Artificial bee colony algorithm-neural networks for S-system models of biochemical networks approximation

High-throughput technologies nowadays allow for the acquisition of biological data. These temporal profiles carry topological and kinetic information regarding the biochemical network from which they were drawn. Retrieving this information requires systematic application of both experimental and com...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 21; no. 2; pp. 365 - 375
Main Authors Yeh, Wei-Chang, Hsieh, Tsung-Jung
Format Journal Article
LanguageEnglish
Published London Springer-Verlag 01.03.2012
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-010-0435-z

Cover

Abstract High-throughput technologies nowadays allow for the acquisition of biological data. These temporal profiles carry topological and kinetic information regarding the biochemical network from which they were drawn. Retrieving this information requires systematic application of both experimental and computational methods. S-systems are nonlinear mathematical approximate models based on the power-law formalism and provide a general framework for the simulation of integrated biological systems exhibiting complex dynamics, such as genetic circuits, signal transduction, and metabolic networks. However, S-systems need lots of iterations to obtain convergent gene expression profiles. For this reason, this study constructed a substitutive approach using artificial neural networks (ANNs) based on the artificial bee colony (ABC) algorithm with learning and training processes. This was used to obtain models and prove that our model (called ABC-NN) certainly is another method to acquire convergent gene expressions, except for S-systems, supported by our testing results.
AbstractList High-throughput technologies nowadays allow for the acquisition of biological data. These temporal profiles carry topological and kinetic information regarding the biochemical network from which they were drawn. Retrieving this information requires systematic application of both experimental and computational methods. S-systems are nonlinear mathematical approximate models based on the power-law formalism and provide a general framework for the simulation of integrated biological systems exhibiting complex dynamics, such as genetic circuits, signal transduction, and metabolic networks. However, S-systems need lots of iterations to obtain convergent gene expression profiles. For this reason, this study constructed a substitutive approach using artificial neural networks (ANNs) based on the artificial bee colony (ABC) algorithm with learning and training processes. This was used to obtain models and prove that our model (called ABC-NN) certainly is another method to acquire convergent gene expressions, except for S-systems, supported by our testing results.
Author Yeh, Wei-Chang
Hsieh, Tsung-Jung
Author_xml – sequence: 1
  givenname: Wei-Chang
  surname: Yeh
  fullname: Yeh, Wei-Chang
  organization: Department of Industrial Engineering and Engineering Management, National Tsing Hua University
– sequence: 2
  givenname: Tsung-Jung
  surname: Hsieh
  fullname: Hsieh, Tsung-Jung
  email: tsungjung.hsieh@gmail.com
  organization: Department of Industrial Engineering and Engineering Management, National Tsing Hua University
BookMark eNp9kLtOAzEQRS0EEgnwAXRb0hj8XGdLhHhJkSiA2nK8s4lh1w62I0i-HodQIIpUU8w98zhjdOiDB4TOKbmkhKirRIhkFBNKMBFc4s0BGlHBOeZETg7RiDSidGvBj9E4pTdCiKgncoTcdcyuc9aZvpoBVDb0wa8r089DdHkxYA-rWHoe8meI76nqQqyecVqnDEM1hBb6VIWumrlgFzA4-zdrlssYvtxgsgv-FB11pk9w9ltP0Ovd7cvNA54-3T_eXE-x5YxmrGTb1VDPGGtbKjtgolU1E7IxFmhrGiLaWSeZnTQWajUxCpqm5AWjQoFkjJ-gi93csvtjBSnrwSULfW88hFXSlEmluBB8G6W7qI0hpQidXsZybVxrSvRWq95p1UWr3mrVm8Kof4x1-efBHI3r95JsR6ayxc8h6rewir642AN9A8eMkRs
CitedBy_id crossref_primary_10_3390_e16094788
crossref_primary_10_1016_j_scitotenv_2018_05_153
crossref_primary_10_1016_j_biosystems_2022_104736
crossref_primary_10_1016_j_energy_2014_03_059
crossref_primary_10_1155_2013_897658
crossref_primary_10_1080_23744731_2021_1996121
crossref_primary_10_1142_S0219720016500219
crossref_primary_10_1080_00207721_2014_924602
crossref_primary_10_1007_s00500_014_1549_5
crossref_primary_10_1007_s11600_019_00374_3
crossref_primary_10_1016_j_swevo_2016_06_001
crossref_primary_10_1155_2020_8594727
crossref_primary_10_1007_s00521_013_1528_2
crossref_primary_10_1007_s42452_020_2475_z
crossref_primary_10_1016_j_amc_2015_09_064
crossref_primary_10_1007_s00500_020_04863_2
crossref_primary_10_1007_s00521_013_1357_3
crossref_primary_10_1155_2015_947098
crossref_primary_10_1007_s00477_021_02098_7
crossref_primary_10_1007_s00500_015_1977_x
crossref_primary_10_1007_s12293_014_0137_7
crossref_primary_10_1016_j_asoc_2017_06_018
crossref_primary_10_1088_1742_6596_1362_1_012074
crossref_primary_10_1016_j_eswa_2014_11_039
crossref_primary_10_1155_2018_2767546
crossref_primary_10_1007_s00521_018_3483_4
crossref_primary_10_1007_s10462_012_9328_0
Cites_doi 10.1016/j.neucom.2009.05.005
10.1016/j.neunet.2007.10.004
10.1016/j.amc.2009.03.090
10.1016/0305-0483(95)00059-3
10.2307/1392185
10.1007/s00521-006-0069-3
10.1093/bioinformatics/bti071
10.1016/0893-6080(89)90020-8
10.1093/bioinformatics/btg027
10.1016/j.cor.2004.03.015
10.1093/bioinformatics/16.11.1023
10.1007/s10898-007-9149-x
10.1109/TNN.2006.875972
10.1016/j.asoc.2007.05.007
10.1142/S0219720006001886
10.1074/mcp.M200026-MCP200
10.1074/jbc.M202573200
10.1007/s00521-008-0200-8
10.1109/ICNN.1995.488968
10.1007/s00521-007-0134-6
10.1007/s00521-007-0084-z
ContentType Journal Article
Copyright Springer-Verlag London Limited 2010
Copyright_xml – notice: Springer-Verlag London Limited 2010
DBID AAYXX
CITATION
7QO
8FD
FR3
P64
DOI 10.1007/s00521-010-0435-z
DatabaseName CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 375
ExternalDocumentID 10_1007_s00521_010_0435_z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c321t-75df6e6b22dd15fe24d762459ace1da904dbf52c89ce678a7e996e642147e5223
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Mon Oct 06 18:05:51 EDT 2025
Thu Apr 24 23:01:35 EDT 2025
Wed Oct 01 02:25:34 EDT 2025
Fri Feb 21 02:34:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords S-system models
Artificial bee colony (ABC) algorithm
Artificial neural network
Gene expression
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-75df6e6b22dd15fe24d762459ace1da904dbf52c89ce678a7e996e642147e5223
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1257734432
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_1257734432
crossref_primary_10_1007_s00521_010_0435_z
crossref_citationtrail_10_1007_s00521_010_0435_z
springer_journals_10_1007_s00521_010_0435_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20120300
2012-3-00
20120301
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 3
  year: 2012
  text: 20120300
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2012
Publisher Springer-Verlag
Publisher_xml – name: Springer-Verlag
References Socha, Blum (CR11) 2007; 3
Diebold, Mariano (CR24) 1995; 13
Holland (CR26) 1975
Goodacre, Harrigan (CR3) 2003
Voit, Radivoyevitch (CR4) 2000; 16
Postalcioglu, Becerikli (CR13) 2007; 16
Guille′n, Pomares, Rojas, Gonza′lez, Herrera, Rojas, Valenzuela (CR8) 2008; 17
Tominaga, Paul (CR18) 2006; 4
Krzysztof (CR10) 2008; 21
Karaboga, Basturk (CR15) 2008; 8
Karaboga, Ozturk (CR17) 2009; 19
Chen, Tian (CR9) 2009; 72
Cao, Leggio, Schniederjans (CR6) 2005; 32
Karaboga, Basturk (CR14) 2007; 39
Wedge, Ingram, McLean, Mingham, Bandar (CR7) 2006; 17
Voit (CR21) 2000
Hornik, Stinchcombe, White (CR22) 1989; 2
Gerner (CR1) 2002; 1
Neves (CR2) 2002; 277
CR25
Karaboga, Akay (CR16) 2009; 214
Kimura (CR20) 2005; 21
CR23
Chiang, Urban, Baldridge (CR5) 1995; 24
Oliveira, Georgieva, Rocha (CR12) 2009; 18
Kikuchi (CR19) 2003; 19
K Hornik (435_CR22) 1989; 2
P Krzysztof (435_CR10) 2008; 21
S Postalcioglu (435_CR13) 2007; 16
R Goodacre (435_CR3) 2003
JH Holland (435_CR26) 1975
C Oliveira (435_CR12) 2009; 18
Q Cao (435_CR6) 2005; 32
WC Chiang (435_CR5) 1995; 24
435_CR25
A Guille′n (435_CR8) 2008; 17
435_CR23
K Socha (435_CR11) 2007; 3
D Karaboga (435_CR15) 2008; 8
S Kikuchi (435_CR19) 2003; 19
W Chen (435_CR9) 2009; 72
D Wedge (435_CR7) 2006; 17
D Karaboga (435_CR17) 2009; 19
EO Voit (435_CR21) 2000
D Karaboga (435_CR16) 2009; 214
C Gerner (435_CR1) 2002; 1
D Tominaga (435_CR18) 2006; 4
EO Voit (435_CR4) 2000; 16
S Kimura (435_CR20) 2005; 21
FX Diebold (435_CR24) 1995; 13
AR Neves (435_CR2) 2002; 277
D Karaboga (435_CR14) 2007; 39
References_xml – volume: 72
  start-page: 3891
  year: 2009
  end-page: 3900
  ident: CR9
  article-title: Neural network approximation for periodically disturbed functions and applications to control design
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.05.005
– year: 2000
  ident: CR21
  publication-title: Computational analysis of biochemical systems
– volume: 21
  start-page: 59
  year: 2008
  end-page: 64
  ident: CR10
  article-title: Approximation of state-space trajectories by locally recurrent globally feed-forward neural networks
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2007.10.004
– volume: 214
  start-page: 108
  year: 2009
  end-page: 132
  ident: CR16
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2009.03.090
– volume: 24
  start-page: 205
  year: 1995
  end-page: 210
  ident: CR5
  article-title: A neural network approach to mutual fund net asset value forecasting
  publication-title: Omega-Int J Manage Sci
  doi: 10.1016/0305-0483(95)00059-3
– volume: 13
  start-page: 253
  year: 1995
  end-page: 263
  ident: CR24
  article-title: Comparing predictive accuracy
  publication-title: J Bus Econ Stat
  doi: 10.2307/1392185
– volume: 16
  start-page: 433
  year: 2007
  end-page: 441
  ident: CR13
  article-title: Wavelet networks for nonlinear system modeling
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-006-0069-3
– volume: 21
  start-page: 1154
  year: 2005
  end-page: 1163
  ident: CR20
  article-title: Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti071
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: CR22
  article-title: Multilayer feed-forward networks are universal approximators
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– year: 2003
  ident: CR3
  publication-title: Metabolite profiling: its role in biomarker discovery and gene function analysis
– volume: 19
  start-page: 643
  year: 2003
  end-page: 650
  ident: CR19
  article-title: Dynamic modeling of genetic networks using genetic algorithm and S-system
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg027
– volume: 17
  start-page: 75
  year: 2008
  end-page: 89
  ident: CR8
  article-title: Studying possibility in a clustering algorithm for RBFNN design for function approximation
  publication-title: Neural Comput Appl
– ident: CR25
– volume: 32
  start-page: 2499
  year: 2005
  end-page: 2512
  ident: CR6
  article-title: A comparison between Fama and French’s model and artificial neural networks in predicting the Chinese stock market
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2004.03.015
– ident: CR23
– volume: 16
  start-page: 1023
  year: 2000
  end-page: 1037
  ident: CR4
  article-title: Biochemical systems analysis of genome-wide expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.11.1023
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: CR14
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm
  publication-title: J Glob Optim
  doi: 10.1007/s10898-007-9149-x
– volume: 17
  start-page: 942
  year: 2006
  end-page: 952
  ident: CR7
  article-title: On global–local artificial neural networks for function approximation
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.875972
– volume: 8
  start-page: 687
  year: 2008
  end-page: 697
  ident: CR15
  article-title: On the performance of artificial bee colony (abc) algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.05.007
– volume: 3
  start-page: 235
  year: 2007
  end-page: 247
  ident: CR11
  article-title: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training
  publication-title: Neural Comput Appl
– volume: 4
  start-page: 503
  year: 2006
  end-page: 514
  ident: CR18
  article-title: Inference of scale-free networks from gene expression time series
  publication-title: J Bioinform Comput Biol
  doi: 10.1142/S0219720006001886
– volume: 1
  start-page: 528
  year: 2002
  end-page: 537
  ident: CR1
  article-title: Concomitant determination of absolute values of cellular protein amounts, synthesis rates, and turnover rates by quantitative proteome profiling
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M200026-MCP200
– volume: 277
  start-page: 28088
  year: 2002
  end-page: 28098
  ident: CR2
  article-title: Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge?
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M202573200
– volume: 19
  start-page: 279
  year: 2009
  end-page: 292
  ident: CR17
  article-title: Neural networks training by artificial bee colony algorithm on pattern classification
  publication-title: Neural Netw World
– year: 1975
  ident: CR26
  publication-title: Adaptation in natural and artificial systems
– volume: 18
  start-page: 15
  year: 2009
  end-page: 24
  ident: CR12
  article-title: Artificial neural networks for modeling in reaction process systems
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-008-0200-8
– volume: 2
  start-page: 359
  year: 1989
  ident: 435_CR22
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(89)90020-8
– volume: 32
  start-page: 2499
  year: 2005
  ident: 435_CR6
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2004.03.015
– volume: 39
  start-page: 459
  year: 2007
  ident: 435_CR14
  publication-title: J Glob Optim
  doi: 10.1007/s10898-007-9149-x
– volume: 19
  start-page: 279
  year: 2009
  ident: 435_CR17
  publication-title: Neural Netw World
– volume: 277
  start-page: 28088
  year: 2002
  ident: 435_CR2
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M202573200
– ident: 435_CR25
  doi: 10.1109/ICNN.1995.488968
– volume: 1
  start-page: 528
  year: 2002
  ident: 435_CR1
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M200026-MCP200
– volume: 17
  start-page: 75
  year: 2008
  ident: 435_CR8
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-007-0134-6
– volume: 18
  start-page: 15
  year: 2009
  ident: 435_CR12
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-008-0200-8
– volume: 17
  start-page: 942
  year: 2006
  ident: 435_CR7
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.875972
– volume: 3
  start-page: 235
  year: 2007
  ident: 435_CR11
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-007-0084-z
– volume: 24
  start-page: 205
  year: 1995
  ident: 435_CR5
  publication-title: Omega-Int J Manage Sci
  doi: 10.1016/0305-0483(95)00059-3
– volume-title: Metabolite profiling: its role in biomarker discovery and gene function analysis
  year: 2003
  ident: 435_CR3
– volume: 214
  start-page: 108
  year: 2009
  ident: 435_CR16
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2009.03.090
– volume: 13
  start-page: 253
  year: 1995
  ident: 435_CR24
  publication-title: J Bus Econ Stat
  doi: 10.2307/1392185
– volume: 16
  start-page: 433
  year: 2007
  ident: 435_CR13
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-006-0069-3
– volume: 72
  start-page: 3891
  year: 2009
  ident: 435_CR9
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.05.005
– volume: 19
  start-page: 643
  year: 2003
  ident: 435_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg027
– volume-title: Adaptation in natural and artificial systems
  year: 1975
  ident: 435_CR26
– volume: 16
  start-page: 1023
  year: 2000
  ident: 435_CR4
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.11.1023
– volume: 4
  start-page: 503
  year: 2006
  ident: 435_CR18
  publication-title: J Bioinform Comput Biol
  doi: 10.1142/S0219720006001886
– volume: 21
  start-page: 59
  year: 2008
  ident: 435_CR10
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2007.10.004
– volume: 8
  start-page: 687
  year: 2008
  ident: 435_CR15
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.05.007
– ident: 435_CR23
– volume-title: Computational analysis of biochemical systems
  year: 2000
  ident: 435_CR21
– volume: 21
  start-page: 1154
  year: 2005
  ident: 435_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti071
SSID ssj0004685
Score 2.1000912
Snippet High-throughput technologies nowadays allow for the acquisition of biological data. These temporal profiles carry topological and kinetic information regarding...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 365
SubjectTerms Algorithms
Artificial Intelligence
Circuits
Colonies
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer applications
Computer Science
Data Mining and Knowledge Discovery
Data processing
Gene expression
Image Processing and Computer Vision
Information systems
Kinetics
Learning
Mathematical models
metabolic networks
Neural networks
Original Article
Probability and Statistics in Computer Science
Signal transduction
Title Artificial bee colony algorithm-neural networks for S-system models of biochemical networks approximation
URI https://link.springer.com/article/10.1007/s00521-010-0435-z
https://www.proquest.com/docview/1257734432
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vXjxLdZHWcGTstAkm6Q5VmktikXUQj2FfUy0UFMxLWh_vbObpFVRwVMOmQQyM7v7TWbmG0KOmwCI8qVgTiQ44ybckRKAgQgCjfBAB7a36roXdPv8cuAPij7urKx2L1OSdqeeN7uZP5gm9DXliJ7PZsuk6hs2L3Tivtv61Axp53Bi2GJKerhXpjJ_esXXw2iBML8lRe1Z01knqwVIpK3cqhtkCdJNslYOYKDFetwiQyORU0BQ_HRqGKjTdypGj2OM-Z-emWGrxHtpXuudUUSo9I7l7M3UDsHJ6DihcmjmZlnigIWsZRt_G-atjduk32nfn3dZMTuBKc91Jgy1nAQQSNfV2vETcLnGbY_7kVDgaBE1uJaJ76pmpADPKxECBj5gul55CIjJvB1SSccp7BLqJn6YyAQaaEgupRfpwEtCoSJHqdCXXo00SiXGqiAWN_MtRvGcEtnqPUa9x0bv8axGTuaPvOSsGn8JH5WWidH3TUJDpDCeZjGCszD0OHpYjZyWJouLRZj9_sa9f0nvkxVESW5eeHZAKpPXKRwiEpnIOqm2Lh6u2ng9a_dubuvWEz8AYdPbJg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHODCGzGeQeIEClrbtKVHhIDxvDAkOEVJ6sLE6BDtJNivx-ljPARInOtGre00n2v7M8D2PiKhfK24EynBhQ13tEbkqIIgJngQB0Vv1eVV0L4RZ7f-bdXHndXV7nVKsvhSj5rd7B9MG_rackTP58NxmBAUn7gNmDg4uTs_-tQOWUzipMDFFvUIr05m_rTI1-PoA2N-S4sWp83xDHTq5yyLTB73BrneM8NvFI7_fJFZmK7QJzso3WUOxjCdh5l6sgOrNvoCdK1EyS3BSKfMUlunb0z17vsv3fzhiVsaTLqWlkXkGSPoy655SQvNiuk6GesnTHftQK6CkeBDtqAxf-2WPZOLcHN81Dls82ooAzee6-SczJcEGGjXjWPHT9AVMX1PhR8pg06sopaIdeK7Zj8ySAehCpEiKrTttCJEAnveEjTSforLwNzEDxOdYIs8RGjtRXHgJaEykWNM6GuvCa3aNtJUjOV2cEZPjriWC1VKUqW0qpTDJuyMbnku6Tr-Et6qDS5pU9lMiUqxP8gkob4w9AS5bhN2ayPKandnv6-48i_pTZhsdy4v5MXp1fkqTBEUc8vqtjVo5C8DXCe4k-uNyr3fAcGk99o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gnjxLdbnCp6UpU2ySZpjUYvPImiht2U3O6uFmhbTgvbXO5tHq6KC50z2MLOb_SYz832EHDcAEOUryZxIcsZtuqMUAAMZBBrhgQ6y2aq7dnDZ4dddv1vonKZlt3tZksxnGixLUzKqDbWpTQff7N9Mmwbb1kTPZ5N5ssAtTwJu6I7b_DQYmWlyYgpj23u4V5Y1f1ri68U0Q5vfCqTZvdNaJcsFYKTNPMJrZA6SdbJSijHQ4mxukJ61yOkgKLqBWjbq5J3K_tMA8__nF2aZK_FZkvd9pxTRKn1gOZMzzQRxUjowVPWshlZGIjCzzZjH33r5mOMm6bQuHs8uWaGjwGLPdUYMPW4CCJTrau34Blyu8RPI_UjG4GgZ1blWxnfjRhQD3l0yBEyCwE7A8hAQn3lbpJIMEtgm1DV-aJSBOgaVK-VFOvBMKOPIiePQV16V1EsnirggGbdaF30xpUfO_C7Q78L6XUyq5GT6yjBn2PjL-KiMjMBzYIsbMoHBOBUI1MLQ47jbquS0DJkoDmT6-4o7_7I-JIv35y1xe9W-2SVLCJ7cvB9tj1RGr2PYR4AyUgfZJvwAo5XfIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+bee+colony+algorithm-neural+networks+for+S-system+models+of+biochemical+networks+approximation&rft.jtitle=Neural+computing+%26+applications&rft.au=Yeh%2C+Wei-Chang&rft.au=Hsieh%2C+Tsung-Jung&rft.date=2012-03-01&rft.issn=0941-0643&rft.volume=21&rft.issue=2&rft.spage=365&rft.epage=375&rft_id=info:doi/10.1007%2Fs00521-010-0435-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon