Interpreting the relationship between properties of wood and pulping & paper via machine learning algorithms combined with SHAP analysis
The pulping ability and quality of paper high relay on the wood properties. However, the relationship between them are profound. Based on the extracting digital information from the anatomical, chemical, and physical properties of poplar wood, predictive models were developed for paper properties (t...
Saved in:
| Published in | Nordic pulp & paper research Vol. 40; no. 1; pp. 149 - 160 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
De Gruyter
26.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0283-2631 2000-0669 |
| DOI | 10.1515/npprj-2024-0066 |
Cover
| Abstract | The pulping ability and quality of paper high relay on the wood properties. However, the relationship between them are profound. Based on the extracting digital information from the anatomical, chemical, and physical properties of poplar wood, predictive models were developed for paper properties (tensile index, burst index and tear index) and pulping properties (Kappa number and pulp yield) using six algorithms, namely PLSR, ENR, RF, XGBoost, LightGBM, and CatBoost. The prediction results revealed that among the six algorithms, PLSR, ENR, and RF exhibited results of most prediction greater than 0.79. Notably, XGBoost, LightGBM, and CatBoost algorithms demonstrated superior predictive performance, with results greater than 0.9, except for the tear index. Furthermore, SHAP analysis suggested that the cellulose content is the primary factors to modulate pulping ability and the morphological features of cell wall shows apparent effects on mechanical properties of paper. It hopes the result will benefit to provide information to evaluate the value of poplar wood from different resources and then deliver instructions to genetic breeding program and forest management of poplar plantation. |
|---|---|
| AbstractList | The pulping ability and quality of paper high relay on the wood properties. However, the relationship between them are profound. Based on the extracting digital information from the anatomical, chemical, and physical properties of poplar wood, predictive models were developed for paper properties (tensile index, burst index and tear index) and pulping properties (Kappa number and pulp yield) using six algorithms, namely PLSR, ENR, RF, XGBoost, LightGBM, and CatBoost. The prediction results revealed that among the six algorithms, PLSR, ENR, and RF exhibited results of most prediction greater than 0.79. Notably, XGBoost, LightGBM, and CatBoost algorithms demonstrated superior predictive performance, with results greater than 0.9, except for the tear index. Furthermore, SHAP analysis suggested that the cellulose content is the primary factors to modulate pulping ability and the morphological features of cell wall shows apparent effects on mechanical properties of paper. It hopes the result will benefit to provide information to evaluate the value of poplar wood from different resources and then deliver instructions to genetic breeding program and forest management of poplar plantation. |
| Author | Liu, Xing Zhou, Liang Hong, Jie Zhang, Mingming |
| Author_xml | – sequence: 1 givenname: Xing surname: Liu fullname: Liu, Xing organization: Key Laboratory of National Forestry and Grassland Administration “Wood Quality Improvement & Efficient Utilization”, School of Materials and Chemistry, 12486 Anhui Agricultural University , Hefei 230036, China – sequence: 2 givenname: Jie surname: Hong fullname: Hong, Jie organization: Key Laboratory of National Forestry and Grassland Administration “Wood Quality Improvement & Efficient Utilization”, School of Materials and Chemistry, 12486 Anhui Agricultural University , Hefei 230036, China – sequence: 3 givenname: Mingming surname: Zhang fullname: Zhang, Mingming organization: Key Laboratory of National Forestry and Grassland Administration “Wood Quality Improvement & Efficient Utilization”, School of Materials and Chemistry, 12486 Anhui Agricultural University , Hefei 230036, China – sequence: 4 givenname: Liang surname: Zhou fullname: Zhou, Liang email: mcyjs1@ahau.edu.cn organization: Key Laboratory of National Forestry and Grassland Administration “Wood Quality Improvement & Efficient Utilization”, School of Materials and Chemistry, 12486 Anhui Agricultural University , Hefei 230036, China |
| BookMark | eNp1kLFOwzAQhi1UJNrCzOqJLdR2EjcZGKoKaKVKIAFz5DjnxlVqW3ZK1DfgsXGAlen-06_vdPpmaGKsAYRuKbmnOc0Xxjl_SBhhWUII5xdoygghSYzlBE0JK9KE8ZReoVkIB0LyZZ5mU_S1NT1456HXZo_7FrCHTvTamtBqh2voBwCDnbcOfK8hYKvwYG2DhWmwO3Vu5O6wE7HHn1rgo5CtNoA7EN6Mpej21uu-PQYs7bGOXYOHuOO3zeo1nhHdOehwjS6V6ALc_M05-nh6fF9vkt3L83a92iUyZbRPeCGXlGWikUUpRcOpKOiSsawum0zxjErFYmRSElWXivOmZlRKUJLwUi0hT-do8XtXehuCB1U5r4_CnytKqlFk9SOyGkVWo8hIPPwSg-iiqwb2_nSOoTrYk4_fh__IjFCalek34qeB2w |
| Cites_doi | 10.1007/978-3-031-12638-3_19 10.1007/s10236-020-01385-1 10.3390/f14071505 10.1088/1751-8121/ab375c 10.1016/j.artint.2022.103667 10.3390/s22249764 10.1016/j.jenvman.2021.113527 10.1016/j.saa.2019.117515 10.1007/s10109-005-0155-6 10.1038/s41592-020-0772-5 10.1016/j.ecolmodel.2018.11.013 10.1088/1742-6596/1879/3/032014 10.1007/BF00356927 10.1016/j.saa.2021.120652 10.1016/j.ejrs.2023.07.003 10.1007/s10965-023-03744-0 10.1080/00032719.2019.1700267 10.1007/s42835-022-01161-9 10.1177/1536867X20909688 10.1016/j.artint.2012.11.005 10.1007/s10462-020-09896-5 10.1016/j.knosys.2021.106993 10.3390/ma13020361 10.1109/JSTQE.2021.3083565 10.1109/ACCESS.2018.2887260 10.1097/JOM.0000000000001567 10.1038/s43586-022-00184-w 10.1080/02773810802607559 10.1007/s11053-023-10249-6 10.1038/s41746-018-0063-z 10.1016/S0169-7439(97)00043-9 10.1016/j.indcrop.2022.114884 10.1080/17457300.2018.1452336 10.1016/j.saa.2022.122272 10.1093/forestry/20.1.62 10.3390/f12050647 10.3390/agriculture13081477 10.1080/00031305.1974.10479056 10.1023/A:1010852229904 10.3390/f14071292 10.1007/BF00352303 10.1016/j.biortech.2022.126812 10.2166/hydro.2019.066 10.1007/s00216-020-02978-x 10.1007/s10462-010-9192-8 10.1007/s10462-023-10565-6 10.1145/3447755 10.1007/s00226-005-0020-2 10.1080/02773810701700786 10.1007/BF02844949 10.1007/BF00367214 10.3390/e23091123 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1515/npprj-2024-0066 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2000-0669 |
| EndPage | 160 |
| ExternalDocumentID | 10_1515_npprj_2024_0066 10_1515_npprj_2024_0066401149 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 32371802 |
| GroupedDBID | 0R~ 123 AAAEU AAGVJ AAKRG AALGR AAPJK AAXCG ABABW ABDBF ABFKT ABJNI ABPLS ABWLS ACDEB ACEFL ACPMA ACUND ADEQT ADNPR AECWL AEGVQ AEICA AENEX AERZL AFBDD AFYRI AGBEV AGWTP AHVWV AHXUK AIWOI AKXKS ALMA_UNASSIGNED_HOLDINGS ASYPN CS3 DSRVY EBS KDIRW P2P QD8 SJN SLJYH UK5 WTRAM AAYXX CITATION |
| ID | FETCH-LOGICAL-c321t-68c7124adc89cad61a817224b9d4f641cf2b9d2cc0fb9f66db21ccefc069f7e53 |
| ISSN | 0283-2631 |
| IngestDate | Wed Oct 01 06:43:41 EDT 2025 Sat Sep 06 17:00:36 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c321t-68c7124adc89cad61a817224b9d4f641cf2b9d2cc0fb9f66db21ccefc069f7e53 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1515_npprj_2024_0066 walterdegruyter_journals_10_1515_npprj_2024_0066401149 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-26 |
| PublicationDateYYYYMMDD | 2025-03-26 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationTitle | Nordic pulp & paper research |
| PublicationYear | 2025 |
| Publisher | De Gruyter |
| Publisher_xml | – name: De Gruyter |
| References | 2025022719582395572_j_npprj-2024-0066_ref_038 2025022719582395572_j_npprj-2024-0066_ref_039 2025022719582395572_j_npprj-2024-0066_ref_036 2025022719582395572_j_npprj-2024-0066_ref_037 2025022719582395572_j_npprj-2024-0066_ref_034 2025022719582395572_j_npprj-2024-0066_ref_035 2025022719582395572_j_npprj-2024-0066_ref_032 2025022719582395572_j_npprj-2024-0066_ref_033 2025022719582395572_j_npprj-2024-0066_ref_030 2025022719582395572_j_npprj-2024-0066_ref_031 2025022719582395572_j_npprj-2024-0066_ref_029 2025022719582395572_j_npprj-2024-0066_ref_027 2025022719582395572_j_npprj-2024-0066_ref_028 2025022719582395572_j_npprj-2024-0066_ref_025 2025022719582395572_j_npprj-2024-0066_ref_026 2025022719582395572_j_npprj-2024-0066_ref_023 2025022719582395572_j_npprj-2024-0066_ref_024 2025022719582395572_j_npprj-2024-0066_ref_021 2025022719582395572_j_npprj-2024-0066_ref_022 2025022719582395572_j_npprj-2024-0066_ref_020 2025022719582395572_j_npprj-2024-0066_ref_009 2025022719582395572_j_npprj-2024-0066_ref_018 2025022719582395572_j_npprj-2024-0066_ref_019 2025022719582395572_j_npprj-2024-0066_ref_016 2025022719582395572_j_npprj-2024-0066_ref_017 2025022719582395572_j_npprj-2024-0066_ref_014 2025022719582395572_j_npprj-2024-0066_ref_015 2025022719582395572_j_npprj-2024-0066_ref_012 2025022719582395572_j_npprj-2024-0066_ref_056 2025022719582395572_j_npprj-2024-0066_ref_013 2025022719582395572_j_npprj-2024-0066_ref_010 2025022719582395572_j_npprj-2024-0066_ref_054 2025022719582395572_j_npprj-2024-0066_ref_011 2025022719582395572_j_npprj-2024-0066_ref_055 2025022719582395572_j_npprj-2024-0066_ref_052 2025022719582395572_j_npprj-2024-0066_ref_053 2025022719582395572_j_npprj-2024-0066_ref_050 2025022719582395572_j_npprj-2024-0066_ref_051 2025022719582395572_j_npprj-2024-0066_ref_007 2025022719582395572_j_npprj-2024-0066_ref_008 2025022719582395572_j_npprj-2024-0066_ref_005 2025022719582395572_j_npprj-2024-0066_ref_049 2025022719582395572_j_npprj-2024-0066_ref_006 2025022719582395572_j_npprj-2024-0066_ref_003 2025022719582395572_j_npprj-2024-0066_ref_047 2025022719582395572_j_npprj-2024-0066_ref_004 2025022719582395572_j_npprj-2024-0066_ref_048 2025022719582395572_j_npprj-2024-0066_ref_001 2025022719582395572_j_npprj-2024-0066_ref_045 2025022719582395572_j_npprj-2024-0066_ref_002 2025022719582395572_j_npprj-2024-0066_ref_046 2025022719582395572_j_npprj-2024-0066_ref_043 2025022719582395572_j_npprj-2024-0066_ref_044 2025022719582395572_j_npprj-2024-0066_ref_041 2025022719582395572_j_npprj-2024-0066_ref_042 2025022719582395572_j_npprj-2024-0066_ref_040 |
| References_xml | – ident: 2025022719582395572_j_npprj-2024-0066_ref_038 doi: 10.1007/978-3-031-12638-3_19 – ident: 2025022719582395572_j_npprj-2024-0066_ref_042 – ident: 2025022719582395572_j_npprj-2024-0066_ref_035 doi: 10.1007/s10236-020-01385-1 – ident: 2025022719582395572_j_npprj-2024-0066_ref_027 doi: 10.3390/f14071505 – ident: 2025022719582395572_j_npprj-2024-0066_ref_043 doi: 10.1088/1751-8121/ab375c – ident: 2025022719582395572_j_npprj-2024-0066_ref_003 doi: 10.1016/j.artint.2022.103667 – ident: 2025022719582395572_j_npprj-2024-0066_ref_056 doi: 10.3390/s22249764 – ident: 2025022719582395572_j_npprj-2024-0066_ref_021 doi: 10.1016/j.jenvman.2021.113527 – ident: 2025022719582395572_j_npprj-2024-0066_ref_026 doi: 10.1016/j.saa.2019.117515 – ident: 2025022719582395572_j_npprj-2024-0066_ref_036 – ident: 2025022719582395572_j_npprj-2024-0066_ref_051 doi: 10.1007/s10109-005-0155-6 – ident: 2025022719582395572_j_npprj-2024-0066_ref_050 doi: 10.1038/s41592-020-0772-5 – ident: 2025022719582395572_j_npprj-2024-0066_ref_016 doi: 10.1016/j.ecolmodel.2018.11.013 – ident: 2025022719582395572_j_npprj-2024-0066_ref_029 doi: 10.1088/1742-6596/1879/3/032014 – ident: 2025022719582395572_j_npprj-2024-0066_ref_037 doi: 10.1007/BF00356927 – ident: 2025022719582395572_j_npprj-2024-0066_ref_008 doi: 10.1016/j.saa.2021.120652 – ident: 2025022719582395572_j_npprj-2024-0066_ref_028 doi: 10.1016/j.ejrs.2023.07.003 – ident: 2025022719582395572_j_npprj-2024-0066_ref_049 doi: 10.1007/s10965-023-03744-0 – ident: 2025022719582395572_j_npprj-2024-0066_ref_054 doi: 10.1080/00032719.2019.1700267 – ident: 2025022719582395572_j_npprj-2024-0066_ref_023 doi: 10.1007/s42835-022-01161-9 – ident: 2025022719582395572_j_npprj-2024-0066_ref_041 doi: 10.1177/1536867X20909688 – ident: 2025022719582395572_j_npprj-2024-0066_ref_053 doi: 10.1016/j.artint.2012.11.005 – ident: 2025022719582395572_j_npprj-2024-0066_ref_005 doi: 10.1007/s10462-020-09896-5 – ident: 2025022719582395572_j_npprj-2024-0066_ref_019 doi: 10.1016/j.knosys.2021.106993 – ident: 2025022719582395572_j_npprj-2024-0066_ref_007 doi: 10.3390/ma13020361 – ident: 2025022719582395572_j_npprj-2024-0066_ref_045 doi: 10.1109/JSTQE.2021.3083565 – ident: 2025022719582395572_j_npprj-2024-0066_ref_024 doi: 10.1109/ACCESS.2018.2887260 – ident: 2025022719582395572_j_npprj-2024-0066_ref_034 doi: 10.1097/JOM.0000000000001567 – ident: 2025022719582395572_j_npprj-2024-0066_ref_017 doi: 10.1038/s43586-022-00184-w – ident: 2025022719582395572_j_npprj-2024-0066_ref_040 doi: 10.1080/02773810802607559 – ident: 2025022719582395572_j_npprj-2024-0066_ref_018 doi: 10.1007/s11053-023-10249-6 – ident: 2025022719582395572_j_npprj-2024-0066_ref_039 doi: 10.1038/s41746-018-0063-z – ident: 2025022719582395572_j_npprj-2024-0066_ref_048 doi: 10.1016/S0169-7439(97)00043-9 – ident: 2025022719582395572_j_npprj-2024-0066_ref_013 doi: 10.1016/j.indcrop.2022.114884 – ident: 2025022719582395572_j_npprj-2024-0066_ref_002 doi: 10.1080/17457300.2018.1452336 – ident: 2025022719582395572_j_npprj-2024-0066_ref_011 – ident: 2025022719582395572_j_npprj-2024-0066_ref_052 doi: 10.1016/j.saa.2022.122272 – ident: 2025022719582395572_j_npprj-2024-0066_ref_009 doi: 10.1093/forestry/20.1.62 – ident: 2025022719582395572_j_npprj-2024-0066_ref_046 doi: 10.3390/f12050647 – ident: 2025022719582395572_j_npprj-2024-0066_ref_001 – ident: 2025022719582395572_j_npprj-2024-0066_ref_055 doi: 10.3390/agriculture13081477 – ident: 2025022719582395572_j_npprj-2024-0066_ref_004 doi: 10.1080/00031305.1974.10479056 – ident: 2025022719582395572_j_npprj-2024-0066_ref_012 doi: 10.1023/A:1010852229904 – ident: 2025022719582395572_j_npprj-2024-0066_ref_010 doi: 10.3390/f14071292 – ident: 2025022719582395572_j_npprj-2024-0066_ref_031 doi: 10.1007/BF00352303 – ident: 2025022719582395572_j_npprj-2024-0066_ref_014 doi: 10.1016/j.biortech.2022.126812 – ident: 2025022719582395572_j_npprj-2024-0066_ref_025 doi: 10.2166/hydro.2019.066 – ident: 2025022719582395572_j_npprj-2024-0066_ref_047 doi: 10.1007/s00216-020-02978-x – ident: 2025022719582395572_j_npprj-2024-0066_ref_020 doi: 10.1007/s10462-010-9192-8 – ident: 2025022719582395572_j_npprj-2024-0066_ref_022 doi: 10.1007/s10462-023-10565-6 – ident: 2025022719582395572_j_npprj-2024-0066_ref_015 doi: 10.1145/3447755 – ident: 2025022719582395572_j_npprj-2024-0066_ref_033 doi: 10.1007/s00226-005-0020-2 – ident: 2025022719582395572_j_npprj-2024-0066_ref_030 doi: 10.1080/02773810701700786 – ident: 2025022719582395572_j_npprj-2024-0066_ref_044 doi: 10.1007/BF02844949 – ident: 2025022719582395572_j_npprj-2024-0066_ref_032 doi: 10.1007/BF00367214 – ident: 2025022719582395572_j_npprj-2024-0066_ref_006 doi: 10.3390/e23091123 |
| SSID | ssj0057534 |
| Score | 2.376608 |
| Snippet | The pulping ability and quality of paper high relay on the wood properties. However, the relationship between them are profound. Based on the extracting... |
| SourceID | crossref walterdegruyter |
| SourceType | Index Database Publisher |
| StartPage | 149 |
| SubjectTerms | machine learning algorithms paper properties poplar pulping properties shapley additive exPlanations |
| Title | Interpreting the relationship between properties of wood and pulping & paper via machine learning algorithms combined with SHAP analysis |
| URI | https://www.degruyter.com/doi/10.1515/npprj-2024-0066 |
| Volume | 40 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAZK databaseName: De Gruyter Journals customDbUrl: eissn: 2000-0669 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057534 issn: 0283-2631 databaseCode: AGBEV dateStart: 19950120 isFulltext: true titleUrlDefault: https://www.degruyterbrill.com providerName: Walter de Gruyter |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOFU9RXvIBIaRVIPY6bnJcUGGFaIVEi1ZcIsext6nYh9IEBL-AH8ePYvzKpguVoJcospzRruezZ8b6Zgahp4LHhTZVPmXJi4hREUcF4ww2nki1pESXNsP78IhPT9i7WTIbDH71WEttU7yQP_6aV3IVrcIY6NVkyf6HZjuhMADvoF94gobh-U867hiDIeepDtS2LQrW2rCnXXlZw7Fx1QFM32F7T8BHawEzRl8rMVpYcqUK3STmI_Flvqqr5nRxbujnEEcHvvrH6eQDCHI1Tfo-7hHEs5W08nvCfVWh7vb5fdUa9c6C6bQUXk8Prjq0dffZhzBv0Zv7-XTVujsF4Qf91QVNDHfL5cc7_gnsg7r9HmjI7tADdwfmeMug7JjLfueupUs4tV2RpwvodEcwcSVQvTUnrlvBH4YisTU1lut1fQaQoiwyvtfGJgYewJap7AiMJnQCEbkVkBsBuRHATHiZXUM7FGxMPEQ7k7evDj4FzwA8Y8ty6P6jLzUFgl5u_ZILXtLuN8ucKNXcrVbPATq-iXZ95IInDoa30EAtb6MbvXqWd9DPPiAxABL3AYk9IPEGkHilsQEkBkBiD0j8DFvEYIAj9nDEAY54A0cc4IgNHLGBIw5wvItO3hwcv55GvtVHJMeUNBFP5T54mqKUaSZFyYlIwbOmrMhKpjkjUlN4pVLGusg0N03QiJRKy5hnel8l43touFwt1X2E9ZgxLmOSlolkXMVpOSaMMCppWcSMqT30PCxtvnYVXfJL1LmH-NbS5373n1_2iUPAg6t--BBd32yUR2jY1K16DF5vUzzxYPoN1MS0Vw |
| linkProvider | Walter de Gruyter |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROLQc6Fs8-pgDqnoJGztekxy3CLptASEVKm6R48fuFjYbhSyI_oL-7I7zWFHUXtpbosiWPZ7JzNifvwHYVjLMnGf51EZmgeAqDDIhBRmeip3mzJn6hvfRsRyeic_n_fMl2OvuwnhYpbGjcn5bNQypPTPTc79RtuAaIA_cy4ui_E4rzEXgnWZvXE0vH8AKZSuCrHNl8PHD_rfuh0wBSX247D1pwGXEWoafP_Tzm3Nau6kPrBejueN3Dh6D6UbcwE0uduZVtqN_3CNz_M8pPYG1Ni7FQaNIT2HJ5s9g9Q5b4XP4uQAo0itS4Ihlh6QbTwpsEV9Y-O390vO04syhh_Sgyg0WvswxtXuHhaLveD1ROK2RnBbb0hUjVJejWTmpxtMrpBlQ0m4N-p1i_DocnFA3DYHKCzg72D_dGwZtIYdAR5xVgYz1LsURyug40cpIpmKKm7jIEiOcFEw7To9c69BliZO-xBXT2jodysTt2n70EpbzWW7XAV1E-asOWWz6WkgbxiZiggmuuclCIewGvO9WMC0avo7U5zkk4bSWcOolnHoJb4C8t8Jpa79Xf2sifPqYbP5rw7fwcHh6dJgefjr-sgWPuC8lHHqdfAXLVTm3rym-qbI3rf7-As15_DE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkJwKG9RnnNAiEu6seN1k-MCXZZXVQmKeoucsb1doNkozYLgF_CzGSfZ1VLBBW6JIlv2zDgzY3_-BuCx0XHhA8snWV1ESpo4KpRWvPBM6kkKb9sb3u8O9PRIvT4eHW_chQmwSutm9fJ70zGkDu2ClmGjbM01wB54WFZV_Yk1LFUUnOawsv4ibLGz12oAW-OXz_Y_rv7HHI-0Z8vBkUZSJ6In-PlDN7_5pu1v7Xn1ejAbbmdyFWg14A5t8nl32RS79OMcl-P_zegabPdRKY47M7oOF1x5A65scBXehJ9reCK_IoeNWK9wdCfzCnu8F1Zhc78OLK248BgAPWhKi1UocsztnmBl-Dt-nRs8bXGcDvvCFTM0X2aLet6cnJ4hT4BTdmcx7BPj--n4kLvp6FNuwdFk_8PzadSXcYgokaKJdEp7HEUYS2lGxmphUo6apCoyq7xWgrzkR0kU-yLzOhS4EkTOU6wzv-dGyW0YlIvS3QH0CWevFIvUjkhpF6c2EUooSdIWsVJuB56uFJhXHVtHHrIcFnDeCjgPAs6DgHdAn1Nw3q_es781USF5zO7-a8NHcOnwxSR_--rgzT24LEMd4ThY5H0YNPXSPeDgpike9tb7CxvQ-uo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpreting+the+relationship+between+properties+of+wood+and+pulping+%26+paper+via+machine+learning+algorithms+combined+with+SHAP+analysis&rft.jtitle=Nordic+pulp+%26+paper+research&rft.au=Liu%2C+Xing&rft.au=Hong%2C+Jie&rft.au=Zhang%2C+Mingming&rft.au=Zhou%2C+Liang&rft.date=2025-03-26&rft.pub=De+Gruyter&rft.issn=0283-2631&rft.eissn=2000-0669&rft.volume=40&rft.issue=1&rft.spage=149&rft.epage=160&rft_id=info:doi/10.1515%2Fnpprj-2024-0066&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_npprj_2024_0066401149 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0283-2631&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0283-2631&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0283-2631&client=summon |