Improving through-plane thermal conductivity of PDMS-based composites using highly oriented carbon fibers bridged by Al2O3 particles

Efficient thermal interface materials (TIMs) are urgently needed for heat dissipation of high-power density electronics. In this study, vinyl polydimethylsiloxane (PDMS) composites with the spatial alignment of carbon fibers (CFs) bridged by Al2O3 particles were fabricated by the flow field. The thr...

Full description

Saved in:
Bibliographic Details
Published inComposites science and technology Vol. 230; p. 109717
Main Authors Huang, Ruoyu, Ding, Dongliang, Guo, Xiaoxiao, Liu, Changjiang, Li, Xinhua, Jiang, Gaoxiao, Zhang, Yufeng, Chen, Yanhui, Cai, Weiwei, Zhang, Xue-ao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 10.11.2022
Subjects
Online AccessGet full text
ISSN0266-3538
1879-1050
DOI10.1016/j.compscitech.2022.109717

Cover

Abstract Efficient thermal interface materials (TIMs) are urgently needed for heat dissipation of high-power density electronics. In this study, vinyl polydimethylsiloxane (PDMS) composites with the spatial alignment of carbon fibers (CFs) bridged by Al2O3 particles were fabricated by the flow field. The through-plane thermal conductivity (TPTC) of the composites with 24 vol% CFs and 47 vol% Al2O3 loading reached 38.0 W m−1 K−1. The oriented CFs bridged by Al2O3 acted as the efficient through-plane thermal conductive network. Furthermore, the effects of shape factor (b/a), spatial angle (γ) of CFs, and CF loading (Vf) on the TPTC were quantitatively discussed by steady-state finite element simulation combined with micro-computed tomography and machine learning. The positive contribution of the increased Vf to TPTC was in competition with the negative contribution of b/a and γ, both of which increased with the increase of Vf. Moreover, b/a exerted more negative effects than γ. The PDMS composites demonstrated excellent thermal stability (Td = 407.5 °C, CTE = −55.3 × 10−6 K−1), low compress modulus (1.71 MPa), and hardness (47 (Shore C)), which made them potential candidates for TIMs. This work offers a feasible method to prepare TIMs on large scale and refreshes the thermal conduction mechanism of TIMs by introducing the influencing factors (b/a and γ). [Display omitted] •Efficient heat conduction paths were constructed by spatial alignment of CFs bridged by Al2O3.•The through-plane thermal conductivity of PDMS composites reached 38 W m−1 K−1.•The effect of spatial orientation angle of CFs on the thermal conduction property was revealed.•The PDMS composites with excellent comprehensive properties can be used as TIMs.
AbstractList Efficient thermal interface materials (TIMs) are urgently needed for heat dissipation of high-power density electronics. In this study, vinyl polydimethylsiloxane (PDMS) composites with the spatial alignment of carbon fibers (CFs) bridged by Al2O3 particles were fabricated by the flow field. The through-plane thermal conductivity (TPTC) of the composites with 24 vol% CFs and 47 vol% Al2O3 loading reached 38.0 W m−1 K−1. The oriented CFs bridged by Al2O3 acted as the efficient through-plane thermal conductive network. Furthermore, the effects of shape factor (b/a), spatial angle (γ) of CFs, and CF loading (Vf) on the TPTC were quantitatively discussed by steady-state finite element simulation combined with micro-computed tomography and machine learning. The positive contribution of the increased Vf to TPTC was in competition with the negative contribution of b/a and γ, both of which increased with the increase of Vf. Moreover, b/a exerted more negative effects than γ. The PDMS composites demonstrated excellent thermal stability (Td = 407.5 °C, CTE = −55.3 × 10−6 K−1), low compress modulus (1.71 MPa), and hardness (47 (Shore C)), which made them potential candidates for TIMs. This work offers a feasible method to prepare TIMs on large scale and refreshes the thermal conduction mechanism of TIMs by introducing the influencing factors (b/a and γ). [Display omitted] •Efficient heat conduction paths were constructed by spatial alignment of CFs bridged by Al2O3.•The through-plane thermal conductivity of PDMS composites reached 38 W m−1 K−1.•The effect of spatial orientation angle of CFs on the thermal conduction property was revealed.•The PDMS composites with excellent comprehensive properties can be used as TIMs.
ArticleNumber 109717
Author Ding, Dongliang
Zhang, Yufeng
Chen, Yanhui
Li, Xinhua
Liu, Changjiang
Zhang, Xue-ao
Guo, Xiaoxiao
Jiang, Gaoxiao
Cai, Weiwei
Huang, Ruoyu
Author_xml – sequence: 1
  givenname: Ruoyu
  surname: Huang
  fullname: Huang, Ruoyu
  organization: College of Physical Science and Technology, Xiamen University, Xiamen, 361000, China
– sequence: 2
  givenname: Dongliang
  surname: Ding
  fullname: Ding, Dongliang
  organization: School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710072, China
– sequence: 3
  givenname: Xiaoxiao
  surname: Guo
  fullname: Guo, Xiaoxiao
  organization: College of Physical Science and Technology, Xiamen University, Xiamen, 361000, China
– sequence: 4
  givenname: Changjiang
  surname: Liu
  fullname: Liu, Changjiang
  organization: Xiamen G-CVD Graphene Technology Co., Ltd., Xiamen, 361000, China
– sequence: 5
  givenname: Xinhua
  surname: Li
  fullname: Li, Xinhua
  organization: Hunan Feihongda New Material Co., Ltd., Chenzhou, 423000, China
– sequence: 6
  givenname: Gaoxiao
  surname: Jiang
  fullname: Jiang, Gaoxiao
  organization: College of Physical Science and Technology, Xiamen University, Xiamen, 361000, China
– sequence: 7
  givenname: Yufeng
  surname: Zhang
  fullname: Zhang, Yufeng
  email: yufengzhang@xmu.edu.cn
  organization: College of Physical Science and Technology, Xiamen University, Xiamen, 361000, China
– sequence: 8
  givenname: Yanhui
  surname: Chen
  fullname: Chen, Yanhui
  email: yanhuichen@nwpu.edu.cn
  organization: School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710072, China
– sequence: 9
  givenname: Weiwei
  surname: Cai
  fullname: Cai, Weiwei
  email: wwcai@xmu.edu.cn
  organization: College of Physical Science and Technology, Xiamen University, Xiamen, 361000, China
– sequence: 10
  givenname: Xue-ao
  orcidid: 0000-0002-0193-8645
  surname: Zhang
  fullname: Zhang, Xue-ao
  email: xazhang@xmu.edu.cn
  organization: College of Physical Science and Technology, Xiamen University, Xiamen, 361000, China
BookMark eNqNkM1qGzEURkVJoE7ad1AeYBxJgzSjVQlOmhoSUmizFvq59siMpUGSDd73waPBWZSsshK6fPdcvnOFLkIMgNANJUtKqLjdLW3cT9n6AnZYMsJYncuOdl_QgvadbCjh5AItCBOiaXnbf0VXOe8IIR2XbIH-rfdTikcftrgMKR62QzONOkD9QdrrEdsY3MEWf_TlhOMG_75__tMYncHh-XLM9XLGhzwTBr8dxppKHkKZAzqZGPDGG0gZm-Tdtk7NCd-N7KXFk07F2xHyN3S50WOG7-_vNXr9-fB39at5enlcr-6eGtsyWpreyNZ1hnCnhbWiluw4o0IKwkXtzDkHJ3sqBbfSSKcN1by3lmmQQJgR7TX6cebaFHNOsFHVmy4-hpK0HxUlapaqduo_qWqWqs5SK0F-IEzJ73U6fWp3dd6FWvHoIamagmDB-QS2KBf9JyhvGz-eXg
CitedBy_id crossref_primary_10_1002_smll_202406229
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124373
crossref_primary_10_1063_5_0175238
crossref_primary_10_1021_acsnano_4c04349
crossref_primary_10_1021_acsapm_4c00786
crossref_primary_10_1021_acs_iecr_4c02171
crossref_primary_10_1002_pc_28365
crossref_primary_10_1016_j_heliyon_2024_e25381
crossref_primary_10_1007_s40843_023_2540_9
crossref_primary_10_1021_acsnano_3c06524
crossref_primary_10_1016_j_compscitech_2024_110617
crossref_primary_10_1039_D4TA03924F
crossref_primary_10_1007_s40820_023_01119_0
crossref_primary_10_1016_j_compositesa_2023_107727
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126777
crossref_primary_10_1016_j_compositesb_2025_112193
crossref_primary_10_1016_j_egyai_2024_100445
crossref_primary_10_1002_pc_29728
crossref_primary_10_1016_j_cjche_2024_07_009
crossref_primary_10_1016_j_xcrp_2024_101978
crossref_primary_10_1016_j_compositesa_2024_108412
crossref_primary_10_1016_j_icheatmasstransfer_2024_107856
crossref_primary_10_1016_j_ceramint_2023_08_229
crossref_primary_10_1016_j_compscitech_2023_110425
crossref_primary_10_1002_pat_6287
crossref_primary_10_1016_j_applthermaleng_2023_120807
crossref_primary_10_3390_ma15228078
crossref_primary_10_1016_j_coco_2025_102251
crossref_primary_10_1002_adem_202301546
crossref_primary_10_1016_j_compscitech_2023_109948
crossref_primary_10_1016_j_matdes_2024_113247
crossref_primary_10_1021_acsami_4c20867
Cites_doi 10.1039/C5NR04995D
10.1016/j.isci.2020.101653
10.1016/j.compscitech.2021.108922
10.3390/ma13071772
10.1016/j.matdes.2018.02.031
10.1016/j.compscitech.2016.01.010
10.1002/pat.5467
10.1016/j.compositesb.2020.108599
10.1016/j.progpolymsci.2010.11.004
10.1016/j.matlet.2013.12.080
10.1021/acsami.0c18603
10.1021/jp8018793
10.1021/acsnano.9b04202
10.1021/acsnano.9b05163
10.1021/acsami.9b22744
10.1016/j.compstruct.2020.113202
10.1016/j.apmt.2018.04.004
10.1016/j.cej.2020.126218
10.1002/adfm.201900412
10.1016/j.cej.2022.136104
10.1016/S0735-1933(00)00106-8
10.1016/j.carbpol.2019.02.087
10.1016/j.cej.2020.125447
10.1016/j.ijheatmasstransfer.2020.120157
10.1016/j.joule.2018.01.006
10.1002/sia.5921
10.1007/s10853-013-7717-7
10.1016/j.cej.2021.131466
10.1016/j.jmatprotec.2004.06.004
10.1021/acsami.8b00328
10.1016/j.compscitech.2021.108668
10.1016/j.cej.2019.121921
10.1016/j.cej.2019.122550
10.1016/j.coco.2019.12.004
10.1002/pc.25198
10.3390/polym10121412
10.1080/09243046.2014.915096
10.1016/j.msea.2018.11.117
10.1021/acsnano.0c04456
10.1002/adma.201401736
10.1021/acsomega.9b03465
10.1016/S0026-2692(02)00191-X
10.1016/j.carbon.2015.05.102
10.1111/j.1551-2916.2005.00456.x
10.1038/s41467-021-21531-7
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compscitech.2022.109717
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-1050
ExternalDocumentID 10_1016_j_compscitech_2022_109717
S0266353822004596
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
XPP
ZMT
~G-
.-4
29F
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SMS
T9H
VH1
WUQ
~HD
ID FETCH-LOGICAL-c321t-8b93d7b05da6cc67177521696056097555ed981965c9b9dab1a58cc2ae9e02b63
IEDL.DBID .~1
ISSN 0266-3538
IngestDate Thu Oct 09 00:47:12 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Fri Feb 23 02:41:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermal conductivity
Shape factor
Spatial angle
Finite element simulation
Carbon fiber
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-8b93d7b05da6cc67177521696056097555ed981965c9b9dab1a58cc2ae9e02b63
ORCID 0000-0002-0193-8645
ParticipantIDs crossref_citationtrail_10_1016_j_compscitech_2022_109717
crossref_primary_10_1016_j_compscitech_2022_109717
elsevier_sciencedirect_doi_10_1016_j_compscitech_2022_109717
PublicationCentury 2000
PublicationDate 2022-11-10
PublicationDateYYYYMMDD 2022-11-10
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-10
  day: 10
PublicationDecade 2020
PublicationTitle Composites science and technology
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Xu, Li, Xiong, Hu, Fisher (bib52) 2015; 93
Wei, Liao, Ma, Chen, Duan, Hou, Li, Jiang, Yu (bib34) 2020; 17
Tavman, Akinci (bib41) 2000; 27
Zhang, Feng, Qin, Gao, Li, Zhao, Zhang, Lv, Feng (bib27) 2019; 29
Roh, Kim, Lee (bib37) 2014; 23
Hu, Du, Chen (bib11) 2016; 124
Sun, Zhou, Han, Cui, Chen (bib23) 2020; 160
Mehra, Mu, Ji, Yang, Kong, Gu, Zhu (bib42) 2018; 12
Han, Fina (bib29) 2011; 36
Ma, Shang, Ren, Yao, Zhang, Xie, Zhang, Zeng, Sun, Xu, Wong (bib32) 2020; 380
Zhang, Feng, Qin, Gao, Li, Zhao, Zhang, Lv, Feng (bib50) 2019; 29
Bakalakos, Kalogeris, Papadopoulos (bib24) 2021; 258
Gwinn, Webb (bib47) 2003; 34
Ji, Wang, Ye, Tan, Mao, Zhao, Zeng, Yan, Sun, Kang, Xu, Wong (bib2) 2020; 12
Song, Liu, Liu, Wu, Cheng, Kang (bib30) 2018; 2
Zhang, Zhou, Xie, Lan, Fan, Hu, Luo (bib44) 2021; 213
Zhang, Kong, Tao, Wei, Xie, Cui, Chen (bib53) 2019; 6
Cui, Qin, Wu, Li, Hu (bib25) 2021; 12
Hou, Chen, Dai, Wang, Li, Lin, Nishimura, Jiang, Yu (bib17) 2019; 375
Xu, Chen, Zhou, Li (bib28) 2018; 30
Chung, Im, Kim, Park, Jeong (bib48) 2005; 160
Jing, Chen, Shi, Yang, Lambin (bib21) 2020; 402
Wu, Huang (bib14) 2021; 206
Guan, Yuen, Chen (bib43) 2017
Ma, Zhang, Mayo, Ni, Yi, Chen, Mu, Bellan, Li (bib15) 2015; 7
Wang, Li, Chen, Li, Fu, Xiao, Wu, Lin, Jiang, Yu (bib35) 2020; 5
Han, Du, Gao, Bai (bib31) 2019; 29
Kim, Kim, Lee, Lim, Kim, Lee, Park, Kim (bib36) 2007
Zhang, Tao, Zhang, Liao, Nie (bib7) 2019; 213
Ohashi, Kawakami, Yokogawa, Lai (bib10) 2005; 88
Lalet, Kurita, Heintz, Lacombe, Kawasaki, Silvain (bib45) 2014; 49
Geng, He, Jia, Peng, Li (bib3) 2019; 40
Vu, Thieu, Choi, Islam, Kim (bib46) 2020; 138
Yang, Feng, Bai, Bao, Liu, Yang, Yang (bib1) 2021; 425
Du, He, Li, Zhao (bib6) 2020; 13
Ding, Huang, Wang, Zhang, Wu, Zhang, Qin, Liu, Zhang, Chen (bib26) 2022; 441
Dai, Ma, Yan, Gao, Tan, Lv, Hou, Wei, Yu, Wu, Yao, Du, Sun, Jiang, Wang, Kong, Wong, Maruyama, Lin (bib49) 2019; 13
Sun, Wang, Li, Gu, Zhang (bib9) 2018; 144
Nakano, Matsuo (bib19) 2008; 112
Ren, Zhou, Xue, Song, Li, Liu, Zhao (bib18) 2019; 4
Shang, Ding, Wang, Liu, Chen, Gong, Liu, Zhang (bib8) 2021; 32
Yan, Li, Jiang, Zhang, Jia, Ma, Yu (bib38) 2014; 118
Zhan, Bidkhori, Schwarz, Malm, Mebrahtu, Field, Sellick, Hatton, Varley, Mardinoglu, Rockberg, Chotteau (bib40) 2020; 23
Song, Zhu, Deng, Hai, Wang, Guo (bib22) 2019; 127
Zhuang, Zheng, Cao, Fan, Ye, Lu, Zhang, Ma (bib13) 2020; 14
Yang, Wang, Wen (bib5) 2021; 13
Yao, Zhu, Zeng, Sun, Xu, Wong (bib12) 2018; 10
Li, Ali, Wei, Li, Song, Hou, Do, Greer, Pan, Lin, Jiang, Yu (bib33) 2021; 208
Zhang, Yang, Zhang, Ge, Liu, Zhan (bib55) 2019; 743
Zhou, Yu, Niu, Liu (bib4) 2018; 10
Uetani, Ata, Tomonoh, Yamada, Yumura, Hata (bib16) 2014; 26
Wang, Wang, Wang, Yan (bib54) 2016; 48
Xu, Hu, Chen, Dong, Xiao, Wang, Wang (bib39) 2020; 397
Jeong, Chen, Huo, Gamstedt, Liu, Zhang, Zhang, Hjort, Wu (bib51) 2015; 5
Liang, Pei, Chen, Jiang, Yao, Xie, Jiao, Chen, Li, Yang, Hu (bib20) 2019; 13
Ding (10.1016/j.compscitech.2022.109717_bib26) 2022; 441
Guan (10.1016/j.compscitech.2022.109717_bib43) 2017
Ma (10.1016/j.compscitech.2022.109717_bib15) 2015; 7
Sun (10.1016/j.compscitech.2022.109717_bib23) 2020; 160
Vu (10.1016/j.compscitech.2022.109717_bib46) 2020; 138
Lalet (10.1016/j.compscitech.2022.109717_bib45) 2014; 49
Tavman (10.1016/j.compscitech.2022.109717_bib41) 2000; 27
Wu (10.1016/j.compscitech.2022.109717_bib14) 2021; 206
Han (10.1016/j.compscitech.2022.109717_bib31) 2019; 29
Yang (10.1016/j.compscitech.2022.109717_bib5) 2021; 13
Ohashi (10.1016/j.compscitech.2022.109717_bib10) 2005; 88
Uetani (10.1016/j.compscitech.2022.109717_bib16) 2014; 26
Zhang (10.1016/j.compscitech.2022.109717_bib44) 2021; 213
Zhang (10.1016/j.compscitech.2022.109717_bib52) 2015; 93
Zhang (10.1016/j.compscitech.2022.109717_bib27) 2019; 29
Hu (10.1016/j.compscitech.2022.109717_bib11) 2016; 124
Cui (10.1016/j.compscitech.2022.109717_bib25) 2021; 12
Dai (10.1016/j.compscitech.2022.109717_bib49) 2019; 13
Sun (10.1016/j.compscitech.2022.109717_bib9) 2018; 144
Wang (10.1016/j.compscitech.2022.109717_bib54) 2016; 48
Jing (10.1016/j.compscitech.2022.109717_bib21) 2020; 402
Yang (10.1016/j.compscitech.2022.109717_bib1) 2021; 425
Ji (10.1016/j.compscitech.2022.109717_bib2) 2020; 12
Zhang (10.1016/j.compscitech.2022.109717_bib7) 2019; 213
Xu (10.1016/j.compscitech.2022.109717_bib39) 2020; 397
Ren (10.1016/j.compscitech.2022.109717_bib18) 2019; 4
Roh (10.1016/j.compscitech.2022.109717_bib37) 2014; 23
Zhang (10.1016/j.compscitech.2022.109717_bib55) 2019; 743
Bakalakos (10.1016/j.compscitech.2022.109717_bib24) 2021; 258
Song (10.1016/j.compscitech.2022.109717_bib30) 2018; 2
Xu (10.1016/j.compscitech.2022.109717_bib28) 2018; 30
Ma (10.1016/j.compscitech.2022.109717_bib32) 2020; 380
Song (10.1016/j.compscitech.2022.109717_bib22) 2019; 127
Wang (10.1016/j.compscitech.2022.109717_bib35) 2020; 5
Mehra (10.1016/j.compscitech.2022.109717_bib42) 2018; 12
Shang (10.1016/j.compscitech.2022.109717_bib8) 2021; 32
Geng (10.1016/j.compscitech.2022.109717_bib3) 2019; 40
Han (10.1016/j.compscitech.2022.109717_bib29) 2011; 36
Zhan (10.1016/j.compscitech.2022.109717_bib40) 2020; 23
Yao (10.1016/j.compscitech.2022.109717_bib12) 2018; 10
Gwinn (10.1016/j.compscitech.2022.109717_bib47) 2003; 34
Hou (10.1016/j.compscitech.2022.109717_bib17) 2019; 375
Yan (10.1016/j.compscitech.2022.109717_bib38) 2014; 118
Liang (10.1016/j.compscitech.2022.109717_bib20) 2019; 13
Kim (10.1016/j.compscitech.2022.109717_bib36) 2007
Jeong (10.1016/j.compscitech.2022.109717_bib51) 2015; 5
Zhang (10.1016/j.compscitech.2022.109717_bib53) 2019; 6
Chung (10.1016/j.compscitech.2022.109717_bib48) 2005; 160
Nakano (10.1016/j.compscitech.2022.109717_bib19) 2008; 112
Zhuang (10.1016/j.compscitech.2022.109717_bib13) 2020; 14
Du (10.1016/j.compscitech.2022.109717_bib6) 2020; 13
Zhou (10.1016/j.compscitech.2022.109717_bib4) 2018; 10
Li (10.1016/j.compscitech.2022.109717_bib33) 2021; 208
Zhang (10.1016/j.compscitech.2022.109717_bib50) 2019; 29
Wei (10.1016/j.compscitech.2022.109717_bib34) 2020; 17
References_xml – volume: 29
  year: 2019
  ident: bib27
  article-title: Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite
  publication-title: Adv. Funct. Mater.
– volume: 112
  start-page: 15611
  year: 2008
  end-page: 15622
  ident: bib19
  article-title: Orientation behavior of carbon fiber axes in polymer solutions under magnetic field estimated in terms of orientation distribution function
  publication-title: J. Phys. Chem. C
– volume: 206
  year: 2021
  ident: bib14
  article-title: Enhancing thermal conductivity of PMMA/PS blend via forming affluent and continuous conductive pathways of graphene layers
  publication-title: Compos. Sci. Technol.
– volume: 380
  year: 2020
  ident: bib32
  article-title: Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material
  publication-title: Chem. Eng. J.
– volume: 5
  year: 2015
  ident: bib51
  publication-title: Sci. Rep.
– volume: 397
  year: 2020
  ident: bib39
  article-title: 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach
  publication-title: Chem. Eng. J.
– volume: 127
  year: 2019
  ident: bib22
  article-title: Enhanced through-plane thermal conductivity and high electrical insulation of flexible composite films with aligned boron nitride for thermal interface material
  publication-title: Compos. Part A-Appl. S.”
– volume: 160
  start-page: 168
  year: 2005
  end-page: 173
  ident: bib48
  article-title: Evaluation for micro scale structures fabricated using epoxy-aluminum particle composite and its application
  publication-title: J. Mater. Process. Technol.
– volume: 36
  start-page: 914
  year: 2011
  end-page: 944
  ident: bib29
  article-title: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review
  publication-title: Prog. Polym. Sci.
– volume: 12
  start-page: 24298
  year: 2020
  end-page: 24307
  ident: bib2
  article-title: Ice-templated MXene/Ag-epoxy nanocomposites as high-performance thermal management materials
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 5857
  year: 2014
  end-page: 5862
  ident: bib16
  article-title: Elastomeric Thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking
  publication-title: Adv. Mater.
– volume: 402
  year: 2020
  ident: bib21
  article-title: Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods
  publication-title: Chem. Eng. J.
– volume: 27
  start-page: 253
  year: 2000
  end-page: 261
  ident: bib41
  article-title: Transverse thermal conductivity of fiber reinforced polymer composites
  publication-title: Int. Commun. Heat Mass.”
– start-page: 396
  year: 2017
  end-page: 399
  ident: bib43
  article-title: Towards a hybrid approach of K-means and density-based spatial clustering of applications with noise for image segmentation
  publication-title: Ieee International Conference on Internet of Things (Ithings) and Ieee Green Computing and Communications (Greencom) and Ieee Cyber, Physical and Social Computing (Cpscom) and Ieee Smart Data
– volume: 5
  start-page: 1170
  year: 2020
  end-page: 1177
  ident: bib35
  article-title: Efficient thermal transport highway construction within epoxy matrix via hybrid carbon fibers and alumina particles
  publication-title: ACS Omega
– volume: 23
  start-page: 409
  year: 2014
  end-page: 420
  ident: bib37
  article-title: Isotropic conductivities in chopped carbon fiber composites using expanded polypropylene
  publication-title: Adv. Compos. Mater.
– volume: 144
  start-page: 263
  year: 2018
  end-page: 270
  ident: bib9
  article-title: Improvement of out-of-plane thermal conductivity of composite laminate by electrostatic flocking
  publication-title: Mater. Des.
– volume: 13
  start-page: 11561
  year: 2019
  end-page: 11571
  ident: bib49
  publication-title: ACS Nano
– volume: 10
  start-page: 1412
  year: 2018
  ident: bib4
  article-title: Synergistic improvement in thermal conductivity of polyimide nanocomposite films using boron nitride coated copper nanoparticles and nanowires
  publication-title: Polymers
– volume: 32
  start-page: 4745
  year: 2021
  end-page: 4754
  ident: bib8
  article-title: High thermal conductivity of self‐healing polydimethylsiloxane elastomer composites by the orientation of boron nitride nano sheets
  publication-title: Polym. Adv. Technol.
– volume: 441
  year: 2022
  ident: bib26
  article-title: Thermally conductive silicone rubber composites with vertically oriented carbon fibers: a new perspective on the heat conduction mechanism
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 1284
  year: 2021
  ident: bib25
  article-title: Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management
  publication-title: Nat. Commun.
– volume: 34
  start-page: 215
  year: 2003
  end-page: 222
  ident: bib47
  article-title: Performance and testing of thermal interface materials
  publication-title: Microelectron. J.
– volume: 124
  start-page: 36
  year: 2016
  end-page: 43
  ident: bib11
  article-title: A novel approach for Al
  publication-title: Compos. Sci. Technol.
– start-page: 544
  year: 2007
  end-page: 545
  ident: bib36
  article-title: Synergistic effect of hybrid filler contained composites on thermal conductivity
  publication-title: Mater. Sci. Forum
– volume: 7
  start-page: 16899
  year: 2015
  end-page: 16908
  ident: bib15
  article-title: Thermal conductivity of electrospun polyethylene nanofibers
  publication-title: Nanoscale
– volume: 14
  start-page: 11733
  year: 2020
  end-page: 11742
  ident: bib13
  article-title: Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology
  publication-title: ACS Nano
– volume: 118
  start-page: 212
  year: 2014
  end-page: 216
  ident: bib38
  article-title: Thermally conductive phenol formaldehyde composites filled with carbon fillers
  publication-title: Mater. Lett.
– volume: 29
  year: 2019
  ident: bib31
  article-title: An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network
  publication-title: Adv. Funct. Mater.
– volume: 93
  start-page: 659
  year: 2015
  end-page: 670
  ident: bib52
  publication-title: Carbon
– volume: 6
  year: 2019
  ident: bib53
  publication-title: Adv. Mater. Interfac.
– volume: 13
  start-page: 1772
  year: 2020
  ident: bib6
  article-title: Polydopamine-modified Al
  publication-title: Materials
– volume: 213
  year: 2021
  ident: bib44
  article-title: Thermal interface materials with sufficiently vertically aligned and interconnected nickel-coated carbon fibers under high filling loads made via preset-magnetic-field method
  publication-title: Compos. Sci. Technol.
– volume: 48
  start-page: 139
  year: 2016
  end-page: 145
  ident: bib54
  article-title: Modification effects of short carbon fibers on mechanical properties and fretting wear behavior of UHMWPE composites
  publication-title: Surf. Interface Anal.
– volume: 10
  start-page: 9669
  year: 2018
  end-page: 9678
  ident: bib12
  article-title: Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 141
  year: 2020
  end-page: 146
  ident: bib34
  article-title: Enhanced thermal conductivity of polydimethylsiloxane composites with carbon fiber
  publication-title: Compos. Commun.
– volume: 743
  start-page: 512
  year: 2019
  end-page: 519
  ident: bib55
  article-title: Multiscale graphene/carbon fiber reinforced copper matrix hybrid composites: microstructure and properties
  publication-title: Mat. Sci. Eng. A-Struct.”
– volume: 40
  start-page: 3375
  year: 2019
  end-page: 3382
  ident: bib3
  article-title: Enhanced through-plane thermal conductivity of polyamide 6 composites with vertical alignment of boron nitride achieved by fused deposition modeling
  publication-title: Polym. Compos.
– volume: 88
  start-page: 2615
  year: 2005
  end-page: 2618
  ident: bib10
  article-title: Spherical aluminum nitride fillers for heat-conducting plastic packages
  publication-title: J. Am. Ceram. Soc.
– volume: 2
  start-page: 442
  year: 2018
  end-page: 463
  ident: bib30
  article-title: Two-dimensional materials for thermal management applications
  publication-title: Joule
– volume: 258
  year: 2021
  ident: bib24
  article-title: An extended finite element method formulation for modeling multi-phase boundary interactions in steady state heat conduction problems
  publication-title: Compos. Struct.
– volume: 13
  start-page: 1511
  year: 2021
  end-page: 1523
  ident: bib5
  article-title: Highly thermally conductive and superior electrical insulation polymer composites via in situ thermal expansion of expanded graphite and in situ oxidation of aluminum nanoflakes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 160
  year: 2020
  ident: bib23
  article-title: A new anisotropic thermal conductivity equation for h-BN/polymer composites using finite element analysis
  publication-title: Int. J. Heat Mass Tran.
– volume: 138
  year: 2020
  ident: bib46
  article-title: Ultralight covalently interconnected silicon carbide aerofoam for high performance thermally conductive epoxy composites
  publication-title: Compos. part A-APPL. S.”
– volume: 208
  year: 2021
  ident: bib33
  article-title: Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites
  publication-title: Compos. B Eng.
– volume: 12
  start-page: 92
  year: 2018
  end-page: 130
  ident: bib42
  article-title: Thermal transport in polymeric materials and across composite interfaces
  publication-title: Appl. Mater. Today
– volume: 213
  start-page: 228
  year: 2019
  end-page: 235
  ident: bib7
  article-title: Highly thermal conductivity of CNF/AlN hybrid films for thermal management of flexible energy storage devices
  publication-title: Carbohydr. Polym.
– volume: 4
  year: 2019
  ident: bib18
  article-title: Thermal metamaterials with site-specific thermal properties fabricated by 3D magnetic printing
  publication-title: “Adv. Mater. Technol.”
– volume: 29
  year: 2019
  ident: bib50
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  ident: bib28
  article-title: Thermal conductivity of polymers and their nanocomposites
  publication-title: Adv. Mater.
– volume: 49
  start-page: 397
  year: 2014
  end-page: 402
  ident: bib45
  article-title: Thermal expansion coefficient and thermal fatigue of discontinuous carbon fiber-reinforced copper and aluminum matrix composites without interfacial chemical bond
  publication-title: J. Mater. Sci.
– volume: 375
  year: 2019
  ident: bib17
  article-title: Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers
  publication-title: Chem. Eng. J.
– volume: 425
  year: 2021
  ident: bib1
  article-title: Flexible shape-stabilized phase change materials with passive radiative cooling capability for thermal management
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 12653
  year: 2019
  end-page: 12661
  ident: bib20
  article-title: General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment
  publication-title: ACS Nano
– volume: 23
  year: 2020
  ident: bib40
  article-title: Low shear stress increases recombinant protein production and high shear stress increases apoptosis in human cells
  publication-title: iScience
– volume: 7
  start-page: 16899
  year: 2015
  ident: 10.1016/j.compscitech.2022.109717_bib15
  article-title: Thermal conductivity of electrospun polyethylene nanofibers
  publication-title: Nanoscale
  doi: 10.1039/C5NR04995D
– volume: 23
  year: 2020
  ident: 10.1016/j.compscitech.2022.109717_bib40
  article-title: Low shear stress increases recombinant protein production and high shear stress increases apoptosis in human cells
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101653
– volume: 213
  year: 2021
  ident: 10.1016/j.compscitech.2022.109717_bib44
  article-title: Thermal interface materials with sufficiently vertically aligned and interconnected nickel-coated carbon fibers under high filling loads made via preset-magnetic-field method
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2021.108922
– volume: 13
  start-page: 1772
  year: 2020
  ident: 10.1016/j.compscitech.2022.109717_bib6
  article-title: Polydopamine-modified Al2O3/Polyurethane composites with largely improved thermal and mechanical properties
  publication-title: Materials
  doi: 10.3390/ma13071772
– volume: 144
  start-page: 263
  year: 2018
  ident: 10.1016/j.compscitech.2022.109717_bib9
  article-title: Improvement of out-of-plane thermal conductivity of composite laminate by electrostatic flocking
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.02.031
– volume: 138
  year: 2020
  ident: 10.1016/j.compscitech.2022.109717_bib46
  article-title: Ultralight covalently interconnected silicon carbide aerofoam for high performance thermally conductive epoxy composites
  publication-title: Compos. part A-APPL. S.”
– volume: 124
  start-page: 36
  year: 2016
  ident: 10.1016/j.compscitech.2022.109717_bib11
  article-title: A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2016.01.010
– start-page: 396
  year: 2017
  ident: 10.1016/j.compscitech.2022.109717_bib43
  article-title: Towards a hybrid approach of K-means and density-based spatial clustering of applications with noise for image segmentation
– volume: 32
  start-page: 4745
  year: 2021
  ident: 10.1016/j.compscitech.2022.109717_bib8
  article-title: High thermal conductivity of self‐healing polydimethylsiloxane elastomer composites by the orientation of boron nitride nano sheets
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.5467
– volume: 208
  year: 2021
  ident: 10.1016/j.compscitech.2022.109717_bib33
  article-title: Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2020.108599
– volume: 36
  start-page: 914
  year: 2011
  ident: 10.1016/j.compscitech.2022.109717_bib29
  article-title: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2010.11.004
– volume: 118
  start-page: 212
  year: 2014
  ident: 10.1016/j.compscitech.2022.109717_bib38
  article-title: Thermally conductive phenol formaldehyde composites filled with carbon fillers
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2013.12.080
– volume: 13
  start-page: 1511
  year: 2021
  ident: 10.1016/j.compscitech.2022.109717_bib5
  article-title: Highly thermally conductive and superior electrical insulation polymer composites via in situ thermal expansion of expanded graphite and in situ oxidation of aluminum nanoflakes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c18603
– volume: 112
  start-page: 15611
  year: 2008
  ident: 10.1016/j.compscitech.2022.109717_bib19
  article-title: Orientation behavior of carbon fiber axes in polymer solutions under magnetic field estimated in terms of orientation distribution function
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8018793
– volume: 13
  start-page: 12653
  year: 2019
  ident: 10.1016/j.compscitech.2022.109717_bib20
  article-title: General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04202
– volume: 13
  start-page: 11561
  year: 2019
  ident: 10.1016/j.compscitech.2022.109717_bib49
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05163
– volume: 12
  start-page: 24298
  year: 2020
  ident: 10.1016/j.compscitech.2022.109717_bib2
  article-title: Ice-templated MXene/Ag-epoxy nanocomposites as high-performance thermal management materials
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b22744
– volume: 5
  year: 2015
  ident: 10.1016/j.compscitech.2022.109717_bib51
  publication-title: Sci. Rep.
– volume: 258
  year: 2021
  ident: 10.1016/j.compscitech.2022.109717_bib24
  article-title: An extended finite element method formulation for modeling multi-phase boundary interactions in steady state heat conduction problems
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.113202
– volume: 12
  start-page: 92
  year: 2018
  ident: 10.1016/j.compscitech.2022.109717_bib42
  article-title: Thermal transport in polymeric materials and across composite interfaces
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2018.04.004
– volume: 402
  year: 2020
  ident: 10.1016/j.compscitech.2022.109717_bib21
  article-title: Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126218
– volume: 29
  year: 2019
  ident: 10.1016/j.compscitech.2022.109717_bib31
  article-title: An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900412
– volume: 30
  year: 2018
  ident: 10.1016/j.compscitech.2022.109717_bib28
  article-title: Thermal conductivity of polymers and their nanocomposites
  publication-title: Adv. Mater.
– volume: 441
  year: 2022
  ident: 10.1016/j.compscitech.2022.109717_bib26
  article-title: Thermally conductive silicone rubber composites with vertically oriented carbon fibers: a new perspective on the heat conduction mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136104
– start-page: 544
  year: 2007
  ident: 10.1016/j.compscitech.2022.109717_bib36
  article-title: Synergistic effect of hybrid filler contained composites on thermal conductivity
  publication-title: Mater. Sci. Forum
– volume: 27
  start-page: 253
  year: 2000
  ident: 10.1016/j.compscitech.2022.109717_bib41
  article-title: Transverse thermal conductivity of fiber reinforced polymer composites
  publication-title: Int. Commun. Heat Mass.”
  doi: 10.1016/S0735-1933(00)00106-8
– volume: 213
  start-page: 228
  year: 2019
  ident: 10.1016/j.compscitech.2022.109717_bib7
  article-title: Highly thermal conductivity of CNF/AlN hybrid films for thermal management of flexible energy storage devices
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2019.02.087
– volume: 397
  year: 2020
  ident: 10.1016/j.compscitech.2022.109717_bib39
  article-title: 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125447
– volume: 160
  year: 2020
  ident: 10.1016/j.compscitech.2022.109717_bib23
  article-title: A new anisotropic thermal conductivity equation for h-BN/polymer composites using finite element analysis
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2020.120157
– volume: 2
  start-page: 442
  year: 2018
  ident: 10.1016/j.compscitech.2022.109717_bib30
  article-title: Two-dimensional materials for thermal management applications
  publication-title: Joule
  doi: 10.1016/j.joule.2018.01.006
– volume: 48
  start-page: 139
  year: 2016
  ident: 10.1016/j.compscitech.2022.109717_bib54
  article-title: Modification effects of short carbon fibers on mechanical properties and fretting wear behavior of UHMWPE composites
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.5921
– volume: 49
  start-page: 397
  year: 2014
  ident: 10.1016/j.compscitech.2022.109717_bib45
  article-title: Thermal expansion coefficient and thermal fatigue of discontinuous carbon fiber-reinforced copper and aluminum matrix composites without interfacial chemical bond
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-013-7717-7
– volume: 425
  year: 2021
  ident: 10.1016/j.compscitech.2022.109717_bib1
  article-title: Flexible shape-stabilized phase change materials with passive radiative cooling capability for thermal management
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131466
– volume: 160
  start-page: 168
  year: 2005
  ident: 10.1016/j.compscitech.2022.109717_bib48
  article-title: Evaluation for micro scale structures fabricated using epoxy-aluminum particle composite and its application
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2004.06.004
– volume: 10
  start-page: 9669
  year: 2018
  ident: 10.1016/j.compscitech.2022.109717_bib12
  article-title: Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00328
– volume: 206
  year: 2021
  ident: 10.1016/j.compscitech.2022.109717_bib14
  article-title: Enhancing thermal conductivity of PMMA/PS blend via forming affluent and continuous conductive pathways of graphene layers
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2021.108668
– volume: 29
  year: 2019
  ident: 10.1016/j.compscitech.2022.109717_bib50
  publication-title: Adv. Funct. Mater.
– volume: 375
  year: 2019
  ident: 10.1016/j.compscitech.2022.109717_bib17
  article-title: Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.121921
– volume: 380
  year: 2020
  ident: 10.1016/j.compscitech.2022.109717_bib32
  article-title: Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122550
– volume: 17
  start-page: 141
  year: 2020
  ident: 10.1016/j.compscitech.2022.109717_bib34
  article-title: Enhanced thermal conductivity of polydimethylsiloxane composites with carbon fiber
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2019.12.004
– volume: 127
  year: 2019
  ident: 10.1016/j.compscitech.2022.109717_bib22
  article-title: Enhanced through-plane thermal conductivity and high electrical insulation of flexible composite films with aligned boron nitride for thermal interface material
  publication-title: Compos. Part A-Appl. S.”
– volume: 40
  start-page: 3375
  year: 2019
  ident: 10.1016/j.compscitech.2022.109717_bib3
  article-title: Enhanced through-plane thermal conductivity of polyamide 6 composites with vertical alignment of boron nitride achieved by fused deposition modeling
  publication-title: Polym. Compos.
  doi: 10.1002/pc.25198
– volume: 4
  year: 2019
  ident: 10.1016/j.compscitech.2022.109717_bib18
  article-title: Thermal metamaterials with site-specific thermal properties fabricated by 3D magnetic printing
  publication-title: “Adv. Mater. Technol.”
– volume: 6
  year: 2019
  ident: 10.1016/j.compscitech.2022.109717_bib53
  publication-title: Adv. Mater. Interfac.
– volume: 10
  start-page: 1412
  year: 2018
  ident: 10.1016/j.compscitech.2022.109717_bib4
  article-title: Synergistic improvement in thermal conductivity of polyimide nanocomposite films using boron nitride coated copper nanoparticles and nanowires
  publication-title: Polymers
  doi: 10.3390/polym10121412
– volume: 23
  start-page: 409
  year: 2014
  ident: 10.1016/j.compscitech.2022.109717_bib37
  article-title: Isotropic conductivities in chopped carbon fiber composites using expanded polypropylene
  publication-title: Adv. Compos. Mater.
  doi: 10.1080/09243046.2014.915096
– volume: 743
  start-page: 512
  year: 2019
  ident: 10.1016/j.compscitech.2022.109717_bib55
  article-title: Multiscale graphene/carbon fiber reinforced copper matrix hybrid composites: microstructure and properties
  publication-title: Mat. Sci. Eng. A-Struct.”
  doi: 10.1016/j.msea.2018.11.117
– volume: 14
  start-page: 11733
  year: 2020
  ident: 10.1016/j.compscitech.2022.109717_bib13
  article-title: Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c04456
– volume: 26
  start-page: 5857
  year: 2014
  ident: 10.1016/j.compscitech.2022.109717_bib16
  article-title: Elastomeric Thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401736
– volume: 5
  start-page: 1170
  year: 2020
  ident: 10.1016/j.compscitech.2022.109717_bib35
  article-title: Efficient thermal transport highway construction within epoxy matrix via hybrid carbon fibers and alumina particles
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b03465
– volume: 29
  year: 2019
  ident: 10.1016/j.compscitech.2022.109717_bib27
  article-title: Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite
  publication-title: Adv. Funct. Mater.
– volume: 34
  start-page: 215
  year: 2003
  ident: 10.1016/j.compscitech.2022.109717_bib47
  article-title: Performance and testing of thermal interface materials
  publication-title: Microelectron. J.
  doi: 10.1016/S0026-2692(02)00191-X
– volume: 93
  start-page: 659
  year: 2015
  ident: 10.1016/j.compscitech.2022.109717_bib52
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.05.102
– volume: 88
  start-page: 2615
  year: 2005
  ident: 10.1016/j.compscitech.2022.109717_bib10
  article-title: Spherical aluminum nitride fillers for heat-conducting plastic packages
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2005.00456.x
– volume: 12
  start-page: 1284
  year: 2021
  ident: 10.1016/j.compscitech.2022.109717_bib25
  article-title: Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21531-7
SSID ssj0007592
Score 2.5534806
Snippet Efficient thermal interface materials (TIMs) are urgently needed for heat dissipation of high-power density electronics. In this study, vinyl...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109717
SubjectTerms Carbon fiber
Finite element simulation
Shape factor
Spatial angle
Thermal conductivity
Title Improving through-plane thermal conductivity of PDMS-based composites using highly oriented carbon fibers bridged by Al2O3 particles
URI https://dx.doi.org/10.1016/j.compscitech.2022.109717
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007592
  issn: 0266-3538
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection EURAC
  customDbUrl:
  eissn: 1879-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007592
  issn: 0266-3538
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007592
  issn: 0266-3538
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007592
  issn: 0266-3538
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007592
  issn: 0266-3538
  databaseCode: AKRWK
  dateStart: 19850101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5EwcdBfGJ9EcFrbDe72WzAS6lKVapCLXhbkmxWKrUtbT148eQPN7OPtoKg4HGXmRAy2cxk-eb7AE5rhimbMks9L7U08FJNpdQpFSxUXCk_8TMVhdZd2OwEN0_8aQEaZS8MwiqLsz8_07PTunhTLVazOux2q213e3DZ0ncZDusSibTbQSBQxeDsYwbzEDwTRkZjitbLcDLDeCFs242NdKnuqshYRuiYaZf9kKPm8s7VBqwXBSOp53PahAXb34KVsp94vAVrc5SC2_A5_UtACgkeOkQ8K8FC79UN5ByR4jXTjCCDlDxctNoUc1lCcJ6I4bJjgnD4Z4Jcxj1nhVzIEzRQIz3okxRRJmOS93olRL-Teo_d-2RYoux2oHN1-dho0kJpgRqfeRMaaeknQtd4okJjQrcEwqX10N1uXEEkBefcJjJC8kEjtUyU9hSPDIZZ2hrTob8Li_1B3-4BcfVCFPpM8ECkQaS0rilljPu4RSIiHgQViMq1jU1BQ45qGL24xJu9xHNhiTEscR6WCrCp6zDn4viL03kZwPjbxopdzvjdff9_7gewik80ww0ewuJk9GaPXBUz0cfZNj2Gpfr1bfPuC-_j9TA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6qgo-D-MS3EbzGdrObzQa8iFqqtipoobclyWZFqW2x9eDFkz_czD5sBUHB6-5MCJlsvpnlyzcAhzXDlE2ZpZ6XWhp4qaZS6pQKFiqulJ_4WReF1nXYaAeXHd6pwGl5FwZplcXZn5_p2WldPKkWq1kdPD5W71z14NDSdwiHeYkMp2Am4ExgBXb0PuZ5CJ51RkZriuazcDAmeSFv2w2OeqmuVmQsU3TMmpf9AFITwFNfgsUiYyQn-aSWoWJ7KzBXXigersDChKbgKnx8_SYgRQ8eOkBCK8FM79kN5BxR4zVrGkH6Kbk9a91RBLOE4DyRxGWHBPnwDwTFjLvOCsWQR2igXnS_R1KkmQxJftkrIfqNnHTZjU8GJc1uDdr18_vTBi1aLVDjM29EIy39ROgaT1RoTOiWQDhcD1154zIiKTjnNpERqg8aqWWitKd4ZDDO0taYDv11mO71e3YDiEsYotBnggciDSKldU0pY9zXLRIR8SDYhKhc29gUOuTYDqMbl4Szp3giLDGGJc7Dsgnsy3WQi3H8xem4DGD8bWfFDjR-d9_6n_s-zDXuW824eXF9tQ3z-IZmJMIdmB69vNpdl9KM9F62ZT8Bmov2xQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+through-plane+thermal+conductivity+of+PDMS-based+composites+using+highly+oriented+carbon+fibers+bridged+by+Al2O3+particles&rft.jtitle=Composites+science+and+technology&rft.au=Huang%2C+Ruoyu&rft.au=Ding%2C+Dongliang&rft.au=Guo%2C+Xiaoxiao&rft.au=Liu%2C+Changjiang&rft.date=2022-11-10&rft.pub=Elsevier+Ltd&rft.issn=0266-3538&rft.eissn=1879-1050&rft.volume=230&rft_id=info:doi/10.1016%2Fj.compscitech.2022.109717&rft.externalDocID=S0266353822004596
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-3538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-3538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-3538&client=summon