Shariati, Mafipour, Haido, Yousif, Toghroli, Trung, Shariati (b0475) 2020; 34 Abbasi, Hogg (b0420) 2005; 36 F. Aguiniga Gaona, Characterization of design parameters for fiber reinforced polymer composite reinforced concrete systems. Texas A&M University, 2004. Roy, Pareek, Machavaram, Mukherjee (b0350) 2021 Al-Salloum, El-Gamal, Almusallam, Alsayed, Aqel (b0415) 2013; 45 V. Dejke, Durability of FRP reinforcement in concrete: literature review and experiments, 2001. Kalita, Mukhopadhyay, Dey, Haldar (b0490) 2020; 32 Wang, Mao, Lv, Chen, Li (b0055) 2018; 162 Ali, Benmokrane, Mohamed, Manalo, El-Safty (b0625) 2018; 52 Fan, Hu, Cao, Xiong, Wei (b0365) 2017; 7 Alzabeebee, Chapman (b0590) 2020; 24 Asteris, Mamou, Hajihassani, Hasanipanah, Koopialipoor, Le, Kardani, Armaghani (b0305) 2021; 29 Li, Chen, Wang, Heidari, Mirjalili (b0555) 2020; 111 M.S. Barkhordari, D.J. Armaghani, P.G. Asteris, Structural Damage Identification Using Ensemble Deep Convolutional Neural Network Models. Manalo, Maranan, Benmokrane, Cousin, Alajarmeh, Ferdous, Liang, Hota (b0160) 2020; 109 Benmokrane, Brown, Ali, Mohamed, Shield (b0210) 2020; 24 Noori, Deng, Kiaghadi, Kachoosangi (b0265) 2016; 142 Teng J Performance enhancement of structures through the use of fibre-reinforced polymer (FRP) composites. In: Proceedings of the 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23), Lismore, NSW, Australia, 2014. Machida, Uomoto (b0200) 1997 Raja, Shukla (b0240) 2020 Flörke, Schneider, McDonald (b0015) 2018; 1 Gilan, Jovein, Ramezanianpour (b0345) 2012; 34 Koopialipoor, Fallah, Armaghani, Azizi, Mohamad (b0315) 2019; 35 Khaloo, Tabatabaeian, Khaloo (b0070) 2020 Iqbal, Zhao, Zhang, Jalal, Jamal (b0135) 2021; 54 Ashrafi, Bazli, Najafabadi, Oskouei (b0075) 2017; 157 Golafshani, Behnood, Arashpour (b0310) 2020; 232 Erniati, Tjaronge, Zulharnah, Irfan (b0040) 2015; 125 Tang, Sun, Lin, Xue, Zhang (b0545) 2021; 186 Willmott, Matsuura (b0570) 2005; 30 Chicco, Warrens, Jurman (b0585) 2021; 7 Karbhari, Chin, Hunston, Benmokrane, Juska, Morgan, Lesko, Sorathia, Reynaud (b0140) 2003; 7 Zhou, Lu, Zheng, Tolliver, Keramati (b0505) 2020; 200 Wolpert, Macready (b0375) 1997; 1 Pan, Novák, Lehký, Novák, Cao (b0455) 2021; 242 Davalos, Chen, Ray (b0165) 2012; 46 Bazli, Ashrafi, Oskouei (b0090) 2016; 99 Won, Lee, Kim, Jang, Lee (b0430) 2008; 39 Iqbal, Zhang, Jalal (b0220) 2021 Bazli, Abolfazli (b0115) 2020; 12 He, Nguyen, Vu, Zhou, Asteris, Mammou (b0320) 2022; 17 Benmokrane, Manalo, Bouhet, Mohamed, Robert (b0610) 2017; 21 Saravanan, Siddabattuni, Ramachandran (b0270) 2010; 10 Bui, Nhu, Hoang (b0285) 2018; 38 Kardani, Hedayati Marzbali, Shah, Zhou (b0295) 2022; 13 F.A. Gaona, Characterization of design parameters for fiber reinforced polymer composite reinforced concrete systems. Texas A & M University, 2004. Uomoto, Mutsuyoshi, Katsuki, Misra (b0205) 2002; 14 ASTM Standard specification for solid round glass fiber reinforced polymer bars for concrete reinforcement. In, 2017. ASTM West Conshohocken, PA. Toghyani, Ahmadi, Kasaeian, Mohammadi (b0360) 2016; 37 Xu, Xu, Gong, Li, Li, Wang, Yang, Ma, Liu, Zhu, Zou, Chen (b0495) 2019; 12 Dong, Wu, Xu (b0050) 2016; 115 Jafari, Bazli, Ashrafi, Oskouei, Azhari, Zhao, Gholipour (b0085) 2019; 202 Dhondy, Remennikov, Shiekh (b0005) 2019; 20 Chen, Zhu, Niu, Trinder, Peng, Lei (b0510) 2020; 17 Hussain, Mohd Salleh, Cheng, Shi (b0370) 2019; 52 Kim, Park, You, Moon (b0405) 2008; 83 Shokri, Tavakoli (b0460) 2019; 2 Benmokrane, Wang, Ton-That, Rahman, Robert (b0145) 2002; 6 Sarangi, Chawla, Ghosh, Singh, Singh (b0340) 2022; 49 Arczewska, Polak, Penlidis (b0630) 2021; 293 Iqbal, Zhang, Jalal, Faisal Javed (b0065) 2021; 232 Al-Zahrani, Al-Dulaijan, Sharif (b0410) 2002 Marini, Walczak (b0530) 2015; 149 Robert, Benmokrane (b0155) 2013; 38 Iqbal, Zhang, Jalal, Faisal Javed (b0445) 2021; 232 Oskouei, Bazli, Ashrafi, Imani (b0100) 2018; 69 Chen, Hong, Panahi, Shahabi, Wang, Shirzadi, Pirasteh, Alesheikh, Khosravi, Panahi, Rezaie, Li, Jaafari, Bui, Bin Ahmad (b0550) 2019; 9 Raja, Shukla (b0235) 2021; 49 Mokhtarzad, Eskandari, Jamshidi Vanjani, Arabasadi (b0260) 2017; 76 Asteris, Nguyen (b0250) 2022 Iqbal, Onyelowe, Jalal (b0470) 2021; 4 Syah, Towfighi Naeem, Daneshfar, Dehdar, Soulgani (b0450) 2022; 8 Kardani, Zhou, Lin, Nazem (b0245) 2022 Chase (b0565) 2021 Hong, Xian, Wang (b0110) 2018; 21 Houssein, Ibrahim, Kharrich, Kamel (b0380) 2022; 110 V. Dejke, R. Tepfers Durability and service life prediction of GFRP for concrete reinforcement. In: Proceedings of 5th international conference on fiber-reinforced plastics for reinforced concrete structures (FRPRCS-5), 2001. vol 516. Citeseer, p 2. Bazli, Ashrafi, Jafari, Zhao, Gholipour, Oskouei (b0080) 2019; 157 Tikhamarine, Souag-Gamane, Najah Ahmed, Kisi, El-Shafie (b0540) 2020; 582 Soveiti, Mosalmani (b0025) 2020; 135 Fergani, Di Benedetti, Oller, Lynsdale, Guadagnini (b0440) 2018; 170 Ali, Benmokrane, Mohamed, Manalo, El-Safty (b0385) 2018; 52 Li, Zhao, Singh, Al-Saadi (b0035) 2016; 106 Albashish, Hammouri, Braik, Atwan, Sahran (b0515) 2021; 101 Kaloop, Samui, Iqbal, Hu (b0225) 2022; 16 Fang, Bai, Liu, Qi, Wang (b0095) 2019; 164 Faramarzi, Heidarinejad, Mirjalili, Gandomi (b0355) 2020; 152 Jafari, Ashrafi, Bazli, Ozbakkaloglu (b0120) 2019; 223 Rubino, Nisticò, Tucci, Carlone (b0130) 2020; 8 Kardani, T, Samui, Kim, Zhou (b0300) 2021; 39 V. Dejke, R. Tepfers, Durability and service life prediction of GFRP for concrete reinforcement. In: Proceedings of 5th international conference on fiber-reinforced plastics for reinforced concrete structures (FRPRCS-5), 2001. Citeseer, pp 505-516. Chen, Davalos, Ray (b0400) 2006; 10 Moayedi, Tien Bui, Gör, Pradhan, Jaafari (b0480) 2019; 8 Iqbal, Elbaz, Zhang, Hu, Jalal (b0280) 2022 Kardani (10.1016/j.conbuildmat.2022.128862_b0245) 2022 Bazli (10.1016/j.conbuildmat.2022.128862_b0125) 2017; 148 10.1016/j.conbuildmat.2022.128862_b0010 Abbasi (10.1016/j.conbuildmat.2022.128862_b0420) 2005; 36 Wolpert (10.1016/j.conbuildmat.2022.128862_b0375) 1997; 1 Willmott (10.1016/j.conbuildmat.2022.128862_b0570) 2005; 30 Erniati (10.1016/j.conbuildmat.2022.128862_b0040) 2015; 125 Chen (10.1016/j.conbuildmat.2022.128862_b0395) 2007; 78 Houssein (10.1016/j.conbuildmat.2022.128862_b0380) 2022; 110 Machida (10.1016/j.conbuildmat.2022.128862_b0200) 1997 Jalal (10.1016/j.conbuildmat.2022.128862_b0485) 2021; 289 Hasthi (10.1016/j.conbuildmat.2022.128862_b0230) 2022; 35 Hong (10.1016/j.conbuildmat.2022.128862_b0110) 2018; 21 Ojha (10.1016/j.conbuildmat.2022.128862_b0325) 2017; 60 Kim (10.1016/j.conbuildmat.2022.128862_b0405) 2008; 83 Syah (10.1016/j.conbuildmat.2022.128862_b0450) 2022; 8 Robert (10.1016/j.conbuildmat.2022.128862_b0435) 2009; 13 Benmokrane (10.1016/j.conbuildmat.2022.128862_b0610) 2017; 21 Benmokrane (10.1016/j.conbuildmat.2022.128862_b0175) 2017; 114 Li (10.1016/j.conbuildmat.2022.128862_b0520) 2016; 2016 Raja (10.1016/j.conbuildmat.2022.128862_b0240) 2020 Albashish (10.1016/j.conbuildmat.2022.128862_b0515) 2021; 101 Jafari (10.1016/j.conbuildmat.2022.128862_b0120) 2019; 223 Kardani (10.1016/j.conbuildmat.2022.128862_b0300) 2021; 39 Bazli (10.1016/j.conbuildmat.2022.128862_b0080) 2019; 157 Kaloop (10.1016/j.conbuildmat.2022.128862_b0225) 2022; 16 Tang (10.1016/j.conbuildmat.2022.128862_b0545) 2021; 186 Chicco (10.1016/j.conbuildmat.2022.128862_b0585) 2021; 7 Iqbal (10.1016/j.conbuildmat.2022.128862_b0445) 2021; 232 Khaloo (10.1016/j.conbuildmat.2022.128862_b0070) 2020 Asteris (10.1016/j.conbuildmat.2022.128862_b0255) 2022; 322 Koopialipoor (10.1016/j.conbuildmat.2022.128862_b0315) 2019; 35 Xu (10.1016/j.conbuildmat.2022.128862_b0495) 2019; 12 Robert (10.1016/j.conbuildmat.2022.128862_b0605) 2010; 14 Robert (10.1016/j.conbuildmat.2022.128862_b0155) 2013; 38 Ashrafi (10.1016/j.conbuildmat.2022.128862_b0075) 2017; 157 Jiang (10.1016/j.conbuildmat.2022.128862_b0105) 2014; 57 Iqbal (10.1016/j.conbuildmat.2022.128862_b0065) 2021; 232 10.1016/j.conbuildmat.2022.128862_b0275 10.1016/j.conbuildmat.2022.128862_b0390 10.1016/j.conbuildmat.2022.128862_b0150 Dhondy (10.1016/j.conbuildmat.2022.128862_b0005) 2019; 20 10.1016/j.conbuildmat.2022.128862_b0030 Ali (10.1016/j.conbuildmat.2022.128862_b0385) 2018; 52 Al-Zahrani (10.1016/j.conbuildmat.2022.128862_b0410) 2002 Sarangi (10.1016/j.conbuildmat.2022.128862_b0340) 2022; 49 Tikhamarine (10.1016/j.conbuildmat.2022.128862_b0540) 2020; 582 de Morais Danelichen (10.1016/j.conbuildmat.2022.128862_b0595) 2021; 43 Faramarzi (10.1016/j.conbuildmat.2022.128862_b0355) 2020; 152 Nourani (10.1016/j.conbuildmat.2022.128862_b0335) 2021; 79 Iqbal (10.1016/j.conbuildmat.2022.128862_b0135) 2021; 54 Manalo (10.1016/j.conbuildmat.2022.128862_b0160) 2020; 109 Iqbal (10.1016/j.conbuildmat.2022.128862_b0280) 2022 10.1016/j.conbuildmat.2022.128862_b0425 Bazli (10.1016/j.conbuildmat.2022.128862_b0090) 2016; 99 Li (10.1016/j.conbuildmat.2022.128862_b0035) 2016; 106 Chen (10.1016/j.conbuildmat.2022.128862_b0400) 2006; 10 Saravanan (10.1016/j.conbuildmat.2022.128862_b0270) 2010; 10 Asteris (10.1016/j.conbuildmat.2022.128862_b0305) 2021; 29 10.1016/j.conbuildmat.2022.128862_b0215 Raja (10.1016/j.conbuildmat.2022.128862_b0235) 2021; 49 Soveiti (10.1016/j.conbuildmat.2022.128862_b0025) 2020; 135 Fan (10.1016/j.conbuildmat.2022.128862_b0365) 2017; 7 Marini (10.1016/j.conbuildmat.2022.128862_b0530) 2015; 149 Toghyani (10.1016/j.conbuildmat.2022.128862_b0360) 2016; 37 10.1016/j.conbuildmat.2022.128862_b0290 Kardani (10.1016/j.conbuildmat.2022.128862_b0295) 2022; 13 Al-Salloum (10.1016/j.conbuildmat.2022.128862_b0415) 2013; 45 Golafshani (10.1016/j.conbuildmat.2022.128862_b0310) 2020; 232 Oskouei (10.1016/j.conbuildmat.2022.128862_b0100) 2018; 69 Kaloop (10.1016/j.conbuildmat.2022.128862_b0535) 2019; 9 Benmokrane (10.1016/j.conbuildmat.2022.128862_b0210) 2020; 24 Kalita (10.1016/j.conbuildmat.2022.128862_b0490) 2020; 32 Gilan (10.1016/j.conbuildmat.2022.128862_b0345) 2012; 34 Nguyen (10.1016/j.conbuildmat.2022.128862_b0330) 2020; 195 Ali (10.1016/j.conbuildmat.2022.128862_b0625) 2018; 52 10.1016/j.conbuildmat.2022.128862_b0045 Hussain (10.1016/j.conbuildmat.2022.128862_b0370) 2019; 52 Rubino (10.1016/j.conbuildmat.2022.128862_b0130) 2020; 8 Li (10.1016/j.conbuildmat.2022.128862_b0555) 2020; 111 Arczewska (10.1016/j.conbuildmat.2022.128862_b0630) 2021; 293 Bui (10.1016/j.conbuildmat.2022.128862_b0285) 2018; 38 Asteris (10.1016/j.conbuildmat.2022.128862_b0250) 2022 Sharif (10.1016/j.conbuildmat.2022.128862_b0525) 2020; 129 Shokri (10.1016/j.conbuildmat.2022.128862_b0460) 2019; 2 Roy (10.1016/j.conbuildmat.2022.128862_b0350) 2021 Bazli (10.1016/j.conbuildmat.2022.128862_b0115) 2020; 12 Uomoto (10.1016/j.conbuildmat.2022.128862_b0205) 2002; 14 Moayedi (10.1016/j.conbuildmat.2022.128862_b0480) 2019; 8 Pan (10.1016/j.conbuildmat.2022.128862_b0455) 2021; 242 Roy (10.1016/j.conbuildmat.2022.128862_b0575) 2020; 11 Bazli (10.1016/j.conbuildmat.2022.128862_b0020) 2021; 301 He (10.1016/j.conbuildmat.2022.128862_b0320) 2022; 17 Pham (10.1016/j.conbuildmat.2022.128862_b0500) 2020 Zhou (10.1016/j.conbuildmat.2022.128862_b0505) 2020; 200 Flörke (10.1016/j.conbuildmat.2022.128862_b0015) 2018; 1 Fang (10.1016/j.conbuildmat.2022.128862_b0095) 2019; 164 10.1016/j.conbuildmat.2022.128862_b0195 Shariati (10.1016/j.conbuildmat.2022.128862_b0465) 2020; 25 10.1016/j.conbuildmat.2022.128862_b0190 Hu (10.1016/j.conbuildmat.2022.128862_b0600) 2019; 39 Fergani (10.1016/j.conbuildmat.2022.128862_b0440) 2018; 170 Davalos (10.1016/j.conbuildmat.2022.128862_b0165) 2012; 46 Karbhari (10.1016/j.conbuildmat.2022.128862_b0140) 2003; 7 Chen (10.1016/j.conbuildmat.2022.128862_b0510) 2020; 17 Iqbal (10.1016/j.conbuildmat.2022.128862_b0470) 2021; 4 Won (10.1016/j.conbuildmat.2022.128862_b0430) 2008; 39 10.1016/j.conbuildmat.2022.128862_b0620 Guo (10.1016/j.conbuildmat.2022.128862_b0060) 2018; 141 10.1016/j.conbuildmat.2022.128862_b0185 Shariati (10.1016/j.conbuildmat.2022.128862_b0475) 2020; 34 Ray (10.1016/j.conbuildmat.2022.128862_b0560) 2021; 12 Iqbal (10.1016/j.conbuildmat.2022.128862_b0220) 2021 Mokhtarzad (10.1016/j.conbuildmat.2022.128862_b0260) 2017; 76 Huang (10.1016/j.conbuildmat.2022.128862_b0170) 2010; 14 10.1016/j.conbuildmat.2022.128862_b0180 Alzabeebee (10.1016/j.conbuildmat.2022.128862_b0590) 2020; 24 Jafari (10.1016/j.conbuildmat.2022.128862_b0085) 2019; 202 Wang (10.1016/j.conbuildmat.2022.128862_b0055) 2018; 162 Dong (10.1016/j.conbuildmat.2022.128862_b0050) 2016; 115 Benmokrane (10.1016/j.conbuildmat.2022.128862_b0145) 2002; 6 Chen (10.1016/j.conbuildmat.2022.128862_b0550) 2019; 9 Chase (10.1016/j.conbuildmat.2022.128862_b0565) 2021 10.1016/j.conbuildmat.2022.128862_b0615 Noori (10.1016/j.conbuildmat.2022.128862_b0265) 2016; 142 Piepho (10.1016/j.conbuildmat.2022.128862_b0580) 2019; 61 |
References_xml | – year: 2020 ident: b0500 article-title: Ensemble modeling of landslide susceptibility using random subspace learner and different decision tree classifiers publication-title: Geocarto International:1–23. – volume: 43 start-page: 48 year: 2021 ident: b0595 article-title: Assessment of spectral indexes for estimating soil water content in the Brazilian Pantanal publication-title: Ciência e Natura – year: 2022 ident: b0280 article-title: Prediction of residual tensile strength of glass fiber reinforced polymer bars in harsh alkaline concrete environment using fuzzy metaheuristic models. Journal of Ocean publication-title: Eng. Sci. – volume: 52 start-page: 1 year: 2018 end-page: 20 ident: b0385 article-title: Statistical analysis and theoretical predictions of the tensile strength retention of GFRP bars based on resin degradation publication-title: J. Compos. Mater. – volume: 21 start-page: 1 year: 2017 end-page: 12 ident: b0610 article-title: Effects of diameter on the durability of glass-fiber-reinforced-polymer (GFRP) bars conditioned in alkaline solution publication-title: J. Compos. Constr. – volume: 162 start-page: 442 year: 2018 end-page: 449 ident: b0055 article-title: Bond properties between FRP bars and coral concrete under seawater conditions at 30, 60, and 80° C publication-title: Constr. Build. Mater. – volume: 101 start-page: 107026 year: 2021 ident: b0515 article-title: Binary biogeography-based optimization based SVM-RFE for feature selection publication-title: Appl. Soft Comput. – volume: 152 start-page: 113377 year: 2020 ident: b0355 article-title: Marine Predators Algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. – volume: 49 start-page: 1280 year: 2021 end-page: 1293 ident: b0235 article-title: Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique publication-title: Geotext. Geomembr. – volume: 52 start-page: 2929 year: 2018 end-page: 2948 ident: b0625 article-title: Statistical analysis and theoretical predictions of the tensile-strength retention of glass fiber-reinforced polymer bars based on resin type publication-title: J. Compos. Mater. – reference: X-q, CAO, Y ZHANG, Y-j HE, Y-c, JIANG, X-j YUAN Retrospect and discussion of surveys for construction sand in China offshore area. Mar. Geol. Quarter. Geol. 28, 3, 2008. 121-125. – volume: 9 start-page: 3221 year: 2019 ident: b0535 article-title: Particle Swarm Optimization algorithm-Extreme Learning Machine (PSO-ELM) model for predicting resilient modulus of stabilized aggregate bases publication-title: Applied Sciences – volume: 54 start-page: 1 year: 2021 end-page: 20 ident: b0135 article-title: Evaluation of tensile strength degradation of GFRP rebars in harsh alkaline conditions using non-linear genetic-based models publication-title: Mater. Struct. – volume: 13 start-page: 703 year: 2022 end-page: 715 ident: b0295 article-title: Machine learning prediction of the conversion of lignocellulosic biomass during hydrothermal carbonization publication-title: Biofuels – volume: 111 start-page: 300 year: 2020 end-page: 323 ident: b0555 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Generat. Comput. Syst. – volume: 7 start-page: e623 year: 2021 ident: b0585 article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation publication-title: PeerJ Comput. Sci. – volume: 14 start-page: 361 year: 2010 end-page: 367 ident: b0605 article-title: Temperature as an accelerating factor for long-term durability testing of FRPs: Should there be any limitations? publication-title: J. Compos. Constr. – volume: 20 start-page: 280 year: 2019 end-page: 289 ident: b0005 article-title: Benefits of using sea sand and seawater in concrete: a comprehensive review publication-title: Aust. J. Struct. Eng. – volume: 99 start-page: 203 year: 2016 end-page: 215 ident: b0090 article-title: Effect of harsh environments on mechanical properties of GFRP pultruded profiles publication-title: Compos. B Eng. – volume: 45 start-page: 835 year: 2013 end-page: 844 ident: b0415 article-title: Effect of harsh environmental conditions on the tensile properties of GFRP bars publication-title: Compos. B Eng. – volume: 7 start-page: 238 year: 2003 end-page: 247 ident: b0140 article-title: Durability gap analysis for fiber-reinforced polymer composites in civil infrastructure publication-title: J. Compos. Constr. – reference: V. Dejke, R. Tepfers Durability and service life prediction of GFRP for concrete reinforcement. In: Proceedings of 5th international conference on fiber-reinforced plastics for reinforced concrete structures (FRPRCS-5), 2001. vol 516. Citeseer, p 2. – volume: 6 start-page: 143 year: 2002 end-page: 153 ident: b0145 article-title: Durability of glass fiber-reinforced polymer reinforcing bars in concrete environment publication-title: J. Compos. Constr. – volume: 232 start-page: 117266 year: 2020 ident: b0310 article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer publication-title: Constr. Build. Mater. – reference: ACI Guide for the design and construction of structural concrete reinforced with FRP bars (ACI 440.1 R-15). In, 2015. American Concrete Institute. – year: 2021 ident: b0220 article-title: Durability evaluation of GFRP rebars in harsh alkaline environment using optimized tree-based random forest model publication-title: J. Ocean. Eng. Sci. – volume: 12 start-page: 1434 year: 2019 end-page: 1446 ident: b0495 article-title: Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice publication-title: Molecular plant – volume: 35 start-page: 100783 year: 2022 ident: b0230 article-title: Experimental and Intelligent Modelling for Predicting the Amplitude of Footing Resting on Geocell-Reinforced Soil Bed under Vibratory Load publication-title: Transportation Geotechnics:100783. – reference: 440 ACIC Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars: ACI 440.1 R-06. In, 2006. American Concrete Institute. – volume: 25 start-page: 183 year: 2020 end-page: 195 ident: b0465 article-title: Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm) publication-title: Smart Struct. Syst. – volume: 186 year: 2021 ident: b0545 article-title: A GWO-based multi-robot cooperation method for target searching in unknown environments publication-title: Expert Syst. Appl. – volume: 12 start-page: 2600 year: 2020 ident: b0115 article-title: Mechanical properties of fibre reinforced polymers under elevated temperatures: An overview publication-title: Polymers – volume: 76 start-page: 1 year: 2017 end-page: 10 ident: b0260 article-title: Drought forecasting by ANN, ANFIS, and SVM and comparison of the models publication-title: Environ. Earth Sci. – volume: 52 start-page: 2191 year: 2019 end-page: 2233 ident: b0370 article-title: Metaheuristic research: a comprehensive survey publication-title: Artif. Intell. Rev. – year: 2022 ident: b0245 article-title: Experimental Study and Machine Learning Aided Modelling of the Mechanical Behaviour of Rammed Earth publication-title: Geotechn. Geol. Eng.:1–21. – year: 2021 ident: b0350 article-title: Optimizing the aeration performance of a perforated pooled circular stepped cascade aerator using hybrid ANN-PSO technique publication-title: Informat. Process. Agricult. – volume: 200 start-page: 106931 year: 2020 ident: b0505 article-title: Accident prediction accuracy assessment for highway-rail grade crossings using random forest algorithm compared with decision tree publication-title: Reliab. Eng. Syst. Saf. – volume: 14 start-page: 479 year: 2010 end-page: 486 ident: b0170 article-title: Environmental reduction factors for GFRP bars used as concrete reinforcement: new scientific approach publication-title: J. Compos. Constr. – volume: 79 start-page: 101916 year: 2021 ident: b0335 article-title: A novel approach for estimation of discharge coefficient in broad-crested weirs based on Harris Hawks Optimization algorithm publication-title: Flow Meas. Instrum. – volume: 8 start-page: 264 year: 2022 end-page: 269 ident: b0450 article-title: On the prediction of methane adsorption in shale using grey wolf optimizer support vector machine approach publication-title: Petroleum. – volume: 129 start-page: 150 year: 2020 end-page: 157 ident: b0525 article-title: An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor publication-title: Pattern Recogn. Lett. – volume: 157 start-page: 1001 year: 2017 end-page: 1010 ident: b0075 article-title: The effect of mechanical and thermal properties of FRP bars on their tensile performance under elevated temperatures publication-title: Constr. Build. Mater. – volume: 14 start-page: 191 year: 2002 end-page: 209 ident: b0205 article-title: Use of fiber reinforced polymer composites as reinforcing material for concrete publication-title: J. Mater. Civ. Eng. – volume: 37 start-page: 456 year: 2016 end-page: 468 ident: b0360 article-title: Artificial neural network, ANN-PSO and ANN-ICA for modelling the Stirling engine publication-title: Int. J. Ambient Energy – volume: 106 start-page: 390 year: 2016 end-page: 406 ident: b0035 article-title: Experimental study on seawater and sea sand concrete filled GFRP and stainless steel tubular stub columns publication-title: Thin-Walled Structures – volume: 115 start-page: 277 year: 2016 end-page: 284 ident: b0050 article-title: Experimental study on the bond durability between steel-FRP composite bars (SFCBs) and sea sand concrete in ocean environment publication-title: Constr. Build. Mater. – volume: 32 start-page: 7969 year: 2020 end-page: 7993 ident: b0490 article-title: Genetic programming-assisted multi-scale optimization for multi-objective dynamic performance of laminated composites: the advantage of more elementary-level analyses publication-title: Neural Comput. Appl. – reference: ASTM Standard specification for solid round glass fiber reinforced polymer bars for concrete reinforcement. In, 2017. ASTM West Conshohocken, PA. – reference: Standard N. Norwegian Council for building standardization. NS3473, Norway, 1998. – volume: 38 start-page: 593 year: 2018 end-page: 604 ident: b0285 article-title: Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and multi-layer perceptron neural network publication-title: Adv. Eng. Inf. – year: 1997 ident: b0200 article-title: Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials publication-title: Japan Soc. Civil Engineers. – volume: 1 start-page: 51 year: 2018 end-page: 58 ident: b0015 article-title: Water competition between cities and agriculture driven by climate change and urban growth publication-title: Nat. Sustainability – volume: 223 start-page: 110959 year: 2019 ident: b0120 article-title: Effect of thermal cycles on mechanical response of pultruded glass fiber reinforced polymer profiles of different geometries publication-title: Compos. Struct. – volume: 109 start-page: 103564 year: 2020 ident: b0160 article-title: Comparative durability of GFRP composite reinforcing bars in concrete and in simulated concrete environments publication-title: Cem. Concr. Compos. – volume: 34 start-page: 155 year: 2020 ident: b0475 article-title: Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS) publication-title: Steel Compos. Struct. – volume: 148 start-page: 429 year: 2017 end-page: 443 ident: b0125 article-title: Experiments and probabilistic models of bond strength between GFRP bar and different types of concrete under aggressive environments publication-title: Constr. Build. Mater. – volume: 170 start-page: 637 year: 2018 end-page: 648 ident: b0440 article-title: Durability and degradation mechanisms of GFRP reinforcement subjected to severe environments and sustained stress publication-title: Constr. Build. Mater. – volume: 141 start-page: 1 year: 2018 end-page: 13 ident: b0060 article-title: Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment publication-title: Corros. Sci. – reference: Teng J Performance enhancement of structures through the use of fibre-reinforced polymer (FRP) composites. In: Proceedings of the 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23), Lismore, NSW, Australia, 2014. – year: 2022 ident: b0250 article-title: Prediction of shear strength of corrosion reinforced concrete beams using Artificial Neural Network publication-title: J. Sci. Transp. Technol.:1–12. – volume: 135 start-page: 106195 year: 2020 ident: b0025 article-title: Mechanical behavior of buried composite pipelines subjected to strike-slip fault movement publication-title: Soil Dyn. Earthquake Eng. – volume: 10 start-page: 344 year: 2010 end-page: 360 ident: b0270 article-title: Fault diagnosis of spur bevel gear box using artificial neural network (ANN), and proximal support vector machine (PSVM) publication-title: Appl. Soft Comput. – volume: 10 start-page: 279 year: 2006 end-page: 286 ident: b0400 article-title: Durability prediction for GFRP reinforcing bars using short-term data of accelerated aging tests publication-title: J. Compos. Constr. – volume: 232 start-page: 109134 year: 2021 ident: b0445 article-title: Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment publication-title: Ocean Eng. – reference: F. Aguiniga Gaona, Characterization of design parameters for fiber reinforced polymer composite reinforced concrete systems. Texas A&M University, 2004. – start-page: 747 year: 2020 end-page: 766 ident: b0070 article-title: The axial and lateral behavior of low strength concrete confined by GFRP wraps: An experimental investigation publication-title: Structures – volume: 36 start-page: 394 year: 2005 end-page: 404 ident: b0420 article-title: Temperature and environmental effects on glass fibre rebar: modulus, strength and interfacial bond strength with concrete publication-title: Compos. B Eng. – volume: 29 year: 2021 ident: b0305 article-title: Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks publication-title: Transp. Geotech. – reference: F.A. Gaona, Characterization of design parameters for fiber reinforced polymer composite reinforced concrete systems. Texas A & M University, 2004. – volume: 142 start-page: 04015039 year: 2016 ident: b0265 article-title: How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers? publication-title: J. Hydraul. Eng. – volume: 114 start-page: 163 year: 2017 end-page: 174 ident: b0175 article-title: Laboratory assessment and durability performance of vinyl-ester, polyester, and epoxy glass-FRP bars for concrete structures publication-title: Compos. B Eng. – reference: Association CS (2002) Design and construction of building components with fibre-reinforced polymers. vol 2. Canadian Standards Association. – volume: 322 start-page: 126500 year: 2022 ident: b0255 article-title: Revealing the nature of metakaolin-based concrete materials using artificial intelligence techniques publication-title: Constr. Build. Mater. – volume: 12 start-page: 375 year: 2021 end-page: 383 ident: b0560 article-title: Application of soft computing techniques for shallow foundation reliability in geotechnical engineering publication-title: Geosci. Front. – volume: 8 start-page: 26 year: 2020 ident: b0130 article-title: Marine application of fiber reinforced composites: A review publication-title: J. Mar. Sci. Eng. – volume: 232 year: 2021 ident: b0065 article-title: Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment publication-title: Ocean Eng. – reference: M.S. Barkhordari, D.J. Armaghani, P.G. Asteris, Structural Damage Identification Using Ensemble Deep Convolutional Neural Network Models. – volume: 2016 start-page: 1461 year: 2016 end-page: 1469 ident: b0520 article-title: Bagging-SVMs algorithm-based traffic incident detection publication-title: CICTP – volume: 149 start-page: 153 year: 2015 end-page: 165 ident: b0530 article-title: Particle swarm optimization (PSO). A tutorial publication-title: Chemomet. Intellig. Lab. Syst. – volume: 21 start-page: 571 year: 2018 end-page: 579 ident: b0110 article-title: Durability study of pultruded carbon fiber reinforced polymer plates subjected to water immersion publication-title: Adv. Struct. Eng. – year: 2020 ident: b0240 article-title: An extreme learning machine model for geosynthetic-reinforced sandy soil foundations publication-title: Proceedings of the Institution of Civil Engineers-geotechnical Engineering:1–21 – volume: 4 start-page: 207 year: 2021 end-page: 225 ident: b0470 article-title: Smart computing models of California bearing ratio, unconfined compressive strength, and resistance value of activated ash-modified soft clay soil with adaptive neuro-fuzzy inference system and ensemble random forest regression techniques publication-title: Multiscale Multidiscip. Model. Exp. Des. – volume: 13 start-page: 66 year: 2009 end-page: 73 ident: b0435 article-title: Durability of GFRP reinforcing bars embedded in moist concrete publication-title: J. Compos. Constr. – volume: 164 start-page: 129 year: 2019 end-page: 143 ident: b0095 article-title: Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments publication-title: Compos. B Eng. – volume: 60 start-page: 97 year: 2017 end-page: 116 ident: b0325 article-title: Metaheuristic design of feedforward neural networks: A review of two decades of research publication-title: Eng. Appl. Artif. Intell. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b0375 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 301 start-page: 124335 year: 2021 ident: b0020 article-title: Hybrid fibre reinforced polymer and seawater sea sand concrete structures: A systematic review on short-term and long-term structural performance publication-title: Constr. Build. Mater. – volume: 16 start-page: e00955 year: 2022 ident: b0225 article-title: Soft computing approaches towards tensile strength estimation of GFRP rebars subjected to alkaline-concrete environment publication-title: Case Stud. Constr. Mater. – volume: 39 start-page: 804 year: 2021 end-page: 825 ident: b0300 article-title: Smart phase behavior modeling of asphaltene precipitation using advanced computational frameworks: ENN, GMDH, and MPMR publication-title: Pet. Sci. Technol. – volume: 49 start-page: 3170 year: 2022 end-page: 3176 ident: b0340 article-title: FOREX trend analysis using machine learning techniques: INR vs USD currency exchange rate using ANN-GA hybrid approach publication-title: Mater. Today:. Proc. – volume: 57 start-page: 49 year: 2014 end-page: 58 ident: b0105 article-title: Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: Moisture diffusion characteristics publication-title: Compos. A Appl. Sci. Manuf. – volume: 293 start-page: 123451 year: 2021 ident: b0630 article-title: Degradation of glass fiber reinforced polymer (GFRP) bars in concrete environment publication-title: Constr. Build. Mater. – volume: 242 start-page: 106376 year: 2021 ident: b0455 article-title: Neural network ensemble-based sensitivity analysis in structural engineering: Comparison of selected methods and the influence of statistical correlation publication-title: Comput. Struct. – volume: 39 start-page: 764 year: 2008 end-page: 772 ident: b0430 article-title: The effect of exposure to alkaline solution and water on the strength–porosity relationship of GFRP rebar publication-title: Compos. B Eng. – reference: V. Dejke, R. Tepfers, Durability and service life prediction of GFRP for concrete reinforcement. In: Proceedings of 5th international conference on fiber-reinforced plastics for reinforced concrete structures (FRPRCS-5), 2001. Citeseer, pp 505-516. – volume: 2 start-page: 178 year: 2019 end-page: 196 ident: b0460 article-title: A review on the artificial neural network approach to analysis and prediction of seismic damage in infrastructure publication-title: Int. J. Hydromechatron. – volume: 157 start-page: 76 year: 2019 end-page: 99 ident: b0080 article-title: Effect of thickness and reinforcement configuration on flexural and impact behaviour of GFRP laminates after exposure to elevated temperatures publication-title: Compos. B Eng. – volume: 39 start-page: 2825 year: 2019 end-page: 2832 ident: b0600 article-title: DISO: A rethink of Taylor diagram publication-title: Int. J. Climatol. – volume: 202 start-page: 189 year: 2019 end-page: 207 ident: b0085 article-title: Effect of fibers configuration and thickness on tensile behavior of GFRP laminates subjected to elevated temperatures publication-title: Constr. Build. Mater. – volume: 35 start-page: 243 year: 2019 end-page: 256 ident: b0315 article-title: Three hybrid intelligent models in estimating flyrock distance resulting from blasting publication-title: Eng. Comput. – volume: 195 start-page: 104802 year: 2020 ident: b0330 article-title: Soft-computing techniques for prediction of soils consolidation coefficient publication-title: Catena – volume: 9 start-page: 3755 year: 2019 ident: b0550 article-title: Spatial prediction of landslide susceptibility using gis-based data mining techniques of anfis with whale optimization algorithm (woa) and grey wolf optimizer (gwo) publication-title: Appl. Sci. – reference: V. Beiser, The deadly global war for sand. Wired website retrieved 26th March, 2015. – reference: M.S.M. Alfatni, A.R.M. Shariff, S.K. Bejo, O.M.B. Saaed, A. Mustapha, Real-time oil palm FFB ripeness grading system based on ANN, KNN and SVM classifiers. In: IOP conference series: earth and environmental science, 2018. vol 1. IOP Publishing, pp. 012067. – year: 2021 ident: b0565 article-title: 1.9 ASSISTED DEMAND PLANNING USING MACHINE LEARNING publication-title: Business Forecasting: The Emerging Role of Artificial Intelligence and Machine Learning:110 – volume: 8 start-page: 391 year: 2019 ident: b0480 article-title: The feasibility of three prediction techniques of the artificial neural network, adaptive neuro-fuzzy inference system, and hybrid particle swarm optimization for assessing the safety factor of cohesive slopes publication-title: ISPRS Int. J. Geo-Inf. – volume: 38 start-page: 274 year: 2013 end-page: 284 ident: b0155 article-title: Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars publication-title: Constr. Build. Mater. – volume: 83 start-page: 37 year: 2008 end-page: 47 ident: b0405 article-title: Short-term durability test for GFRP rods under various environmental conditions publication-title: Compos. Struct. – year: 2002 ident: b0410 article-title: Maslehuddin M Durability performance of glass fiber reinforced plastic reinforcement in harsh environments publication-title: In: 6th Saudi Engineering Conference – volume: 30 start-page: 79 year: 2005 end-page: 82 ident: b0570 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. – volume: 24 start-page: 100372 year: 2020 ident: b0590 article-title: Evolutionary computing to determine the skin friction capacity of piles embedded in clay and evaluation of the available analytical methods publication-title: Transp. Geotech. – volume: 17 start-page: 1257 year: 2022 end-page: 1272 ident: b0320 article-title: Novel integrated approaches for predicting the compressibility of clay using cascade forward neural networks optimized by swarm-and evolution-based algorithms publication-title: Acta Geotech. – volume: 34 start-page: 321 year: 2012 end-page: 329 ident: b0345 article-title: Hybrid support vector regression–Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin publication-title: Constr. Build. Mater. – volume: 289 start-page: 112420 year: 2021 ident: b0485 article-title: Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP publication-title: J. Environ. Manage. – volume: 582 start-page: 124435 year: 2020 ident: b0540 article-title: Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm publication-title: J. Hydrol. – reference: V. Dejke, Durability of FRP reinforcement in concrete: literature review and experiments, 2001. – volume: 78 start-page: 101 year: 2007 end-page: 111 ident: b0395 article-title: Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures publication-title: Compos. Struct. – volume: 11 start-page: 1253 year: 2020 end-page: 1264 ident: b0575 article-title: Forecasting heating and cooling loads of buildings: A comparative performance analysis publication-title: J. Ambient Intell. Hum. Comput. – volume: 17 start-page: 670 year: 2020 end-page: 685 ident: b0510 article-title: Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree, random forest and information value models publication-title: J. Mountain Sci. – volume: 7 start-page: 1 year: 2017 end-page: 14 ident: b0365 article-title: Modeling and prediction of copper removal from aqueous solutions by nZVI/rGO magnetic nanocomposites using ANN-GA and ANN-PSO publication-title: Sci. Rep. – volume: 125 start-page: 832 year: 2015 end-page: 837 ident: b0040 article-title: Porosity, pore size and compressive strength of self compacting concrete using sea water publication-title: Procedia Eng. – volume: 24 start-page: 06020001 year: 2020 ident: b0210 article-title: Reconsideration of the environmental reduction factor CE for GFRP reinforcing bars in concrete structures publication-title: J. Compos. Constr. – volume: 61 start-page: 860 year: 2019 end-page: 872 ident: b0580 article-title: A coefficient of determination (R2) for generalized linear mixed models publication-title: Biometrical J. – volume: 69 start-page: 417 year: 2018 end-page: 430 ident: b0100 article-title: Flexural and web crippling properties of GFRP pultruded profiles subjected to wetting and drying cycles in different sea water conditions publication-title: Polym. Test. – volume: 46 start-page: 1899 year: 2012 end-page: 1914 ident: b0165 article-title: Long-term durability prediction models for GFRP bars in concrete environment publication-title: J. Compos. Mater. – volume: 110 start-page: 104722 year: 2022 ident: b0380 article-title: An improved marine predators algorithm for the optimal design of hybrid renewable energy systems publication-title: Eng. Appl. Artif. Intell. – volume: 38 start-page: 274 year: 2013 ident: 10.1016/j.conbuildmat.2022.128862_b0155 article-title: Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.08.021 – volume: 115 start-page: 277 year: 2016 ident: 10.1016/j.conbuildmat.2022.128862_b0050 article-title: Experimental study on the bond durability between steel-FRP composite bars (SFCBs) and sea sand concrete in ocean environment publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.04.052 – volume: 322 start-page: 126500 year: 2022 ident: 10.1016/j.conbuildmat.2022.128862_b0255 article-title: Revealing the nature of metakaolin-based concrete materials using artificial intelligence techniques publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.126500 – volume: 293 start-page: 123451 year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0630 article-title: Degradation of glass fiber reinforced polymer (GFRP) bars in concrete environment publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.123451 – volume: 6 start-page: 143 issue: 3 year: 2002 ident: 10.1016/j.conbuildmat.2022.128862_b0145 article-title: Durability of glass fiber-reinforced polymer reinforcing bars in concrete environment publication-title: J. Compos. Constr. doi: 10.1061/(ASCE)1090-0268(2002)6:3(143) – year: 2022 ident: 10.1016/j.conbuildmat.2022.128862_b0280 article-title: Prediction of residual tensile strength of glass fiber reinforced polymer bars in harsh alkaline concrete environment using fuzzy metaheuristic models. Journal of Ocean publication-title: Eng. Sci. – volume: 242 start-page: 106376 year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0455 article-title: Neural network ensemble-based sensitivity analysis in structural engineering: Comparison of selected methods and the influence of statistical correlation publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2020.106376 – volume: 8 start-page: 391 issue: 9 year: 2019 ident: 10.1016/j.conbuildmat.2022.128862_b0480 article-title: The feasibility of three prediction techniques of the artificial neural network, adaptive neuro-fuzzy inference system, and hybrid particle swarm optimization for assessing the safety factor of cohesive slopes publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi8090391 – volume: 57 start-page: 49 year: 2014 ident: 10.1016/j.conbuildmat.2022.128862_b0105 article-title: Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: Moisture diffusion characteristics publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2013.11.002 – volume: 129 start-page: 150 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0525 article-title: An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2019.11.017 – volume: 12 start-page: 375 issue: 1 year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0560 article-title: Application of soft computing techniques for shallow foundation reliability in geotechnical engineering publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.05.003 – volume: 78 start-page: 101 issue: 1 year: 2007 ident: 10.1016/j.conbuildmat.2022.128862_b0395 article-title: Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2005.08.015 – volume: 46 start-page: 1899 issue: 16 year: 2012 ident: 10.1016/j.conbuildmat.2022.128862_b0165 article-title: Long-term durability prediction models for GFRP bars in concrete environment publication-title: J. Compos. Mater. doi: 10.1177/0021998311427777 – volume: 32 start-page: 7969 issue: 12 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0490 article-title: Genetic programming-assisted multi-scale optimization for multi-objective dynamic performance of laminated composites: the advantage of more elementary-level analyses publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04280-z – volume: 49 start-page: 3170 year: 2022 ident: 10.1016/j.conbuildmat.2022.128862_b0340 article-title: FOREX trend analysis using machine learning techniques: INR vs USD currency exchange rate using ANN-GA hybrid approach publication-title: Mater. Today:. Proc. – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.conbuildmat.2022.128862_b0175 article-title: Laboratory assessment and durability performance of vinyl-ester, polyester, and epoxy glass-FRP bars for concrete structures publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2017.02.002 – volume: 135 start-page: 106195 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0025 article-title: Mechanical behavior of buried composite pipelines subjected to strike-slip fault movement publication-title: Soil Dyn. Earthquake Eng. doi: 10.1016/j.soildyn.2020.106195 – volume: 142 start-page: 04015039 issue: 1 year: 2016 ident: 10.1016/j.conbuildmat.2022.128862_b0265 article-title: How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers? publication-title: J. Hydraul. Eng. doi: 10.1061/(ASCE)HY.1943-7900.0001062 – ident: 10.1016/j.conbuildmat.2022.128862_b0620 – year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0565 article-title: 1.9 ASSISTED DEMAND PLANNING USING MACHINE LEARNING – volume: 8 start-page: 264 issue: 2 year: 2022 ident: 10.1016/j.conbuildmat.2022.128862_b0450 article-title: On the prediction of methane adsorption in shale using grey wolf optimizer support vector machine approach publication-title: Petroleum. doi: 10.1016/j.petlm.2021.12.002 – volume: 10 start-page: 279 issue: 4 year: 2006 ident: 10.1016/j.conbuildmat.2022.128862_b0400 article-title: Durability prediction for GFRP reinforcing bars using short-term data of accelerated aging tests publication-title: J. Compos. Constr. doi: 10.1061/(ASCE)1090-0268(2006)10:4(279) – volume: 4 start-page: 207 issue: 3 year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0470 article-title: Smart computing models of California bearing ratio, unconfined compressive strength, and resistance value of activated ash-modified soft clay soil with adaptive neuro-fuzzy inference system and ensemble random forest regression techniques publication-title: Multiscale Multidiscip. Model. Exp. Des. doi: 10.1007/s41939-021-00092-8 – volume: 582 start-page: 124435 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0540 article-title: Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124435 – volume: 157 start-page: 76 year: 2019 ident: 10.1016/j.conbuildmat.2022.128862_b0080 article-title: Effect of thickness and reinforcement configuration on flexural and impact behaviour of GFRP laminates after exposure to elevated temperatures publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2018.08.054 – volume: 10 start-page: 344 issue: 1 year: 2010 ident: 10.1016/j.conbuildmat.2022.128862_b0270 article-title: Fault diagnosis of spur bevel gear box using artificial neural network (ANN), and proximal support vector machine (PSVM) publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.08.006 – year: 2002 ident: 10.1016/j.conbuildmat.2022.128862_b0410 article-title: Maslehuddin M Durability performance of glass fiber reinforced plastic reinforcement in harsh environments – volume: 195 start-page: 104802 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0330 article-title: Soft-computing techniques for prediction of soils consolidation coefficient publication-title: Catena doi: 10.1016/j.catena.2020.104802 – volume: 110 start-page: 104722 year: 2022 ident: 10.1016/j.conbuildmat.2022.128862_b0380 article-title: An improved marine predators algorithm for the optimal design of hybrid renewable energy systems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104722 – ident: 10.1016/j.conbuildmat.2022.128862_b0425 – start-page: 747 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0070 article-title: The axial and lateral behavior of low strength concrete confined by GFRP wraps: An experimental investigation – volume: 34 start-page: 321 year: 2012 ident: 10.1016/j.conbuildmat.2022.128862_b0345 article-title: Hybrid support vector regression–Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.02.038 – volume: 164 start-page: 129 year: 2019 ident: 10.1016/j.conbuildmat.2022.128862_b0095 article-title: Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2018.11.047 – ident: 10.1016/j.conbuildmat.2022.128862_b0150 – year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0350 article-title: Optimizing the aeration performance of a perforated pooled circular stepped cascade aerator using hybrid ANN-PSO technique publication-title: Informat. Process. Agricult. – year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0240 article-title: An extreme learning machine model for geosynthetic-reinforced sandy soil foundations – ident: 10.1016/j.conbuildmat.2022.128862_b0185 – ident: 10.1016/j.conbuildmat.2022.128862_b0030 – volume: 61 start-page: 860 issue: 4 year: 2019 ident: 10.1016/j.conbuildmat.2022.128862_b0580 article-title: A coefficient of determination (R2) for generalized linear mixed models publication-title: Biometrical J. doi: 10.1002/bimj.201800270 – volume: 52 start-page: 2191 issue: 4 year: 2019 ident: 10.1016/j.conbuildmat.2022.128862_b0370 article-title: Metaheuristic research: a comprehensive survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-017-9605-z – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.conbuildmat.2022.128862_b0365 article-title: Modeling and prediction of copper removal from aqueous solutions by nZVI/rGO magnetic nanocomposites using ANN-GA and ANN-PSO publication-title: Sci. Rep. doi: 10.1038/s41598-017-18223-y – volume: 170 start-page: 637 year: 2018 ident: 10.1016/j.conbuildmat.2022.128862_b0440 article-title: Durability and degradation mechanisms of GFRP reinforcement subjected to severe environments and sustained stress publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.03.092 – volume: 2016 start-page: 1461 year: 2016 ident: 10.1016/j.conbuildmat.2022.128862_b0520 article-title: Bagging-SVMs algorithm-based traffic incident detection publication-title: CICTP – volume: 9 start-page: 3755 issue: 18 year: 2019 ident: 10.1016/j.conbuildmat.2022.128862_b0550 article-title: Spatial prediction of landslide susceptibility using gis-based data mining techniques of anfis with whale optimization algorithm (woa) and grey wolf optimizer (gwo) publication-title: Appl. Sci. doi: 10.3390/app9183755 – volume: 8 start-page: 26 issue: 1 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0130 article-title: Marine application of fiber reinforced composites: A review publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse8010026 – ident: 10.1016/j.conbuildmat.2022.128862_b0215 – volume: 14 start-page: 361 issue: 4 year: 2010 ident: 10.1016/j.conbuildmat.2022.128862_b0605 article-title: Temperature as an accelerating factor for long-term durability testing of FRPs: Should there be any limitations? publication-title: J. Compos. Constr. doi: 10.1061/(ASCE)CC.1943-5614.0000102 – volume: 54 start-page: 1 issue: 5 year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0135 article-title: Evaluation of tensile strength degradation of GFRP rebars in harsh alkaline conditions using non-linear genetic-based models publication-title: Mater. Struct. doi: 10.1617/s11527-021-01783-x – ident: 10.1016/j.conbuildmat.2022.128862_b0180 – ident: 10.1016/j.conbuildmat.2022.128862_b0045 – volume: 21 start-page: 571 issue: 4 year: 2018 ident: 10.1016/j.conbuildmat.2022.128862_b0110 article-title: Durability study of pultruded carbon fiber reinforced polymer plates subjected to water immersion publication-title: Adv. Struct. Eng. doi: 10.1177/1369433217732664 – volume: 109 start-page: 103564 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0160 article-title: Comparative durability of GFRP composite reinforcing bars in concrete and in simulated concrete environments publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2020.103564 – year: 1997 ident: 10.1016/j.conbuildmat.2022.128862_b0200 article-title: Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials publication-title: Japan Soc. Civil Engineers. – volume: 148 start-page: 429 year: 2017 ident: 10.1016/j.conbuildmat.2022.128862_b0125 article-title: Experiments and probabilistic models of bond strength between GFRP bar and different types of concrete under aggressive environments publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.05.046 – volume: 39 start-page: 804 issue: 19-20 year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0300 article-title: Smart phase behavior modeling of asphaltene precipitation using advanced computational frameworks: ENN, GMDH, and MPMR publication-title: Pet. Sci. Technol. doi: 10.1080/10916466.2021.1974882 – volume: 52 start-page: 2929 issue: 21 year: 2018 ident: 10.1016/j.conbuildmat.2022.128862_b0625 article-title: Statistical analysis and theoretical predictions of the tensile-strength retention of glass fiber-reinforced polymer bars based on resin type publication-title: J. Compos. Mater. doi: 10.1177/0021998318755866 – volume: 34 start-page: 155 issue: 1 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0475 article-title: Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS) publication-title: Steel Compos. Struct. – volume: 52 start-page: 1 issue: 21 year: 2018 ident: 10.1016/j.conbuildmat.2022.128862_b0385 article-title: Statistical analysis and theoretical predictions of the tensile strength retention of GFRP bars based on resin degradation publication-title: J. Compos. Mater. doi: 10.1177/0021998318755866 – volume: 289 start-page: 112420 year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0485 article-title: Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.112420 – volume: 69 start-page: 417 year: 2018 ident: 10.1016/j.conbuildmat.2022.128862_b0100 article-title: Flexural and web crippling properties of GFRP pultruded profiles subjected to wetting and drying cycles in different sea water conditions publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2018.05.038 – volume: 11 start-page: 1253 issue: 3 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0575 article-title: Forecasting heating and cooling loads of buildings: A comparative performance analysis publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-019-01317-y – volume: 20 start-page: 280 issue: 4 year: 2019 ident: 10.1016/j.conbuildmat.2022.128862_b0005 article-title: Benefits of using sea sand and seawater in concrete: a comprehensive review publication-title: Aust. J. Struct. Eng. doi: 10.1080/13287982.2019.1659213 – volume: 37 start-page: 456 issue: 5 year: 2016 ident: 10.1016/j.conbuildmat.2022.128862_b0360 article-title: Artificial neural network, ANN-PSO and ANN-ICA for modelling the Stirling engine publication-title: Int. J. Ambient Energy doi: 10.1080/01430750.2014.986289 – volume: 29 year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0305 article-title: Soft computing based closed form equations correlating L and N-type Schmidt hammer rebound numbers of rocks publication-title: Transp. Geotech. doi: 10.1016/j.trgeo.2021.100588 – volume: 101 start-page: 107026 year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0515 article-title: Binary biogeography-based optimization based SVM-RFE for feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.107026 – volume: 223 start-page: 110959 year: 2019 ident: 10.1016/j.conbuildmat.2022.128862_b0120 article-title: Effect of thermal cycles on mechanical response of pultruded glass fiber reinforced polymer profiles of different geometries publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.110959 – volume: 36 start-page: 394 issue: 5 year: 2005 ident: 10.1016/j.conbuildmat.2022.128862_b0420 article-title: Temperature and environmental effects on glass fibre rebar: modulus, strength and interfacial bond strength with concrete publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2005.01.006 – volume: 35 start-page: 100783 year: 2022 ident: 10.1016/j.conbuildmat.2022.128862_b0230 article-title: Experimental and Intelligent Modelling for Predicting the Amplitude of Footing Resting on Geocell-Reinforced Soil Bed under Vibratory Load publication-title: Transportation Geotechnics:100783. doi: 10.1016/j.trgeo.2022.100783 – volume: 2 start-page: 178 issue: 4 year: 2019 ident: 10.1016/j.conbuildmat.2022.128862_b0460 article-title: A review on the artificial neural network approach to analysis and prediction of seismic damage in infrastructure publication-title: Int. J. Hydromechatron. doi: 10.1504/IJHM.2019.104386 – volume: 83 start-page: 37 issue: 1 year: 2008 ident: 10.1016/j.conbuildmat.2022.128862_b0405 article-title: Short-term durability test for GFRP rods under various environmental conditions publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2007.03.005 – volume: 232 year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0065 article-title: Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109134 – volume: 202 start-page: 189 year: 2019 ident: 10.1016/j.conbuildmat.2022.128862_b0085 article-title: Effect of fibers configuration and thickness on tensile behavior of GFRP laminates subjected to elevated temperatures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.01.003 – volume: 1 start-page: 51 issue: 1 year: 2018 ident: 10.1016/j.conbuildmat.2022.128862_b0015 article-title: Water competition between cities and agriculture driven by climate change and urban growth publication-title: Nat. Sustainability doi: 10.1038/s41893-017-0006-8 – volume: 30 start-page: 79 issue: 1 year: 2005 ident: 10.1016/j.conbuildmat.2022.128862_b0570 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. doi: 10.3354/cr030079 – volume: 7 start-page: 238 issue: 3 year: 2003 ident: 10.1016/j.conbuildmat.2022.128862_b0140 article-title: Durability gap analysis for fiber-reinforced polymer composites in civil infrastructure publication-title: J. Compos. Constr. doi: 10.1061/(ASCE)1090-0268(2003)7:3(238) – volume: 60 start-page: 97 year: 2017 ident: 10.1016/j.conbuildmat.2022.128862_b0325 article-title: Metaheuristic design of feedforward neural networks: A review of two decades of research publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.01.013 – volume: 9 start-page: 3221 issue: 16 year: 2019 ident: 10.1016/j.conbuildmat.2022.128862_b0535 article-title: Particle Swarm Optimization algorithm-Extreme Learning Machine (PSO-ELM) model for predicting resilient modulus of stabilized aggregate bases publication-title: Applied Sciences doi: 10.3390/app9163221 – volume: 25 start-page: 183 issue: 2 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0465 article-title: Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm) publication-title: Smart Struct. Syst. – ident: 10.1016/j.conbuildmat.2022.128862_b0195 – volume: 111 start-page: 300 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0555 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Generat. Comput. Syst. doi: 10.1016/j.future.2020.03.055 – volume: 38 start-page: 593 year: 2018 ident: 10.1016/j.conbuildmat.2022.128862_b0285 article-title: Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and multi-layer perceptron neural network publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2018.09.005 – volume: 76 start-page: 1 issue: 21 year: 2017 ident: 10.1016/j.conbuildmat.2022.128862_b0260 article-title: Drought forecasting by ANN, ANFIS, and SVM and comparison of the models publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-7064-0 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.conbuildmat.2022.128862_b0375 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 141 start-page: 1 year: 2018 ident: 10.1016/j.conbuildmat.2022.128862_b0060 article-title: Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment publication-title: Corros. Sci. doi: 10.1016/j.corsci.2018.06.022 – year: 2022 ident: 10.1016/j.conbuildmat.2022.128862_b0250 article-title: Prediction of shear strength of corrosion reinforced concrete beams using Artificial Neural Network publication-title: J. Sci. Transp. Technol.:1–12. doi: 10.58845/jstt.utt.2022.en.2.1-12 – ident: 10.1016/j.conbuildmat.2022.128862_b0390 – ident: 10.1016/j.conbuildmat.2022.128862_b0615 – volume: 232 start-page: 109134 year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0445 article-title: Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109134 – volume: 35 start-page: 243 issue: 1 year: 2019 ident: 10.1016/j.conbuildmat.2022.128862_b0315 article-title: Three hybrid intelligent models in estimating flyrock distance resulting from blasting publication-title: Eng. Comput. doi: 10.1007/s00366-018-0596-4 – volume: 14 start-page: 191 issue: 3 year: 2002 ident: 10.1016/j.conbuildmat.2022.128862_b0205 article-title: Use of fiber reinforced polymer composites as reinforcing material for concrete publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)0899-1561(2002)14:3(191) – volume: 39 start-page: 2825 issue: 5 year: 2019 ident: 10.1016/j.conbuildmat.2022.128862_b0600 article-title: DISO: A rethink of Taylor diagram publication-title: Int. J. Climatol. doi: 10.1002/joc.5972 – volume: 21 start-page: 1 issue: 5 year: 2017 ident: 10.1016/j.conbuildmat.2022.128862_b0610 article-title: Effects of diameter on the durability of glass-fiber-reinforced-polymer (GFRP) bars conditioned in alkaline solution publication-title: J. Compos. Constr. doi: 10.1061/(ASCE)CC.1943-5614.0000814 – volume: 17 start-page: 670 issue: 3 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0510 article-title: Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree, random forest and information value models publication-title: J. Mountain Sci. doi: 10.1007/s11629-019-5839-3 – volume: 24 start-page: 06020001 issue: 4 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0210 article-title: Reconsideration of the environmental reduction factor CE for GFRP reinforcing bars in concrete structures publication-title: J. Compos. Constr. doi: 10.1061/(ASCE)CC.1943-5614.0001040 – volume: 149 start-page: 153 year: 2015 ident: 10.1016/j.conbuildmat.2022.128862_b0530 article-title: Particle swarm optimization (PSO). A tutorial publication-title: Chemomet. Intellig. Lab. Syst. doi: 10.1016/j.chemolab.2015.08.020 – volume: 200 start-page: 106931 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0505 article-title: Accident prediction accuracy assessment for highway-rail grade crossings using random forest algorithm compared with decision tree publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.106931 – volume: 16 start-page: e00955 year: 2022 ident: 10.1016/j.conbuildmat.2022.128862_b0225 article-title: Soft computing approaches towards tensile strength estimation of GFRP rebars subjected to alkaline-concrete environment publication-title: Case Stud. Constr. Mater. – volume: 24 start-page: 100372 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0590 article-title: Evolutionary computing to determine the skin friction capacity of piles embedded in clay and evaluation of the available analytical methods publication-title: Transp. Geotech. doi: 10.1016/j.trgeo.2020.100372 – year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0220 article-title: Durability evaluation of GFRP rebars in harsh alkaline environment using optimized tree-based random forest model publication-title: J. Ocean. Eng. Sci. – year: 2022 ident: 10.1016/j.conbuildmat.2022.128862_b0245 article-title: Experimental Study and Machine Learning Aided Modelling of the Mechanical Behaviour of Rammed Earth publication-title: Geotechn. Geol. Eng.:1–21. doi: 10.1007/s10706-022-02196-5 – ident: 10.1016/j.conbuildmat.2022.128862_b0290 – volume: 157 start-page: 1001 year: 2017 ident: 10.1016/j.conbuildmat.2022.128862_b0075 article-title: The effect of mechanical and thermal properties of FRP bars on their tensile performance under elevated temperatures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.09.160 – volume: 13 start-page: 703 issue: 6 year: 2022 ident: 10.1016/j.conbuildmat.2022.128862_b0295 article-title: Machine learning prediction of the conversion of lignocellulosic biomass during hydrothermal carbonization publication-title: Biofuels doi: 10.1080/17597269.2021.1894780 – ident: 10.1016/j.conbuildmat.2022.128862_b0275 doi: 10.1088/1755-1315/169/1/012067 – volume: 301 start-page: 124335 year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0020 article-title: Hybrid fibre reinforced polymer and seawater sea sand concrete structures: A systematic review on short-term and long-term structural performance publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.124335 – volume: 39 start-page: 764 issue: 5 year: 2008 ident: 10.1016/j.conbuildmat.2022.128862_b0430 article-title: The effect of exposure to alkaline solution and water on the strength–porosity relationship of GFRP rebar publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2007.11.002 – volume: 7 start-page: e623 year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0585 article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.623 – volume: 125 start-page: 832 year: 2015 ident: 10.1016/j.conbuildmat.2022.128862_b0040 article-title: Porosity, pore size and compressive strength of self compacting concrete using sea water publication-title: Procedia Eng. doi: 10.1016/j.proeng.2015.11.045 – volume: 49 start-page: 1280 issue: 5 year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0235 article-title: Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique publication-title: Geotext. Geomembr. doi: 10.1016/j.geotexmem.2021.04.007 – volume: 12 start-page: 2600 issue: 11 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0115 article-title: Mechanical properties of fibre reinforced polymers under elevated temperatures: An overview publication-title: Polymers doi: 10.3390/polym12112600 – volume: 14 start-page: 479 issue: 5 year: 2010 ident: 10.1016/j.conbuildmat.2022.128862_b0170 article-title: Environmental reduction factors for GFRP bars used as concrete reinforcement: new scientific approach publication-title: J. Compos. Constr. doi: 10.1061/(ASCE)CC.1943-5614.0000122 – volume: 79 start-page: 101916 year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0335 article-title: A novel approach for estimation of discharge coefficient in broad-crested weirs based on Harris Hawks Optimization algorithm publication-title: Flow Meas. Instrum. doi: 10.1016/j.flowmeasinst.2021.101916 – ident: 10.1016/j.conbuildmat.2022.128862_b0010 – volume: 106 start-page: 390 year: 2016 ident: 10.1016/j.conbuildmat.2022.128862_b0035 article-title: Experimental study on seawater and sea sand concrete filled GFRP and stainless steel tubular stub columns publication-title: Thin-Walled Structures doi: 10.1016/j.tws.2016.05.014 – volume: 162 start-page: 442 year: 2018 ident: 10.1016/j.conbuildmat.2022.128862_b0055 article-title: Bond properties between FRP bars and coral concrete under seawater conditions at 30, 60, and 80° C publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.12.058 – volume: 186 year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0545 article-title: A GWO-based multi-robot cooperation method for target searching in unknown environments publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115795 – volume: 152 start-page: 113377 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0355 article-title: Marine Predators Algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 43 start-page: 48 year: 2021 ident: 10.1016/j.conbuildmat.2022.128862_b0595 article-title: Assessment of spectral indexes for estimating soil water content in the Brazilian Pantanal publication-title: Ciência e Natura doi: 10.5902/2179460X42724 – ident: 10.1016/j.conbuildmat.2022.128862_b0190 – volume: 232 start-page: 117266 year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0310 article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117266 – volume: 13 start-page: 66 issue: 2 year: 2009 ident: 10.1016/j.conbuildmat.2022.128862_b0435 article-title: Durability of GFRP reinforcing bars embedded in moist concrete publication-title: J. Compos. Constr. doi: 10.1061/(ASCE)1090-0268(2009)13:2(66) – volume: 17 start-page: 1257 issue: 4 year: 2022 ident: 10.1016/j.conbuildmat.2022.128862_b0320 article-title: Novel integrated approaches for predicting the compressibility of clay using cascade forward neural networks optimized by swarm-and evolution-based algorithms publication-title: Acta Geotech. doi: 10.1007/s11440-021-01358-8 – volume: 99 start-page: 203 year: 2016 ident: 10.1016/j.conbuildmat.2022.128862_b0090 article-title: Effect of harsh environments on mechanical properties of GFRP pultruded profiles publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2016.06.019 – volume: 45 start-page: 835 issue: 1 year: 2013 ident: 10.1016/j.conbuildmat.2022.128862_b0415 article-title: Effect of harsh environmental conditions on the tensile properties of GFRP bars publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2012.05.004 – volume: 12 start-page: 1434 issue: 11 year: 2019 ident: 10.1016/j.conbuildmat.2022.128862_b0495 article-title: Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice publication-title: Molecular plant doi: 10.1016/j.molp.2019.08.006 – year: 2020 ident: 10.1016/j.conbuildmat.2022.128862_b0500 article-title: Ensemble modeling of landslide susceptibility using random subspace learner and different decision tree classifiers publication-title: Geocarto International:1–23. doi: 10.1080/10106049.2018.1559885 |
SSID | ssj0006262 |
Score | 2.5075333 |
Snippet | •Hybrid ANN models for estimating the durability of GFRP rebars in alkaline environment.•ANN-GWO was selected for calculating environmental reduction factor... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 128862 |
SubjectTerms | ANN Durability Environmental reduction factor GFRP rebars Hybrid algorithms Swarm intelligence |
Title | Hybrid ANN models for durability of GFRP rebars in alkaline concrete environment using three swarm-based optimization algorithms |
URI | https://dx.doi.org/10.1016/j.conbuildmat.2022.128862 |
Volume | 352 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS-NAEF5EQe4eRD2P8ycj3Gtsd7PJJuBLEWu1UMQ70bewm931etpW0oj4Iv7pzjSpVhAUfAoJTFj2G-b7BuYHY7_TPJbOKx2oxMSBdCoOUi2bgZZaNSNrpfGTaote3DmXJ5fR5Rw7mPbCUFllHfurmD6J1vWXRn2bjdt-v_EHxQERMDIc6eSUJn5KqcjX9x5fyzxQsItq3h4tWOHJItt9rfHClNPQ9mkUh5gqCrGH0TqJxfscNcM77WW2VAtGaFVnWmFzbrjKvs-MEfzBnjoP1HcFrV4PJpttxoBSFOxdUQ3hfoCRh6P22SkUzmAiC_0h6JtrTQoT8HAoHEsHMy1vQNXwV1Aizg7G97oYBMR2FkYYYAZ15yb-4mpU9Mt_g_EaO28f_j3oBPVmhSAPBS-DVEbCRYgGN17YUHOTa5Mqrn2kfG69Da3gOlXOOSO15BZZ3HFvIs9JATbDn2x-OBq6Xwy4pxUxsTeYR0nhUhPpRLlQkg5VqeHrLJneZZbXY8dp-8VNNq0v-5_NwJARDFkFwzoTL6a31eyNzxjtTwHL3jhShhzxsfnG18w32Td6I3LjaovNl8Wd20bVUpqdiVvusIXWcbfTo2f37KL7DCEK8ms |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEB6shbY-SH-JVmtH6Gu8280mm0BfRLxeW3uUVsG3sJvdtVe9O8lFxJfin-7MJacnFFroa8Isy84w3zcwMx_A-7xMlQ_aRDqzaaS8TqPcqG5klNHdxDllw6zbYpD2j9Xnk-RkCfbnszDcVtnm_ianz7J1-6XTvmbnYjjs_CBywABMCMc8OY8fwWPFMgcU1Lu_7_s8iLHLZuEeK6yI7Ans3Dd5Uc1pWX6a2CHVilLuUrrOUvlnkFoAnt5zWG0ZI-41l3oBS378ElYW9gi-gpv-NQ9e4d5ggDNpmykSF0V3WTVbuK9xEvBj7_s3rLylShaHYzTnZ4YpJtLliDnWHhdm3pDb4U-xJkd7nF6ZahQx3DmcUIYZtaObdMTppBrWP0fT13DcOzja70ettEJUxlLUUa4S6RNyh7BButgIWxqba2FCokPpgoudFCbX3nurjBKOYNyLYJMgmAJ24zVYHk_Gfh1QBNaISYOlQkpJn9vEZNrHiomozq3YgGz-lkXZ7h1n-YvzYt5g9qtYcEPBbigaN2yAvDO9aJZv_IvRh7nDigeRVBBI_N38zf-Zv4On_aOvh8Xhp8GXTXjGfxjphN6C5bq69G-JwtR2exaitwnF8lE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+ANN+models+for+durability+of+GFRP+rebars+in+alkaline+concrete+environment+using+three+swarm-based+optimization+algorithms&rft.jtitle=Construction+%26+building+materials&rft.au=Khan%2C+Kaffayatullah&rft.au=Iqbal%2C+Mudassir&rft.au=Jalal%2C+Fazal+E.&rft.au=Nasir+Amin%2C+Muhammad&rft.date=2022-10-17&rft.pub=Elsevier+Ltd&rft.issn=0950-0618&rft.eissn=1879-0526&rft.volume=352&rft_id=info:doi/10.1016%2Fj.conbuildmat.2022.128862&rft.externalDocID=S0950061822025193 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon |