Asphalt pavement paving segregation detection method using more efficiency and quality texture features extract algorithm

•Asphalt paving segregation detection using image texture features.•Texture feature extraction algorithm combining uniform pattern LBP and GLCM.•Asphalt paving segregation detection based on uniform pattern LBP-GLCM.•The support vector machine classifier is used to detection whether paving segregati...

Full description

Saved in:
Bibliographic Details
Published inConstruction & building materials Vol. 277; p. 122302
Main Authors Zhao, Xun, Xue, Lige, Xu, Feiyun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 29.03.2021
Subjects
Online AccessGet full text
ISSN0950-0618
1879-0526
DOI10.1016/j.conbuildmat.2021.122302

Cover

Abstract •Asphalt paving segregation detection using image texture features.•Texture feature extraction algorithm combining uniform pattern LBP and GLCM.•Asphalt paving segregation detection based on uniform pattern LBP-GLCM.•The support vector machine classifier is used to detection whether paving segregation occurs. The segregation of asphalt pavement is the main reason for the decrease of safety, comfort and actual service life of the road, and the paving segregation is the main inducement for asphalt pavements segregation. Thus, a kind of effective paving segregation detection method can reduce the occurrence of asphalt pavement segregation. The traditional asphalt segregation detection methods are mainly divided into contact detection and non-contact detection. The contact detection method can only detect the segregation of pavement after paving or in use, and the non-contact detection method is also generally limited by the noise and expensive equipment. In recent years, the rapid development of image processing technology has provided a new research direction for asphalt paving segregation detection, but the accuracy and efficiency of the existing image-based asphalt paving segregation detection methods are insufficient. In order to solve these problems, this paper proposes an asphalt paving segregation detection method based on image texture features. Firstly, based on the traditional algorithms LBP (Local Binary Pattern) and GLCM (Gray-level Co-occurrence Matrix), a new texture feature extraction algorithm uniform pattern LBP-GLCM is proposed. Secondly, a detection method based on uniform pattern LBP-GLCM in combination with SVM (Support Vector Machine) is proposed. Then, the detection method proposed is validated using Kylbery texture dataset, the result show that this detection methods has great accuracy and efficiency in the classification of targets with similar texture features, it also means the texture feature extract method based on uniform pattern LBP-GLCM can combine the advantages of LBP and GLCM to achieve improvement of feature extraction's performance and efficiency. Finally, the detection method is applied to the diagnosis of asphalt paving segregation, and the accuracy of diagnosis achieves 94%. Compared with the existing algorithms, detection method based on uniform pattern LBP-GLCM has higher diagnostic accuracy and efficiency. Specifically, detection method with uniform pattern LBP-GLCM can improve accuracy in comparison with single asphalt pavement paving segregation detection method, and it can improve efficiency in comparison with existing hybrid asphalt pavement paving segregation detection method. The results of this study can potentially be used for real-time detection of asphalt paving segregation.
AbstractList •Asphalt paving segregation detection using image texture features.•Texture feature extraction algorithm combining uniform pattern LBP and GLCM.•Asphalt paving segregation detection based on uniform pattern LBP-GLCM.•The support vector machine classifier is used to detection whether paving segregation occurs. The segregation of asphalt pavement is the main reason for the decrease of safety, comfort and actual service life of the road, and the paving segregation is the main inducement for asphalt pavements segregation. Thus, a kind of effective paving segregation detection method can reduce the occurrence of asphalt pavement segregation. The traditional asphalt segregation detection methods are mainly divided into contact detection and non-contact detection. The contact detection method can only detect the segregation of pavement after paving or in use, and the non-contact detection method is also generally limited by the noise and expensive equipment. In recent years, the rapid development of image processing technology has provided a new research direction for asphalt paving segregation detection, but the accuracy and efficiency of the existing image-based asphalt paving segregation detection methods are insufficient. In order to solve these problems, this paper proposes an asphalt paving segregation detection method based on image texture features. Firstly, based on the traditional algorithms LBP (Local Binary Pattern) and GLCM (Gray-level Co-occurrence Matrix), a new texture feature extraction algorithm uniform pattern LBP-GLCM is proposed. Secondly, a detection method based on uniform pattern LBP-GLCM in combination with SVM (Support Vector Machine) is proposed. Then, the detection method proposed is validated using Kylbery texture dataset, the result show that this detection methods has great accuracy and efficiency in the classification of targets with similar texture features, it also means the texture feature extract method based on uniform pattern LBP-GLCM can combine the advantages of LBP and GLCM to achieve improvement of feature extraction's performance and efficiency. Finally, the detection method is applied to the diagnosis of asphalt paving segregation, and the accuracy of diagnosis achieves 94%. Compared with the existing algorithms, detection method based on uniform pattern LBP-GLCM has higher diagnostic accuracy and efficiency. Specifically, detection method with uniform pattern LBP-GLCM can improve accuracy in comparison with single asphalt pavement paving segregation detection method, and it can improve efficiency in comparison with existing hybrid asphalt pavement paving segregation detection method. The results of this study can potentially be used for real-time detection of asphalt paving segregation.
ArticleNumber 122302
Author Xu, Feiyun
Xue, Lige
Zhao, Xun
Author_xml – sequence: 1
  givenname: Xun
  orcidid: 0000-0001-9332-0238
  surname: Zhao
  fullname: Zhao, Xun
– sequence: 2
  givenname: Lige
  surname: Xue
  fullname: Xue, Lige
– sequence: 3
  givenname: Feiyun
  surname: Xu
  fullname: Xu, Feiyun
  email: fyxu@seu.edu.cn
BookMark eNqNkM1OwzAQhC0EEm3hHcwDJNgOdpITqir-pEpc4Gy5zjp1lTjFdivy9iQpB8Spp53V7ow03xxdus4BQneUpJRQcb9Ldec2B9tUrYopI4ymlLGMsAs0o0VeJoQzcYlmpOQkIYIW12gewo4QIphgM9Qvw36rmoj36ggtuElYV-MAtYdaRds5XEEEPakW4rar8CGML23nAYMxVltwusfKVfjroBobexzhOx6GswE1zoCH3SsdsWrqztu4bW_QlVFNgNvfuUCfz08fq9dk_f7ytlquE50xGhMBvMrJRpWca8VzyApNi6EM1wUb-hCtcxDMFDTThXnIN1TxUpjcmKxknOksW6DylKt9F4IHI_fetsr3khI5MpQ7-YehHBnKE8PB-_jPq22cmAxlbHNWwuqUAEPFowUvw0QLKusHprLq7BkpPxcQm4A
CitedBy_id crossref_primary_10_1016_j_measurement_2024_114987
crossref_primary_10_1016_j_autcon_2022_104190
crossref_primary_10_1007_s11760_024_03626_y
crossref_primary_10_1016_j_autcon_2022_104371
crossref_primary_10_1016_j_measurement_2022_111456
crossref_primary_10_1016_j_conbuildmat_2022_128450
crossref_primary_10_1007_s11760_023_02634_8
crossref_primary_10_1016_j_conbuildmat_2023_131205
crossref_primary_10_3390_coatings14060749
crossref_primary_10_1109_LSP_2022_3158199
crossref_primary_10_1016_j_conbuildmat_2021_124927
crossref_primary_10_1155_2021_3511375
crossref_primary_10_1007_s40996_023_01240_5
crossref_primary_10_1007_s11694_023_01943_3
crossref_primary_10_1002_adts_202300252
crossref_primary_10_1038_s41598_024_77173_4
crossref_primary_10_1617_s11527_022_02095_4
crossref_primary_10_1088_1361_6560_ada5a6
crossref_primary_10_1016_j_measurement_2022_112413
crossref_primary_10_3390_f13101719
crossref_primary_10_1016_j_autcon_2023_104767
crossref_primary_10_1016_j_measurement_2022_111207
crossref_primary_10_1007_s00500_021_06086_5
crossref_primary_10_1016_j_aej_2024_07_028
crossref_primary_10_1016_j_aei_2024_102665
crossref_primary_10_1007_s40996_023_01138_2
crossref_primary_10_1007_s42947_022_00165_y
crossref_primary_10_1016_j_conbuildmat_2024_137360
crossref_primary_10_1080_10298436_2023_2201902
Cites_doi 10.1007/s11709-017-0451-5
10.1080/10298436.2011.561345
10.1186/1687-5281-2013-17
10.1155/2017/9493408
10.3141/1891-02
10.1061/JPEODX.0000050
10.1016/j.conbuildmat.2016.12.195
10.1080/14680629.2011.9690355
10.1080/10298430500501985
10.1016/j.conbuildmat.2014.06.046
10.1016/j.conbuildmat.2017.07.058
10.1016/j.conbuildmat.2019.07.041
10.1016/j.conbuildmat.2011.08.007
10.3390/w10020133
10.1007/s42452-019-0958-6
10.1080/10298436.2011.561346
10.1109/TPAMI.2002.1017623
10.1061/(ASCE)MT.1943-5533.0002208
10.1016/j.ymssp.2020.107293
10.1007/s12205-017-1372-5
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conbuildmat.2021.122302
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0526
ExternalDocumentID 10_1016_j_conbuildmat_2021_122302
S0950061821000623
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAAKF
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IAO
IEA
IGG
IHE
IHM
IOF
ISM
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N95
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PV9
Q38
ROL
RPZ
RZL
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
UNMZH
XI7
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHDLI
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
ITC
R2-
RNS
SET
SEW
SMS
VH1
WUQ
ZMT
~HD
ID FETCH-LOGICAL-c321t-6e5d70ba955ca57e38c189505c820610cc7e62f813c8f47b1a596f7ff39252c33
IEDL.DBID .~1
ISSN 0950-0618
IngestDate Sat Oct 25 05:28:21 EDT 2025
Thu Apr 24 22:57:00 EDT 2025
Fri Feb 23 02:47:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Texture feature extraction
SVM
GLCM
Uniform pattern LBP
Paving segregation detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-6e5d70ba955ca57e38c189505c820610cc7e62f813c8f47b1a596f7ff39252c33
ORCID 0000-0001-9332-0238
ParticipantIDs crossref_primary_10_1016_j_conbuildmat_2021_122302
crossref_citationtrail_10_1016_j_conbuildmat_2021_122302
elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2021_122302
PublicationCentury 2000
PublicationDate 2021-03-29
PublicationDateYYYYMMDD 2021-03-29
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-29
  day: 29
PublicationDecade 2020
PublicationTitle Construction & building materials
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chun, Kim, Park (b0020) 2018; 22
Li, Chen, Xiong (b0025) 2018; 30
Baqersad, Mohammadafzali, Choubane (b0050) 2018; 144
Yong, Li-jun, Yuan-qing (b0095) 2007; 37
D.I. Hanson, B.D. Prowell, Evaluation of circular texture meter for measuring surface texture of pavements. NCAT Report No. 04-05. Auburn, AL: National Center for Asphalt Technology, 2004.
H. Zelelew, A.T. Papagiannakis, Digital image processing techniques for capturing and characterizing the microstructure of asphalt concretes[R]. 2009.
Hunter, Airey, Collop (b0035) 2004; 1891
Leon, Flintsch (b0110) 2007; 76
Li, Zhou, Lv (b0015) 2017; 136
Bruno, Parla, Celauro (b0080) 2012; 28
Kim, Phaltane, Mohammad (b0010) 2018; 12
Zelelew, Papagiannakis (b0065) 2011
Henderson, Herrington, Patrick (b0125) 2011; 12
Nosaka, Ohkawa, Fukui (b0135) 2011
Ding, Jia, Yan (b0150) 2021; 150
J.N. Meegoda, G.M. Rowe, A. Jumikis, et al., Detection of surface segregation using LASER[C], in: Proceedings of the 82nd Annual Meeting of the Transportation Research Board, Washington, DC Persaud, BN, Retting, RA, Garder, PE, and Lord, D.(2001), Observational Before-After Study of the Safety Effect of US Roundabout Conversions Using the Empirical Bayes Method. Transportation Research Record. 2003 (1751).
Zelelew, Papagiannakis (b0070) 2011; 12
White (b0055) 2019; 1
Kylberg, Sintorn (b0155) 2013; 2013
Mohanaiah, Sathyanarayana, GuruKumar (b0145) 2013; 3
Baqersad, Hamedi, Mohammadafzali (b0085) 2017; 2017
Maser, Holland, Roberts (b0030) 2006; 7
Zelelew, Papagiannakis (b0075) 2009
Cong, Shi, Wang (b0130) 2019; 224
Ojala, Pietikäinen, Mäenpää (b0140) 2002; 24
Stroup-Gardiner, Brown (b0005) 2000
S.N. Goodman, Y. Hassan, O. Abd El Halim, Digital Sand Patch Test: Use of Digital Image Analysis for Measurement of Pavement Macrotexture[R]. 2010
Huang, Zhao, Liang (b0090) 2017; 34
Valeo, Gupta (b0100) 2018; 10
Liu, Zhang, Li (b0060) 2014; 68
Zhang, Zhang, Luo (b0120) 2017; 152
Baqersad (10.1016/j.conbuildmat.2021.122302_b0085) 2017; 2017
Chun (10.1016/j.conbuildmat.2021.122302_b0020) 2018; 22
White (10.1016/j.conbuildmat.2021.122302_b0055) 2019; 1
Ojala (10.1016/j.conbuildmat.2021.122302_b0140) 2002; 24
Hunter (10.1016/j.conbuildmat.2021.122302_b0035) 2004; 1891
Liu (10.1016/j.conbuildmat.2021.122302_b0060) 2014; 68
10.1016/j.conbuildmat.2021.122302_b0105
Maser (10.1016/j.conbuildmat.2021.122302_b0030) 2006; 7
Zhang (10.1016/j.conbuildmat.2021.122302_b0120) 2017; 152
Zelelew (10.1016/j.conbuildmat.2021.122302_b0075) 2009
Yong (10.1016/j.conbuildmat.2021.122302_b0095) 2007; 37
Cong (10.1016/j.conbuildmat.2021.122302_b0130) 2019; 224
Stroup-Gardiner (10.1016/j.conbuildmat.2021.122302_b0005) 2000
Huang (10.1016/j.conbuildmat.2021.122302_b0090) 2017; 34
Bruno (10.1016/j.conbuildmat.2021.122302_b0080) 2012; 28
Kylberg (10.1016/j.conbuildmat.2021.122302_b0155) 2013; 2013
Ding (10.1016/j.conbuildmat.2021.122302_b0150) 2021; 150
Henderson (10.1016/j.conbuildmat.2021.122302_b0125) 2011; 12
10.1016/j.conbuildmat.2021.122302_b0115
Mohanaiah (10.1016/j.conbuildmat.2021.122302_b0145) 2013; 3
Nosaka (10.1016/j.conbuildmat.2021.122302_b0135) 2011
10.1016/j.conbuildmat.2021.122302_b0040
Kim (10.1016/j.conbuildmat.2021.122302_b0010) 2018; 12
Li (10.1016/j.conbuildmat.2021.122302_b0025) 2018; 30
10.1016/j.conbuildmat.2021.122302_b0045
Leon (10.1016/j.conbuildmat.2021.122302_b0110) 2007; 76
Zelelew (10.1016/j.conbuildmat.2021.122302_b0065) 2011
Baqersad (10.1016/j.conbuildmat.2021.122302_b0050) 2018; 144
Zelelew (10.1016/j.conbuildmat.2021.122302_b0070) 2011; 12
Li (10.1016/j.conbuildmat.2021.122302_b0015) 2017; 136
Valeo (10.1016/j.conbuildmat.2021.122302_b0100) 2018; 10
References_xml – reference: J.N. Meegoda, G.M. Rowe, A. Jumikis, et al., Detection of surface segregation using LASER[C], in: Proceedings of the 82nd Annual Meeting of the Transportation Research Board, Washington, DC Persaud, BN, Retting, RA, Garder, PE, and Lord, D.(2001), Observational Before-After Study of the Safety Effect of US Roundabout Conversions Using the Empirical Bayes Method. Transportation Research Record. 2003 (1751).
– year: 2011
  ident: b0065
  article-title: Wavelet-based characterisation of aggregate segregation in asphalt concrete X-ray computed tomography images[J]
  publication-title: Int. J. Pavement Eng.
– volume: 30
  start-page: 04018027
  year: 2018
  ident: b0025
  article-title: Gradation segregation analysis of warm mix asphalt mixture[J]
  publication-title: J. Mater. Civ. Eng.
– volume: 68
  start-page: 587
  year: 2014
  end-page: 598
  ident: b0060
  article-title: Research on the homogeneity of asphalt pavement quality using X-ray computed tomography (CT) and fractal theory[J]
  publication-title: Constr. Build. Mater.
– volume: 2013
  start-page: 17
  year: 2013
  ident: b0155
  article-title: Evaluation of noise robustness for local binary pattern descriptors in texture classification[J]
  publication-title: EURASIP J. Image Video Process.
– year: 2009
  ident: b0075
  article-title: Digital image processing techniques for capturing and characterizing the microstructure of asphalt concretes[C]//
  publication-title: Transportation Research Board Meeting.
– reference: D.I. Hanson, B.D. Prowell, Evaluation of circular texture meter for measuring surface texture of pavements. NCAT Report No. 04-05. Auburn, AL: National Center for Asphalt Technology, 2004.
– volume: 12
  start-page: 536
  year: 2018
  end-page: 547
  ident: b0010
  article-title: Temperature segregation and its impact on the quality and performance of asphalt pavements[J]
  publication-title: Front. Struct. Civil Eng.
– volume: 76
  year: 2007
  ident: b0110
  article-title: Application of digital image technology to measure hot mix asphalt homogeneity (with discussion)[J]
  publication-title: J. Assoc. Asphalt Paving Technol.
– volume: 224
  start-page: 622
  year: 2019
  end-page: 629
  ident: b0130
  article-title: A method to evaluate the segregation of compacted asphalt pavement by processing the images of paved asphalt mixture[J]
  publication-title: Constr. Build. Mater.
– volume: 1
  start-page: 921
  year: 2019
  ident: b0055
  article-title: Evaluation of a non-nuclear density gauge as an alternate to destructive coring for airport asphalt acceptance testing[J]
  publication-title: SN Appl. Sci.
– volume: 37
  start-page: 334
  year: 2007
  end-page: 337
  ident: b0095
  article-title: Application of digital image processing in evaluating homogeneity of asphalt mixture[J]
  publication-title: J. Jilin Univ. (Eng. Technol. Ed.)
– volume: 152
  start-page: 715
  year: 2017
  end-page: 730
  ident: b0120
  article-title: Accurate detection and evaluation method for aggregate distribution uniformity of asphalt pavement[J]
  publication-title: Constr. Build. Mater.
– volume: 150
  start-page: 107293
  year: 2021
  ident: b0150
  article-title: Stationary subspaces-vector autoregressive with exogenous terms methodology for degradation trend estimation of rolling and slewing bearings
  publication-title: Mech. Syst. Sig. Process.
– volume: 1891
  start-page: 8
  year: 2004
  end-page: 15
  ident: b0035
  article-title: Aggregate orientation and segregation in laboratory-compacted asphalt samples[J]
  publication-title: Transp. Res. Rec.
– volume: 10
  start-page: 133
  year: 2018
  ident: b0100
  article-title: Determining surface infiltration rate of permeable pavements with digital imaging[J]
  publication-title: Water
– reference: H. Zelelew, A.T. Papagiannakis, Digital image processing techniques for capturing and characterizing the microstructure of asphalt concretes[R]. 2009.
– volume: 34
  start-page: 8
  year: 2017
  end-page: 15
  ident: b0090
  article-title: A method for real-time monitoring and evaluating asphalt mixture paving uniformity based on digital image processing technology[J]
  publication-title: J. Highway Transp. Res. Dev.
– reference: S.N. Goodman, Y. Hassan, O. Abd El Halim, Digital Sand Patch Test: Use of Digital Image Analysis for Measurement of Pavement Macrotexture[R]. 2010
– volume: 7
  start-page: 1
  year: 2006
  end-page: 10
  ident: b0030
  article-title: NDE methods for quality assurance of new pavement thickness[J]
  publication-title: Int. J. Pavement Eng.
– volume: 144
  start-page: 04018032
  year: 2018
  ident: b0050
  article-title: Application of laser macrotexture measurement for detection of segregation in asphalt pavements[J]
  publication-title: J. Transp. Eng. Part B: Pavements
– volume: 136
  start-page: 436
  year: 2017
  end-page: 445
  ident: b0015
  article-title: Temperature segregation of warm mix asphalt pavement: laboratory and field evaluations[J]
  publication-title: Constr. Build. Mater.
– volume: 12
  start-page: 543
  year: 2011
  end-page: 551
  ident: b0070
  article-title: A volumetrics thresholding algorithm for processing asphalt concrete X-ray CT images[J]
  publication-title: Int. J. Pavement Eng.
– volume: 12
  start-page: 115
  year: 2011
  end-page: 127
  ident: b0125
  article-title: Analysis of particle orientation in compacted unbound aggregate[J]
  publication-title: Road Mater. Pavement Design
– year: 2000
  ident: b0005
  article-title: Segregation in hot-mix asphalt pavements[M]
  publication-title: Transportation Research Board
– start-page: 82
  year: 2011
  end-page: 91
  ident: b0135
  article-title: Feature extraction based on co-occurrence of adjacent local binary patterns[C]//Pacific-Rim Symposium on Image and Video Technology
– volume: 22
  start-page: 125
  year: 2018
  end-page: 134
  ident: b0020
  article-title: Evaluation of the effect of segregation on coarse aggregate structure and rutting potential of asphalt mixtures using Dominant Aggregate Size Range (DASR) approach[J]
  publication-title: KSCE J. Civ. Eng.
– volume: 3
  start-page: 1
  year: 2013
  end-page: 5
  ident: b0145
  article-title: Image texture feature extraction using GLCM approach[J]
  publication-title: Int. J. Sci. Res. Publ.
– volume: 28
  start-page: 21
  year: 2012
  end-page: 30
  ident: b0080
  article-title: Image analysis for detecting aggregate gradation in asphalt mixture from planar images[J]
  publication-title: Constr. Build. Mater.
– volume: 24
  start-page: 971
  year: 2002
  end-page: 987
  ident: b0140
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 2017
  year: 2017
  ident: b0085
  article-title: Asphalt mixture segregation detection: digital image processing approach[J]
  publication-title: Adv. Mater. Sci. Eng.
– volume: 12
  start-page: 536
  issue: 4
  year: 2018
  ident: 10.1016/j.conbuildmat.2021.122302_b0010
  article-title: Temperature segregation and its impact on the quality and performance of asphalt pavements[J]
  publication-title: Front. Struct. Civil Eng.
  doi: 10.1007/s11709-017-0451-5
– volume: 12
  start-page: 543
  issue: 6
  year: 2011
  ident: 10.1016/j.conbuildmat.2021.122302_b0070
  article-title: A volumetrics thresholding algorithm for processing asphalt concrete X-ray CT images[J]
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2011.561345
– volume: 2013
  start-page: 17
  issue: 1
  year: 2013
  ident: 10.1016/j.conbuildmat.2021.122302_b0155
  article-title: Evaluation of noise robustness for local binary pattern descriptors in texture classification[J]
  publication-title: EURASIP J. Image Video Process.
  doi: 10.1186/1687-5281-2013-17
– volume: 2017
  year: 2017
  ident: 10.1016/j.conbuildmat.2021.122302_b0085
  article-title: Asphalt mixture segregation detection: digital image processing approach[J]
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2017/9493408
– year: 2000
  ident: 10.1016/j.conbuildmat.2021.122302_b0005
  article-title: Segregation in hot-mix asphalt pavements[M]
  publication-title: Transportation Research Board
– volume: 1891
  start-page: 8
  issue: 1
  year: 2004
  ident: 10.1016/j.conbuildmat.2021.122302_b0035
  article-title: Aggregate orientation and segregation in laboratory-compacted asphalt samples[J]
  publication-title: Transp. Res. Rec.
  doi: 10.3141/1891-02
– volume: 144
  start-page: 04018032
  issue: 3
  year: 2018
  ident: 10.1016/j.conbuildmat.2021.122302_b0050
  article-title: Application of laser macrotexture measurement for detection of segregation in asphalt pavements[J]
  publication-title: J. Transp. Eng. Part B: Pavements
  doi: 10.1061/JPEODX.0000050
– volume: 136
  start-page: 436
  year: 2017
  ident: 10.1016/j.conbuildmat.2021.122302_b0015
  article-title: Temperature segregation of warm mix asphalt pavement: laboratory and field evaluations[J]
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.12.195
– volume: 12
  start-page: 115
  issue: 1
  year: 2011
  ident: 10.1016/j.conbuildmat.2021.122302_b0125
  article-title: Analysis of particle orientation in compacted unbound aggregate[J]
  publication-title: Road Mater. Pavement Design
  doi: 10.1080/14680629.2011.9690355
– ident: 10.1016/j.conbuildmat.2021.122302_b0045
– ident: 10.1016/j.conbuildmat.2021.122302_b0115
– volume: 7
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.conbuildmat.2021.122302_b0030
  article-title: NDE methods for quality assurance of new pavement thickness[J]
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298430500501985
– volume: 3
  start-page: 1
  issue: 5
  year: 2013
  ident: 10.1016/j.conbuildmat.2021.122302_b0145
  article-title: Image texture feature extraction using GLCM approach[J]
  publication-title: Int. J. Sci. Res. Publ.
– volume: 68
  start-page: 587
  year: 2014
  ident: 10.1016/j.conbuildmat.2021.122302_b0060
  article-title: Research on the homogeneity of asphalt pavement quality using X-ray computed tomography (CT) and fractal theory[J]
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.06.046
– volume: 34
  start-page: 8
  issue: 4
  year: 2017
  ident: 10.1016/j.conbuildmat.2021.122302_b0090
  article-title: A method for real-time monitoring and evaluating asphalt mixture paving uniformity based on digital image processing technology[J]
  publication-title: J. Highway Transp. Res. Dev.
– volume: 152
  start-page: 715
  year: 2017
  ident: 10.1016/j.conbuildmat.2021.122302_b0120
  article-title: Accurate detection and evaluation method for aggregate distribution uniformity of asphalt pavement[J]
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.07.058
– volume: 224
  start-page: 622
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.122302_b0130
  article-title: A method to evaluate the segregation of compacted asphalt pavement by processing the images of paved asphalt mixture[J]
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.07.041
– ident: 10.1016/j.conbuildmat.2021.122302_b0105
– volume: 28
  start-page: 21
  issue: 1
  year: 2012
  ident: 10.1016/j.conbuildmat.2021.122302_b0080
  article-title: Image analysis for detecting aggregate gradation in asphalt mixture from planar images[J]
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2011.08.007
– volume: 76
  year: 2007
  ident: 10.1016/j.conbuildmat.2021.122302_b0110
  article-title: Application of digital image technology to measure hot mix asphalt homogeneity (with discussion)[J]
  publication-title: J. Assoc. Asphalt Paving Technol.
– volume: 10
  start-page: 133
  issue: 2
  year: 2018
  ident: 10.1016/j.conbuildmat.2021.122302_b0100
  article-title: Determining surface infiltration rate of permeable pavements with digital imaging[J]
  publication-title: Water
  doi: 10.3390/w10020133
– year: 2009
  ident: 10.1016/j.conbuildmat.2021.122302_b0075
  article-title: Digital image processing techniques for capturing and characterizing the microstructure of asphalt concretes[C]//
  publication-title: Transportation Research Board Meeting.
– ident: 10.1016/j.conbuildmat.2021.122302_b0040
– volume: 1
  start-page: 921
  issue: 8
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.122302_b0055
  article-title: Evaluation of a non-nuclear density gauge as an alternate to destructive coring for airport asphalt acceptance testing[J]
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-0958-6
– volume: 37
  start-page: 334
  issue: 2
  year: 2007
  ident: 10.1016/j.conbuildmat.2021.122302_b0095
  article-title: Application of digital image processing in evaluating homogeneity of asphalt mixture[J]
  publication-title: J. Jilin Univ. (Eng. Technol. Ed.)
– year: 2011
  ident: 10.1016/j.conbuildmat.2021.122302_b0065
  article-title: Wavelet-based characterisation of aggregate segregation in asphalt concrete X-ray computed tomography images[J]
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2011.561346
– start-page: 82
  year: 2011
  ident: 10.1016/j.conbuildmat.2021.122302_b0135
– volume: 24
  start-page: 971
  issue: 7
  year: 2002
  ident: 10.1016/j.conbuildmat.2021.122302_b0140
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017623
– volume: 30
  start-page: 04018027
  issue: 4
  year: 2018
  ident: 10.1016/j.conbuildmat.2021.122302_b0025
  article-title: Gradation segregation analysis of warm mix asphalt mixture[J]
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0002208
– volume: 150
  start-page: 107293
  year: 2021
  ident: 10.1016/j.conbuildmat.2021.122302_b0150
  article-title: Stationary subspaces-vector autoregressive with exogenous terms methodology for degradation trend estimation of rolling and slewing bearings
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2020.107293
– volume: 22
  start-page: 125
  issue: 1
  year: 2018
  ident: 10.1016/j.conbuildmat.2021.122302_b0020
  article-title: Evaluation of the effect of segregation on coarse aggregate structure and rutting potential of asphalt mixtures using Dominant Aggregate Size Range (DASR) approach[J]
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-017-1372-5
SSID ssj0006262
Score 2.5129912
Snippet •Asphalt paving segregation detection using image texture features.•Texture feature extraction algorithm combining uniform pattern LBP and GLCM.•Asphalt paving...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122302
SubjectTerms GLCM
Paving segregation detection
SVM
Texture feature extraction
Uniform pattern LBP
Title Asphalt pavement paving segregation detection method using more efficiency and quality texture features extract algorithm
URI https://dx.doi.org/10.1016/j.conbuildmat.2021.122302
Volume 277
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006262
  issn: 0950-0618
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1879-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006262
  issn: 0950-0618
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006262
  issn: 0950-0618
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006262
  issn: 0950-0618
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006262
  issn: 0950-0618
  databaseCode: AKRWK
  dateStart: 19870301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5DQfQg_sTfRPBat6RJm4GXIY7pcAd16K0kaTonWofrDrv4t_te2unEg4KnNg0PymvI-176ve8RchJHrumEMIETMgwEY1lgAHYEqXZpCvA0Mr6LwnUv6vTF1YN8qJHzWS0M0iqrvb_c0_1uXT2pV96sj4bD-i2AAwzAiuMRNURxrGAXMXYxOH3_onkAYOel3h42WGFqiRx_cbwg5TTYfRrAIaSKnJ0yiJbVCcuPGDUXd9prZLUCjLRVvtM6qbl8g6zMyQhukmlrPMLf3nSkvfq3v4EZOnaQTQ-872nqCs-6ymnZNJoi431AkWdLndeRwCJMqvOUloWWU4qkkAlMZ86rf44pjLGoiurnwevbsHh82SL99sXdeSeoWioENuSsCCIn07hhdFNKq2XsQmWZAtdIizrurGFt7CKeKRZalYnYMC2bURZnGcAoyW0YbpOF_DV3O4RqFwovbJvqhsh0wyjIrCIDGZLWSvJ4l6iZExNb6Y1j24vnZEYse0rm_J-g_5PS_7uEf5qOStGNvxidzb5U8m0FJRAcfjff-5_5PlnGEbLTePOALBRvE3cIcKUwR349HpHF1mW308Nr9-a--wEDHO-g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFH5kGWzdYewnS7tuGuzqJpIlW4FdQmnItiSXtdCbkWQ5zcickLiHXvq39z3ZaTJ26KA3y-KBeRJ635O_9z2Ar2ni-15KG3mp4khyXkQWYUeUG5_nCE8TG7ooTKbJ6EL-uFSXLTjd1sIQrbI5--szPZzWzZtu483uaj7v_kJwQAFYC7qixij-BJ5KJVLKwE5udzwPROyiFtyjDitcP4MvO5IX5pyW2k8jOsRcUfATjuGyuWL5J0jtBZ7hK3jZIEY2qD_qNbR8-QZe7OkIvoWbwWZF_73ZygT57_CAM2zjMZ2eBeez3FeBdlWyums0I8r7jBHRlvkgJEFVmMyUOasrLW8YsUKucbrwQf5zw3BMVVXMLGbL9by6-vMOLoZn56ejqOmpELlY8CpKvMrTnjV9pZxRqY-14xpdoxwJufOec6lPRKF57HQhU8uN6idFWhSIo5Rwcfwe2uWy9B-AGR_LoGybm54sTM9qTK0SiymSMRoXogN668TMNYLj1PdikW2ZZb-zPf9n5P-s9n8HxL3pqlbd-B-jb9uVyv7aQhlGh4fNDx9n_hmej84n42z8ffrzCA5ohqhqov8R2tX62h8jdqnsp7A37wAVBe-S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asphalt+pavement+paving+segregation+detection+method+using+more+efficiency+and+quality+texture+features+extract+algorithm&rft.jtitle=Construction+%26+building+materials&rft.au=Zhao%2C+Xun&rft.au=Xue%2C+Lige&rft.au=Xu%2C+Feiyun&rft.date=2021-03-29&rft.pub=Elsevier+Ltd&rft.issn=0950-0618&rft.eissn=1879-0526&rft.volume=277&rft_id=info:doi/10.1016%2Fj.conbuildmat.2021.122302&rft.externalDocID=S0950061821000623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon