Multiclass data classification using fault detection-based techniques

Multiclass classification of big data is a subject of broad interest in machine learning research nowadays, where it is necessary to extract important features from a dataset’s variables in order to accurately detect unique variations between different classes of data. In this paper, we will discuss...

Full description

Saved in:
Bibliographic Details
Published inComputers & chemical engineering Vol. 136; p. 106786
Main Authors Basha, Nour, Ziyan Sheriff, M., Kravaris, Costas, Nounou, Hazem, Nounou, Mohamed
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 08.05.2020
Subjects
Online AccessGet full text
ISSN0098-1354
1873-4375
DOI10.1016/j.compchemeng.2020.106786

Cover

Abstract Multiclass classification of big data is a subject of broad interest in machine learning research nowadays, where it is necessary to extract important features from a dataset’s variables in order to accurately detect unique variations between different classes of data. In this paper, we will discuss the application of a novel combination of different fault detection-based techniques towards the problem of multiclass classification of different types of faults found in the benchmark Tennessee Eastman Process. Moreover, the fault detection performance and data classification accuracy of our proposed method is compared to the respective performances of multiple data-driven methods tabulated in literature, including deep neural networks. The results show that a combined application of multiple fault detection techniques, in tandem with the one-versus-all and all-versus-all binary decomposition methods, can provide a competitive multiclass classification accuracy, comparative to other more complex methods in literature.
AbstractList Multiclass classification of big data is a subject of broad interest in machine learning research nowadays, where it is necessary to extract important features from a dataset’s variables in order to accurately detect unique variations between different classes of data. In this paper, we will discuss the application of a novel combination of different fault detection-based techniques towards the problem of multiclass classification of different types of faults found in the benchmark Tennessee Eastman Process. Moreover, the fault detection performance and data classification accuracy of our proposed method is compared to the respective performances of multiple data-driven methods tabulated in literature, including deep neural networks. The results show that a combined application of multiple fault detection techniques, in tandem with the one-versus-all and all-versus-all binary decomposition methods, can provide a competitive multiclass classification accuracy, comparative to other more complex methods in literature.
ArticleNumber 106786
Author Nounou, Mohamed
Nounou, Hazem
Basha, Nour
Kravaris, Costas
Ziyan Sheriff, M.
Author_xml – sequence: 1
  givenname: Nour
  surname: Basha
  fullname: Basha, Nour
  organization: Chemical Engineering Department, Texas A&M University at Qatar, Education City, 23874, Doha, Qatar
– sequence: 2
  givenname: M.
  surname: Ziyan Sheriff
  fullname: Ziyan Sheriff, M.
  organization: Chemical Engineering Department, Texas A&M University at Qatar, Education City, 23874, Doha, Qatar
– sequence: 3
  givenname: Costas
  surname: Kravaris
  fullname: Kravaris, Costas
  organization: Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
– sequence: 4
  givenname: Hazem
  surname: Nounou
  fullname: Nounou, Hazem
  organization: Electrical and Computer Engineering Department, Texas A&M University at Qatar, Education City, 23874, Doha, Qatar
– sequence: 5
  givenname: Mohamed
  surname: Nounou
  fullname: Nounou, Mohamed
  email: mohamed.nounou@qatar.tamu.edu
  organization: Chemical Engineering Department, Texas A&M University at Qatar, Education City, 23874, Doha, Qatar
BookMark eNqNkMtOwzAQRS1UJNrCP4QPSPErtrNCqCoPqYgNrC3XnrSuUqfYLhJ_T9KyQKy6mpmruVczZ4JGoQuA0C3BM4KJuNvObLfb2w3sIKxnFNNBF1KJCzQmSrKSM1mN0BjjWpWEVfwKTVLaYowpV2qMFq-HNnvbmpQKZ7Ipjq1vvDXZd6E4JB_WRWP6rcJBBjuo5cokcEU_bYL_PEC6RpeNaRPc_NYp-nhcvM-fy-Xb08v8YVlaRkkuBSgsQHCJCXBc10ANNjVlxhrTNL2qqKJiZaWrhOPCEmBcWlVRWREJdcWm6P6Ua2OXUoRGW5-Ph-ZofKsJ1gMVvdV_qOiBij5R6RPqfwn76Hcmfp_lnZ-80L_45SHqZD0EC87HHox2nT8j5QdZhYc1
CitedBy_id crossref_primary_10_1007_s00521_024_10551_1
crossref_primary_10_1016_j_jngse_2020_103460
crossref_primary_10_1109_TII_2023_3242811
crossref_primary_10_1016_j_jgsce_2023_204964
crossref_primary_10_1016_j_jprocont_2021_10_001
crossref_primary_10_1016_j_compchemeng_2025_109098
crossref_primary_10_1049_ise2_12115
crossref_primary_10_1016_j_cherd_2022_05_022
crossref_primary_10_1016_j_jii_2021_100216
crossref_primary_10_3389_fcomp_2023_1211739
crossref_primary_10_3390_math8081263
crossref_primary_10_3389_fenrg_2024_1351665
crossref_primary_10_1016_j_compchemeng_2022_108126
crossref_primary_10_1177_01423312221099855
crossref_primary_10_1016_j_compchemeng_2022_107733
crossref_primary_10_1109_OJIM_2022_3232650
crossref_primary_10_1109_TII_2022_3166784
crossref_primary_10_1016_j_neucom_2021_11_067
crossref_primary_10_1016_j_psep_2023_06_041
crossref_primary_10_1016_j_epsr_2023_109532
crossref_primary_10_1016_j_jpse_2022_100089
crossref_primary_10_1016_j_measurement_2022_111181
Cites_doi 10.1109/TCBB.2012.113
10.1016/j.ces.2008.10.012
10.3390/pr7070411
10.1007/3-540-27373-5_21
10.1080/00224065.2010.11917825
10.1198/004017005000000256
10.1016/j.jocs.2018.04.017
10.1016/j.asoc.2010.04.012
10.1016/0169-7439(95)00076-3
10.3182/20110828-6-IT-1002.02876
10.1016/0098-1354(93)80018-I
10.1214/aos/1028144844
10.1023/A:1022627411411
10.1080/00224065.2013.11917913
10.1023/A:1009715923555
10.1016/j.compchemeng.2018.04.009
10.1016/j.jocs.2018.05.013
10.1016/j.ifacol.2018.09.380
10.1016/j.jprocont.2012.06.009
10.2307/2530946
10.1007/s001800050038
10.1016/j.compchemeng.2017.02.041
10.1080/00224065.2013.11917914
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.compchemeng.2020.106786
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4375
ExternalDocumentID 10_1016_j_compchemeng_2020_106786
S0098135420300090
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SST
SSZ
T5K
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLY
HLZ
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
VH1
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c321t-6e806e64701e4099e2a0a923acaaff70182826bc7d56d46c1e347c8527517e953
IEDL.DBID .~1
ISSN 0098-1354
IngestDate Thu Apr 24 22:51:36 EDT 2025
Thu Oct 02 04:32:27 EDT 2025
Fri Feb 23 02:48:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hypothesis testing
Moving-window
Fault detection
Binary decomposition
Generalized likelihood ratio test
Interval aggregation
Multiclass classification
Principal component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-6e806e64701e4099e2a0a923acaaff70182826bc7d56d46c1e347c8527517e953
ParticipantIDs crossref_citationtrail_10_1016_j_compchemeng_2020_106786
crossref_primary_10_1016_j_compchemeng_2020_106786
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2020_106786
PublicationCentury 2000
PublicationDate 2020-05-08
PublicationDateYYYYMMDD 2020-05-08
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-08
  day: 08
PublicationDecade 2020
PublicationTitle Computers & chemical engineering
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Allwein, Schapire, Singer (bib0001) 2001; 1
Qiu (bib0036) 2013
Tharrault, Mourot, Ragot, Harkat (bib0050) 2010
Zhang, Zhao (bib0058) 2017; 107
Lauro, Palumbo (bib0027) 2005
Cortes, Vapnik (bib0012) 1995; 20
Wang, Reynolds (bib0052) 2013; 45
Lauro, Verde, Irpino (bib0028) 2008
Burges (bib0010) 1998; 2
Heo, Lee (bib0020) 2019; 7
Rish (bib0043) 2001; 3
Downs, Vogel (bib0014) 1993; 17
Hekmati, MohammadM., Abbasi Nozari, Aliyari, Simani (bib0018) 2010
Hyvärinen, Karhunen, Oja (bib0022) 2001; 26
Breiman, Friedman, Olshen, Stone (bib0009) 1984; 40
Rifkin, Klautau (bib0042) 2004; 5
Basha (bib0003) 2018
Hastie, Tibshirani (bib0017) 1998; 26
Woodall, Mahmoud (bib0053) 2005; 47
Izem, Bougheloum, Harkat, Djeghaba (bib0023) 2015; 48
Quinlan (bib0037) 1993
Friedman, J. H., 1996. Another approach to polychotomous classification.
Montgomery, Runger (bib0032) 2011
Nounou, Nounou, Meskin, Datta, Daugherty (bib0033) 2012; 9
Heo, S., Lee, J. H., 2018. Fault detection and classification using artificial neural networks. 10th IFAC Symposium on Advanced Control of Chemical Processes 51 (18), 470–475.
Yin, Ding, Haghani, Hao, Zhang (bib0055) 2012; 22
Passino, Yurkovich (bib0035) 1998
Bay (bib0007) 1998
Basha, Nounou, Nounou (bib0004) 2018; 27
Reynolds, Lou, Lee, Wang (bib0040) 2013; 45
Yin, Ding, Zhang, Hagahni, Naik (bib0056) 2011; 44
(bib0045) 2012
Eslamloueyan (bib0015) 2011; 11
Jolliffe (bib0024) 2002
Vaart (bib0051) 1998
Rieth, C. A., Amsel, B. D., Tran, R., Cook, M. B., 2017. Additional Tennessee Eastman Process Simulation Data for Anomaly Detection Evaluation. 10.7910/DVN/6C3JR1
Chiang, Russell, Braatz (bib0011) 2001
Reynolds, Lou (bib0038) 2010; 42
Aly, M., 2005. Survey on multiclass classification methods.
Sheriff, Botre, Mansouri, Nounou, Nounou, Karim (bib0047) 2017
Sheriff, Karim, Nounou, Nounou (bib0048) 2018; 27
Bathelt, Ricker, Jelali (bib0006) 2015; 48
Ku, Storer, Georgakis (bib0025) 1995; 30
Dietterich, Bakiri (bib0013) 1995; 39
Lauro, Palumbo (bib0026) 2000; 15
Russell, Chiang, Braatz (bib0044) 2000
Lv, Wen, Bao, Liu (bib0030) 2016
Palumbo, Lauro (bib0034) 2001
Wu, Zhao (bib0054) 2018; 115
(bib0046) 2012
Strang (bib0049) 2016
Reynolds, Lou (bib0039) 2012; 10
Benaicha, Mourot, Ragot, Benothman (bib0008) 2013; 1
Bathelt, Jelali (bib0005) 2014
Le-Rademacher (bib0029) 2008
MacGregor (bib0031) 1994; 27
Zhang (bib0057) 2009; 64
MacGregor (10.1016/j.compchemeng.2020.106786_bib0031) 1994; 27
Palumbo (10.1016/j.compchemeng.2020.106786_bib0034) 2001
Hastie (10.1016/j.compchemeng.2020.106786_bib0017) 1998; 26
Hekmati (10.1016/j.compchemeng.2020.106786_bib0018) 2010
Bay (10.1016/j.compchemeng.2020.106786_bib0007) 1998
Bathelt (10.1016/j.compchemeng.2020.106786_bib0005) 2014
Breiman (10.1016/j.compchemeng.2020.106786_bib0009) 1984; 40
Lv (10.1016/j.compchemeng.2020.106786_bib0030) 2016
Sheriff (10.1016/j.compchemeng.2020.106786_bib0047) 2017
Downs (10.1016/j.compchemeng.2020.106786_bib0014) 1993; 17
Strang (10.1016/j.compchemeng.2020.106786_bib0049) 2016
Zhang (10.1016/j.compchemeng.2020.106786_bib0058) 2017; 107
Heo (10.1016/j.compchemeng.2020.106786_bib0020) 2019; 7
Izem (10.1016/j.compchemeng.2020.106786_bib0023) 2015; 48
Quinlan (10.1016/j.compchemeng.2020.106786_bib0037) 1993
Zhang (10.1016/j.compchemeng.2020.106786_bib0057) 2009; 64
Lauro (10.1016/j.compchemeng.2020.106786_bib0026) 2000; 15
Reynolds (10.1016/j.compchemeng.2020.106786_bib0040) 2013; 45
10.1016/j.compchemeng.2020.106786_bib0041
Vaart (10.1016/j.compchemeng.2020.106786_bib0051) 1998
Reynolds (10.1016/j.compchemeng.2020.106786_bib0038) 2010; 42
(10.1016/j.compchemeng.2020.106786_bib0045) 2012
Tharrault (10.1016/j.compchemeng.2020.106786_bib0050) 2010
Dietterich (10.1016/j.compchemeng.2020.106786_bib0013) 1995; 39
Burges (10.1016/j.compchemeng.2020.106786_bib0010) 1998; 2
Lauro (10.1016/j.compchemeng.2020.106786_bib0028) 2008
Sheriff (10.1016/j.compchemeng.2020.106786_bib0048) 2018; 27
(10.1016/j.compchemeng.2020.106786_bib0046) 2012
10.1016/j.compchemeng.2020.106786_bib0002
Chiang (10.1016/j.compchemeng.2020.106786_bib0011) 2001
Ku (10.1016/j.compchemeng.2020.106786_bib0025) 1995; 30
Rifkin (10.1016/j.compchemeng.2020.106786_bib0042) 2004; 5
Woodall (10.1016/j.compchemeng.2020.106786_bib0053) 2005; 47
Benaicha (10.1016/j.compchemeng.2020.106786_bib0008) 2013; 1
Le-Rademacher (10.1016/j.compchemeng.2020.106786_bib0029) 2008
Rish (10.1016/j.compchemeng.2020.106786_bib0043) 2001; 3
Basha (10.1016/j.compchemeng.2020.106786_bib0004) 2018; 27
Hyvärinen (10.1016/j.compchemeng.2020.106786_bib0022) 2001; 26
Yin (10.1016/j.compchemeng.2020.106786_bib0056) 2011; 44
Eslamloueyan (10.1016/j.compchemeng.2020.106786_bib0015) 2011; 11
Reynolds (10.1016/j.compchemeng.2020.106786_bib0039) 2012; 10
Bathelt (10.1016/j.compchemeng.2020.106786_bib0006) 2015; 48
Lauro (10.1016/j.compchemeng.2020.106786_bib0027) 2005
10.1016/j.compchemeng.2020.106786_bib0019
Yin (10.1016/j.compchemeng.2020.106786_bib0055) 2012; 22
Passino (10.1016/j.compchemeng.2020.106786_bib0035) 1998
Nounou (10.1016/j.compchemeng.2020.106786_bib0033) 2012; 9
Basha (10.1016/j.compchemeng.2020.106786_bib0003) 2018
Montgomery (10.1016/j.compchemeng.2020.106786_bib0032) 2011
10.1016/j.compchemeng.2020.106786_bib0016
Jolliffe (10.1016/j.compchemeng.2020.106786_bib0024) 2002
Wang (10.1016/j.compchemeng.2020.106786_bib0052) 2013; 45
Qiu (10.1016/j.compchemeng.2020.106786_bib0036) 2013
Allwein (10.1016/j.compchemeng.2020.106786_bib0001) 2001; 1
Cortes (10.1016/j.compchemeng.2020.106786_bib0012) 1995; 20
Wu (10.1016/j.compchemeng.2020.106786_bib0054) 2018; 115
Russell (10.1016/j.compchemeng.2020.106786_sbref0040) 2000
References_xml – volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  ident: bib0010
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
– volume: 3
  start-page: 41
  year: 2001
  end-page: 46
  ident: bib0043
  article-title: An empirical study of the naïve bayes classifier
  publication-title: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence
– start-page: 37
  year: 1998
  end-page: 45
  ident: bib0007
  article-title: Combining nearest neighbor classifiers through multiple feature subsets
  publication-title: International Conference on Machine Learning
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0012
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 1
  start-page: 113
  year: 2001
  end-page: 141
  ident: bib0001
  article-title: Reducing multiclass to binary: a unifying approach for margin classifiers
  publication-title: J. Mach. Learn. Res.
– start-page: 6851
  year: 2016
  end-page: 6856
  ident: bib0030
  article-title: Fault diagnosis based on deep learning
  publication-title: American Control Conference (ACC)
– year: 1998
  ident: bib0035
  article-title: Fuzzy Control
– volume: 48
  start-page: 1402
  year: 2015
  end-page: 1407
  ident: bib0023
  article-title: Fault detection and isolation using interval principal component analysis methods
  publication-title: Int. Fed. Autom. Control
– volume: 27
  start-page: 227
  year: 2018
  end-page: 246
  ident: bib0048
  article-title: Process monitoring using PCA-based GLR methods: acomparative study
  publication-title: J. Comput. Sci.
– year: 2016
  ident: bib0049
  article-title: Intro. to linear algebra
– volume: 115
  start-page: 185
  year: 2018
  end-page: 197
  ident: bib0054
  article-title: Deep convolutional neural network model based chemical process fault diagnosis
  publication-title: Comput. Chem. Eng.
– year: 2012
  ident: bib0045
  publication-title: Principal Component Analysis: Engineering Applications
– volume: 107
  start-page: 395
  year: 2017
  end-page: 407
  ident: bib0058
  article-title: A deep belief network based fault diagnosis model for complex chemical processes
  publication-title: Comput. Chem. Eng.
– volume: 45
  start-page: 34
  year: 2013
  end-page: 60
  ident: bib0040
  article-title: The design of GLR control charts for monitoring the process mean and variance
  publication-title: J. Qual. Technol.
– reference: Heo, S., Lee, J. H., 2018. Fault detection and classification using artificial neural networks. 10th IFAC Symposium on Advanced Control of Chemical Processes 51 (18), 470–475.
– volume: 10
  start-page: 3
  year: 2012
  end-page: 17
  ident: bib0039
  article-title: A GLR control chart for monitoring the process variance
  publication-title: Frontiers in Statistical Quality Control
– volume: 5
  start-page: 101
  year: 2004
  end-page: 141
  ident: bib0042
  article-title: In defense of one-vs-all classification
  publication-title: J. Mach. Learn. Res.
– start-page: 99
  year: 2000
  end-page: 108
  ident: bib0044
  article-title: Tennessee Eastman Process
– reference: Aly, M., 2005. Survey on multiclass classification methods.
– year: 1998
  ident: bib0051
  article-title: Asymptotic Statistics
– reference: Friedman, J. H., 1996. Another approach to polychotomous classification.
– volume: 26
  year: 2001
  ident: bib0022
  article-title: Independent Component Analysis
– start-page: 237
  year: 2017
  end-page: 261
  ident: bib0047
  article-title: Process monitoring using data-based fault detection techniques: Comparative studies
  publication-title: Fault Diagnosis and Detection
– year: 2008
  ident: bib0029
  publication-title: Principal Component Analysis for Interval-Valued and Histogram-Valued Data and Likelihood Functions and Some Maximum Likelihood Estimators for Symbolic Data
– volume: 27
  start-page: 427
  year: 1994
  end-page: 437
  ident: bib0031
  article-title: Statistical process control of multivariate processes
  publication-title: IFAC Symp. Adv. Control Chem. Process.
– start-page: 1
  year: 2014
  end-page: 6
  ident: bib0005
  article-title: Comparative study of subspace identification methods on the tennessee eastman process under disturbance effects
  publication-title: 5th International Symposium on Advanced Control of Industrial Processes
– volume: 17
  start-page: 245
  year: 1993
  end-page: 255
  ident: bib0014
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
– volume: 48
  start-page: 309
  year: 2015
  end-page: 314
  ident: bib0006
  article-title: Revision of the tennessee eastman process model
  publication-title: 9th IFAC Symposium on Advanced Control of Chemical Processes
– volume: 30
  start-page: 179
  year: 1995
  end-page: 196
  ident: bib0025
  article-title: Disturbance detection and isolation by dynamic principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
– year: 2001
  ident: bib0011
  article-title: Fault Detection and Diagnosis in Industrial Systems
– year: 2011
  ident: bib0032
  article-title: Applied Statistics and Probability for Engineers
– volume: 9
  start-page: 1819
  year: 2012
  end-page: 1825
  ident: bib0033
  article-title: Fuzzy intervention in biological phenomena
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– year: 2013
  ident: bib0036
  article-title: Introduction to Statistical Process Control
– volume: 22
  start-page: 1567
  year: 2012
  end-page: 1581
  ident: bib0055
  article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark tennessee eastman process
  publication-title: J. Process Control
– year: 2012
  ident: bib0046
  publication-title: Principal Component Analysis: Multidisciplinary Applications
– reference: Rieth, C. A., Amsel, B. D., Tran, R., Cook, M. B., 2017. Additional Tennessee Eastman Process Simulation Data for Anomaly Detection Evaluation. 10.7910/DVN/6C3JR1
– start-page: 173
  year: 2005
  end-page: 184
  ident: bib0027
  article-title: Principal component analysis for non-precise data
  publication-title: New Developments in Classification and Data Analysis
– start-page: 369
  year: 2010
  end-page: 392
  ident: bib0050
  article-title: Sensor fault detection and isolation by robust principal component analysis
  publication-title: Fault Detection
– volume: 42
  start-page: 287
  year: 2010
  end-page: 310
  ident: bib0038
  article-title: An evaluation of a GLR control chart for monitoring the process mean
  publication-title: J. Qual. Technol.
– volume: 44
  start-page: 12389
  year: 2011
  end-page: 12394
  ident: bib0056
  article-title: Study on modifications of PLS approach for process monitoring
  publication-title: IFAC Proc. Volumes
– volume: 40
  start-page: 874
  year: 1984
  ident: bib0009
  article-title: Classification and regression trees
  publication-title: Biometrics
– volume: 11
  start-page: 1407
  year: 2011
  end-page: 1415
  ident: bib0015
  article-title: Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-Eastman process
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 162
  year: 2013
  end-page: 167
  ident: bib0008
  article-title: Fault detection and isolation with interval principal component analysis
  publication-title: International Conference on Control, Engineering and Information Technology
– volume: 64
  start-page: 801
  year: 2009
  end-page: 811
  ident: bib0057
  article-title: Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
  publication-title: Chem. Eng. Sci.
– start-page: 641
  year: 2001
  end-page: 648
  ident: bib0034
  article-title: A PCA for interval-valued data based on midpoints and radii
  publication-title: New Dev. Psychom.
– year: 2018
  ident: bib0003
  publication-title: Interval Principal Component Analysis and its Application to Fault Detection and Data Classification
– year: 1993
  ident: bib0037
  article-title: C4.5: Programs for Machine Learning
– volume: 26
  start-page: 451
  year: 1998
  end-page: 471
  ident: bib0017
  article-title: Classification by pairwise coupling
  publication-title: Ann. Stat.
– volume: 39
  start-page: 1
  year: 1995
  end-page: 38
  ident: bib0013
  article-title: Solving multiclass learning problems via error-correcting output codes
  publication-title: J. Artif. Intell. Res.
– volume: 15
  start-page: 73
  year: 2000
  end-page: 87
  ident: bib0026
  article-title: Principal component analysis of interval data: a symbolic data analysis
  publication-title: Comput. Stat.
– start-page: 279
  year: 2008
  end-page: 311
  ident: bib0028
  article-title: Principal component analysis of symbolic data described by intervals
  publication-title: Symb. Data Anal. SODAS Softw.
– volume: 7
  start-page: 411
  year: 2019
  ident: bib0020
  article-title: Statistical process monitoring of the tennessee eastman process using parallel autoassociative neural networks and a large dataset
  publication-title: Processes
– start-page: 362
  year: 2010
  end-page: 367
  ident: bib0018
  article-title: Fault detection and isolation of tennessee eastman process using improved RBF network by genetic algorithm
  publication-title: 8th European Workshop on Advanced Control and Diagnosis
– volume: 27
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib0004
  article-title: Multivariate fault detection and classification using interval principal component analysis
  publication-title: J. Comput. Sci.
– volume: 47
  start-page: 425
  year: 2005
  end-page: 436
  ident: bib0053
  article-title: The inertial properties of quality control charts
  publication-title: Technometrics
– volume: 45
  start-page: 18
  year: 2013
  end-page: 33
  ident: bib0052
  article-title: A GLR control chart for monitoring the mean vector of a multivariate normal process
  publication-title: J. Qual. Technol.
– year: 2002
  ident: bib0024
  article-title: Principal component analysis
– start-page: 641
  year: 2001
  ident: 10.1016/j.compchemeng.2020.106786_bib0034
  article-title: A PCA for interval-valued data based on midpoints and radii
  publication-title: New Dev. Psychom.
– volume: 10
  start-page: 3
  year: 2012
  ident: 10.1016/j.compchemeng.2020.106786_bib0039
  article-title: A GLR control chart for monitoring the process variance
– start-page: 99
  year: 2000
  ident: 10.1016/j.compchemeng.2020.106786_sbref0040
– volume: 9
  start-page: 1819
  issue: 1
  year: 2012
  ident: 10.1016/j.compchemeng.2020.106786_bib0033
  article-title: Fuzzy intervention in biological phenomena
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2012.113
– year: 2018
  ident: 10.1016/j.compchemeng.2020.106786_bib0003
– start-page: 1
  year: 2014
  ident: 10.1016/j.compchemeng.2020.106786_bib0005
  article-title: Comparative study of subspace identification methods on the tennessee eastman process under disturbance effects
– volume: 64
  start-page: 801
  issue: 5
  year: 2009
  ident: 10.1016/j.compchemeng.2020.106786_bib0057
  article-title: Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2008.10.012
– volume: 7
  start-page: 411
  issue: 7
  year: 2019
  ident: 10.1016/j.compchemeng.2020.106786_bib0020
  article-title: Statistical process monitoring of the tennessee eastman process using parallel autoassociative neural networks and a large dataset
  publication-title: Processes
  doi: 10.3390/pr7070411
– start-page: 173
  year: 2005
  ident: 10.1016/j.compchemeng.2020.106786_bib0027
  article-title: Principal component analysis for non-precise data
  publication-title: New Developments in Classification and Data Analysis
  doi: 10.1007/3-540-27373-5_21
– volume: 42
  start-page: 287
  year: 2010
  ident: 10.1016/j.compchemeng.2020.106786_bib0038
  article-title: An evaluation of a GLR control chart for monitoring the process mean
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2010.11917825
– volume: 47
  start-page: 425
  issue: 4
  year: 2005
  ident: 10.1016/j.compchemeng.2020.106786_bib0053
  article-title: The inertial properties of quality control charts
  publication-title: Technometrics
  doi: 10.1198/004017005000000256
– volume: 27
  start-page: 1
  year: 2018
  ident: 10.1016/j.compchemeng.2020.106786_bib0004
  article-title: Multivariate fault detection and classification using interval principal component analysis
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2018.04.017
– volume: 11
  start-page: 1407
  issue: 1
  year: 2011
  ident: 10.1016/j.compchemeng.2020.106786_bib0015
  article-title: Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-Eastman process
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.04.012
– volume: 30
  start-page: 179
  issue: 1
  year: 1995
  ident: 10.1016/j.compchemeng.2020.106786_bib0025
  article-title: Disturbance detection and isolation by dynamic principal component analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(95)00076-3
– volume: 44
  start-page: 12389
  issue: 1
  year: 2011
  ident: 10.1016/j.compchemeng.2020.106786_bib0056
  article-title: Study on modifications of PLS approach for process monitoring
  publication-title: IFAC Proc. Volumes
  doi: 10.3182/20110828-6-IT-1002.02876
– start-page: 369
  year: 2010
  ident: 10.1016/j.compchemeng.2020.106786_bib0050
  article-title: Sensor fault detection and isolation by robust principal component analysis
– volume: 17
  start-page: 245
  year: 1993
  ident: 10.1016/j.compchemeng.2020.106786_bib0014
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(93)80018-I
– year: 2012
  ident: 10.1016/j.compchemeng.2020.106786_bib0046
– volume: 26
  start-page: 451
  year: 1998
  ident: 10.1016/j.compchemeng.2020.106786_bib0017
  article-title: Classification by pairwise coupling
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1028144844
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.compchemeng.2020.106786_bib0012
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 27
  start-page: 427
  issue: 2
  year: 1994
  ident: 10.1016/j.compchemeng.2020.106786_bib0031
  article-title: Statistical process control of multivariate processes
  publication-title: IFAC Symp. Adv. Control Chem. Process.
– volume: 45
  start-page: 18
  year: 2013
  ident: 10.1016/j.compchemeng.2020.106786_bib0052
  article-title: A GLR control chart for monitoring the mean vector of a multivariate normal process
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2013.11917913
– volume: 2
  start-page: 121
  year: 1998
  ident: 10.1016/j.compchemeng.2020.106786_bib0010
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– volume: 48
  start-page: 309
  year: 2015
  ident: 10.1016/j.compchemeng.2020.106786_bib0006
  article-title: Revision of the tennessee eastman process model
– volume: 3
  start-page: 41
  year: 2001
  ident: 10.1016/j.compchemeng.2020.106786_bib0043
  article-title: An empirical study of the naïve bayes classifier
– year: 1993
  ident: 10.1016/j.compchemeng.2020.106786_bib0037
– volume: 1
  start-page: 162
  year: 2013
  ident: 10.1016/j.compchemeng.2020.106786_bib0008
  article-title: Fault detection and isolation with interval principal component analysis
– volume: 115
  start-page: 185
  year: 2018
  ident: 10.1016/j.compchemeng.2020.106786_bib0054
  article-title: Deep convolutional neural network model based chemical process fault diagnosis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2018.04.009
– volume: 1
  start-page: 113
  year: 2001
  ident: 10.1016/j.compchemeng.2020.106786_bib0001
  article-title: Reducing multiclass to binary: a unifying approach for margin classifiers
  publication-title: J. Mach. Learn. Res.
– volume: 27
  start-page: 227
  year: 2018
  ident: 10.1016/j.compchemeng.2020.106786_bib0048
  article-title: Process monitoring using PCA-based GLR methods: acomparative study
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2018.05.013
– year: 2011
  ident: 10.1016/j.compchemeng.2020.106786_bib0032
– ident: 10.1016/j.compchemeng.2020.106786_bib0019
  doi: 10.1016/j.ifacol.2018.09.380
– start-page: 279
  year: 2008
  ident: 10.1016/j.compchemeng.2020.106786_bib0028
  article-title: Principal component analysis of symbolic data described by intervals
  publication-title: Symb. Data Anal. SODAS Softw.
– ident: 10.1016/j.compchemeng.2020.106786_bib0041
– volume: 5
  start-page: 101
  year: 2004
  ident: 10.1016/j.compchemeng.2020.106786_bib0042
  article-title: In defense of one-vs-all classification
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 1567
  year: 2012
  ident: 10.1016/j.compchemeng.2020.106786_bib0055
  article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark tennessee eastman process
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2012.06.009
– year: 2013
  ident: 10.1016/j.compchemeng.2020.106786_bib0036
– volume: 40
  start-page: 874
  issue: 3
  year: 1984
  ident: 10.1016/j.compchemeng.2020.106786_bib0009
  article-title: Classification and regression trees
  publication-title: Biometrics
  doi: 10.2307/2530946
– start-page: 237
  year: 2017
  ident: 10.1016/j.compchemeng.2020.106786_bib0047
  article-title: Process monitoring using data-based fault detection techniques: Comparative studies
– year: 2012
  ident: 10.1016/j.compchemeng.2020.106786_bib0045
– ident: 10.1016/j.compchemeng.2020.106786_bib0016
– year: 1998
  ident: 10.1016/j.compchemeng.2020.106786_bib0051
– volume: 26
  year: 2001
  ident: 10.1016/j.compchemeng.2020.106786_bib0022
– year: 2001
  ident: 10.1016/j.compchemeng.2020.106786_bib0011
– start-page: 37
  year: 1998
  ident: 10.1016/j.compchemeng.2020.106786_bib0007
  article-title: Combining nearest neighbor classifiers through multiple feature subsets
– year: 2008
  ident: 10.1016/j.compchemeng.2020.106786_bib0029
– ident: 10.1016/j.compchemeng.2020.106786_bib0002
– year: 2016
  ident: 10.1016/j.compchemeng.2020.106786_bib0049
– volume: 39
  start-page: 1
  year: 1995
  ident: 10.1016/j.compchemeng.2020.106786_bib0013
  article-title: Solving multiclass learning problems via error-correcting output codes
  publication-title: J. Artif. Intell. Res.
– volume: 15
  start-page: 73
  year: 2000
  ident: 10.1016/j.compchemeng.2020.106786_bib0026
  article-title: Principal component analysis of interval data: a symbolic data analysis
  publication-title: Comput. Stat.
  doi: 10.1007/s001800050038
– volume: 107
  start-page: 395
  year: 2017
  ident: 10.1016/j.compchemeng.2020.106786_bib0058
  article-title: A deep belief network based fault diagnosis model for complex chemical processes
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.02.041
– volume: 48
  start-page: 1402
  issue: 21
  year: 2015
  ident: 10.1016/j.compchemeng.2020.106786_bib0023
  article-title: Fault detection and isolation using interval principal component analysis methods
  publication-title: Int. Fed. Autom. Control
– start-page: 362
  year: 2010
  ident: 10.1016/j.compchemeng.2020.106786_bib0018
  article-title: Fault detection and isolation of tennessee eastman process using improved RBF network by genetic algorithm
– year: 1998
  ident: 10.1016/j.compchemeng.2020.106786_bib0035
– volume: 45
  start-page: 34
  year: 2013
  ident: 10.1016/j.compchemeng.2020.106786_bib0040
  article-title: The design of GLR control charts for monitoring the process mean and variance
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2013.11917914
– year: 2002
  ident: 10.1016/j.compchemeng.2020.106786_bib0024
– start-page: 6851
  year: 2016
  ident: 10.1016/j.compchemeng.2020.106786_bib0030
  article-title: Fault diagnosis based on deep learning
SSID ssj0002488
Score 2.4106688
Snippet Multiclass classification of big data is a subject of broad interest in machine learning research nowadays, where it is necessary to extract important features...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106786
SubjectTerms Binary decomposition
Fault detection
Generalized likelihood ratio test
Hypothesis testing
Interval aggregation
Moving-window
Multiclass classification
Principal component analysis
Title Multiclass data classification using fault detection-based techniques
URI https://dx.doi.org/10.1016/j.compchemeng.2020.106786
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier - Freedom Collection
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: AKRWK
  dateStart: 19770101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9jguiD-InzY0Twta5N0zQFX8bYmIp7crC3kibpmGgdWl_9271L2zlBUPAtOXJQfhz3UX53R8ilNL7NfB14UicCCpQk8qAOMZ5OjAkhgCvp_kPeT8R4ym9n0axFBk0vDNIqa99f-XTnrWtJr0azt1wssMc3kUEYcQZ2Cmes2zmPcYvB1ccXzYNxKZu5mfh6k1x8cbyQtg3YPNtiDqUiQzk4b_FzjFqLO6NdslMnjLRffdMeadlin2yvjRE8IEPXRasxD6bI-KTuiBwgBztFbvuc5gpeUWNLR74qPIxfhq5muL4dkulo-DAYe_V6BE-HLCg9YaUvrOCxH1gAObFM-QryNaWVynOQQjHFRKZjEwnDhQ5syGMtIxZHQWyTKDwi7eKlsMeEQt4VcpGJPBOKK4bMfK5lBrlVYKW1SYfIBpBU17PDcYXFU9qQxB7TNSxTxDKtsOwQtlJdVgM0_qJ03aCefrOGFBz97-on_1M_JVt4c7RGeUba5eu7PYfUo8y6zra6ZKN_czeefAI8S9oX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9DwY8H8RPnZwRf69o0TVPwRcbG1G1PG-wtpEk6JlqH1lf_di9pu00QFHwL1xyUH8fd_cIvF4SuufZN6qvA4yphQFCSyAMeoj2VaB1CAZfcnUMOhqw3pg-TaNJA7foujJVVVrm_zOkuW1eWVoVmaz6b2Tu-CQ_CiBKIU1gDb1-nEYktA7v5XOo8COW8Hpxpt2-gq6XIy-q2AZwXk0-BKxJrh-zNfi5SK4Wnu4t2qo4R35U_tYcaJt9H2ytzBA9Qx12jVbYRxlbyid3SioAc7tiK26c4k7ALa1M49VXu2QKm8WKI6_shGnc7o3bPq95H8FRIgsJjhvvMMBr7gQGUE0OkL6Fhk0rKLAMrsCnCUhXriGnKVGBCGisOGEVBbJIoPEJr-WtujhGGxiukLGVZyiSVxErzqeIpNFeB4cYkTcRrQISqhofbNyyeRa0SexIrWAqLpSixbCKycJ2XEzT-4nRboy6-hYOATP-7-8n_3C_RZm806Iv-_fDxFG3ZL07jyM_QWvH2Yc6hDynSCxdnX2h526w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiclass+data+classification+using+fault+detection-based+techniques&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Basha%2C+Nour&rft.au=Ziyan+Sheriff%2C+M.&rft.au=Kravaris%2C+Costas&rft.au=Nounou%2C+Hazem&rft.date=2020-05-08&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.eissn=1873-4375&rft.volume=136&rft_id=info:doi/10.1016%2Fj.compchemeng.2020.106786&rft.externalDocID=S0098135420300090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon