Asphalt pavement paving segregation detection method using more efficiency and quality texture features extract algorithm
•Asphalt paving segregation detection using image texture features.•Texture feature extraction algorithm combining uniform pattern LBP and GLCM.•Asphalt paving segregation detection based on uniform pattern LBP-GLCM.•The support vector machine classifier is used to detection whether paving segregati...
Saved in:
| Published in | Construction & building materials Vol. 277; p. 122302 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
29.03.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0950-0618 1879-0526 |
| DOI | 10.1016/j.conbuildmat.2021.122302 |
Cover
| Abstract | •Asphalt paving segregation detection using image texture features.•Texture feature extraction algorithm combining uniform pattern LBP and GLCM.•Asphalt paving segregation detection based on uniform pattern LBP-GLCM.•The support vector machine classifier is used to detection whether paving segregation occurs.
The segregation of asphalt pavement is the main reason for the decrease of safety, comfort and actual service life of the road, and the paving segregation is the main inducement for asphalt pavements segregation. Thus, a kind of effective paving segregation detection method can reduce the occurrence of asphalt pavement segregation. The traditional asphalt segregation detection methods are mainly divided into contact detection and non-contact detection. The contact detection method can only detect the segregation of pavement after paving or in use, and the non-contact detection method is also generally limited by the noise and expensive equipment. In recent years, the rapid development of image processing technology has provided a new research direction for asphalt paving segregation detection, but the accuracy and efficiency of the existing image-based asphalt paving segregation detection methods are insufficient. In order to solve these problems, this paper proposes an asphalt paving segregation detection method based on image texture features. Firstly, based on the traditional algorithms LBP (Local Binary Pattern) and GLCM (Gray-level Co-occurrence Matrix), a new texture feature extraction algorithm uniform pattern LBP-GLCM is proposed. Secondly, a detection method based on uniform pattern LBP-GLCM in combination with SVM (Support Vector Machine) is proposed. Then, the detection method proposed is validated using Kylbery texture dataset, the result show that this detection methods has great accuracy and efficiency in the classification of targets with similar texture features, it also means the texture feature extract method based on uniform pattern LBP-GLCM can combine the advantages of LBP and GLCM to achieve improvement of feature extraction's performance and efficiency. Finally, the detection method is applied to the diagnosis of asphalt paving segregation, and the accuracy of diagnosis achieves 94%. Compared with the existing algorithms, detection method based on uniform pattern LBP-GLCM has higher diagnostic accuracy and efficiency. Specifically, detection method with uniform pattern LBP-GLCM can improve accuracy in comparison with single asphalt pavement paving segregation detection method, and it can improve efficiency in comparison with existing hybrid asphalt pavement paving segregation detection method. The results of this study can potentially be used for real-time detection of asphalt paving segregation. |
|---|---|
| AbstractList | •Asphalt paving segregation detection using image texture features.•Texture feature extraction algorithm combining uniform pattern LBP and GLCM.•Asphalt paving segregation detection based on uniform pattern LBP-GLCM.•The support vector machine classifier is used to detection whether paving segregation occurs.
The segregation of asphalt pavement is the main reason for the decrease of safety, comfort and actual service life of the road, and the paving segregation is the main inducement for asphalt pavements segregation. Thus, a kind of effective paving segregation detection method can reduce the occurrence of asphalt pavement segregation. The traditional asphalt segregation detection methods are mainly divided into contact detection and non-contact detection. The contact detection method can only detect the segregation of pavement after paving or in use, and the non-contact detection method is also generally limited by the noise and expensive equipment. In recent years, the rapid development of image processing technology has provided a new research direction for asphalt paving segregation detection, but the accuracy and efficiency of the existing image-based asphalt paving segregation detection methods are insufficient. In order to solve these problems, this paper proposes an asphalt paving segregation detection method based on image texture features. Firstly, based on the traditional algorithms LBP (Local Binary Pattern) and GLCM (Gray-level Co-occurrence Matrix), a new texture feature extraction algorithm uniform pattern LBP-GLCM is proposed. Secondly, a detection method based on uniform pattern LBP-GLCM in combination with SVM (Support Vector Machine) is proposed. Then, the detection method proposed is validated using Kylbery texture dataset, the result show that this detection methods has great accuracy and efficiency in the classification of targets with similar texture features, it also means the texture feature extract method based on uniform pattern LBP-GLCM can combine the advantages of LBP and GLCM to achieve improvement of feature extraction's performance and efficiency. Finally, the detection method is applied to the diagnosis of asphalt paving segregation, and the accuracy of diagnosis achieves 94%. Compared with the existing algorithms, detection method based on uniform pattern LBP-GLCM has higher diagnostic accuracy and efficiency. Specifically, detection method with uniform pattern LBP-GLCM can improve accuracy in comparison with single asphalt pavement paving segregation detection method, and it can improve efficiency in comparison with existing hybrid asphalt pavement paving segregation detection method. The results of this study can potentially be used for real-time detection of asphalt paving segregation. |
| ArticleNumber | 122302 |
| Author | Xu, Feiyun Xue, Lige Zhao, Xun |
| Author_xml | – sequence: 1 givenname: Xun orcidid: 0000-0001-9332-0238 surname: Zhao fullname: Zhao, Xun – sequence: 2 givenname: Lige surname: Xue fullname: Xue, Lige – sequence: 3 givenname: Feiyun surname: Xu fullname: Xu, Feiyun email: fyxu@seu.edu.cn |
| BookMark | eNqNkM1OwzAQhC0EEm3hHcwDJNgOdpITqir-pEpc4Gy5zjp1lTjFdivy9iQpB8Spp53V7ow03xxdus4BQneUpJRQcb9Ldec2B9tUrYopI4ymlLGMsAs0o0VeJoQzcYlmpOQkIYIW12gewo4QIphgM9Qvw36rmoj36ggtuElYV-MAtYdaRds5XEEEPakW4rar8CGML23nAYMxVltwusfKVfjroBobexzhOx6GswE1zoCH3SsdsWrqztu4bW_QlVFNgNvfuUCfz08fq9dk_f7ytlquE50xGhMBvMrJRpWca8VzyApNi6EM1wUb-hCtcxDMFDTThXnIN1TxUpjcmKxknOksW6DylKt9F4IHI_fetsr3khI5MpQ7-YehHBnKE8PB-_jPq22cmAxlbHNWwuqUAEPFowUvw0QLKusHprLq7BkpPxcQm4A |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2024_114987 crossref_primary_10_1016_j_autcon_2022_104190 crossref_primary_10_1007_s11760_024_03626_y crossref_primary_10_1016_j_autcon_2022_104371 crossref_primary_10_1016_j_measurement_2022_111456 crossref_primary_10_1016_j_conbuildmat_2022_128450 crossref_primary_10_1007_s11760_023_02634_8 crossref_primary_10_1016_j_conbuildmat_2023_131205 crossref_primary_10_3390_coatings14060749 crossref_primary_10_1109_LSP_2022_3158199 crossref_primary_10_1016_j_conbuildmat_2021_124927 crossref_primary_10_1155_2021_3511375 crossref_primary_10_1007_s40996_023_01240_5 crossref_primary_10_1007_s11694_023_01943_3 crossref_primary_10_1002_adts_202300252 crossref_primary_10_1038_s41598_024_77173_4 crossref_primary_10_1617_s11527_022_02095_4 crossref_primary_10_1088_1361_6560_ada5a6 crossref_primary_10_1016_j_measurement_2022_112413 crossref_primary_10_3390_f13101719 crossref_primary_10_1016_j_autcon_2023_104767 crossref_primary_10_1016_j_measurement_2022_111207 crossref_primary_10_1007_s00500_021_06086_5 crossref_primary_10_1016_j_aej_2024_07_028 crossref_primary_10_1016_j_aei_2024_102665 crossref_primary_10_1007_s40996_023_01138_2 crossref_primary_10_1007_s42947_022_00165_y crossref_primary_10_1016_j_conbuildmat_2024_137360 crossref_primary_10_1080_10298436_2023_2201902 |
| Cites_doi | 10.1007/s11709-017-0451-5 10.1080/10298436.2011.561345 10.1186/1687-5281-2013-17 10.1155/2017/9493408 10.3141/1891-02 10.1061/JPEODX.0000050 10.1016/j.conbuildmat.2016.12.195 10.1080/14680629.2011.9690355 10.1080/10298430500501985 10.1016/j.conbuildmat.2014.06.046 10.1016/j.conbuildmat.2017.07.058 10.1016/j.conbuildmat.2019.07.041 10.1016/j.conbuildmat.2011.08.007 10.3390/w10020133 10.1007/s42452-019-0958-6 10.1080/10298436.2011.561346 10.1109/TPAMI.2002.1017623 10.1061/(ASCE)MT.1943-5533.0002208 10.1016/j.ymssp.2020.107293 10.1007/s12205-017-1372-5 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.conbuildmat.2021.122302 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0526 |
| ExternalDocumentID | 10_1016_j_conbuildmat_2021_122302 S0950061821000623 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADHUB ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAAKF BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IAO IEA IGG IHE IHM IOF ISM J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N95 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PV9 Q38 ROL RPZ RZL SDF SDG SES SPC SPCBC SSM SST SSZ T5K UNMZH XI7 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AHDLI AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ ITC R2- RNS SET SEW SMS VH1 WUQ ZMT ~HD |
| ID | FETCH-LOGICAL-c321t-6e5d70ba955ca57e38c189505c820610cc7e62f813c8f47b1a596f7ff39252c33 |
| IEDL.DBID | .~1 |
| ISSN | 0950-0618 |
| IngestDate | Sat Oct 25 05:28:21 EDT 2025 Thu Apr 24 22:57:00 EDT 2025 Fri Feb 23 02:47:52 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Texture feature extraction SVM GLCM Uniform pattern LBP Paving segregation detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c321t-6e5d70ba955ca57e38c189505c820610cc7e62f813c8f47b1a596f7ff39252c33 |
| ORCID | 0000-0001-9332-0238 |
| ParticipantIDs | crossref_primary_10_1016_j_conbuildmat_2021_122302 crossref_citationtrail_10_1016_j_conbuildmat_2021_122302 elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2021_122302 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-29 |
| PublicationDateYYYYMMDD | 2021-03-29 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | Construction & building materials |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chun, Kim, Park (b0020) 2018; 22 Li, Chen, Xiong (b0025) 2018; 30 Baqersad, Mohammadafzali, Choubane (b0050) 2018; 144 Yong, Li-jun, Yuan-qing (b0095) 2007; 37 D.I. Hanson, B.D. Prowell, Evaluation of circular texture meter for measuring surface texture of pavements. NCAT Report No. 04-05. Auburn, AL: National Center for Asphalt Technology, 2004. H. Zelelew, A.T. Papagiannakis, Digital image processing techniques for capturing and characterizing the microstructure of asphalt concretes[R]. 2009. Hunter, Airey, Collop (b0035) 2004; 1891 Leon, Flintsch (b0110) 2007; 76 Li, Zhou, Lv (b0015) 2017; 136 Bruno, Parla, Celauro (b0080) 2012; 28 Kim, Phaltane, Mohammad (b0010) 2018; 12 Zelelew, Papagiannakis (b0065) 2011 Henderson, Herrington, Patrick (b0125) 2011; 12 Nosaka, Ohkawa, Fukui (b0135) 2011 Ding, Jia, Yan (b0150) 2021; 150 J.N. Meegoda, G.M. Rowe, A. Jumikis, et al., Detection of surface segregation using LASER[C], in: Proceedings of the 82nd Annual Meeting of the Transportation Research Board, Washington, DC Persaud, BN, Retting, RA, Garder, PE, and Lord, D.(2001), Observational Before-After Study of the Safety Effect of US Roundabout Conversions Using the Empirical Bayes Method. Transportation Research Record. 2003 (1751). Zelelew, Papagiannakis (b0070) 2011; 12 White (b0055) 2019; 1 Kylberg, Sintorn (b0155) 2013; 2013 Mohanaiah, Sathyanarayana, GuruKumar (b0145) 2013; 3 Baqersad, Hamedi, Mohammadafzali (b0085) 2017; 2017 Maser, Holland, Roberts (b0030) 2006; 7 Zelelew, Papagiannakis (b0075) 2009 Cong, Shi, Wang (b0130) 2019; 224 Ojala, Pietikäinen, Mäenpää (b0140) 2002; 24 Stroup-Gardiner, Brown (b0005) 2000 S.N. Goodman, Y. Hassan, O. Abd El Halim, Digital Sand Patch Test: Use of Digital Image Analysis for Measurement of Pavement Macrotexture[R]. 2010 Huang, Zhao, Liang (b0090) 2017; 34 Valeo, Gupta (b0100) 2018; 10 Liu, Zhang, Li (b0060) 2014; 68 Zhang, Zhang, Luo (b0120) 2017; 152 Baqersad (10.1016/j.conbuildmat.2021.122302_b0085) 2017; 2017 Chun (10.1016/j.conbuildmat.2021.122302_b0020) 2018; 22 White (10.1016/j.conbuildmat.2021.122302_b0055) 2019; 1 Ojala (10.1016/j.conbuildmat.2021.122302_b0140) 2002; 24 Hunter (10.1016/j.conbuildmat.2021.122302_b0035) 2004; 1891 Liu (10.1016/j.conbuildmat.2021.122302_b0060) 2014; 68 10.1016/j.conbuildmat.2021.122302_b0105 Maser (10.1016/j.conbuildmat.2021.122302_b0030) 2006; 7 Zhang (10.1016/j.conbuildmat.2021.122302_b0120) 2017; 152 Zelelew (10.1016/j.conbuildmat.2021.122302_b0075) 2009 Yong (10.1016/j.conbuildmat.2021.122302_b0095) 2007; 37 Cong (10.1016/j.conbuildmat.2021.122302_b0130) 2019; 224 Stroup-Gardiner (10.1016/j.conbuildmat.2021.122302_b0005) 2000 Huang (10.1016/j.conbuildmat.2021.122302_b0090) 2017; 34 Bruno (10.1016/j.conbuildmat.2021.122302_b0080) 2012; 28 Kylberg (10.1016/j.conbuildmat.2021.122302_b0155) 2013; 2013 Ding (10.1016/j.conbuildmat.2021.122302_b0150) 2021; 150 Henderson (10.1016/j.conbuildmat.2021.122302_b0125) 2011; 12 10.1016/j.conbuildmat.2021.122302_b0115 Mohanaiah (10.1016/j.conbuildmat.2021.122302_b0145) 2013; 3 Nosaka (10.1016/j.conbuildmat.2021.122302_b0135) 2011 10.1016/j.conbuildmat.2021.122302_b0040 Kim (10.1016/j.conbuildmat.2021.122302_b0010) 2018; 12 Li (10.1016/j.conbuildmat.2021.122302_b0025) 2018; 30 10.1016/j.conbuildmat.2021.122302_b0045 Leon (10.1016/j.conbuildmat.2021.122302_b0110) 2007; 76 Zelelew (10.1016/j.conbuildmat.2021.122302_b0065) 2011 Baqersad (10.1016/j.conbuildmat.2021.122302_b0050) 2018; 144 Zelelew (10.1016/j.conbuildmat.2021.122302_b0070) 2011; 12 Li (10.1016/j.conbuildmat.2021.122302_b0015) 2017; 136 Valeo (10.1016/j.conbuildmat.2021.122302_b0100) 2018; 10 |
| References_xml | – reference: J.N. Meegoda, G.M. Rowe, A. Jumikis, et al., Detection of surface segregation using LASER[C], in: Proceedings of the 82nd Annual Meeting of the Transportation Research Board, Washington, DC Persaud, BN, Retting, RA, Garder, PE, and Lord, D.(2001), Observational Before-After Study of the Safety Effect of US Roundabout Conversions Using the Empirical Bayes Method. Transportation Research Record. 2003 (1751). – year: 2011 ident: b0065 article-title: Wavelet-based characterisation of aggregate segregation in asphalt concrete X-ray computed tomography images[J] publication-title: Int. J. Pavement Eng. – volume: 30 start-page: 04018027 year: 2018 ident: b0025 article-title: Gradation segregation analysis of warm mix asphalt mixture[J] publication-title: J. Mater. Civ. Eng. – volume: 68 start-page: 587 year: 2014 end-page: 598 ident: b0060 article-title: Research on the homogeneity of asphalt pavement quality using X-ray computed tomography (CT) and fractal theory[J] publication-title: Constr. Build. Mater. – volume: 2013 start-page: 17 year: 2013 ident: b0155 article-title: Evaluation of noise robustness for local binary pattern descriptors in texture classification[J] publication-title: EURASIP J. Image Video Process. – year: 2009 ident: b0075 article-title: Digital image processing techniques for capturing and characterizing the microstructure of asphalt concretes[C]// publication-title: Transportation Research Board Meeting. – reference: D.I. Hanson, B.D. Prowell, Evaluation of circular texture meter for measuring surface texture of pavements. NCAT Report No. 04-05. Auburn, AL: National Center for Asphalt Technology, 2004. – volume: 12 start-page: 536 year: 2018 end-page: 547 ident: b0010 article-title: Temperature segregation and its impact on the quality and performance of asphalt pavements[J] publication-title: Front. Struct. Civil Eng. – volume: 76 year: 2007 ident: b0110 article-title: Application of digital image technology to measure hot mix asphalt homogeneity (with discussion)[J] publication-title: J. Assoc. Asphalt Paving Technol. – volume: 224 start-page: 622 year: 2019 end-page: 629 ident: b0130 article-title: A method to evaluate the segregation of compacted asphalt pavement by processing the images of paved asphalt mixture[J] publication-title: Constr. Build. Mater. – volume: 1 start-page: 921 year: 2019 ident: b0055 article-title: Evaluation of a non-nuclear density gauge as an alternate to destructive coring for airport asphalt acceptance testing[J] publication-title: SN Appl. Sci. – volume: 37 start-page: 334 year: 2007 end-page: 337 ident: b0095 article-title: Application of digital image processing in evaluating homogeneity of asphalt mixture[J] publication-title: J. Jilin Univ. (Eng. Technol. Ed.) – volume: 152 start-page: 715 year: 2017 end-page: 730 ident: b0120 article-title: Accurate detection and evaluation method for aggregate distribution uniformity of asphalt pavement[J] publication-title: Constr. Build. Mater. – volume: 150 start-page: 107293 year: 2021 ident: b0150 article-title: Stationary subspaces-vector autoregressive with exogenous terms methodology for degradation trend estimation of rolling and slewing bearings publication-title: Mech. Syst. Sig. Process. – volume: 1891 start-page: 8 year: 2004 end-page: 15 ident: b0035 article-title: Aggregate orientation and segregation in laboratory-compacted asphalt samples[J] publication-title: Transp. Res. Rec. – volume: 10 start-page: 133 year: 2018 ident: b0100 article-title: Determining surface infiltration rate of permeable pavements with digital imaging[J] publication-title: Water – reference: H. Zelelew, A.T. Papagiannakis, Digital image processing techniques for capturing and characterizing the microstructure of asphalt concretes[R]. 2009. – volume: 34 start-page: 8 year: 2017 end-page: 15 ident: b0090 article-title: A method for real-time monitoring and evaluating asphalt mixture paving uniformity based on digital image processing technology[J] publication-title: J. Highway Transp. Res. Dev. – reference: S.N. Goodman, Y. Hassan, O. Abd El Halim, Digital Sand Patch Test: Use of Digital Image Analysis for Measurement of Pavement Macrotexture[R]. 2010 – volume: 7 start-page: 1 year: 2006 end-page: 10 ident: b0030 article-title: NDE methods for quality assurance of new pavement thickness[J] publication-title: Int. J. Pavement Eng. – volume: 144 start-page: 04018032 year: 2018 ident: b0050 article-title: Application of laser macrotexture measurement for detection of segregation in asphalt pavements[J] publication-title: J. Transp. Eng. Part B: Pavements – volume: 136 start-page: 436 year: 2017 end-page: 445 ident: b0015 article-title: Temperature segregation of warm mix asphalt pavement: laboratory and field evaluations[J] publication-title: Constr. Build. Mater. – volume: 12 start-page: 543 year: 2011 end-page: 551 ident: b0070 article-title: A volumetrics thresholding algorithm for processing asphalt concrete X-ray CT images[J] publication-title: Int. J. Pavement Eng. – volume: 12 start-page: 115 year: 2011 end-page: 127 ident: b0125 article-title: Analysis of particle orientation in compacted unbound aggregate[J] publication-title: Road Mater. Pavement Design – year: 2000 ident: b0005 article-title: Segregation in hot-mix asphalt pavements[M] publication-title: Transportation Research Board – start-page: 82 year: 2011 end-page: 91 ident: b0135 article-title: Feature extraction based on co-occurrence of adjacent local binary patterns[C]//Pacific-Rim Symposium on Image and Video Technology – volume: 22 start-page: 125 year: 2018 end-page: 134 ident: b0020 article-title: Evaluation of the effect of segregation on coarse aggregate structure and rutting potential of asphalt mixtures using Dominant Aggregate Size Range (DASR) approach[J] publication-title: KSCE J. Civ. Eng. – volume: 3 start-page: 1 year: 2013 end-page: 5 ident: b0145 article-title: Image texture feature extraction using GLCM approach[J] publication-title: Int. J. Sci. Res. Publ. – volume: 28 start-page: 21 year: 2012 end-page: 30 ident: b0080 article-title: Image analysis for detecting aggregate gradation in asphalt mixture from planar images[J] publication-title: Constr. Build. Mater. – volume: 24 start-page: 971 year: 2002 end-page: 987 ident: b0140 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 2017 year: 2017 ident: b0085 article-title: Asphalt mixture segregation detection: digital image processing approach[J] publication-title: Adv. Mater. Sci. Eng. – volume: 12 start-page: 536 issue: 4 year: 2018 ident: 10.1016/j.conbuildmat.2021.122302_b0010 article-title: Temperature segregation and its impact on the quality and performance of asphalt pavements[J] publication-title: Front. Struct. Civil Eng. doi: 10.1007/s11709-017-0451-5 – volume: 12 start-page: 543 issue: 6 year: 2011 ident: 10.1016/j.conbuildmat.2021.122302_b0070 article-title: A volumetrics thresholding algorithm for processing asphalt concrete X-ray CT images[J] publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2011.561345 – volume: 2013 start-page: 17 issue: 1 year: 2013 ident: 10.1016/j.conbuildmat.2021.122302_b0155 article-title: Evaluation of noise robustness for local binary pattern descriptors in texture classification[J] publication-title: EURASIP J. Image Video Process. doi: 10.1186/1687-5281-2013-17 – volume: 2017 year: 2017 ident: 10.1016/j.conbuildmat.2021.122302_b0085 article-title: Asphalt mixture segregation detection: digital image processing approach[J] publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2017/9493408 – year: 2000 ident: 10.1016/j.conbuildmat.2021.122302_b0005 article-title: Segregation in hot-mix asphalt pavements[M] publication-title: Transportation Research Board – volume: 1891 start-page: 8 issue: 1 year: 2004 ident: 10.1016/j.conbuildmat.2021.122302_b0035 article-title: Aggregate orientation and segregation in laboratory-compacted asphalt samples[J] publication-title: Transp. Res. Rec. doi: 10.3141/1891-02 – volume: 144 start-page: 04018032 issue: 3 year: 2018 ident: 10.1016/j.conbuildmat.2021.122302_b0050 article-title: Application of laser macrotexture measurement for detection of segregation in asphalt pavements[J] publication-title: J. Transp. Eng. Part B: Pavements doi: 10.1061/JPEODX.0000050 – volume: 136 start-page: 436 year: 2017 ident: 10.1016/j.conbuildmat.2021.122302_b0015 article-title: Temperature segregation of warm mix asphalt pavement: laboratory and field evaluations[J] publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.12.195 – volume: 12 start-page: 115 issue: 1 year: 2011 ident: 10.1016/j.conbuildmat.2021.122302_b0125 article-title: Analysis of particle orientation in compacted unbound aggregate[J] publication-title: Road Mater. Pavement Design doi: 10.1080/14680629.2011.9690355 – ident: 10.1016/j.conbuildmat.2021.122302_b0045 – ident: 10.1016/j.conbuildmat.2021.122302_b0115 – volume: 7 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.conbuildmat.2021.122302_b0030 article-title: NDE methods for quality assurance of new pavement thickness[J] publication-title: Int. J. Pavement Eng. doi: 10.1080/10298430500501985 – volume: 3 start-page: 1 issue: 5 year: 2013 ident: 10.1016/j.conbuildmat.2021.122302_b0145 article-title: Image texture feature extraction using GLCM approach[J] publication-title: Int. J. Sci. Res. Publ. – volume: 68 start-page: 587 year: 2014 ident: 10.1016/j.conbuildmat.2021.122302_b0060 article-title: Research on the homogeneity of asphalt pavement quality using X-ray computed tomography (CT) and fractal theory[J] publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.06.046 – volume: 34 start-page: 8 issue: 4 year: 2017 ident: 10.1016/j.conbuildmat.2021.122302_b0090 article-title: A method for real-time monitoring and evaluating asphalt mixture paving uniformity based on digital image processing technology[J] publication-title: J. Highway Transp. Res. Dev. – volume: 152 start-page: 715 year: 2017 ident: 10.1016/j.conbuildmat.2021.122302_b0120 article-title: Accurate detection and evaluation method for aggregate distribution uniformity of asphalt pavement[J] publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.07.058 – volume: 224 start-page: 622 year: 2019 ident: 10.1016/j.conbuildmat.2021.122302_b0130 article-title: A method to evaluate the segregation of compacted asphalt pavement by processing the images of paved asphalt mixture[J] publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.07.041 – ident: 10.1016/j.conbuildmat.2021.122302_b0105 – volume: 28 start-page: 21 issue: 1 year: 2012 ident: 10.1016/j.conbuildmat.2021.122302_b0080 article-title: Image analysis for detecting aggregate gradation in asphalt mixture from planar images[J] publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2011.08.007 – volume: 76 year: 2007 ident: 10.1016/j.conbuildmat.2021.122302_b0110 article-title: Application of digital image technology to measure hot mix asphalt homogeneity (with discussion)[J] publication-title: J. Assoc. Asphalt Paving Technol. – volume: 10 start-page: 133 issue: 2 year: 2018 ident: 10.1016/j.conbuildmat.2021.122302_b0100 article-title: Determining surface infiltration rate of permeable pavements with digital imaging[J] publication-title: Water doi: 10.3390/w10020133 – year: 2009 ident: 10.1016/j.conbuildmat.2021.122302_b0075 article-title: Digital image processing techniques for capturing and characterizing the microstructure of asphalt concretes[C]// publication-title: Transportation Research Board Meeting. – ident: 10.1016/j.conbuildmat.2021.122302_b0040 – volume: 1 start-page: 921 issue: 8 year: 2019 ident: 10.1016/j.conbuildmat.2021.122302_b0055 article-title: Evaluation of a non-nuclear density gauge as an alternate to destructive coring for airport asphalt acceptance testing[J] publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-0958-6 – volume: 37 start-page: 334 issue: 2 year: 2007 ident: 10.1016/j.conbuildmat.2021.122302_b0095 article-title: Application of digital image processing in evaluating homogeneity of asphalt mixture[J] publication-title: J. Jilin Univ. (Eng. Technol. Ed.) – year: 2011 ident: 10.1016/j.conbuildmat.2021.122302_b0065 article-title: Wavelet-based characterisation of aggregate segregation in asphalt concrete X-ray computed tomography images[J] publication-title: Int. J. Pavement Eng. doi: 10.1080/10298436.2011.561346 – start-page: 82 year: 2011 ident: 10.1016/j.conbuildmat.2021.122302_b0135 – volume: 24 start-page: 971 issue: 7 year: 2002 ident: 10.1016/j.conbuildmat.2021.122302_b0140 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1017623 – volume: 30 start-page: 04018027 issue: 4 year: 2018 ident: 10.1016/j.conbuildmat.2021.122302_b0025 article-title: Gradation segregation analysis of warm mix asphalt mixture[J] publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0002208 – volume: 150 start-page: 107293 year: 2021 ident: 10.1016/j.conbuildmat.2021.122302_b0150 article-title: Stationary subspaces-vector autoregressive with exogenous terms methodology for degradation trend estimation of rolling and slewing bearings publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2020.107293 – volume: 22 start-page: 125 issue: 1 year: 2018 ident: 10.1016/j.conbuildmat.2021.122302_b0020 article-title: Evaluation of the effect of segregation on coarse aggregate structure and rutting potential of asphalt mixtures using Dominant Aggregate Size Range (DASR) approach[J] publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-017-1372-5 |
| SSID | ssj0006262 |
| Score | 2.5129912 |
| Snippet | •Asphalt paving segregation detection using image texture features.•Texture feature extraction algorithm combining uniform pattern LBP and GLCM.•Asphalt paving... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 122302 |
| SubjectTerms | GLCM Paving segregation detection SVM Texture feature extraction Uniform pattern LBP |
| Title | Asphalt pavement paving segregation detection method using more efficiency and quality texture features extract algorithm |
| URI | https://dx.doi.org/10.1016/j.conbuildmat.2021.122302 |
| Volume | 277 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006262 issn: 0950-0618 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1879-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006262 issn: 0950-0618 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006262 issn: 0950-0618 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006262 issn: 0950-0618 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006262 issn: 0950-0618 databaseCode: AKRWK dateStart: 19870301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5DQfQg_sTfRPBat6RJm4GXIY7pcAd16K0kaTonWofrDrv4t_te2unEg4KnNg0PymvI-176ve8RchJHrumEMIETMgwEY1lgAHYEqXZpCvA0Mr6LwnUv6vTF1YN8qJHzWS0M0iqrvb_c0_1uXT2pV96sj4bD-i2AAwzAiuMRNURxrGAXMXYxOH3_onkAYOel3h42WGFqiRx_cbwg5TTYfRrAIaSKnJ0yiJbVCcuPGDUXd9prZLUCjLRVvtM6qbl8g6zMyQhukmlrPMLf3nSkvfq3v4EZOnaQTQ-872nqCs-6ymnZNJoi431AkWdLndeRwCJMqvOUloWWU4qkkAlMZ86rf44pjLGoiurnwevbsHh82SL99sXdeSeoWioENuSsCCIn07hhdFNKq2XsQmWZAtdIizrurGFt7CKeKRZalYnYMC2bURZnGcAoyW0YbpOF_DV3O4RqFwovbJvqhsh0wyjIrCIDGZLWSvJ4l6iZExNb6Y1j24vnZEYse0rm_J-g_5PS_7uEf5qOStGNvxidzb5U8m0FJRAcfjff-5_5PlnGEbLTePOALBRvE3cIcKUwR349HpHF1mW308Nr9-a--wEDHO-g |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFH5kGWzdYewnS7tuGuzqJpIlW4FdQmnItiSXtdCbkWQ5zcickLiHXvq39z3ZaTJ26KA3y-KBeRJ635O_9z2Ar2ni-15KG3mp4khyXkQWYUeUG5_nCE8TG7ooTKbJ6EL-uFSXLTjd1sIQrbI5--szPZzWzZtu483uaj7v_kJwQAFYC7qixij-BJ5KJVLKwE5udzwPROyiFtyjDitcP4MvO5IX5pyW2k8jOsRcUfATjuGyuWL5J0jtBZ7hK3jZIEY2qD_qNbR8-QZe7OkIvoWbwWZF_73ZygT57_CAM2zjMZ2eBeez3FeBdlWyums0I8r7jBHRlvkgJEFVmMyUOasrLW8YsUKucbrwQf5zw3BMVVXMLGbL9by6-vMOLoZn56ejqOmpELlY8CpKvMrTnjV9pZxRqY-14xpdoxwJufOec6lPRKF57HQhU8uN6idFWhSIo5Rwcfwe2uWy9B-AGR_LoGybm54sTM9qTK0SiymSMRoXogN668TMNYLj1PdikW2ZZb-zPf9n5P-s9n8HxL3pqlbd-B-jb9uVyv7aQhlGh4fNDx9n_hmej84n42z8ffrzCA5ohqhqov8R2tX62h8jdqnsp7A37wAVBe-S |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asphalt+pavement+paving+segregation+detection+method+using+more+efficiency+and+quality+texture+features+extract+algorithm&rft.jtitle=Construction+%26+building+materials&rft.au=Zhao%2C+Xun&rft.au=Xue%2C+Lige&rft.au=Xu%2C+Feiyun&rft.date=2021-03-29&rft.pub=Elsevier+Ltd&rft.issn=0950-0618&rft.eissn=1879-0526&rft.volume=277&rft_id=info:doi/10.1016%2Fj.conbuildmat.2021.122302&rft.externalDocID=S0950061821000623 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon |