Interpreting the relationship between properties of wood and pulping & paper via machine learning algorithms combined with SHAP analysis

The pulping ability and quality of paper high relay on the wood properties. However, the relationship between them are profound. Based on the extracting digital information from the anatomical, chemical, and physical properties of poplar wood, predictive models were developed for paper properties (t...

Full description

Saved in:
Bibliographic Details
Published inNordic pulp & paper research Vol. 40; no. 1; pp. 149 - 160
Main Authors Liu, Xing, Hong, Jie, Zhang, Mingming, Zhou, Liang
Format Journal Article
LanguageEnglish
Published De Gruyter 26.03.2025
Subjects
Online AccessGet full text
ISSN0283-2631
2000-0669
DOI10.1515/npprj-2024-0066

Cover

Abstract The pulping ability and quality of paper high relay on the wood properties. However, the relationship between them are profound. Based on the extracting digital information from the anatomical, chemical, and physical properties of poplar wood, predictive models were developed for paper properties (tensile index, burst index and tear index) and pulping properties (Kappa number and pulp yield) using six algorithms, namely PLSR, ENR, RF, XGBoost, LightGBM, and CatBoost. The prediction results revealed that among the six algorithms, PLSR, ENR, and RF exhibited results of most prediction greater than 0.79. Notably, XGBoost, LightGBM, and CatBoost algorithms demonstrated superior predictive performance, with results greater than 0.9, except for the tear index. Furthermore, SHAP analysis suggested that the cellulose content is the primary factors to modulate pulping ability and the morphological features of cell wall shows apparent effects on mechanical properties of paper. It hopes the result will benefit to provide information to evaluate the value of poplar wood from different resources and then deliver instructions to genetic breeding program and forest management of poplar plantation.
AbstractList The pulping ability and quality of paper high relay on the wood properties. However, the relationship between them are profound. Based on the extracting digital information from the anatomical, chemical, and physical properties of poplar wood, predictive models were developed for paper properties (tensile index, burst index and tear index) and pulping properties (Kappa number and pulp yield) using six algorithms, namely PLSR, ENR, RF, XGBoost, LightGBM, and CatBoost. The prediction results revealed that among the six algorithms, PLSR, ENR, and RF exhibited results of most prediction greater than 0.79. Notably, XGBoost, LightGBM, and CatBoost algorithms demonstrated superior predictive performance, with results greater than 0.9, except for the tear index. Furthermore, SHAP analysis suggested that the cellulose content is the primary factors to modulate pulping ability and the morphological features of cell wall shows apparent effects on mechanical properties of paper. It hopes the result will benefit to provide information to evaluate the value of poplar wood from different resources and then deliver instructions to genetic breeding program and forest management of poplar plantation.
Author Liu, Xing
Zhou, Liang
Hong, Jie
Zhang, Mingming
Author_xml – sequence: 1
  givenname: Xing
  surname: Liu
  fullname: Liu, Xing
  organization: Key Laboratory of National Forestry and Grassland Administration “Wood Quality Improvement & Efficient Utilization”, School of Materials and Chemistry, 12486 Anhui Agricultural University , Hefei 230036, China
– sequence: 2
  givenname: Jie
  surname: Hong
  fullname: Hong, Jie
  organization: Key Laboratory of National Forestry and Grassland Administration “Wood Quality Improvement & Efficient Utilization”, School of Materials and Chemistry, 12486 Anhui Agricultural University , Hefei 230036, China
– sequence: 3
  givenname: Mingming
  surname: Zhang
  fullname: Zhang, Mingming
  organization: Key Laboratory of National Forestry and Grassland Administration “Wood Quality Improvement & Efficient Utilization”, School of Materials and Chemistry, 12486 Anhui Agricultural University , Hefei 230036, China
– sequence: 4
  givenname: Liang
  surname: Zhou
  fullname: Zhou, Liang
  email: mcyjs1@ahau.edu.cn
  organization: Key Laboratory of National Forestry and Grassland Administration “Wood Quality Improvement & Efficient Utilization”, School of Materials and Chemistry, 12486 Anhui Agricultural University , Hefei 230036, China
BookMark eNp1kLFOwzAQhi1UJNrCzOqJLdR2EjcZGKoKaKVKIAFz5DjnxlVqW3ZK1DfgsXGAlen-06_vdPpmaGKsAYRuKbmnOc0Xxjl_SBhhWUII5xdoygghSYzlBE0JK9KE8ZReoVkIB0LyZZ5mU_S1NT1456HXZo_7FrCHTvTamtBqh2voBwCDnbcOfK8hYKvwYG2DhWmwO3Vu5O6wE7HHn1rgo5CtNoA7EN6Mpej21uu-PQYs7bGOXYOHuOO3zeo1nhHdOehwjS6V6ALc_M05-nh6fF9vkt3L83a92iUyZbRPeCGXlGWikUUpRcOpKOiSsawum0zxjErFYmRSElWXivOmZlRKUJLwUi0hT-do8XtXehuCB1U5r4_CnytKqlFk9SOyGkVWo8hIPPwSg-iiqwb2_nSOoTrYk4_fh__IjFCalek34qeB2w
Cites_doi 10.1007/978-3-031-12638-3_19
10.1007/s10236-020-01385-1
10.3390/f14071505
10.1088/1751-8121/ab375c
10.1016/j.artint.2022.103667
10.3390/s22249764
10.1016/j.jenvman.2021.113527
10.1016/j.saa.2019.117515
10.1007/s10109-005-0155-6
10.1038/s41592-020-0772-5
10.1016/j.ecolmodel.2018.11.013
10.1088/1742-6596/1879/3/032014
10.1007/BF00356927
10.1016/j.saa.2021.120652
10.1016/j.ejrs.2023.07.003
10.1007/s10965-023-03744-0
10.1080/00032719.2019.1700267
10.1007/s42835-022-01161-9
10.1177/1536867X20909688
10.1016/j.artint.2012.11.005
10.1007/s10462-020-09896-5
10.1016/j.knosys.2021.106993
10.3390/ma13020361
10.1109/JSTQE.2021.3083565
10.1109/ACCESS.2018.2887260
10.1097/JOM.0000000000001567
10.1038/s43586-022-00184-w
10.1080/02773810802607559
10.1007/s11053-023-10249-6
10.1038/s41746-018-0063-z
10.1016/S0169-7439(97)00043-9
10.1016/j.indcrop.2022.114884
10.1080/17457300.2018.1452336
10.1016/j.saa.2022.122272
10.1093/forestry/20.1.62
10.3390/f12050647
10.3390/agriculture13081477
10.1080/00031305.1974.10479056
10.1023/A:1010852229904
10.3390/f14071292
10.1007/BF00352303
10.1016/j.biortech.2022.126812
10.2166/hydro.2019.066
10.1007/s00216-020-02978-x
10.1007/s10462-010-9192-8
10.1007/s10462-023-10565-6
10.1145/3447755
10.1007/s00226-005-0020-2
10.1080/02773810701700786
10.1007/BF02844949
10.1007/BF00367214
10.3390/e23091123
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1515/npprj-2024-0066
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2000-0669
EndPage 160
ExternalDocumentID 10_1515_npprj_2024_0066
10_1515_npprj_2024_0066401149
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 32371802
GroupedDBID 0R~
123
AAAEU
AAGVJ
AAKRG
AALGR
AAPJK
AAXCG
ABABW
ABDBF
ABFKT
ABJNI
ABPLS
ABWLS
ACDEB
ACEFL
ACPMA
ACUND
ADEQT
ADNPR
AECWL
AEGVQ
AEICA
AENEX
AERZL
AFBDD
AFYRI
AGBEV
AGWTP
AHVWV
AHXUK
AIWOI
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ASYPN
CS3
DSRVY
EBS
KDIRW
P2P
QD8
SJN
SLJYH
UK5
WTRAM
AAYXX
CITATION
ID FETCH-LOGICAL-c321t-68c7124adc89cad61a817224b9d4f641cf2b9d2cc0fb9f66db21ccefc069f7e53
ISSN 0283-2631
IngestDate Wed Oct 01 06:43:41 EDT 2025
Sat Sep 06 17:00:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-68c7124adc89cad61a817224b9d4f641cf2b9d2cc0fb9f66db21ccefc069f7e53
PageCount 12
ParticipantIDs crossref_primary_10_1515_npprj_2024_0066
walterdegruyter_journals_10_1515_npprj_2024_0066401149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-26
PublicationDateYYYYMMDD 2025-03-26
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-26
  day: 26
PublicationDecade 2020
PublicationTitle Nordic pulp & paper research
PublicationYear 2025
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References 2025022719582395572_j_npprj-2024-0066_ref_038
2025022719582395572_j_npprj-2024-0066_ref_039
2025022719582395572_j_npprj-2024-0066_ref_036
2025022719582395572_j_npprj-2024-0066_ref_037
2025022719582395572_j_npprj-2024-0066_ref_034
2025022719582395572_j_npprj-2024-0066_ref_035
2025022719582395572_j_npprj-2024-0066_ref_032
2025022719582395572_j_npprj-2024-0066_ref_033
2025022719582395572_j_npprj-2024-0066_ref_030
2025022719582395572_j_npprj-2024-0066_ref_031
2025022719582395572_j_npprj-2024-0066_ref_029
2025022719582395572_j_npprj-2024-0066_ref_027
2025022719582395572_j_npprj-2024-0066_ref_028
2025022719582395572_j_npprj-2024-0066_ref_025
2025022719582395572_j_npprj-2024-0066_ref_026
2025022719582395572_j_npprj-2024-0066_ref_023
2025022719582395572_j_npprj-2024-0066_ref_024
2025022719582395572_j_npprj-2024-0066_ref_021
2025022719582395572_j_npprj-2024-0066_ref_022
2025022719582395572_j_npprj-2024-0066_ref_020
2025022719582395572_j_npprj-2024-0066_ref_009
2025022719582395572_j_npprj-2024-0066_ref_018
2025022719582395572_j_npprj-2024-0066_ref_019
2025022719582395572_j_npprj-2024-0066_ref_016
2025022719582395572_j_npprj-2024-0066_ref_017
2025022719582395572_j_npprj-2024-0066_ref_014
2025022719582395572_j_npprj-2024-0066_ref_015
2025022719582395572_j_npprj-2024-0066_ref_012
2025022719582395572_j_npprj-2024-0066_ref_056
2025022719582395572_j_npprj-2024-0066_ref_013
2025022719582395572_j_npprj-2024-0066_ref_010
2025022719582395572_j_npprj-2024-0066_ref_054
2025022719582395572_j_npprj-2024-0066_ref_011
2025022719582395572_j_npprj-2024-0066_ref_055
2025022719582395572_j_npprj-2024-0066_ref_052
2025022719582395572_j_npprj-2024-0066_ref_053
2025022719582395572_j_npprj-2024-0066_ref_050
2025022719582395572_j_npprj-2024-0066_ref_051
2025022719582395572_j_npprj-2024-0066_ref_007
2025022719582395572_j_npprj-2024-0066_ref_008
2025022719582395572_j_npprj-2024-0066_ref_005
2025022719582395572_j_npprj-2024-0066_ref_049
2025022719582395572_j_npprj-2024-0066_ref_006
2025022719582395572_j_npprj-2024-0066_ref_003
2025022719582395572_j_npprj-2024-0066_ref_047
2025022719582395572_j_npprj-2024-0066_ref_004
2025022719582395572_j_npprj-2024-0066_ref_048
2025022719582395572_j_npprj-2024-0066_ref_001
2025022719582395572_j_npprj-2024-0066_ref_045
2025022719582395572_j_npprj-2024-0066_ref_002
2025022719582395572_j_npprj-2024-0066_ref_046
2025022719582395572_j_npprj-2024-0066_ref_043
2025022719582395572_j_npprj-2024-0066_ref_044
2025022719582395572_j_npprj-2024-0066_ref_041
2025022719582395572_j_npprj-2024-0066_ref_042
2025022719582395572_j_npprj-2024-0066_ref_040
References_xml – ident: 2025022719582395572_j_npprj-2024-0066_ref_038
  doi: 10.1007/978-3-031-12638-3_19
– ident: 2025022719582395572_j_npprj-2024-0066_ref_042
– ident: 2025022719582395572_j_npprj-2024-0066_ref_035
  doi: 10.1007/s10236-020-01385-1
– ident: 2025022719582395572_j_npprj-2024-0066_ref_027
  doi: 10.3390/f14071505
– ident: 2025022719582395572_j_npprj-2024-0066_ref_043
  doi: 10.1088/1751-8121/ab375c
– ident: 2025022719582395572_j_npprj-2024-0066_ref_003
  doi: 10.1016/j.artint.2022.103667
– ident: 2025022719582395572_j_npprj-2024-0066_ref_056
  doi: 10.3390/s22249764
– ident: 2025022719582395572_j_npprj-2024-0066_ref_021
  doi: 10.1016/j.jenvman.2021.113527
– ident: 2025022719582395572_j_npprj-2024-0066_ref_026
  doi: 10.1016/j.saa.2019.117515
– ident: 2025022719582395572_j_npprj-2024-0066_ref_036
– ident: 2025022719582395572_j_npprj-2024-0066_ref_051
  doi: 10.1007/s10109-005-0155-6
– ident: 2025022719582395572_j_npprj-2024-0066_ref_050
  doi: 10.1038/s41592-020-0772-5
– ident: 2025022719582395572_j_npprj-2024-0066_ref_016
  doi: 10.1016/j.ecolmodel.2018.11.013
– ident: 2025022719582395572_j_npprj-2024-0066_ref_029
  doi: 10.1088/1742-6596/1879/3/032014
– ident: 2025022719582395572_j_npprj-2024-0066_ref_037
  doi: 10.1007/BF00356927
– ident: 2025022719582395572_j_npprj-2024-0066_ref_008
  doi: 10.1016/j.saa.2021.120652
– ident: 2025022719582395572_j_npprj-2024-0066_ref_028
  doi: 10.1016/j.ejrs.2023.07.003
– ident: 2025022719582395572_j_npprj-2024-0066_ref_049
  doi: 10.1007/s10965-023-03744-0
– ident: 2025022719582395572_j_npprj-2024-0066_ref_054
  doi: 10.1080/00032719.2019.1700267
– ident: 2025022719582395572_j_npprj-2024-0066_ref_023
  doi: 10.1007/s42835-022-01161-9
– ident: 2025022719582395572_j_npprj-2024-0066_ref_041
  doi: 10.1177/1536867X20909688
– ident: 2025022719582395572_j_npprj-2024-0066_ref_053
  doi: 10.1016/j.artint.2012.11.005
– ident: 2025022719582395572_j_npprj-2024-0066_ref_005
  doi: 10.1007/s10462-020-09896-5
– ident: 2025022719582395572_j_npprj-2024-0066_ref_019
  doi: 10.1016/j.knosys.2021.106993
– ident: 2025022719582395572_j_npprj-2024-0066_ref_007
  doi: 10.3390/ma13020361
– ident: 2025022719582395572_j_npprj-2024-0066_ref_045
  doi: 10.1109/JSTQE.2021.3083565
– ident: 2025022719582395572_j_npprj-2024-0066_ref_024
  doi: 10.1109/ACCESS.2018.2887260
– ident: 2025022719582395572_j_npprj-2024-0066_ref_034
  doi: 10.1097/JOM.0000000000001567
– ident: 2025022719582395572_j_npprj-2024-0066_ref_017
  doi: 10.1038/s43586-022-00184-w
– ident: 2025022719582395572_j_npprj-2024-0066_ref_040
  doi: 10.1080/02773810802607559
– ident: 2025022719582395572_j_npprj-2024-0066_ref_018
  doi: 10.1007/s11053-023-10249-6
– ident: 2025022719582395572_j_npprj-2024-0066_ref_039
  doi: 10.1038/s41746-018-0063-z
– ident: 2025022719582395572_j_npprj-2024-0066_ref_048
  doi: 10.1016/S0169-7439(97)00043-9
– ident: 2025022719582395572_j_npprj-2024-0066_ref_013
  doi: 10.1016/j.indcrop.2022.114884
– ident: 2025022719582395572_j_npprj-2024-0066_ref_002
  doi: 10.1080/17457300.2018.1452336
– ident: 2025022719582395572_j_npprj-2024-0066_ref_011
– ident: 2025022719582395572_j_npprj-2024-0066_ref_052
  doi: 10.1016/j.saa.2022.122272
– ident: 2025022719582395572_j_npprj-2024-0066_ref_009
  doi: 10.1093/forestry/20.1.62
– ident: 2025022719582395572_j_npprj-2024-0066_ref_046
  doi: 10.3390/f12050647
– ident: 2025022719582395572_j_npprj-2024-0066_ref_001
– ident: 2025022719582395572_j_npprj-2024-0066_ref_055
  doi: 10.3390/agriculture13081477
– ident: 2025022719582395572_j_npprj-2024-0066_ref_004
  doi: 10.1080/00031305.1974.10479056
– ident: 2025022719582395572_j_npprj-2024-0066_ref_012
  doi: 10.1023/A:1010852229904
– ident: 2025022719582395572_j_npprj-2024-0066_ref_010
  doi: 10.3390/f14071292
– ident: 2025022719582395572_j_npprj-2024-0066_ref_031
  doi: 10.1007/BF00352303
– ident: 2025022719582395572_j_npprj-2024-0066_ref_014
  doi: 10.1016/j.biortech.2022.126812
– ident: 2025022719582395572_j_npprj-2024-0066_ref_025
  doi: 10.2166/hydro.2019.066
– ident: 2025022719582395572_j_npprj-2024-0066_ref_047
  doi: 10.1007/s00216-020-02978-x
– ident: 2025022719582395572_j_npprj-2024-0066_ref_020
  doi: 10.1007/s10462-010-9192-8
– ident: 2025022719582395572_j_npprj-2024-0066_ref_022
  doi: 10.1007/s10462-023-10565-6
– ident: 2025022719582395572_j_npprj-2024-0066_ref_015
  doi: 10.1145/3447755
– ident: 2025022719582395572_j_npprj-2024-0066_ref_033
  doi: 10.1007/s00226-005-0020-2
– ident: 2025022719582395572_j_npprj-2024-0066_ref_030
  doi: 10.1080/02773810701700786
– ident: 2025022719582395572_j_npprj-2024-0066_ref_044
  doi: 10.1007/BF02844949
– ident: 2025022719582395572_j_npprj-2024-0066_ref_032
  doi: 10.1007/BF00367214
– ident: 2025022719582395572_j_npprj-2024-0066_ref_006
  doi: 10.3390/e23091123
SSID ssj0057534
Score 2.376608
Snippet The pulping ability and quality of paper high relay on the wood properties. However, the relationship between them are profound. Based on the extracting...
SourceID crossref
walterdegruyter
SourceType Index Database
Publisher
StartPage 149
SubjectTerms machine learning algorithms
paper properties
poplar
pulping properties
shapley additive exPlanations
Title Interpreting the relationship between properties of wood and pulping & paper via machine learning algorithms combined with SHAP analysis
URI https://www.degruyter.com/doi/10.1515/npprj-2024-0066
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAZK
  databaseName: De Gruyter Journals
  customDbUrl:
  eissn: 2000-0669
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057534
  issn: 0283-2631
  databaseCode: AGBEV
  dateStart: 19950120
  isFulltext: true
  titleUrlDefault: https://www.degruyterbrill.com
  providerName: Walter de Gruyter
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOFU9RXvIBIaRVIPY6bnJcUGGFaIVEi1ZcIsext6nYh9IEBL-AH8ePYvzKpguVoJcospzRruezZ8b6Zgahp4LHhTZVPmXJi4hREUcF4ww2nki1pESXNsP78IhPT9i7WTIbDH71WEttU7yQP_6aV3IVrcIY6NVkyf6HZjuhMADvoF94gobh-U867hiDIeepDtS2LQrW2rCnXXlZw7Fx1QFM32F7T8BHawEzRl8rMVpYcqUK3STmI_Flvqqr5nRxbujnEEcHvvrH6eQDCHI1Tfo-7hHEs5W08nvCfVWh7vb5fdUa9c6C6bQUXk8Prjq0dffZhzBv0Zv7-XTVujsF4Qf91QVNDHfL5cc7_gnsg7r9HmjI7tADdwfmeMug7JjLfueupUs4tV2RpwvodEcwcSVQvTUnrlvBH4YisTU1lut1fQaQoiwyvtfGJgYewJap7AiMJnQCEbkVkBsBuRHATHiZXUM7FGxMPEQ7k7evDj4FzwA8Y8ty6P6jLzUFgl5u_ZILXtLuN8ucKNXcrVbPATq-iXZ95IInDoa30EAtb6MbvXqWd9DPPiAxABL3AYk9IPEGkHilsQEkBkBiD0j8DFvEYIAj9nDEAY54A0cc4IgNHLGBIw5wvItO3hwcv55GvtVHJMeUNBFP5T54mqKUaSZFyYlIwbOmrMhKpjkjUlN4pVLGusg0N03QiJRKy5hnel8l43touFwt1X2E9ZgxLmOSlolkXMVpOSaMMCppWcSMqT30PCxtvnYVXfJL1LmH-NbS5373n1_2iUPAg6t--BBd32yUR2jY1K16DF5vUzzxYPoN1MS0Vw
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROLQc6Fs8-pgDqnoJGztekxy3CLptASEVKm6R48fuFjYbhSyI_oL-7I7zWFHUXtpbosiWPZ7JzNifvwHYVjLMnGf51EZmgeAqDDIhBRmeip3mzJn6hvfRsRyeic_n_fMl2OvuwnhYpbGjcn5bNQypPTPTc79RtuAaIA_cy4ui_E4rzEXgnWZvXE0vH8AKZSuCrHNl8PHD_rfuh0wBSX247D1pwGXEWoafP_Tzm3Nau6kPrBejueN3Dh6D6UbcwE0uduZVtqN_3CNz_M8pPYG1Ni7FQaNIT2HJ5s9g9Q5b4XP4uQAo0itS4Ihlh6QbTwpsEV9Y-O390vO04syhh_Sgyg0WvswxtXuHhaLveD1ROK2RnBbb0hUjVJejWTmpxtMrpBlQ0m4N-p1i_DocnFA3DYHKCzg72D_dGwZtIYdAR5xVgYz1LsURyug40cpIpmKKm7jIEiOcFEw7To9c69BliZO-xBXT2jodysTt2n70EpbzWW7XAV1E-asOWWz6WkgbxiZiggmuuclCIewGvO9WMC0avo7U5zkk4bSWcOolnHoJb4C8t8Jpa79Xf2sifPqYbP5rw7fwcHh6dJgefjr-sgWPuC8lHHqdfAXLVTm3rym-qbI3rf7-As15_DE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkJwKG9RnnNAiEu6seN1k-MCXZZXVQmKeoucsb1doNkozYLgF_CzGSfZ1VLBBW6JIlv2zDgzY3_-BuCx0XHhA8snWV1ESpo4KpRWvPBM6kkKb9sb3u8O9PRIvT4eHW_chQmwSutm9fJ70zGkDu2ClmGjbM01wB54WFZV_Yk1LFUUnOawsv4ibLGz12oAW-OXz_Y_rv7HHI-0Z8vBkUZSJ6In-PlDN7_5pu1v7Xn1ejAbbmdyFWg14A5t8nl32RS79OMcl-P_zegabPdRKY47M7oOF1x5A65scBXehJ9reCK_IoeNWK9wdCfzCnu8F1Zhc78OLK248BgAPWhKi1UocsztnmBl-Dt-nRs8bXGcDvvCFTM0X2aLet6cnJ4hT4BTdmcx7BPj--n4kLvp6FNuwdFk_8PzadSXcYgokaKJdEp7HEUYS2lGxmphUo6apCoyq7xWgrzkR0kU-yLzOhS4EkTOU6wzv-dGyW0YlIvS3QH0CWevFIvUjkhpF6c2EUooSdIWsVJuB56uFJhXHVtHHrIcFnDeCjgPAs6DgHdAn1Nw3q_es781USF5zO7-a8NHcOnwxSR_--rgzT24LEMd4ThY5H0YNPXSPeDgpike9tb7CxvQ-uo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpreting+the+relationship+between+properties+of+wood+and+pulping+%26+paper+via+machine+learning+algorithms+combined+with+SHAP+analysis&rft.jtitle=Nordic+pulp+%26+paper+research&rft.au=Liu%2C+Xing&rft.au=Hong%2C+Jie&rft.au=Zhang%2C+Mingming&rft.au=Zhou%2C+Liang&rft.date=2025-03-26&rft.pub=De+Gruyter&rft.issn=0283-2631&rft.eissn=2000-0669&rft.volume=40&rft.issue=1&rft.spage=149&rft.epage=160&rft_id=info:doi/10.1515%2Fnpprj-2024-0066&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_npprj_2024_0066401149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0283-2631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0283-2631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0283-2631&client=summon