Artificial bee colony algorithm-neural networks for S-system models of biochemical networks approximation
High-throughput technologies nowadays allow for the acquisition of biological data. These temporal profiles carry topological and kinetic information regarding the biochemical network from which they were drawn. Retrieving this information requires systematic application of both experimental and com...
        Saved in:
      
    
          | Published in | Neural computing & applications Vol. 21; no. 2; pp. 365 - 375 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Springer-Verlag
    
        01.03.2012
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0941-0643 1433-3058  | 
| DOI | 10.1007/s00521-010-0435-z | 
Cover
| Abstract | High-throughput technologies nowadays allow for the acquisition of biological data. These temporal profiles carry topological and kinetic information regarding the biochemical network from which they were drawn. Retrieving this information requires systematic application of both experimental and computational methods. S-systems are nonlinear mathematical approximate models based on the power-law formalism and provide a general framework for the simulation of integrated biological systems exhibiting complex dynamics, such as genetic circuits, signal transduction, and metabolic networks. However, S-systems need lots of iterations to obtain convergent gene expression profiles. For this reason, this study constructed a substitutive approach using artificial neural networks (ANNs) based on the artificial bee colony (ABC) algorithm with learning and training processes. This was used to obtain models and prove that our model (called ABC-NN) certainly is another method to acquire convergent gene expressions, except for S-systems, supported by our testing results. | 
    
|---|---|
| AbstractList | High-throughput technologies nowadays allow for the acquisition of biological data. These temporal profiles carry topological and kinetic information regarding the biochemical network from which they were drawn. Retrieving this information requires systematic application of both experimental and computational methods. S-systems are nonlinear mathematical approximate models based on the power-law formalism and provide a general framework for the simulation of integrated biological systems exhibiting complex dynamics, such as genetic circuits, signal transduction, and metabolic networks. However, S-systems need lots of iterations to obtain convergent gene expression profiles. For this reason, this study constructed a substitutive approach using artificial neural networks (ANNs) based on the artificial bee colony (ABC) algorithm with learning and training processes. This was used to obtain models and prove that our model (called ABC-NN) certainly is another method to acquire convergent gene expressions, except for S-systems, supported by our testing results. | 
    
| Author | Yeh, Wei-Chang Hsieh, Tsung-Jung  | 
    
| Author_xml | – sequence: 1 givenname: Wei-Chang surname: Yeh fullname: Yeh, Wei-Chang organization: Department of Industrial Engineering and Engineering Management, National Tsing Hua University – sequence: 2 givenname: Tsung-Jung surname: Hsieh fullname: Hsieh, Tsung-Jung email: tsungjung.hsieh@gmail.com organization: Department of Industrial Engineering and Engineering Management, National Tsing Hua University  | 
    
| BookMark | eNp9kLtOAzEQRS0EEgnwAXRb0hj8XGdLhHhJkSiA2nK8s4lh1w62I0i-HodQIIpUU8w98zhjdOiDB4TOKbmkhKirRIhkFBNKMBFc4s0BGlHBOeZETg7RiDSidGvBj9E4pTdCiKgncoTcdcyuc9aZvpoBVDb0wa8r089DdHkxYA-rWHoe8meI76nqQqyecVqnDEM1hBb6VIWumrlgFzA4-zdrlssYvtxgsgv-FB11pk9w9ltP0Ovd7cvNA54-3T_eXE-x5YxmrGTb1VDPGGtbKjtgolU1E7IxFmhrGiLaWSeZnTQWajUxCpqm5AWjQoFkjJ-gi93csvtjBSnrwSULfW88hFXSlEmluBB8G6W7qI0hpQidXsZybVxrSvRWq95p1UWr3mrVm8Kof4x1-efBHI3r95JsR6ayxc8h6rewir642AN9A8eMkRs | 
    
| CitedBy_id | crossref_primary_10_3390_e16094788 crossref_primary_10_1016_j_scitotenv_2018_05_153 crossref_primary_10_1016_j_biosystems_2022_104736 crossref_primary_10_1016_j_energy_2014_03_059 crossref_primary_10_1155_2013_897658 crossref_primary_10_1080_23744731_2021_1996121 crossref_primary_10_1142_S0219720016500219 crossref_primary_10_1080_00207721_2014_924602 crossref_primary_10_1007_s00500_014_1549_5 crossref_primary_10_1007_s11600_019_00374_3 crossref_primary_10_1016_j_swevo_2016_06_001 crossref_primary_10_1155_2020_8594727 crossref_primary_10_1007_s00521_013_1528_2 crossref_primary_10_1007_s42452_020_2475_z crossref_primary_10_1016_j_amc_2015_09_064 crossref_primary_10_1007_s00500_020_04863_2 crossref_primary_10_1007_s00521_013_1357_3 crossref_primary_10_1155_2015_947098 crossref_primary_10_1007_s00477_021_02098_7 crossref_primary_10_1007_s00500_015_1977_x crossref_primary_10_1007_s12293_014_0137_7 crossref_primary_10_1016_j_asoc_2017_06_018 crossref_primary_10_1088_1742_6596_1362_1_012074 crossref_primary_10_1016_j_eswa_2014_11_039 crossref_primary_10_1155_2018_2767546 crossref_primary_10_1007_s00521_018_3483_4 crossref_primary_10_1007_s10462_012_9328_0  | 
    
| Cites_doi | 10.1016/j.neucom.2009.05.005 10.1016/j.neunet.2007.10.004 10.1016/j.amc.2009.03.090 10.1016/0305-0483(95)00059-3 10.2307/1392185 10.1007/s00521-006-0069-3 10.1093/bioinformatics/bti071 10.1016/0893-6080(89)90020-8 10.1093/bioinformatics/btg027 10.1016/j.cor.2004.03.015 10.1093/bioinformatics/16.11.1023 10.1007/s10898-007-9149-x 10.1109/TNN.2006.875972 10.1016/j.asoc.2007.05.007 10.1142/S0219720006001886 10.1074/mcp.M200026-MCP200 10.1074/jbc.M202573200 10.1007/s00521-008-0200-8 10.1109/ICNN.1995.488968 10.1007/s00521-007-0134-6 10.1007/s00521-007-0084-z  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer-Verlag London Limited 2010 | 
    
| Copyright_xml | – notice: Springer-Verlag London Limited 2010 | 
    
| DBID | AAYXX CITATION 7QO 8FD FR3 P64  | 
    
| DOI | 10.1007/s00521-010-0435-z | 
    
| DatabaseName | CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts  | 
    
| DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts  | 
    
| DatabaseTitleList | Engineering Research Database | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1433-3058 | 
    
| EndPage | 375 | 
    
| ExternalDocumentID | 10_1007_s00521_010_0435_z | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7QO 8FD FR3 P64  | 
    
| ID | FETCH-LOGICAL-c321t-75df6e6b22dd15fe24d762459ace1da904dbf52c89ce678a7e996e642147e5223 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0941-0643 | 
    
| IngestDate | Mon Oct 06 18:05:51 EDT 2025 Thu Apr 24 23:01:35 EDT 2025 Wed Oct 01 02:25:34 EDT 2025 Fri Feb 21 02:34:21 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | S-system models Artificial bee colony (ABC) algorithm Artificial neural network Gene expression  | 
    
| Language | English | 
    
| License | http://www.springer.com/tdm | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c321t-75df6e6b22dd15fe24d762459ace1da904dbf52c89ce678a7e996e642147e5223 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 1257734432 | 
    
| PQPubID | 23462 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_miscellaneous_1257734432 crossref_primary_10_1007_s00521_010_0435_z crossref_citationtrail_10_1007_s00521_010_0435_z springer_journals_10_1007_s00521_010_0435_z  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20120300 2012-3-00 20120301  | 
    
| PublicationDateYYYYMMDD | 2012-03-01 | 
    
| PublicationDate_xml | – month: 3 year: 2012 text: 20120300  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London | 
    
| PublicationTitle | Neural computing & applications | 
    
| PublicationTitleAbbrev | Neural Comput & Applic | 
    
| PublicationYear | 2012 | 
    
| Publisher | Springer-Verlag | 
    
| Publisher_xml | – name: Springer-Verlag | 
    
| References | Socha, Blum (CR11) 2007; 3 Diebold, Mariano (CR24) 1995; 13 Holland (CR26) 1975 Goodacre, Harrigan (CR3) 2003 Voit, Radivoyevitch (CR4) 2000; 16 Postalcioglu, Becerikli (CR13) 2007; 16 Guille′n, Pomares, Rojas, Gonza′lez, Herrera, Rojas, Valenzuela (CR8) 2008; 17 Tominaga, Paul (CR18) 2006; 4 Krzysztof (CR10) 2008; 21 Karaboga, Basturk (CR15) 2008; 8 Karaboga, Ozturk (CR17) 2009; 19 Chen, Tian (CR9) 2009; 72 Cao, Leggio, Schniederjans (CR6) 2005; 32 Karaboga, Basturk (CR14) 2007; 39 Wedge, Ingram, McLean, Mingham, Bandar (CR7) 2006; 17 Voit (CR21) 2000 Hornik, Stinchcombe, White (CR22) 1989; 2 Gerner (CR1) 2002; 1 Neves (CR2) 2002; 277 CR25 Karaboga, Akay (CR16) 2009; 214 Kimura (CR20) 2005; 21 CR23 Chiang, Urban, Baldridge (CR5) 1995; 24 Oliveira, Georgieva, Rocha (CR12) 2009; 18 Kikuchi (CR19) 2003; 19 K Hornik (435_CR22) 1989; 2 P Krzysztof (435_CR10) 2008; 21 S Postalcioglu (435_CR13) 2007; 16 R Goodacre (435_CR3) 2003 JH Holland (435_CR26) 1975 C Oliveira (435_CR12) 2009; 18 Q Cao (435_CR6) 2005; 32 WC Chiang (435_CR5) 1995; 24 435_CR25 A Guille′n (435_CR8) 2008; 17 435_CR23 K Socha (435_CR11) 2007; 3 D Karaboga (435_CR15) 2008; 8 S Kikuchi (435_CR19) 2003; 19 W Chen (435_CR9) 2009; 72 D Wedge (435_CR7) 2006; 17 D Karaboga (435_CR17) 2009; 19 EO Voit (435_CR21) 2000 D Karaboga (435_CR16) 2009; 214 C Gerner (435_CR1) 2002; 1 D Tominaga (435_CR18) 2006; 4 EO Voit (435_CR4) 2000; 16 S Kimura (435_CR20) 2005; 21 FX Diebold (435_CR24) 1995; 13 AR Neves (435_CR2) 2002; 277 D Karaboga (435_CR14) 2007; 39  | 
    
| References_xml | – volume: 72 start-page: 3891 year: 2009 end-page: 3900 ident: CR9 article-title: Neural network approximation for periodically disturbed functions and applications to control design publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.05.005 – year: 2000 ident: CR21 publication-title: Computational analysis of biochemical systems – volume: 21 start-page: 59 year: 2008 end-page: 64 ident: CR10 article-title: Approximation of state-space trajectories by locally recurrent globally feed-forward neural networks publication-title: Neural Netw doi: 10.1016/j.neunet.2007.10.004 – volume: 214 start-page: 108 year: 2009 end-page: 132 ident: CR16 article-title: A comparative study of artificial bee colony algorithm publication-title: Appl Math Comput doi: 10.1016/j.amc.2009.03.090 – volume: 24 start-page: 205 year: 1995 end-page: 210 ident: CR5 article-title: A neural network approach to mutual fund net asset value forecasting publication-title: Omega-Int J Manage Sci doi: 10.1016/0305-0483(95)00059-3 – volume: 13 start-page: 253 year: 1995 end-page: 263 ident: CR24 article-title: Comparing predictive accuracy publication-title: J Bus Econ Stat doi: 10.2307/1392185 – volume: 16 start-page: 433 year: 2007 end-page: 441 ident: CR13 article-title: Wavelet networks for nonlinear system modeling publication-title: Neural Comput Appl doi: 10.1007/s00521-006-0069-3 – volume: 21 start-page: 1154 year: 2005 end-page: 1163 ident: CR20 article-title: Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti071 – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: CR22 article-title: Multilayer feed-forward networks are universal approximators publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – year: 2003 ident: CR3 publication-title: Metabolite profiling: its role in biomarker discovery and gene function analysis – volume: 19 start-page: 643 year: 2003 end-page: 650 ident: CR19 article-title: Dynamic modeling of genetic networks using genetic algorithm and S-system publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg027 – volume: 17 start-page: 75 year: 2008 end-page: 89 ident: CR8 article-title: Studying possibility in a clustering algorithm for RBFNN design for function approximation publication-title: Neural Comput Appl – ident: CR25 – volume: 32 start-page: 2499 year: 2005 end-page: 2512 ident: CR6 article-title: A comparison between Fama and French’s model and artificial neural networks in predicting the Chinese stock market publication-title: Comput Oper Res doi: 10.1016/j.cor.2004.03.015 – ident: CR23 – volume: 16 start-page: 1023 year: 2000 end-page: 1037 ident: CR4 article-title: Biochemical systems analysis of genome-wide expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.11.1023 – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: CR14 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm publication-title: J Glob Optim doi: 10.1007/s10898-007-9149-x – volume: 17 start-page: 942 year: 2006 end-page: 952 ident: CR7 article-title: On global–local artificial neural networks for function approximation publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.875972 – volume: 8 start-page: 687 year: 2008 end-page: 697 ident: CR15 article-title: On the performance of artificial bee colony (abc) algorithm publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.05.007 – volume: 3 start-page: 235 year: 2007 end-page: 247 ident: CR11 article-title: An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training publication-title: Neural Comput Appl – volume: 4 start-page: 503 year: 2006 end-page: 514 ident: CR18 article-title: Inference of scale-free networks from gene expression time series publication-title: J Bioinform Comput Biol doi: 10.1142/S0219720006001886 – volume: 1 start-page: 528 year: 2002 end-page: 537 ident: CR1 article-title: Concomitant determination of absolute values of cellular protein amounts, synthesis rates, and turnover rates by quantitative proteome profiling publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M200026-MCP200 – volume: 277 start-page: 28088 year: 2002 end-page: 28098 ident: CR2 article-title: Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? publication-title: J Biol Chem doi: 10.1074/jbc.M202573200 – volume: 19 start-page: 279 year: 2009 end-page: 292 ident: CR17 article-title: Neural networks training by artificial bee colony algorithm on pattern classification publication-title: Neural Netw World – year: 1975 ident: CR26 publication-title: Adaptation in natural and artificial systems – volume: 18 start-page: 15 year: 2009 end-page: 24 ident: CR12 article-title: Artificial neural networks for modeling in reaction process systems publication-title: Neural Comput Appl doi: 10.1007/s00521-008-0200-8 – volume: 2 start-page: 359 year: 1989 ident: 435_CR22 publication-title: Neural Netw doi: 10.1016/0893-6080(89)90020-8 – volume: 32 start-page: 2499 year: 2005 ident: 435_CR6 publication-title: Comput Oper Res doi: 10.1016/j.cor.2004.03.015 – volume: 39 start-page: 459 year: 2007 ident: 435_CR14 publication-title: J Glob Optim doi: 10.1007/s10898-007-9149-x – volume: 19 start-page: 279 year: 2009 ident: 435_CR17 publication-title: Neural Netw World – volume: 277 start-page: 28088 year: 2002 ident: 435_CR2 publication-title: J Biol Chem doi: 10.1074/jbc.M202573200 – ident: 435_CR25 doi: 10.1109/ICNN.1995.488968 – volume: 1 start-page: 528 year: 2002 ident: 435_CR1 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M200026-MCP200 – volume: 17 start-page: 75 year: 2008 ident: 435_CR8 publication-title: Neural Comput Appl doi: 10.1007/s00521-007-0134-6 – volume: 18 start-page: 15 year: 2009 ident: 435_CR12 publication-title: Neural Comput Appl doi: 10.1007/s00521-008-0200-8 – volume: 17 start-page: 942 year: 2006 ident: 435_CR7 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.875972 – volume: 3 start-page: 235 year: 2007 ident: 435_CR11 publication-title: Neural Comput Appl doi: 10.1007/s00521-007-0084-z – volume: 24 start-page: 205 year: 1995 ident: 435_CR5 publication-title: Omega-Int J Manage Sci doi: 10.1016/0305-0483(95)00059-3 – volume-title: Metabolite profiling: its role in biomarker discovery and gene function analysis year: 2003 ident: 435_CR3 – volume: 214 start-page: 108 year: 2009 ident: 435_CR16 publication-title: Appl Math Comput doi: 10.1016/j.amc.2009.03.090 – volume: 13 start-page: 253 year: 1995 ident: 435_CR24 publication-title: J Bus Econ Stat doi: 10.2307/1392185 – volume: 16 start-page: 433 year: 2007 ident: 435_CR13 publication-title: Neural Comput Appl doi: 10.1007/s00521-006-0069-3 – volume: 72 start-page: 3891 year: 2009 ident: 435_CR9 publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.05.005 – volume: 19 start-page: 643 year: 2003 ident: 435_CR19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg027 – volume-title: Adaptation in natural and artificial systems year: 1975 ident: 435_CR26 – volume: 16 start-page: 1023 year: 2000 ident: 435_CR4 publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.11.1023 – volume: 4 start-page: 503 year: 2006 ident: 435_CR18 publication-title: J Bioinform Comput Biol doi: 10.1142/S0219720006001886 – volume: 21 start-page: 59 year: 2008 ident: 435_CR10 publication-title: Neural Netw doi: 10.1016/j.neunet.2007.10.004 – volume: 8 start-page: 687 year: 2008 ident: 435_CR15 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2007.05.007 – ident: 435_CR23 – volume-title: Computational analysis of biochemical systems year: 2000 ident: 435_CR21 – volume: 21 start-page: 1154 year: 2005 ident: 435_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti071  | 
    
| SSID | ssj0004685 | 
    
| Score | 2.1000912 | 
    
| Snippet | High-throughput technologies nowadays allow for the acquisition of biological data. These temporal profiles carry topological and kinetic information regarding... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 365 | 
    
| SubjectTerms | Algorithms Artificial Intelligence Circuits Colonies Computational Biology/Bioinformatics Computational Science and Engineering Computer applications Computer Science Data Mining and Knowledge Discovery Data processing Gene expression Image Processing and Computer Vision Information systems Kinetics Learning Mathematical models metabolic networks Neural networks Original Article Probability and Statistics in Computer Science Signal transduction  | 
    
| Title | Artificial bee colony algorithm-neural networks for S-system models of biochemical networks approximation | 
    
| URI | https://link.springer.com/article/10.1007/s00521-010-0435-z https://www.proquest.com/docview/1257734432  | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vXjxLdZHWcGTstAkm6Q5VmktikXUQj2FfUy0UFMxLWh_vbObpFVRwVMOmQQyM7v7TWbmG0KOmwCI8qVgTiQ44ybckRKAgQgCjfBAB7a36roXdPv8cuAPij7urKx2L1OSdqeeN7uZP5gm9DXliJ7PZsuk6hs2L3Tivtv61Axp53Bi2GJKerhXpjJ_esXXw2iBML8lRe1Z01knqwVIpK3cqhtkCdJNslYOYKDFetwiQyORU0BQ_HRqGKjTdypGj2OM-Z-emWGrxHtpXuudUUSo9I7l7M3UDsHJ6DihcmjmZlnigIWsZRt_G-atjduk32nfn3dZMTuBKc91Jgy1nAQQSNfV2vETcLnGbY_7kVDgaBE1uJaJ76pmpADPKxECBj5gul55CIjJvB1SSccp7BLqJn6YyAQaaEgupRfpwEtCoSJHqdCXXo00SiXGqiAWN_MtRvGcEtnqPUa9x0bv8axGTuaPvOSsGn8JH5WWidH3TUJDpDCeZjGCszD0OHpYjZyWJouLRZj9_sa9f0nvkxVESW5eeHZAKpPXKRwiEpnIOqm2Lh6u2ng9a_dubuvWEz8AYdPbJg | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHODCGzGeQeIEClrbtKVHhIDxvDAkOEVJ6sLE6BDtJNivx-ljPARInOtGre00n2v7M8D2PiKhfK24EynBhQ13tEbkqIIgJngQB0Vv1eVV0L4RZ7f-bdXHndXV7nVKsvhSj5rd7B9MG_rackTP58NxmBAUn7gNmDg4uTs_-tQOWUzipMDFFvUIr05m_rTI1-PoA2N-S4sWp83xDHTq5yyLTB73BrneM8NvFI7_fJFZmK7QJzso3WUOxjCdh5l6sgOrNvoCdK1EyS3BSKfMUlunb0z17vsv3fzhiVsaTLqWlkXkGSPoy655SQvNiuk6GesnTHftQK6CkeBDtqAxf-2WPZOLcHN81Dls82ooAzee6-SczJcEGGjXjWPHT9AVMX1PhR8pg06sopaIdeK7Zj8ySAehCpEiKrTttCJEAnveEjTSforLwNzEDxOdYIs8RGjtRXHgJaEykWNM6GuvCa3aNtJUjOV2cEZPjriWC1VKUqW0qpTDJuyMbnku6Tr-Et6qDS5pU9lMiUqxP8gkob4w9AS5bhN2ayPKandnv6-48i_pTZhsdy4v5MXp1fkqTBEUc8vqtjVo5C8DXCe4k-uNyr3fAcGk99o | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gnjxLdbnCp6UpU2ySZpjUYvPImiht2U3O6uFmhbTgvbXO5tHq6KC50z2MLOb_SYz832EHDcAEOUryZxIcsZtuqMUAAMZBBrhgQ6y2aq7dnDZ4dddv1vonKZlt3tZksxnGixLUzKqDbWpTQff7N9Mmwbb1kTPZ5N5ssAtTwJu6I7b_DQYmWlyYgpj23u4V5Y1f1ri68U0Q5vfCqTZvdNaJcsFYKTNPMJrZA6SdbJSijHQ4mxukJ61yOkgKLqBWjbq5J3K_tMA8__nF2aZK_FZkvd9pxTRKn1gOZMzzQRxUjowVPWshlZGIjCzzZjH33r5mOMm6bQuHs8uWaGjwGLPdUYMPW4CCJTrau34Blyu8RPI_UjG4GgZ1blWxnfjRhQD3l0yBEyCwE7A8hAQn3lbpJIMEtgm1DV-aJSBOgaVK-VFOvBMKOPIiePQV16V1EsnirggGbdaF30xpUfO_C7Q78L6XUyq5GT6yjBn2PjL-KiMjMBzYIsbMoHBOBUI1MLQ47jbquS0DJkoDmT6-4o7_7I-JIv35y1xe9W-2SVLCJ7cvB9tj1RGr2PYR4AyUgfZJvwAo5XfIA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+bee+colony+algorithm-neural+networks+for+S-system+models+of+biochemical+networks+approximation&rft.jtitle=Neural+computing+%26+applications&rft.au=Yeh%2C+Wei-Chang&rft.au=Hsieh%2C+Tsung-Jung&rft.date=2012-03-01&rft.issn=0941-0643&rft.volume=21&rft.issue=2&rft.spage=365&rft.epage=375&rft_id=info:doi/10.1007%2Fs00521-010-0435-z&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |