Improving through-plane thermal conductivity of PDMS-based composites using highly oriented carbon fibers bridged by Al2O3 particles
Efficient thermal interface materials (TIMs) are urgently needed for heat dissipation of high-power density electronics. In this study, vinyl polydimethylsiloxane (PDMS) composites with the spatial alignment of carbon fibers (CFs) bridged by Al2O3 particles were fabricated by the flow field. The thr...
Saved in:
| Published in | Composites science and technology Vol. 230; p. 109717 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
10.11.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0266-3538 1879-1050 |
| DOI | 10.1016/j.compscitech.2022.109717 |
Cover
| Abstract | Efficient thermal interface materials (TIMs) are urgently needed for heat dissipation of high-power density electronics. In this study, vinyl polydimethylsiloxane (PDMS) composites with the spatial alignment of carbon fibers (CFs) bridged by Al2O3 particles were fabricated by the flow field. The through-plane thermal conductivity (TPTC) of the composites with 24 vol% CFs and 47 vol% Al2O3 loading reached 38.0 W m−1 K−1. The oriented CFs bridged by Al2O3 acted as the efficient through-plane thermal conductive network. Furthermore, the effects of shape factor (b/a), spatial angle (γ) of CFs, and CF loading (Vf) on the TPTC were quantitatively discussed by steady-state finite element simulation combined with micro-computed tomography and machine learning. The positive contribution of the increased Vf to TPTC was in competition with the negative contribution of b/a and γ, both of which increased with the increase of Vf. Moreover, b/a exerted more negative effects than γ. The PDMS composites demonstrated excellent thermal stability (Td = 407.5 °C, CTE = −55.3 × 10−6 K−1), low compress modulus (1.71 MPa), and hardness (47 (Shore C)), which made them potential candidates for TIMs. This work offers a feasible method to prepare TIMs on large scale and refreshes the thermal conduction mechanism of TIMs by introducing the influencing factors (b/a and γ).
[Display omitted]
•Efficient heat conduction paths were constructed by spatial alignment of CFs bridged by Al2O3.•The through-plane thermal conductivity of PDMS composites reached 38 W m−1 K−1.•The effect of spatial orientation angle of CFs on the thermal conduction property was revealed.•The PDMS composites with excellent comprehensive properties can be used as TIMs. |
|---|---|
| AbstractList | Efficient thermal interface materials (TIMs) are urgently needed for heat dissipation of high-power density electronics. In this study, vinyl polydimethylsiloxane (PDMS) composites with the spatial alignment of carbon fibers (CFs) bridged by Al2O3 particles were fabricated by the flow field. The through-plane thermal conductivity (TPTC) of the composites with 24 vol% CFs and 47 vol% Al2O3 loading reached 38.0 W m−1 K−1. The oriented CFs bridged by Al2O3 acted as the efficient through-plane thermal conductive network. Furthermore, the effects of shape factor (b/a), spatial angle (γ) of CFs, and CF loading (Vf) on the TPTC were quantitatively discussed by steady-state finite element simulation combined with micro-computed tomography and machine learning. The positive contribution of the increased Vf to TPTC was in competition with the negative contribution of b/a and γ, both of which increased with the increase of Vf. Moreover, b/a exerted more negative effects than γ. The PDMS composites demonstrated excellent thermal stability (Td = 407.5 °C, CTE = −55.3 × 10−6 K−1), low compress modulus (1.71 MPa), and hardness (47 (Shore C)), which made them potential candidates for TIMs. This work offers a feasible method to prepare TIMs on large scale and refreshes the thermal conduction mechanism of TIMs by introducing the influencing factors (b/a and γ).
[Display omitted]
•Efficient heat conduction paths were constructed by spatial alignment of CFs bridged by Al2O3.•The through-plane thermal conductivity of PDMS composites reached 38 W m−1 K−1.•The effect of spatial orientation angle of CFs on the thermal conduction property was revealed.•The PDMS composites with excellent comprehensive properties can be used as TIMs. |
| ArticleNumber | 109717 |
| Author | Ding, Dongliang Zhang, Yufeng Chen, Yanhui Li, Xinhua Liu, Changjiang Zhang, Xue-ao Guo, Xiaoxiao Jiang, Gaoxiao Cai, Weiwei Huang, Ruoyu |
| Author_xml | – sequence: 1 givenname: Ruoyu surname: Huang fullname: Huang, Ruoyu organization: College of Physical Science and Technology, Xiamen University, Xiamen, 361000, China – sequence: 2 givenname: Dongliang surname: Ding fullname: Ding, Dongliang organization: School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710072, China – sequence: 3 givenname: Xiaoxiao surname: Guo fullname: Guo, Xiaoxiao organization: College of Physical Science and Technology, Xiamen University, Xiamen, 361000, China – sequence: 4 givenname: Changjiang surname: Liu fullname: Liu, Changjiang organization: Xiamen G-CVD Graphene Technology Co., Ltd., Xiamen, 361000, China – sequence: 5 givenname: Xinhua surname: Li fullname: Li, Xinhua organization: Hunan Feihongda New Material Co., Ltd., Chenzhou, 423000, China – sequence: 6 givenname: Gaoxiao surname: Jiang fullname: Jiang, Gaoxiao organization: College of Physical Science and Technology, Xiamen University, Xiamen, 361000, China – sequence: 7 givenname: Yufeng surname: Zhang fullname: Zhang, Yufeng email: yufengzhang@xmu.edu.cn organization: College of Physical Science and Technology, Xiamen University, Xiamen, 361000, China – sequence: 8 givenname: Yanhui surname: Chen fullname: Chen, Yanhui email: yanhuichen@nwpu.edu.cn organization: School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710072, China – sequence: 9 givenname: Weiwei surname: Cai fullname: Cai, Weiwei email: wwcai@xmu.edu.cn organization: College of Physical Science and Technology, Xiamen University, Xiamen, 361000, China – sequence: 10 givenname: Xue-ao orcidid: 0000-0002-0193-8645 surname: Zhang fullname: Zhang, Xue-ao email: xazhang@xmu.edu.cn organization: College of Physical Science and Technology, Xiamen University, Xiamen, 361000, China |
| BookMark | eNqNkM1qGzEURkVJoE7ad1AeYBxJgzSjVQlOmhoSUmizFvq59siMpUGSDd73waPBWZSsshK6fPdcvnOFLkIMgNANJUtKqLjdLW3cT9n6AnZYMsJYncuOdl_QgvadbCjh5AItCBOiaXnbf0VXOe8IIR2XbIH-rfdTikcftrgMKR62QzONOkD9QdrrEdsY3MEWf_TlhOMG_75__tMYncHh-XLM9XLGhzwTBr8dxppKHkKZAzqZGPDGG0gZm-Tdtk7NCd-N7KXFk07F2xHyN3S50WOG7-_vNXr9-fB39at5enlcr-6eGtsyWpreyNZ1hnCnhbWiluw4o0IKwkXtzDkHJ3sqBbfSSKcN1by3lmmQQJgR7TX6cebaFHNOsFHVmy4-hpK0HxUlapaqduo_qWqWqs5SK0F-IEzJ73U6fWp3dd6FWvHoIamagmDB-QS2KBf9JyhvGz-eXg |
| CitedBy_id | crossref_primary_10_1002_smll_202406229 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124373 crossref_primary_10_1063_5_0175238 crossref_primary_10_1021_acsnano_4c04349 crossref_primary_10_1021_acsapm_4c00786 crossref_primary_10_1021_acs_iecr_4c02171 crossref_primary_10_1002_pc_28365 crossref_primary_10_1016_j_heliyon_2024_e25381 crossref_primary_10_1007_s40843_023_2540_9 crossref_primary_10_1021_acsnano_3c06524 crossref_primary_10_1016_j_compscitech_2024_110617 crossref_primary_10_1039_D4TA03924F crossref_primary_10_1007_s40820_023_01119_0 crossref_primary_10_1016_j_compositesa_2023_107727 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126777 crossref_primary_10_1016_j_compositesb_2025_112193 crossref_primary_10_1016_j_egyai_2024_100445 crossref_primary_10_1002_pc_29728 crossref_primary_10_1016_j_cjche_2024_07_009 crossref_primary_10_1016_j_xcrp_2024_101978 crossref_primary_10_1016_j_compositesa_2024_108412 crossref_primary_10_1016_j_icheatmasstransfer_2024_107856 crossref_primary_10_1016_j_ceramint_2023_08_229 crossref_primary_10_1016_j_compscitech_2023_110425 crossref_primary_10_1002_pat_6287 crossref_primary_10_1016_j_applthermaleng_2023_120807 crossref_primary_10_3390_ma15228078 crossref_primary_10_1016_j_coco_2025_102251 crossref_primary_10_1002_adem_202301546 crossref_primary_10_1016_j_compscitech_2023_109948 crossref_primary_10_1016_j_matdes_2024_113247 crossref_primary_10_1021_acsami_4c20867 |
| Cites_doi | 10.1039/C5NR04995D 10.1016/j.isci.2020.101653 10.1016/j.compscitech.2021.108922 10.3390/ma13071772 10.1016/j.matdes.2018.02.031 10.1016/j.compscitech.2016.01.010 10.1002/pat.5467 10.1016/j.compositesb.2020.108599 10.1016/j.progpolymsci.2010.11.004 10.1016/j.matlet.2013.12.080 10.1021/acsami.0c18603 10.1021/jp8018793 10.1021/acsnano.9b04202 10.1021/acsnano.9b05163 10.1021/acsami.9b22744 10.1016/j.compstruct.2020.113202 10.1016/j.apmt.2018.04.004 10.1016/j.cej.2020.126218 10.1002/adfm.201900412 10.1016/j.cej.2022.136104 10.1016/S0735-1933(00)00106-8 10.1016/j.carbpol.2019.02.087 10.1016/j.cej.2020.125447 10.1016/j.ijheatmasstransfer.2020.120157 10.1016/j.joule.2018.01.006 10.1002/sia.5921 10.1007/s10853-013-7717-7 10.1016/j.cej.2021.131466 10.1016/j.jmatprotec.2004.06.004 10.1021/acsami.8b00328 10.1016/j.compscitech.2021.108668 10.1016/j.cej.2019.121921 10.1016/j.cej.2019.122550 10.1016/j.coco.2019.12.004 10.1002/pc.25198 10.3390/polym10121412 10.1080/09243046.2014.915096 10.1016/j.msea.2018.11.117 10.1021/acsnano.0c04456 10.1002/adma.201401736 10.1021/acsomega.9b03465 10.1016/S0026-2692(02)00191-X 10.1016/j.carbon.2015.05.102 10.1111/j.1551-2916.2005.00456.x 10.1038/s41467-021-21531-7 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compscitech.2022.109717 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1879-1050 |
| ExternalDocumentID | 10_1016_j_compscitech_2022_109717 S0266353822004596 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SST SSZ T5K XPP ZMT ~G- .-4 29F 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SMS T9H VH1 WUQ ~HD |
| ID | FETCH-LOGICAL-c321t-8b93d7b05da6cc67177521696056097555ed981965c9b9dab1a58cc2ae9e02b63 |
| IEDL.DBID | .~1 |
| ISSN | 0266-3538 |
| IngestDate | Thu Oct 09 00:47:12 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Fri Feb 23 02:41:47 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Thermal conductivity Shape factor Spatial angle Finite element simulation Carbon fiber |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c321t-8b93d7b05da6cc67177521696056097555ed981965c9b9dab1a58cc2ae9e02b63 |
| ORCID | 0000-0002-0193-8645 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_compscitech_2022_109717 crossref_primary_10_1016_j_compscitech_2022_109717 elsevier_sciencedirect_doi_10_1016_j_compscitech_2022_109717 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-10 |
| PublicationDateYYYYMMDD | 2022-11-10 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Composites science and technology |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhang, Xu, Li, Xiong, Hu, Fisher (bib52) 2015; 93 Wei, Liao, Ma, Chen, Duan, Hou, Li, Jiang, Yu (bib34) 2020; 17 Tavman, Akinci (bib41) 2000; 27 Zhang, Feng, Qin, Gao, Li, Zhao, Zhang, Lv, Feng (bib27) 2019; 29 Roh, Kim, Lee (bib37) 2014; 23 Hu, Du, Chen (bib11) 2016; 124 Sun, Zhou, Han, Cui, Chen (bib23) 2020; 160 Mehra, Mu, Ji, Yang, Kong, Gu, Zhu (bib42) 2018; 12 Han, Fina (bib29) 2011; 36 Ma, Shang, Ren, Yao, Zhang, Xie, Zhang, Zeng, Sun, Xu, Wong (bib32) 2020; 380 Zhang, Feng, Qin, Gao, Li, Zhao, Zhang, Lv, Feng (bib50) 2019; 29 Bakalakos, Kalogeris, Papadopoulos (bib24) 2021; 258 Gwinn, Webb (bib47) 2003; 34 Ji, Wang, Ye, Tan, Mao, Zhao, Zeng, Yan, Sun, Kang, Xu, Wong (bib2) 2020; 12 Song, Liu, Liu, Wu, Cheng, Kang (bib30) 2018; 2 Zhang, Zhou, Xie, Lan, Fan, Hu, Luo (bib44) 2021; 213 Zhang, Kong, Tao, Wei, Xie, Cui, Chen (bib53) 2019; 6 Cui, Qin, Wu, Li, Hu (bib25) 2021; 12 Hou, Chen, Dai, Wang, Li, Lin, Nishimura, Jiang, Yu (bib17) 2019; 375 Xu, Chen, Zhou, Li (bib28) 2018; 30 Chung, Im, Kim, Park, Jeong (bib48) 2005; 160 Jing, Chen, Shi, Yang, Lambin (bib21) 2020; 402 Wu, Huang (bib14) 2021; 206 Guan, Yuen, Chen (bib43) 2017 Ma, Zhang, Mayo, Ni, Yi, Chen, Mu, Bellan, Li (bib15) 2015; 7 Wang, Li, Chen, Li, Fu, Xiao, Wu, Lin, Jiang, Yu (bib35) 2020; 5 Han, Du, Gao, Bai (bib31) 2019; 29 Kim, Kim, Lee, Lim, Kim, Lee, Park, Kim (bib36) 2007 Zhang, Tao, Zhang, Liao, Nie (bib7) 2019; 213 Ohashi, Kawakami, Yokogawa, Lai (bib10) 2005; 88 Lalet, Kurita, Heintz, Lacombe, Kawasaki, Silvain (bib45) 2014; 49 Geng, He, Jia, Peng, Li (bib3) 2019; 40 Vu, Thieu, Choi, Islam, Kim (bib46) 2020; 138 Yang, Feng, Bai, Bao, Liu, Yang, Yang (bib1) 2021; 425 Du, He, Li, Zhao (bib6) 2020; 13 Ding, Huang, Wang, Zhang, Wu, Zhang, Qin, Liu, Zhang, Chen (bib26) 2022; 441 Dai, Ma, Yan, Gao, Tan, Lv, Hou, Wei, Yu, Wu, Yao, Du, Sun, Jiang, Wang, Kong, Wong, Maruyama, Lin (bib49) 2019; 13 Sun, Wang, Li, Gu, Zhang (bib9) 2018; 144 Nakano, Matsuo (bib19) 2008; 112 Ren, Zhou, Xue, Song, Li, Liu, Zhao (bib18) 2019; 4 Shang, Ding, Wang, Liu, Chen, Gong, Liu, Zhang (bib8) 2021; 32 Yan, Li, Jiang, Zhang, Jia, Ma, Yu (bib38) 2014; 118 Zhan, Bidkhori, Schwarz, Malm, Mebrahtu, Field, Sellick, Hatton, Varley, Mardinoglu, Rockberg, Chotteau (bib40) 2020; 23 Song, Zhu, Deng, Hai, Wang, Guo (bib22) 2019; 127 Zhuang, Zheng, Cao, Fan, Ye, Lu, Zhang, Ma (bib13) 2020; 14 Yang, Wang, Wen (bib5) 2021; 13 Yao, Zhu, Zeng, Sun, Xu, Wong (bib12) 2018; 10 Li, Ali, Wei, Li, Song, Hou, Do, Greer, Pan, Lin, Jiang, Yu (bib33) 2021; 208 Zhang, Yang, Zhang, Ge, Liu, Zhan (bib55) 2019; 743 Zhou, Yu, Niu, Liu (bib4) 2018; 10 Uetani, Ata, Tomonoh, Yamada, Yumura, Hata (bib16) 2014; 26 Wang, Wang, Wang, Yan (bib54) 2016; 48 Xu, Hu, Chen, Dong, Xiao, Wang, Wang (bib39) 2020; 397 Jeong, Chen, Huo, Gamstedt, Liu, Zhang, Zhang, Hjort, Wu (bib51) 2015; 5 Liang, Pei, Chen, Jiang, Yao, Xie, Jiao, Chen, Li, Yang, Hu (bib20) 2019; 13 Ding (10.1016/j.compscitech.2022.109717_bib26) 2022; 441 Guan (10.1016/j.compscitech.2022.109717_bib43) 2017 Ma (10.1016/j.compscitech.2022.109717_bib15) 2015; 7 Sun (10.1016/j.compscitech.2022.109717_bib23) 2020; 160 Vu (10.1016/j.compscitech.2022.109717_bib46) 2020; 138 Lalet (10.1016/j.compscitech.2022.109717_bib45) 2014; 49 Tavman (10.1016/j.compscitech.2022.109717_bib41) 2000; 27 Wu (10.1016/j.compscitech.2022.109717_bib14) 2021; 206 Han (10.1016/j.compscitech.2022.109717_bib31) 2019; 29 Yang (10.1016/j.compscitech.2022.109717_bib5) 2021; 13 Ohashi (10.1016/j.compscitech.2022.109717_bib10) 2005; 88 Uetani (10.1016/j.compscitech.2022.109717_bib16) 2014; 26 Zhang (10.1016/j.compscitech.2022.109717_bib44) 2021; 213 Zhang (10.1016/j.compscitech.2022.109717_bib52) 2015; 93 Zhang (10.1016/j.compscitech.2022.109717_bib27) 2019; 29 Hu (10.1016/j.compscitech.2022.109717_bib11) 2016; 124 Cui (10.1016/j.compscitech.2022.109717_bib25) 2021; 12 Dai (10.1016/j.compscitech.2022.109717_bib49) 2019; 13 Sun (10.1016/j.compscitech.2022.109717_bib9) 2018; 144 Wang (10.1016/j.compscitech.2022.109717_bib54) 2016; 48 Jing (10.1016/j.compscitech.2022.109717_bib21) 2020; 402 Yang (10.1016/j.compscitech.2022.109717_bib1) 2021; 425 Ji (10.1016/j.compscitech.2022.109717_bib2) 2020; 12 Zhang (10.1016/j.compscitech.2022.109717_bib7) 2019; 213 Xu (10.1016/j.compscitech.2022.109717_bib39) 2020; 397 Ren (10.1016/j.compscitech.2022.109717_bib18) 2019; 4 Roh (10.1016/j.compscitech.2022.109717_bib37) 2014; 23 Zhang (10.1016/j.compscitech.2022.109717_bib55) 2019; 743 Bakalakos (10.1016/j.compscitech.2022.109717_bib24) 2021; 258 Song (10.1016/j.compscitech.2022.109717_bib30) 2018; 2 Xu (10.1016/j.compscitech.2022.109717_bib28) 2018; 30 Ma (10.1016/j.compscitech.2022.109717_bib32) 2020; 380 Song (10.1016/j.compscitech.2022.109717_bib22) 2019; 127 Wang (10.1016/j.compscitech.2022.109717_bib35) 2020; 5 Mehra (10.1016/j.compscitech.2022.109717_bib42) 2018; 12 Shang (10.1016/j.compscitech.2022.109717_bib8) 2021; 32 Geng (10.1016/j.compscitech.2022.109717_bib3) 2019; 40 Han (10.1016/j.compscitech.2022.109717_bib29) 2011; 36 Zhan (10.1016/j.compscitech.2022.109717_bib40) 2020; 23 Yao (10.1016/j.compscitech.2022.109717_bib12) 2018; 10 Gwinn (10.1016/j.compscitech.2022.109717_bib47) 2003; 34 Hou (10.1016/j.compscitech.2022.109717_bib17) 2019; 375 Yan (10.1016/j.compscitech.2022.109717_bib38) 2014; 118 Liang (10.1016/j.compscitech.2022.109717_bib20) 2019; 13 Kim (10.1016/j.compscitech.2022.109717_bib36) 2007 Jeong (10.1016/j.compscitech.2022.109717_bib51) 2015; 5 Zhang (10.1016/j.compscitech.2022.109717_bib53) 2019; 6 Chung (10.1016/j.compscitech.2022.109717_bib48) 2005; 160 Nakano (10.1016/j.compscitech.2022.109717_bib19) 2008; 112 Zhuang (10.1016/j.compscitech.2022.109717_bib13) 2020; 14 Du (10.1016/j.compscitech.2022.109717_bib6) 2020; 13 Zhou (10.1016/j.compscitech.2022.109717_bib4) 2018; 10 Li (10.1016/j.compscitech.2022.109717_bib33) 2021; 208 Zhang (10.1016/j.compscitech.2022.109717_bib50) 2019; 29 Wei (10.1016/j.compscitech.2022.109717_bib34) 2020; 17 |
| References_xml | – volume: 29 year: 2019 ident: bib27 article-title: Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite publication-title: Adv. Funct. Mater. – volume: 112 start-page: 15611 year: 2008 end-page: 15622 ident: bib19 article-title: Orientation behavior of carbon fiber axes in polymer solutions under magnetic field estimated in terms of orientation distribution function publication-title: J. Phys. Chem. C – volume: 206 year: 2021 ident: bib14 article-title: Enhancing thermal conductivity of PMMA/PS blend via forming affluent and continuous conductive pathways of graphene layers publication-title: Compos. Sci. Technol. – volume: 380 year: 2020 ident: bib32 article-title: Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material publication-title: Chem. Eng. J. – volume: 5 year: 2015 ident: bib51 publication-title: Sci. Rep. – volume: 397 year: 2020 ident: bib39 article-title: 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach publication-title: Chem. Eng. J. – volume: 127 year: 2019 ident: bib22 article-title: Enhanced through-plane thermal conductivity and high electrical insulation of flexible composite films with aligned boron nitride for thermal interface material publication-title: Compos. Part A-Appl. S.” – volume: 160 start-page: 168 year: 2005 end-page: 173 ident: bib48 article-title: Evaluation for micro scale structures fabricated using epoxy-aluminum particle composite and its application publication-title: J. Mater. Process. Technol. – volume: 36 start-page: 914 year: 2011 end-page: 944 ident: bib29 article-title: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review publication-title: Prog. Polym. Sci. – volume: 12 start-page: 24298 year: 2020 end-page: 24307 ident: bib2 article-title: Ice-templated MXene/Ag-epoxy nanocomposites as high-performance thermal management materials publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 5857 year: 2014 end-page: 5862 ident: bib16 article-title: Elastomeric Thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking publication-title: Adv. Mater. – volume: 402 year: 2020 ident: bib21 article-title: Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods publication-title: Chem. Eng. J. – volume: 27 start-page: 253 year: 2000 end-page: 261 ident: bib41 article-title: Transverse thermal conductivity of fiber reinforced polymer composites publication-title: Int. Commun. Heat Mass.” – start-page: 396 year: 2017 end-page: 399 ident: bib43 article-title: Towards a hybrid approach of K-means and density-based spatial clustering of applications with noise for image segmentation publication-title: Ieee International Conference on Internet of Things (Ithings) and Ieee Green Computing and Communications (Greencom) and Ieee Cyber, Physical and Social Computing (Cpscom) and Ieee Smart Data – volume: 5 start-page: 1170 year: 2020 end-page: 1177 ident: bib35 article-title: Efficient thermal transport highway construction within epoxy matrix via hybrid carbon fibers and alumina particles publication-title: ACS Omega – volume: 23 start-page: 409 year: 2014 end-page: 420 ident: bib37 article-title: Isotropic conductivities in chopped carbon fiber composites using expanded polypropylene publication-title: Adv. Compos. Mater. – volume: 144 start-page: 263 year: 2018 end-page: 270 ident: bib9 article-title: Improvement of out-of-plane thermal conductivity of composite laminate by electrostatic flocking publication-title: Mater. Des. – volume: 13 start-page: 11561 year: 2019 end-page: 11571 ident: bib49 publication-title: ACS Nano – volume: 10 start-page: 1412 year: 2018 ident: bib4 article-title: Synergistic improvement in thermal conductivity of polyimide nanocomposite films using boron nitride coated copper nanoparticles and nanowires publication-title: Polymers – volume: 32 start-page: 4745 year: 2021 end-page: 4754 ident: bib8 article-title: High thermal conductivity of self‐healing polydimethylsiloxane elastomer composites by the orientation of boron nitride nano sheets publication-title: Polym. Adv. Technol. – volume: 441 year: 2022 ident: bib26 article-title: Thermally conductive silicone rubber composites with vertically oriented carbon fibers: a new perspective on the heat conduction mechanism publication-title: Chem. Eng. J. – volume: 12 start-page: 1284 year: 2021 ident: bib25 article-title: Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management publication-title: Nat. Commun. – volume: 34 start-page: 215 year: 2003 end-page: 222 ident: bib47 article-title: Performance and testing of thermal interface materials publication-title: Microelectron. J. – volume: 124 start-page: 36 year: 2016 end-page: 43 ident: bib11 article-title: A novel approach for Al publication-title: Compos. Sci. Technol. – start-page: 544 year: 2007 end-page: 545 ident: bib36 article-title: Synergistic effect of hybrid filler contained composites on thermal conductivity publication-title: Mater. Sci. Forum – volume: 7 start-page: 16899 year: 2015 end-page: 16908 ident: bib15 article-title: Thermal conductivity of electrospun polyethylene nanofibers publication-title: Nanoscale – volume: 14 start-page: 11733 year: 2020 end-page: 11742 ident: bib13 article-title: Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology publication-title: ACS Nano – volume: 118 start-page: 212 year: 2014 end-page: 216 ident: bib38 article-title: Thermally conductive phenol formaldehyde composites filled with carbon fillers publication-title: Mater. Lett. – volume: 29 year: 2019 ident: bib31 article-title: An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network publication-title: Adv. Funct. Mater. – volume: 93 start-page: 659 year: 2015 end-page: 670 ident: bib52 publication-title: Carbon – volume: 6 year: 2019 ident: bib53 publication-title: Adv. Mater. Interfac. – volume: 13 start-page: 1772 year: 2020 ident: bib6 article-title: Polydopamine-modified Al publication-title: Materials – volume: 213 year: 2021 ident: bib44 article-title: Thermal interface materials with sufficiently vertically aligned and interconnected nickel-coated carbon fibers under high filling loads made via preset-magnetic-field method publication-title: Compos. Sci. Technol. – volume: 48 start-page: 139 year: 2016 end-page: 145 ident: bib54 article-title: Modification effects of short carbon fibers on mechanical properties and fretting wear behavior of UHMWPE composites publication-title: Surf. Interface Anal. – volume: 10 start-page: 9669 year: 2018 end-page: 9678 ident: bib12 article-title: Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 141 year: 2020 end-page: 146 ident: bib34 article-title: Enhanced thermal conductivity of polydimethylsiloxane composites with carbon fiber publication-title: Compos. Commun. – volume: 743 start-page: 512 year: 2019 end-page: 519 ident: bib55 article-title: Multiscale graphene/carbon fiber reinforced copper matrix hybrid composites: microstructure and properties publication-title: Mat. Sci. Eng. A-Struct.” – volume: 40 start-page: 3375 year: 2019 end-page: 3382 ident: bib3 article-title: Enhanced through-plane thermal conductivity of polyamide 6 composites with vertical alignment of boron nitride achieved by fused deposition modeling publication-title: Polym. Compos. – volume: 88 start-page: 2615 year: 2005 end-page: 2618 ident: bib10 article-title: Spherical aluminum nitride fillers for heat-conducting plastic packages publication-title: J. Am. Ceram. Soc. – volume: 2 start-page: 442 year: 2018 end-page: 463 ident: bib30 article-title: Two-dimensional materials for thermal management applications publication-title: Joule – volume: 258 year: 2021 ident: bib24 article-title: An extended finite element method formulation for modeling multi-phase boundary interactions in steady state heat conduction problems publication-title: Compos. Struct. – volume: 13 start-page: 1511 year: 2021 end-page: 1523 ident: bib5 article-title: Highly thermally conductive and superior electrical insulation polymer composites via in situ thermal expansion of expanded graphite and in situ oxidation of aluminum nanoflakes publication-title: ACS Appl. Mater. Interfaces – volume: 160 year: 2020 ident: bib23 article-title: A new anisotropic thermal conductivity equation for h-BN/polymer composites using finite element analysis publication-title: Int. J. Heat Mass Tran. – volume: 138 year: 2020 ident: bib46 article-title: Ultralight covalently interconnected silicon carbide aerofoam for high performance thermally conductive epoxy composites publication-title: Compos. part A-APPL. S.” – volume: 208 year: 2021 ident: bib33 article-title: Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites publication-title: Compos. B Eng. – volume: 12 start-page: 92 year: 2018 end-page: 130 ident: bib42 article-title: Thermal transport in polymeric materials and across composite interfaces publication-title: Appl. Mater. Today – volume: 213 start-page: 228 year: 2019 end-page: 235 ident: bib7 article-title: Highly thermal conductivity of CNF/AlN hybrid films for thermal management of flexible energy storage devices publication-title: Carbohydr. Polym. – volume: 4 year: 2019 ident: bib18 article-title: Thermal metamaterials with site-specific thermal properties fabricated by 3D magnetic printing publication-title: “Adv. Mater. Technol.” – volume: 29 year: 2019 ident: bib50 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 ident: bib28 article-title: Thermal conductivity of polymers and their nanocomposites publication-title: Adv. Mater. – volume: 49 start-page: 397 year: 2014 end-page: 402 ident: bib45 article-title: Thermal expansion coefficient and thermal fatigue of discontinuous carbon fiber-reinforced copper and aluminum matrix composites without interfacial chemical bond publication-title: J. Mater. Sci. – volume: 375 year: 2019 ident: bib17 article-title: Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers publication-title: Chem. Eng. J. – volume: 425 year: 2021 ident: bib1 article-title: Flexible shape-stabilized phase change materials with passive radiative cooling capability for thermal management publication-title: Chem. Eng. J. – volume: 13 start-page: 12653 year: 2019 end-page: 12661 ident: bib20 article-title: General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment publication-title: ACS Nano – volume: 23 year: 2020 ident: bib40 article-title: Low shear stress increases recombinant protein production and high shear stress increases apoptosis in human cells publication-title: iScience – volume: 7 start-page: 16899 year: 2015 ident: 10.1016/j.compscitech.2022.109717_bib15 article-title: Thermal conductivity of electrospun polyethylene nanofibers publication-title: Nanoscale doi: 10.1039/C5NR04995D – volume: 23 year: 2020 ident: 10.1016/j.compscitech.2022.109717_bib40 article-title: Low shear stress increases recombinant protein production and high shear stress increases apoptosis in human cells publication-title: iScience doi: 10.1016/j.isci.2020.101653 – volume: 213 year: 2021 ident: 10.1016/j.compscitech.2022.109717_bib44 article-title: Thermal interface materials with sufficiently vertically aligned and interconnected nickel-coated carbon fibers under high filling loads made via preset-magnetic-field method publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2021.108922 – volume: 13 start-page: 1772 year: 2020 ident: 10.1016/j.compscitech.2022.109717_bib6 article-title: Polydopamine-modified Al2O3/Polyurethane composites with largely improved thermal and mechanical properties publication-title: Materials doi: 10.3390/ma13071772 – volume: 144 start-page: 263 year: 2018 ident: 10.1016/j.compscitech.2022.109717_bib9 article-title: Improvement of out-of-plane thermal conductivity of composite laminate by electrostatic flocking publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.02.031 – volume: 138 year: 2020 ident: 10.1016/j.compscitech.2022.109717_bib46 article-title: Ultralight covalently interconnected silicon carbide aerofoam for high performance thermally conductive epoxy composites publication-title: Compos. part A-APPL. S.” – volume: 124 start-page: 36 year: 2016 ident: 10.1016/j.compscitech.2022.109717_bib11 article-title: A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2016.01.010 – start-page: 396 year: 2017 ident: 10.1016/j.compscitech.2022.109717_bib43 article-title: Towards a hybrid approach of K-means and density-based spatial clustering of applications with noise for image segmentation – volume: 32 start-page: 4745 year: 2021 ident: 10.1016/j.compscitech.2022.109717_bib8 article-title: High thermal conductivity of self‐healing polydimethylsiloxane elastomer composites by the orientation of boron nitride nano sheets publication-title: Polym. Adv. Technol. doi: 10.1002/pat.5467 – volume: 208 year: 2021 ident: 10.1016/j.compscitech.2022.109717_bib33 article-title: Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2020.108599 – volume: 36 start-page: 914 year: 2011 ident: 10.1016/j.compscitech.2022.109717_bib29 article-title: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2010.11.004 – volume: 118 start-page: 212 year: 2014 ident: 10.1016/j.compscitech.2022.109717_bib38 article-title: Thermally conductive phenol formaldehyde composites filled with carbon fillers publication-title: Mater. Lett. doi: 10.1016/j.matlet.2013.12.080 – volume: 13 start-page: 1511 year: 2021 ident: 10.1016/j.compscitech.2022.109717_bib5 article-title: Highly thermally conductive and superior electrical insulation polymer composites via in situ thermal expansion of expanded graphite and in situ oxidation of aluminum nanoflakes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c18603 – volume: 112 start-page: 15611 year: 2008 ident: 10.1016/j.compscitech.2022.109717_bib19 article-title: Orientation behavior of carbon fiber axes in polymer solutions under magnetic field estimated in terms of orientation distribution function publication-title: J. Phys. Chem. C doi: 10.1021/jp8018793 – volume: 13 start-page: 12653 year: 2019 ident: 10.1016/j.compscitech.2022.109717_bib20 article-title: General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment publication-title: ACS Nano doi: 10.1021/acsnano.9b04202 – volume: 13 start-page: 11561 year: 2019 ident: 10.1016/j.compscitech.2022.109717_bib49 publication-title: ACS Nano doi: 10.1021/acsnano.9b05163 – volume: 12 start-page: 24298 year: 2020 ident: 10.1016/j.compscitech.2022.109717_bib2 article-title: Ice-templated MXene/Ag-epoxy nanocomposites as high-performance thermal management materials publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b22744 – volume: 5 year: 2015 ident: 10.1016/j.compscitech.2022.109717_bib51 publication-title: Sci. Rep. – volume: 258 year: 2021 ident: 10.1016/j.compscitech.2022.109717_bib24 article-title: An extended finite element method formulation for modeling multi-phase boundary interactions in steady state heat conduction problems publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.113202 – volume: 12 start-page: 92 year: 2018 ident: 10.1016/j.compscitech.2022.109717_bib42 article-title: Thermal transport in polymeric materials and across composite interfaces publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2018.04.004 – volume: 402 year: 2020 ident: 10.1016/j.compscitech.2022.109717_bib21 article-title: Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126218 – volume: 29 year: 2019 ident: 10.1016/j.compscitech.2022.109717_bib31 article-title: An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900412 – volume: 30 year: 2018 ident: 10.1016/j.compscitech.2022.109717_bib28 article-title: Thermal conductivity of polymers and their nanocomposites publication-title: Adv. Mater. – volume: 441 year: 2022 ident: 10.1016/j.compscitech.2022.109717_bib26 article-title: Thermally conductive silicone rubber composites with vertically oriented carbon fibers: a new perspective on the heat conduction mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136104 – start-page: 544 year: 2007 ident: 10.1016/j.compscitech.2022.109717_bib36 article-title: Synergistic effect of hybrid filler contained composites on thermal conductivity publication-title: Mater. Sci. Forum – volume: 27 start-page: 253 year: 2000 ident: 10.1016/j.compscitech.2022.109717_bib41 article-title: Transverse thermal conductivity of fiber reinforced polymer composites publication-title: Int. Commun. Heat Mass.” doi: 10.1016/S0735-1933(00)00106-8 – volume: 213 start-page: 228 year: 2019 ident: 10.1016/j.compscitech.2022.109717_bib7 article-title: Highly thermal conductivity of CNF/AlN hybrid films for thermal management of flexible energy storage devices publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.02.087 – volume: 397 year: 2020 ident: 10.1016/j.compscitech.2022.109717_bib39 article-title: 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125447 – volume: 160 year: 2020 ident: 10.1016/j.compscitech.2022.109717_bib23 article-title: A new anisotropic thermal conductivity equation for h-BN/polymer composites using finite element analysis publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2020.120157 – volume: 2 start-page: 442 year: 2018 ident: 10.1016/j.compscitech.2022.109717_bib30 article-title: Two-dimensional materials for thermal management applications publication-title: Joule doi: 10.1016/j.joule.2018.01.006 – volume: 48 start-page: 139 year: 2016 ident: 10.1016/j.compscitech.2022.109717_bib54 article-title: Modification effects of short carbon fibers on mechanical properties and fretting wear behavior of UHMWPE composites publication-title: Surf. Interface Anal. doi: 10.1002/sia.5921 – volume: 49 start-page: 397 year: 2014 ident: 10.1016/j.compscitech.2022.109717_bib45 article-title: Thermal expansion coefficient and thermal fatigue of discontinuous carbon fiber-reinforced copper and aluminum matrix composites without interfacial chemical bond publication-title: J. Mater. Sci. doi: 10.1007/s10853-013-7717-7 – volume: 425 year: 2021 ident: 10.1016/j.compscitech.2022.109717_bib1 article-title: Flexible shape-stabilized phase change materials with passive radiative cooling capability for thermal management publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131466 – volume: 160 start-page: 168 year: 2005 ident: 10.1016/j.compscitech.2022.109717_bib48 article-title: Evaluation for micro scale structures fabricated using epoxy-aluminum particle composite and its application publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2004.06.004 – volume: 10 start-page: 9669 year: 2018 ident: 10.1016/j.compscitech.2022.109717_bib12 article-title: Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00328 – volume: 206 year: 2021 ident: 10.1016/j.compscitech.2022.109717_bib14 article-title: Enhancing thermal conductivity of PMMA/PS blend via forming affluent and continuous conductive pathways of graphene layers publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2021.108668 – volume: 29 year: 2019 ident: 10.1016/j.compscitech.2022.109717_bib50 publication-title: Adv. Funct. Mater. – volume: 375 year: 2019 ident: 10.1016/j.compscitech.2022.109717_bib17 article-title: Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.121921 – volume: 380 year: 2020 ident: 10.1016/j.compscitech.2022.109717_bib32 article-title: Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122550 – volume: 17 start-page: 141 year: 2020 ident: 10.1016/j.compscitech.2022.109717_bib34 article-title: Enhanced thermal conductivity of polydimethylsiloxane composites with carbon fiber publication-title: Compos. Commun. doi: 10.1016/j.coco.2019.12.004 – volume: 127 year: 2019 ident: 10.1016/j.compscitech.2022.109717_bib22 article-title: Enhanced through-plane thermal conductivity and high electrical insulation of flexible composite films with aligned boron nitride for thermal interface material publication-title: Compos. Part A-Appl. S.” – volume: 40 start-page: 3375 year: 2019 ident: 10.1016/j.compscitech.2022.109717_bib3 article-title: Enhanced through-plane thermal conductivity of polyamide 6 composites with vertical alignment of boron nitride achieved by fused deposition modeling publication-title: Polym. Compos. doi: 10.1002/pc.25198 – volume: 4 year: 2019 ident: 10.1016/j.compscitech.2022.109717_bib18 article-title: Thermal metamaterials with site-specific thermal properties fabricated by 3D magnetic printing publication-title: “Adv. Mater. Technol.” – volume: 6 year: 2019 ident: 10.1016/j.compscitech.2022.109717_bib53 publication-title: Adv. Mater. Interfac. – volume: 10 start-page: 1412 year: 2018 ident: 10.1016/j.compscitech.2022.109717_bib4 article-title: Synergistic improvement in thermal conductivity of polyimide nanocomposite films using boron nitride coated copper nanoparticles and nanowires publication-title: Polymers doi: 10.3390/polym10121412 – volume: 23 start-page: 409 year: 2014 ident: 10.1016/j.compscitech.2022.109717_bib37 article-title: Isotropic conductivities in chopped carbon fiber composites using expanded polypropylene publication-title: Adv. Compos. Mater. doi: 10.1080/09243046.2014.915096 – volume: 743 start-page: 512 year: 2019 ident: 10.1016/j.compscitech.2022.109717_bib55 article-title: Multiscale graphene/carbon fiber reinforced copper matrix hybrid composites: microstructure and properties publication-title: Mat. Sci. Eng. A-Struct.” doi: 10.1016/j.msea.2018.11.117 – volume: 14 start-page: 11733 year: 2020 ident: 10.1016/j.compscitech.2022.109717_bib13 article-title: Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology publication-title: ACS Nano doi: 10.1021/acsnano.0c04456 – volume: 26 start-page: 5857 year: 2014 ident: 10.1016/j.compscitech.2022.109717_bib16 article-title: Elastomeric Thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking publication-title: Adv. Mater. doi: 10.1002/adma.201401736 – volume: 5 start-page: 1170 year: 2020 ident: 10.1016/j.compscitech.2022.109717_bib35 article-title: Efficient thermal transport highway construction within epoxy matrix via hybrid carbon fibers and alumina particles publication-title: ACS Omega doi: 10.1021/acsomega.9b03465 – volume: 29 year: 2019 ident: 10.1016/j.compscitech.2022.109717_bib27 article-title: Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite publication-title: Adv. Funct. Mater. – volume: 34 start-page: 215 year: 2003 ident: 10.1016/j.compscitech.2022.109717_bib47 article-title: Performance and testing of thermal interface materials publication-title: Microelectron. J. doi: 10.1016/S0026-2692(02)00191-X – volume: 93 start-page: 659 year: 2015 ident: 10.1016/j.compscitech.2022.109717_bib52 publication-title: Carbon doi: 10.1016/j.carbon.2015.05.102 – volume: 88 start-page: 2615 year: 2005 ident: 10.1016/j.compscitech.2022.109717_bib10 article-title: Spherical aluminum nitride fillers for heat-conducting plastic packages publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2005.00456.x – volume: 12 start-page: 1284 year: 2021 ident: 10.1016/j.compscitech.2022.109717_bib25 article-title: Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management publication-title: Nat. Commun. doi: 10.1038/s41467-021-21531-7 |
| SSID | ssj0007592 |
| Score | 2.5534806 |
| Snippet | Efficient thermal interface materials (TIMs) are urgently needed for heat dissipation of high-power density electronics. In this study, vinyl... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109717 |
| SubjectTerms | Carbon fiber Finite element simulation Shape factor Spatial angle Thermal conductivity |
| Title | Improving through-plane thermal conductivity of PDMS-based composites using highly oriented carbon fibers bridged by Al2O3 particles |
| URI | https://dx.doi.org/10.1016/j.compscitech.2022.109717 |
| Volume | 230 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007592 issn: 0266-3538 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection EURAC customDbUrl: eissn: 1879-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007592 issn: 0266-3538 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007592 issn: 0266-3538 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007592 issn: 0266-3538 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007592 issn: 0266-3538 databaseCode: AKRWK dateStart: 19850101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5EwcdBfGJ9EcFrbDe72WzAS6lKVapCLXhbkmxWKrUtbT148eQPN7OPtoKg4HGXmRAy2cxk-eb7AE5rhimbMks9L7U08FJNpdQpFSxUXCk_8TMVhdZd2OwEN0_8aQEaZS8MwiqLsz8_07PTunhTLVazOux2q213e3DZ0ncZDusSibTbQSBQxeDsYwbzEDwTRkZjitbLcDLDeCFs242NdKnuqshYRuiYaZf9kKPm8s7VBqwXBSOp53PahAXb34KVsp94vAVrc5SC2_A5_UtACgkeOkQ8K8FC79UN5ByR4jXTjCCDlDxctNoUc1lCcJ6I4bJjgnD4Z4Jcxj1nhVzIEzRQIz3okxRRJmOS93olRL-Teo_d-2RYoux2oHN1-dho0kJpgRqfeRMaaeknQtd4okJjQrcEwqX10N1uXEEkBefcJjJC8kEjtUyU9hSPDIZZ2hrTob8Li_1B3-4BcfVCFPpM8ECkQaS0rilljPu4RSIiHgQViMq1jU1BQ45qGL24xJu9xHNhiTEscR6WCrCp6zDn4viL03kZwPjbxopdzvjdff9_7gewik80ww0ewuJk9GaPXBUz0cfZNj2Gpfr1bfPuC-_j9TA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6qgo-D-MS3EbzGdrObzQa8iFqqtipoobclyWZFqW2x9eDFkz_czD5sBUHB6-5MCJlsvpnlyzcAhzXDlE2ZpZ6XWhp4qaZS6pQKFiqulJ_4WReF1nXYaAeXHd6pwGl5FwZplcXZn5_p2WldPKkWq1kdPD5W71z14NDSdwiHeYkMp2Am4ExgBXb0PuZ5CJ51RkZriuazcDAmeSFv2w2OeqmuVmQsU3TMmpf9AFITwFNfgsUiYyQn-aSWoWJ7KzBXXigersDChKbgKnx8_SYgRQ8eOkBCK8FM79kN5BxR4zVrGkH6Kbk9a91RBLOE4DyRxGWHBPnwDwTFjLvOCsWQR2igXnS_R1KkmQxJftkrIfqNnHTZjU8GJc1uDdr18_vTBi1aLVDjM29EIy39ROgaT1RoTOiWQDhcD1154zIiKTjnNpERqg8aqWWitKd4ZDDO0taYDv11mO71e3YDiEsYotBnggciDSKldU0pY9zXLRIR8SDYhKhc29gUOuTYDqMbl4Szp3giLDGGJc7Dsgnsy3WQi3H8xem4DGD8bWfFDjR-d9_6n_s-zDXuW824eXF9tQ3z-IZmJMIdmB69vNpdl9KM9F62ZT8Bmov2xQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+through-plane+thermal+conductivity+of+PDMS-based+composites+using+highly+oriented+carbon+fibers+bridged+by+Al2O3+particles&rft.jtitle=Composites+science+and+technology&rft.au=Huang%2C+Ruoyu&rft.au=Ding%2C+Dongliang&rft.au=Guo%2C+Xiaoxiao&rft.au=Liu%2C+Changjiang&rft.date=2022-11-10&rft.pub=Elsevier+Ltd&rft.issn=0266-3538&rft.eissn=1879-1050&rft.volume=230&rft_id=info:doi/10.1016%2Fj.compscitech.2022.109717&rft.externalDocID=S0266353822004596 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-3538&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-3538&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-3538&client=summon |