Sustainable EDM production of micro-textured die-surfaces: Modeling and optimizing the process using machine learning techniques
[Display omitted] •Parametric correlation of responses using RSM and ANN modeling in EDM of H13 alloy is studied.•Formulation of a combined objective to minimize surface roughness and overcut is done.•The effectiveness of metaheuristic algorithms (PSO, TLBO) over desirability function-based methods...
Saved in:
| Published in | Measurement : journal of the International Measurement Confederation Vol. 242; p. 115775 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.01.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0263-2241 |
| DOI | 10.1016/j.measurement.2024.115775 |
Cover
| Abstract | [Display omitted]
•Parametric correlation of responses using RSM and ANN modeling in EDM of H13 alloy is studied.•Formulation of a combined objective to minimize surface roughness and overcut is done.•The effectiveness of metaheuristic algorithms (PSO, TLBO) over desirability function-based methods is emphasized.•Sustainability in EDM for fabrication of large-area micro-textured surfaces is explored.
The present research explores the role of die-sinking EDM parameters, such as peak current, pulse duration, and gap voltage, and their proper selection for the cost-effective fabrication of negative micro-pillar-textured surfaces using a die-material of H13 steel alloy. The developed artificial neural networks (ANN) models of surface roughness and overcut outperform the response surface methodology models in predicting responses as higher ‘R2 values’ and lower ‘mean squared error’ with ANN models. A lower peak current of 2 A, lower pulse duration of 55.46 µs, and intermediate gap voltage of 37.83 V is selected from metaheuristic optimization approaches such as teaching–learning-based optimization and particle swarm optimization that are efficient and comparable with the desirability function-based approach while finding optimum parameter values. Further, sustainable fabrication of micro-textured H13 die surfaces is carried out on large areas using selected optimized parameters with a form tool electrode. The negative micro-pillar pattern surface demonstrates an average overcut of ∼ 40 ± 15 µm in comparison to the dimensions of the form tool. This research emphasized the sustainability of the EDM process by utilizing reusable dielectric fluid, prioritizing optimal parameters for high-quality fabrication using low electrical-energy utilization, and enabling large-scale production using a form tool. |
|---|---|
| AbstractList | [Display omitted]
•Parametric correlation of responses using RSM and ANN modeling in EDM of H13 alloy is studied.•Formulation of a combined objective to minimize surface roughness and overcut is done.•The effectiveness of metaheuristic algorithms (PSO, TLBO) over desirability function-based methods is emphasized.•Sustainability in EDM for fabrication of large-area micro-textured surfaces is explored.
The present research explores the role of die-sinking EDM parameters, such as peak current, pulse duration, and gap voltage, and their proper selection for the cost-effective fabrication of negative micro-pillar-textured surfaces using a die-material of H13 steel alloy. The developed artificial neural networks (ANN) models of surface roughness and overcut outperform the response surface methodology models in predicting responses as higher ‘R2 values’ and lower ‘mean squared error’ with ANN models. A lower peak current of 2 A, lower pulse duration of 55.46 µs, and intermediate gap voltage of 37.83 V is selected from metaheuristic optimization approaches such as teaching–learning-based optimization and particle swarm optimization that are efficient and comparable with the desirability function-based approach while finding optimum parameter values. Further, sustainable fabrication of micro-textured H13 die surfaces is carried out on large areas using selected optimized parameters with a form tool electrode. The negative micro-pillar pattern surface demonstrates an average overcut of ∼ 40 ± 15 µm in comparison to the dimensions of the form tool. This research emphasized the sustainability of the EDM process by utilizing reusable dielectric fluid, prioritizing optimal parameters for high-quality fabrication using low electrical-energy utilization, and enabling large-scale production using a form tool. |
| ArticleNumber | 115775 |
| Author | Mahanti, Ranajit Das, Manas |
| Author_xml | – sequence: 1 givenname: Ranajit orcidid: 0000-0002-5307-1211 surname: Mahanti fullname: Mahanti, Ranajit – sequence: 2 givenname: Manas orcidid: 0000-0001-8185-9367 surname: Das fullname: Das, Manas email: manasdas@iitg.ernet.in |
| BookMark | eNqNkM1OwzAQhH0oEm3hHcwDpNhxfhouCJXyI7XiAJwtZ72hrhKn2A4CTjw6CeWAOPW02tXMt5qZkJFtLRJyxtmMM56db2cNKt85bNCGWcziZMZ5mufpiIxZnIkojhN-TCbebxljmSiyMfl67HxQxqqyRrq8XtOda3UHwbSWthVtDLg2Cvgeeqym2mDUP6gUoL-g61ZjbewLVVbTdhdMYz6HNWxwwPQaTzs_XBoFG2OR1qic_ZEgbKx57dCfkKNK1R5Pf-eUPN8snxZ30erh9n5xtYpAxDxEaSFwXmVVCUyJXM1zkTAQaZLESmVZJUqWpyIpQaPKQWuIuU44FAXkZZqKrBRTcrnn9oG8d1hJMEENOYNTppacyaFEuZV_SpRDiXJfYk8o_hF2zjTKfRzkXey92Ed8M-ikB4MWUBuHEKRuzQGUb_C6nMI |
| CitedBy_id | crossref_primary_10_3390_mi15121469 crossref_primary_10_1080_10426914_2025_2476452 crossref_primary_10_3390_sym17020229 |
| Cites_doi | 10.1016/j.heliyon.2019.e01813 10.1201/9780429160011-4 10.1016/j.precisioneng.2016.01.012 10.1007/s00170-018-2150-3 10.3390/ma14040928 10.1007/s12206-012-0411-x 10.1016/j.jmatprotec.2003.11.046 10.1177/0954405413479505 10.1590/S1678-58782007000400004 10.1016/j.jmapro.2019.04.011 10.1088/2053-1591/ab3d73 10.1016/j.chemolab.2011.04.004 10.1080/10426914.2017.1292037 10.1177/0954408915593875 10.1007/s40430-021-03291-z 10.1016/j.cad.2010.12.015 10.1080/10426914.2022.2030876 10.1007/s10845-009-0320-8 10.1016/j.jmapro.2019.03.002 10.1007/s00170-015-7880-x 10.1016/j.jmrt.2023.03.005 10.1016/j.jmapro.2022.04.046 10.1016/j.triboint.2023.108527 10.1109/ICNN.1995.488968 10.1007/s00170-007-1084-y 10.1088/1757-899X/1057/1/012061 10.3390/technologies6020054 10.1007/s40430-019-2149-1 10.1016/j.jmatprotec.2017.12.016 10.1007/s00170-010-2531-8 10.1016/j.jestch.2015.03.009 10.1016/j.jmapro.2021.10.035 10.1016/j.jclepro.2023.138388 10.1080/00224065.1980.11980968 10.1080/10426914.2011.654151 10.1243/09544054JEM1188 10.1186/s40759-017-0022-4 10.1108/ILT-06-2021-0233 10.1016/j.jestch.2016.07.003 10.1080/10426914.2019.1566959 10.1016/S0731-7085(99)00272-1 10.1016/B978-0-12-818232-1.00011-4 10.1016/j.jallcom.2016.08.110 10.1007/s00170-009-2298-y 10.1007/s00170-007-1162-1 10.1007/s00170-023-11603-x 10.1080/10426914.2022.2149788 10.1177/09544062221140735 10.1007/s00170-019-03453-3 10.1080/02670844.2022.2089801 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.measurement.2024.115775 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| ExternalDocumentID | 10_1016_j_measurement_2024_115775 S0263224124016609 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c321t-593e8f6fbc0a37a87340c35442aa66f3b07534bcdea7cddc21d41c99c7b5536b3 |
| IEDL.DBID | .~1 |
| ISSN | 0263-2241 |
| IngestDate | Thu Apr 24 23:00:53 EDT 2025 Wed Oct 01 01:37:53 EDT 2025 Sat Dec 21 16:01:12 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Optimization-algorithms Micro-pillar-textured die surface Sustainable production Electrical discharge machining Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c321t-593e8f6fbc0a37a87340c35442aa66f3b07534bcdea7cddc21d41c99c7b5536b3 |
| ORCID | 0000-0002-5307-1211 0000-0001-8185-9367 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_measurement_2024_115775 crossref_primary_10_1016_j_measurement_2024_115775 elsevier_sciencedirect_doi_10_1016_j_measurement_2024_115775 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2025 2025-01-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Measurement : journal of the International Measurement Confederation |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ming, Xie, Ma, Du, Zhang, Cao, Zhang (b0140) 2021; 72 Gopalakannan, Senthilvelan (b0160) 2012; 11 Gong, Sun (b0165) 2022; 79 J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. IEEE Int. Conf. Neural Netw., Washington, USA, 1995: pp. 1942–1948. 10.4018/ijmfmp.2015010104. Bahgat, Shash, Abd-Rabou, El-Mahallawi (b0185) 2019; 5 Senthilkumar, Muralikannan (b0130) 2019; 6 Bharti, Maheshwari, Sharma (b0075) 2012; 26 Kurnia, Tan, Yeo, Tan (b0290) 2009; 223 Tiwari, Dvivedi, Kumar (b0025) 2023; 185 Torres, Luis, Puertas (b0055) 2017; 690 R. Mahanti, M. Das, Micro-EDM : Modeling and Optimization, in: V.K. Jain (Ed.), Adv. Mach. Sci., CRC Press, Boca Raton, 2022: pp. 79–116. 10.1201/9780429160011-4. Gupta, Mia, Pruncu, Kapłonek, Nadolny, Patra, Mikolajczyk, Pimenov, Sarikaya, Sharma (b0210) 2019; 102 A.K. Jana, R. Ranjith Kumar, S.C. Mohanty, K. Mangapathi Rao, V.G. Shanker, A.Y. Reddy, Parametric Optimization of Die Sinking EDM in AISI D2 Steel considering Canola oil as Dielectric using TOPSIS and GRA, IOP Conf. Ser. Mater. Sci. Eng. 1057 (2021) 012061. 10.1088/1757-899x/1057/1/012061. Debnath, Patowari (b0285) 2019; 34 Dang (b0085) 2018; 33 A. Kumar, R. Mahanti, M. Das, Investigation of electropolishing performance on surface residual stress and morphology of electrical discharge machined maraging steel, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 238 (2022). 10.1177/09544062221140735. Kibria, Sarkar, Pradhan, Bhattacharyya (b0170) 2010; 48 Agatonovic-Kustrin, Beresford (b0220) 2000; 22 Pradhan, Biswas (b0080) 2010; 50 Torres, Puertas, Luis (b0045) 2016; 84 Singh, Maheshwari, Pandey (b0265) 2004; 149 M. Ratmond H., M. Douglas C., A.-C. Christine M., Response surface methodology: Process and product optimization using designed experiments, 4th ed., John Wiley & Sons, New Jersey, 2016. Kumar, Dhingra, Kumar (b0105) 2017; 3 Kolli, Kumar (b0115) 2015; 18 D.C. Montgomery, Design and analysis of experiments, 9th ed., John Wiley and Sons Inc, Arisona, State University, 2017. Faisal, Kumar (b0245) 2018; 6 Chekuri, Eshwar, Kotteda, Srikanth Varma (b0180) 2022; 50 Kumar, Maheshwari, Sharma, Beri (b0110) 2012; 27 Chen, Hu, Li, Cao, Zhao, Ming (b0135) 2023; 13 Pellicer, Ciurana, Delgado (b0190) 2011; 22 S. Gopalakannan, T. Senthilvelan, A parametric study of electrical discharge machining process parameters on machining of cast Al/B4C metal matrix nanocomposites, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 227 (2013) 993–1004. 10.1177/0954405413479505. (accessed July 8, 2023). Hasan, Saleh, Sophian, Rahman, Huang, Mohamed Ali (b0225) 2023; 127 Kumar, Mahanti, Das (b0030) 2022; 38 Çaydaş, Hasçalik (b0195) 2008; 38 DEF 92 (EDM fluid), (2021). Mohanty, Mahapatra, Singh (b0090) 2017; 20 Tanjilul, Ahmed, Kumar, Rahman (b0270) 2018; 255 Derringer, Suich (b0235) 1980; 12 Barenji, Pourasl, Khojastehnezhad (b0100) 2016; 45 Straka, Hašová (b0040) 2018; 97 Ogbezode, Ajide (b0150) 2021; 43 Amorim, Weingaertner (b0050) 2007; 29 Singh, Tripathi, Ramkumar (b0020) 2022; 38 Guenther, Kahlert, Vollmer, Niendorf, Greiner (b0155) 2021; 14 Ranjan, Hiremath (b0005) 2019; 43 J.C. Outeiro, Residual stresses in machining, in: Mech. Mater. Mod. Manuf. Methods Process. Tech., Elsevier, 2020: pp. 297–360. 10.1016/B978-0-12-818232-1.00011-4. M.K. Dikshit, S. Singh, V.K. Pathak, K.K. Saxena, M.K. Agrawal, V. Malik, K. hazim Salem, M.I. Khan, Surface characteristics optimization of biocompatible Ti6Al4V with RCCD and NSGA II using die sinking EDM, J. Mater. Res. Technol. 24 (2023) 223–235. 10.1016/j.jmrt.2023.03.005. A. Saffaran, M. Azadi Moghaddam, F. Kolahan, Optimization of backpropagation neural network-based models in EDM process using particle swarm optimization and simulated annealing algorithms, J. Brazilian Soc. Mech. Sci. Eng. 42 (2020) 1–14. 10.1007/s40430-019-2149-1. S. Kumar, R. Singh, A. Batish, T.P. Singh, Modeling the tool wear rate in powder mixed electro-discharge machining of titanium alloys using dimensional analysis of cryogenically treated electrodes and workpiece, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 231 (2015) 271–282. 10.1177/0954408915593875. B. George EP, D. Norman R, Response surfaces, mixtures, and ridge analyses, 2nd edn, John Wiley & Sons, New Jersey, 2007. 10.1111/J.1751-5823.2007.00015_17.X. Costa, Lourenço, Pereira (b0230) 2011; 107 Sahu, George, Kuriachen, Mathew, Dhanish (b0015) 2022; 74 Kuppan, Rajadurai, Narayanan (b0095) 2008; 38 Deshmukh, Goswami (b0255) 2022; 37 Kliuev, Florio, Akbari, Wegener (b0260) 2019; 40 Ishfaq, Sana, Ashraf, Dua (b0280) 2023; 421 Mishra, Routara (b0275) 2020; 159 Rao, Savsani, Vakharia (b0250) 2011; 43 Dang (10.1016/j.measurement.2024.115775_b0085) 2018; 33 Chekuri (10.1016/j.measurement.2024.115775_b0180) 2022; 50 10.1016/j.measurement.2024.115775_b0145 Torres (10.1016/j.measurement.2024.115775_b0045) 2016; 84 Kolli (10.1016/j.measurement.2024.115775_b0115) 2015; 18 Straka (10.1016/j.measurement.2024.115775_b0040) 2018; 97 Kurnia (10.1016/j.measurement.2024.115775_b0290) 2009; 223 Costa (10.1016/j.measurement.2024.115775_b0230) 2011; 107 Çaydaş (10.1016/j.measurement.2024.115775_b0195) 2008; 38 Faisal (10.1016/j.measurement.2024.115775_b0245) 2018; 6 Singh (10.1016/j.measurement.2024.115775_b0020) 2022; 38 Amorim (10.1016/j.measurement.2024.115775_b0050) 2007; 29 Pellicer (10.1016/j.measurement.2024.115775_b0190) 2011; 22 10.1016/j.measurement.2024.115775_b0070 Sahu (10.1016/j.measurement.2024.115775_b0015) 2022; 74 Torres (10.1016/j.measurement.2024.115775_b0055) 2017; 690 10.1016/j.measurement.2024.115775_b0215 Agatonovic-Kustrin (10.1016/j.measurement.2024.115775_b0220) 2000; 22 Barenji (10.1016/j.measurement.2024.115775_b0100) 2016; 45 Chen (10.1016/j.measurement.2024.115775_b0135) 2023; 13 Bahgat (10.1016/j.measurement.2024.115775_b0185) 2019; 5 Ogbezode (10.1016/j.measurement.2024.115775_b0150) 2021; 43 Mishra (10.1016/j.measurement.2024.115775_b0275) 2020; 159 Pradhan (10.1016/j.measurement.2024.115775_b0080) 2010; 50 Ming (10.1016/j.measurement.2024.115775_b0140) 2021; 72 Ranjan (10.1016/j.measurement.2024.115775_b0005) 2019; 43 10.1016/j.measurement.2024.115775_b0060 10.1016/j.measurement.2024.115775_b0065 10.1016/j.measurement.2024.115775_b0125 10.1016/j.measurement.2024.115775_b0200 Gupta (10.1016/j.measurement.2024.115775_b0210) 2019; 102 10.1016/j.measurement.2024.115775_b0205 Kumar (10.1016/j.measurement.2024.115775_b0110) 2012; 27 Singh (10.1016/j.measurement.2024.115775_b0265) 2004; 149 Kumar (10.1016/j.measurement.2024.115775_b0105) 2017; 3 Senthilkumar (10.1016/j.measurement.2024.115775_b0130) 2019; 6 Rao (10.1016/j.measurement.2024.115775_b0250) 2011; 43 Ishfaq (10.1016/j.measurement.2024.115775_b0280) 2023; 421 10.1016/j.measurement.2024.115775_b0010 10.1016/j.measurement.2024.115775_b0175 Debnath (10.1016/j.measurement.2024.115775_b0285) 2019; 34 10.1016/j.measurement.2024.115775_b0035 Kibria (10.1016/j.measurement.2024.115775_b0170) 2010; 48 Kumar (10.1016/j.measurement.2024.115775_b0030) 2022; 38 Guenther (10.1016/j.measurement.2024.115775_b0155) 2021; 14 Derringer (10.1016/j.measurement.2024.115775_b0235) 1980; 12 Tanjilul (10.1016/j.measurement.2024.115775_b0270) 2018; 255 Kliuev (10.1016/j.measurement.2024.115775_b0260) 2019; 40 Tiwari (10.1016/j.measurement.2024.115775_b0025) 2023; 185 Gong (10.1016/j.measurement.2024.115775_b0165) 2022; 79 Bharti (10.1016/j.measurement.2024.115775_b0075) 2012; 26 Hasan (10.1016/j.measurement.2024.115775_b0225) 2023; 127 Kuppan (10.1016/j.measurement.2024.115775_b0095) 2008; 38 Deshmukh (10.1016/j.measurement.2024.115775_b0255) 2022; 37 10.1016/j.measurement.2024.115775_b0120 Mohanty (10.1016/j.measurement.2024.115775_b0090) 2017; 20 Gopalakannan (10.1016/j.measurement.2024.115775_b0160) 2012; 11 10.1016/j.measurement.2024.115775_b0240 |
| References_xml | – volume: 29 start-page: 366 year: 2007 end-page: 371 ident: b0050 article-title: The behavior of graphite and copper electrodes on the finish die-sinking electrical discharge machining (EDM) of AISI P20 tool steel publication-title: J. Brazilian Soc. Mech. Sci. Eng. – volume: 27 start-page: 1051 year: 2012 end-page: 1058 ident: b0110 article-title: Machining efficiency evaluation of cryogenically treated copper electrode in additive mixed EDM publication-title: Mater. Manuf. Process. – volume: 223 start-page: 279 year: 2009 end-page: 287 ident: b0290 article-title: Surface roughness model for micro electrical discharge machining publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. – volume: 107 start-page: 234 year: 2011 end-page: 244 ident: b0230 article-title: Desirability function approach: A review and performance evaluation in adverse conditions publication-title: Chemom. Intell. Lab. Syst. – volume: 12 start-page: 214 year: 1980 end-page: 219 ident: b0235 article-title: Simultaneous optimization of several response variables publication-title: J. Qual. Technol. – volume: 38 start-page: 74 year: 2008 end-page: 84 ident: b0095 article-title: Influence of EDM process parameters in deep hole drilling of Inconel 718 publication-title: Int. J. Adv. Manuf. Technol. – volume: 33 start-page: 397 year: 2018 end-page: 404 ident: b0085 article-title: Constrained multi-objective optimization of EDM process parameters using kriging model and particle swarm algorithm publication-title: Mater. Manuf. Process. – reference: A. Saffaran, M. Azadi Moghaddam, F. Kolahan, Optimization of backpropagation neural network-based models in EDM process using particle swarm optimization and simulated annealing algorithms, J. Brazilian Soc. Mech. Sci. Eng. 42 (2020) 1–14. 10.1007/s40430-019-2149-1. – volume: 18 start-page: 524 year: 2015 end-page: 535 ident: b0115 article-title: Effect of dielectric fluid with surfactant and graphite powder on Electrical Discharge Machining of titanium alloy using Taguchi method publication-title: Eng. Sci. Technol. an Int. J. – volume: 50 start-page: 591 year: 2010 end-page: 610 ident: b0080 article-title: Neuro-fuzzy and neural network-based prediction of various responses in electrical discharge machining of AISID2 steel “NF and NN based prediction of responses in EDM of D2 steel publication-title: Int. J. Adv. Manuf. Technol. – reference: (accessed July 8, 2023). – volume: 3 year: 2017 ident: b0105 article-title: Parametric optimization of powder mixed electrical discharge machining for nickel-based superalloy inconel-800 using response surface methodology publication-title: Mech. Adv. Mater. Mod. Process. – volume: 43 start-page: 47 year: 2019 end-page: 73 ident: b0005 article-title: Role of textured tool in improving machining performance: A review publication-title: J. Manuf. Process. – reference: M.K. Dikshit, S. Singh, V.K. Pathak, K.K. Saxena, M.K. Agrawal, V. Malik, K. hazim Salem, M.I. Khan, Surface characteristics optimization of biocompatible Ti6Al4V with RCCD and NSGA II using die sinking EDM, J. Mater. Res. Technol. 24 (2023) 223–235. 10.1016/j.jmrt.2023.03.005. – volume: 13 year: 2023 ident: b0135 article-title: Parameters optimization of electrical discharge machining process using swarm intelligence: A review publication-title: Metals (Basel) – volume: 421 year: 2023 ident: b0280 article-title: Sustainable EDM of Inconel 600 in Cu-mixed biodegradable dielectrics: Modelling and optimizing the process by artificial neural network for supporting net-zero from industry publication-title: J. Clean. Prod. – volume: 38 start-page: 1307 year: 2022 end-page: 1319 ident: b0030 article-title: Electropolishing of thin-cruciform gimbal flexure of gyroscope fabricated by electrical discharge machining publication-title: Mater. Manuf. Process. – volume: 97 start-page: 2647 year: 2018 end-page: 2654 ident: b0040 article-title: Optimization of material removal rate and tool wear rate of Cu electrode in die-sinking EDM of tool steel publication-title: Int. J. Adv. Manuf. Technol. – volume: 40 start-page: 84 year: 2019 end-page: 93 ident: b0260 article-title: Influence of energy fraction in EDM drilling of Inconel 718 by statistical analysis and finite element crater-modelling publication-title: J. Manuf. Process. – volume: 11 start-page: 685 year: 2012 end-page: 690 ident: b0160 article-title: Effect of electrode materials on electric discharge machining of 316 L and 17–4 PH stainless steels publication-title: J. Miner. Mater. Charact. Eng. – volume: 5 start-page: e01813 year: 2019 ident: b0185 article-title: Influence of process parameters in electrical discharge machining on H13 die steel publication-title: Heliyon – volume: 255 start-page: 263 year: 2018 end-page: 274 ident: b0270 article-title: A study on EDM debris particle size and flushing mechanism for efficient debris removal in EDM-drilling of Inconel 718 publication-title: J. Mater. Process. Technol. – volume: 79 start-page: 126 year: 2022 end-page: 141 ident: b0165 article-title: Experimental study on forming consistent accuracy and tool electrode wear involved in fabricating array microelectrodes and array micro holes using electrical discharge machining publication-title: J. Manuf. Process. – reference: A.K. Jana, R. Ranjith Kumar, S.C. Mohanty, K. Mangapathi Rao, V.G. Shanker, A.Y. Reddy, Parametric Optimization of Die Sinking EDM in AISI D2 Steel considering Canola oil as Dielectric using TOPSIS and GRA, IOP Conf. Ser. Mater. Sci. Eng. 1057 (2021) 012061. 10.1088/1757-899x/1057/1/012061. – reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. IEEE Int. Conf. Neural Netw., Washington, USA, 1995: pp. 1942–1948. 10.4018/ijmfmp.2015010104. – volume: 22 start-page: 717 year: 2000 end-page: 727 ident: b0220 article-title: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research publication-title: J. Pharm. Biomed. Anal. – volume: 20 start-page: 552 year: 2017 end-page: 562 ident: b0090 article-title: An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm publication-title: Eng. Sci. Technol. an Int. J. – volume: 6 year: 2019 ident: b0130 article-title: Evaluation of recast layer and parametric optimization of EDM process on aluminium based HMMCs using grey relational analysis publication-title: Mater. Res. Express – reference: S. Kumar, R. Singh, A. Batish, T.P. Singh, Modeling the tool wear rate in powder mixed electro-discharge machining of titanium alloys using dimensional analysis of cryogenically treated electrodes and workpiece, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 231 (2015) 271–282. 10.1177/0954408915593875. – volume: 149 start-page: 272 year: 2004 end-page: 277 ident: b0265 article-title: Some investigations into the electric discharge machining of hardened tool steel using different electrode materials publication-title: J. Mater. Process. Technol. – volume: 50 year: 2022 ident: b0180 article-title: Experimental and thermal investigation on die-sinking EDM using FEM and multi-objective optimization using WOA-CS publication-title: Sustain. Energy Technol. Assessments – volume: 34 start-page: 580 year: 2019 end-page: 589 ident: b0285 article-title: Fabrication of an array of micro-fins using Wire-EDM and its parametric analysis publication-title: Mater. Manuf. Process. – volume: 22 start-page: 575 year: 2011 end-page: 584 ident: b0190 article-title: Tool electrode geometry and process parameters influence on different feature geometry and surface quality in electrical discharge machining of AISI H13 steel publication-title: J. Intell. Manuf. – volume: 690 start-page: 337 year: 2017 end-page: 347 ident: b0055 article-title: EDM machinability and surface roughness analysis of TiB2using copper electrodes publication-title: J. Alloys Compd. – reference: DEF 92 (EDM fluid), (2021). – reference: R. Mahanti, M. Das, Micro-EDM : Modeling and Optimization, in: V.K. Jain (Ed.), Adv. Mach. Sci., CRC Press, Boca Raton, 2022: pp. 79–116. 10.1201/9780429160011-4. – volume: 43 start-page: 1 year: 2021 end-page: 11 ident: b0150 article-title: Tool wear analysis of C-shaped equal channel reciprocating extrusion process of AISI-H13 steel die using finite element method publication-title: J. Brazilian Soc. Mech. Sci. Eng. – volume: 72 start-page: 375 year: 2021 end-page: 399 ident: b0140 article-title: Critical review on sustainable techniques in electrical discharge machining publication-title: J. Manuf. Process. – volume: 102 start-page: 3995 year: 2019 end-page: 4009 ident: b0210 article-title: Parametric optimization and process capability analysis for machining of nickel-based superalloy publication-title: Int. J. Adv. Manuf. Technol. – volume: 6 start-page: 54 year: 2018 ident: b0245 article-title: Optimization of machine process parameters in EDM for EN 31 using evolutionary optimization techniques publication-title: Technologies – volume: 38 start-page: 448 year: 2022 end-page: 464 ident: b0020 article-title: Electrical discharge micro-texturing using compound tool electrodes for tribological and wettability applications publication-title: Surf. Eng. – reference: M. Ratmond H., M. Douglas C., A.-C. Christine M., Response surface methodology: Process and product optimization using designed experiments, 4th ed., John Wiley & Sons, New Jersey, 2016. – volume: 48 start-page: 557 year: 2010 end-page: 570 ident: b0170 article-title: Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4V alloy publication-title: Int. J. Adv. Manuf. Technol. – volume: 45 start-page: 435 year: 2016 end-page: 444 ident: b0100 article-title: Electrical discharge machining of the AISI D6 tool steel: Prediction and modeling of the material removal rate and tool wear ratio publication-title: Precis. Eng. – volume: 14 start-page: 1 year: 2021 end-page: 10 ident: b0155 article-title: Tribological performance of additively manufactured aisi h13 steel in different surface conditions publication-title: Materials (Basel) – volume: 185 year: 2023 ident: b0025 article-title: Analysis of tribological behavior of dual-textured Ti-6Al-4 V alloy surfaces fabricated using a tool-mimic approach publication-title: Tribol. Int. – reference: J.C. Outeiro, Residual stresses in machining, in: Mech. Mater. Mod. Manuf. Methods Process. Tech., Elsevier, 2020: pp. 297–360. 10.1016/B978-0-12-818232-1.00011-4. – reference: S. Gopalakannan, T. Senthilvelan, A parametric study of electrical discharge machining process parameters on machining of cast Al/B4C metal matrix nanocomposites, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 227 (2013) 993–1004. 10.1177/0954405413479505. – volume: 26 start-page: 1875 year: 2012 end-page: 1883 ident: b0075 article-title: Multi-objective optimization of electric-discharge machining process using controlled elitist NSGA-II publication-title: J. Mech. Sci. Technol. – volume: 84 start-page: 2671 year: 2016 end-page: 2688 ident: b0045 article-title: EDM machinability and surface roughness analysis of INCONEL 600 using graphite electrodes publication-title: Int. J. Adv. Manuf. Technol. – volume: 159 year: 2020 ident: b0275 article-title: Evaluation of technical feasibility and environmental impact of Calophyllum Inophyllum (Polanga) oil based bio-dielectric fluid for green EDM publication-title: Meas. J. Int. Meas. Confed. – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: b0250 article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: CAD Comput. Aided Des. – volume: 74 start-page: 26 year: 2022 end-page: 33 ident: b0015 article-title: Experimental investigations on the wear behaviour of micro-EDM-fabricated textured tools during dry turning of Ti6Al4V publication-title: Ind. Lubr. Tribol. – reference: A. Kumar, R. Mahanti, M. Das, Investigation of electropolishing performance on surface residual stress and morphology of electrical discharge machined maraging steel, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 238 (2022). 10.1177/09544062221140735. – reference: D.C. Montgomery, Design and analysis of experiments, 9th ed., John Wiley and Sons Inc, Arisona, State University, 2017. – volume: 38 start-page: 1148 year: 2008 end-page: 1156 ident: b0195 article-title: Modeling and analysis of electrode wear and white layer thickness in die-sinking EDM process through response surface methodology publication-title: Int. J. Adv. Manuf. Technol. – reference: B. George EP, D. Norman R, Response surfaces, mixtures, and ridge analyses, 2nd edn, John Wiley & Sons, New Jersey, 2007. 10.1111/J.1751-5823.2007.00015_17.X. – volume: 127 start-page: 2125 year: 2023 end-page: 2150 ident: b0225 article-title: Experimental modeling techniques in electrical discharge machining (EDM): A review publication-title: Int. J. Adv. Manuf. Technol. – volume: 37 start-page: 1540 year: 2022 end-page: 1554 ident: b0255 article-title: Microlens array through induction-aided hot embossing: Fabrication, optimization, and characterization publication-title: Mater. Manuf. Process. – volume: 5 start-page: e01813 year: 2019 ident: 10.1016/j.measurement.2024.115775_b0185 article-title: Influence of process parameters in electrical discharge machining on H13 die steel publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e01813 – ident: 10.1016/j.measurement.2024.115775_b0010 doi: 10.1201/9780429160011-4 – volume: 45 start-page: 435 year: 2016 ident: 10.1016/j.measurement.2024.115775_b0100 article-title: Electrical discharge machining of the AISI D6 tool steel: Prediction and modeling of the material removal rate and tool wear ratio publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2016.01.012 – volume: 97 start-page: 2647 year: 2018 ident: 10.1016/j.measurement.2024.115775_b0040 article-title: Optimization of material removal rate and tool wear rate of Cu electrode in die-sinking EDM of tool steel publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-2150-3 – volume: 14 start-page: 1 year: 2021 ident: 10.1016/j.measurement.2024.115775_b0155 article-title: Tribological performance of additively manufactured aisi h13 steel in different surface conditions publication-title: Materials (Basel) doi: 10.3390/ma14040928 – volume: 26 start-page: 1875 year: 2012 ident: 10.1016/j.measurement.2024.115775_b0075 article-title: Multi-objective optimization of electric-discharge machining process using controlled elitist NSGA-II publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-012-0411-x – volume: 149 start-page: 272 year: 2004 ident: 10.1016/j.measurement.2024.115775_b0265 article-title: Some investigations into the electric discharge machining of hardened tool steel using different electrode materials publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2003.11.046 – ident: 10.1016/j.measurement.2024.115775_b0060 doi: 10.1177/0954405413479505 – volume: 29 start-page: 366 year: 2007 ident: 10.1016/j.measurement.2024.115775_b0050 article-title: The behavior of graphite and copper electrodes on the finish die-sinking electrical discharge machining (EDM) of AISI P20 tool steel publication-title: J. Brazilian Soc. Mech. Sci. Eng. doi: 10.1590/S1678-58782007000400004 – volume: 43 start-page: 47 year: 2019 ident: 10.1016/j.measurement.2024.115775_b0005 article-title: Role of textured tool in improving machining performance: A review publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2019.04.011 – volume: 6 year: 2019 ident: 10.1016/j.measurement.2024.115775_b0130 article-title: Evaluation of recast layer and parametric optimization of EDM process on aluminium based HMMCs using grey relational analysis publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab3d73 – volume: 107 start-page: 234 year: 2011 ident: 10.1016/j.measurement.2024.115775_b0230 article-title: Desirability function approach: A review and performance evaluation in adverse conditions publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2011.04.004 – volume: 33 start-page: 397 year: 2018 ident: 10.1016/j.measurement.2024.115775_b0085 article-title: Constrained multi-objective optimization of EDM process parameters using kriging model and particle swarm algorithm publication-title: Mater. Manuf. Process. doi: 10.1080/10426914.2017.1292037 – ident: 10.1016/j.measurement.2024.115775_b0215 – ident: 10.1016/j.measurement.2024.115775_b0120 doi: 10.1177/0954408915593875 – volume: 43 start-page: 1 year: 2021 ident: 10.1016/j.measurement.2024.115775_b0150 article-title: Tool wear analysis of C-shaped equal channel reciprocating extrusion process of AISI-H13 steel die using finite element method publication-title: J. Brazilian Soc. Mech. Sci. Eng. doi: 10.1007/s40430-021-03291-z – volume: 50 year: 2022 ident: 10.1016/j.measurement.2024.115775_b0180 article-title: Experimental and thermal investigation on die-sinking EDM using FEM and multi-objective optimization using WOA-CS publication-title: Sustain. Energy Technol. Assessments – volume: 43 start-page: 303 year: 2011 ident: 10.1016/j.measurement.2024.115775_b0250 article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: CAD Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 37 start-page: 1540 year: 2022 ident: 10.1016/j.measurement.2024.115775_b0255 article-title: Microlens array through induction-aided hot embossing: Fabrication, optimization, and characterization publication-title: Mater. Manuf. Process. doi: 10.1080/10426914.2022.2030876 – volume: 22 start-page: 575 year: 2011 ident: 10.1016/j.measurement.2024.115775_b0190 article-title: Tool electrode geometry and process parameters influence on different feature geometry and surface quality in electrical discharge machining of AISI H13 steel publication-title: J. Intell. Manuf. doi: 10.1007/s10845-009-0320-8 – volume: 40 start-page: 84 year: 2019 ident: 10.1016/j.measurement.2024.115775_b0260 article-title: Influence of energy fraction in EDM drilling of Inconel 718 by statistical analysis and finite element crater-modelling publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2019.03.002 – volume: 84 start-page: 2671 year: 2016 ident: 10.1016/j.measurement.2024.115775_b0045 article-title: EDM machinability and surface roughness analysis of INCONEL 600 using graphite electrodes publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7880-x – ident: 10.1016/j.measurement.2024.115775_b0070 doi: 10.1016/j.jmrt.2023.03.005 – volume: 79 start-page: 126 year: 2022 ident: 10.1016/j.measurement.2024.115775_b0165 article-title: Experimental study on forming consistent accuracy and tool electrode wear involved in fabricating array microelectrodes and array micro holes using electrical discharge machining publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2022.04.046 – volume: 11 start-page: 685 year: 2012 ident: 10.1016/j.measurement.2024.115775_b0160 article-title: Effect of electrode materials on electric discharge machining of 316 L and 17–4 PH stainless steels publication-title: J. Miner. Mater. Charact. Eng. – volume: 185 year: 2023 ident: 10.1016/j.measurement.2024.115775_b0025 article-title: Analysis of tribological behavior of dual-textured Ti-6Al-4 V alloy surfaces fabricated using a tool-mimic approach publication-title: Tribol. Int. doi: 10.1016/j.triboint.2023.108527 – ident: 10.1016/j.measurement.2024.115775_b0240 doi: 10.1109/ICNN.1995.488968 – volume: 38 start-page: 74 year: 2008 ident: 10.1016/j.measurement.2024.115775_b0095 article-title: Influence of EDM process parameters in deep hole drilling of Inconel 718 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-007-1084-y – ident: 10.1016/j.measurement.2024.115775_b0125 doi: 10.1088/1757-899X/1057/1/012061 – volume: 6 start-page: 54 year: 2018 ident: 10.1016/j.measurement.2024.115775_b0245 article-title: Optimization of machine process parameters in EDM for EN 31 using evolutionary optimization techniques publication-title: Technologies doi: 10.3390/technologies6020054 – ident: 10.1016/j.measurement.2024.115775_b0065 doi: 10.1007/s40430-019-2149-1 – volume: 255 start-page: 263 year: 2018 ident: 10.1016/j.measurement.2024.115775_b0270 article-title: A study on EDM debris particle size and flushing mechanism for efficient debris removal in EDM-drilling of Inconel 718 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2017.12.016 – volume: 50 start-page: 591 year: 2010 ident: 10.1016/j.measurement.2024.115775_b0080 article-title: Neuro-fuzzy and neural network-based prediction of various responses in electrical discharge machining of AISID2 steel “NF and NN based prediction of responses in EDM of D2 steel publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-010-2531-8 – volume: 18 start-page: 524 year: 2015 ident: 10.1016/j.measurement.2024.115775_b0115 article-title: Effect of dielectric fluid with surfactant and graphite powder on Electrical Discharge Machining of titanium alloy using Taguchi method publication-title: Eng. Sci. Technol. an Int. J. doi: 10.1016/j.jestch.2015.03.009 – volume: 72 start-page: 375 year: 2021 ident: 10.1016/j.measurement.2024.115775_b0140 article-title: Critical review on sustainable techniques in electrical discharge machining publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2021.10.035 – ident: 10.1016/j.measurement.2024.115775_b0200 – volume: 421 year: 2023 ident: 10.1016/j.measurement.2024.115775_b0280 article-title: Sustainable EDM of Inconel 600 in Cu-mixed biodegradable dielectrics: Modelling and optimizing the process by artificial neural network for supporting net-zero from industry publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.138388 – volume: 12 start-page: 214 year: 1980 ident: 10.1016/j.measurement.2024.115775_b0235 article-title: Simultaneous optimization of several response variables publication-title: J. Qual. Technol. doi: 10.1080/00224065.1980.11980968 – volume: 27 start-page: 1051 year: 2012 ident: 10.1016/j.measurement.2024.115775_b0110 article-title: Machining efficiency evaluation of cryogenically treated copper electrode in additive mixed EDM publication-title: Mater. Manuf. Process. doi: 10.1080/10426914.2011.654151 – volume: 223 start-page: 279 year: 2009 ident: 10.1016/j.measurement.2024.115775_b0290 article-title: Surface roughness model for micro electrical discharge machining publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. doi: 10.1243/09544054JEM1188 – volume: 3 year: 2017 ident: 10.1016/j.measurement.2024.115775_b0105 article-title: Parametric optimization of powder mixed electrical discharge machining for nickel-based superalloy inconel-800 using response surface methodology publication-title: Mech. Adv. Mater. Mod. Process. doi: 10.1186/s40759-017-0022-4 – ident: 10.1016/j.measurement.2024.115775_b0175 – volume: 74 start-page: 26 year: 2022 ident: 10.1016/j.measurement.2024.115775_b0015 article-title: Experimental investigations on the wear behaviour of micro-EDM-fabricated textured tools during dry turning of Ti6Al4V publication-title: Ind. Lubr. Tribol. doi: 10.1108/ILT-06-2021-0233 – volume: 20 start-page: 552 year: 2017 ident: 10.1016/j.measurement.2024.115775_b0090 article-title: An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm publication-title: Eng. Sci. Technol. an Int. J. doi: 10.1016/j.jestch.2016.07.003 – volume: 13 year: 2023 ident: 10.1016/j.measurement.2024.115775_b0135 article-title: Parameters optimization of electrical discharge machining process using swarm intelligence: A review publication-title: Metals (Basel) – volume: 34 start-page: 580 year: 2019 ident: 10.1016/j.measurement.2024.115775_b0285 article-title: Fabrication of an array of micro-fins using Wire-EDM and its parametric analysis publication-title: Mater. Manuf. Process. doi: 10.1080/10426914.2019.1566959 – volume: 22 start-page: 717 year: 2000 ident: 10.1016/j.measurement.2024.115775_b0220 article-title: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/S0731-7085(99)00272-1 – volume: 159 year: 2020 ident: 10.1016/j.measurement.2024.115775_b0275 article-title: Evaluation of technical feasibility and environmental impact of Calophyllum Inophyllum (Polanga) oil based bio-dielectric fluid for green EDM publication-title: Meas. J. Int. Meas. Confed. – ident: 10.1016/j.measurement.2024.115775_b0145 doi: 10.1016/B978-0-12-818232-1.00011-4 – volume: 690 start-page: 337 year: 2017 ident: 10.1016/j.measurement.2024.115775_b0055 article-title: EDM machinability and surface roughness analysis of TiB2using copper electrodes publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.08.110 – volume: 48 start-page: 557 year: 2010 ident: 10.1016/j.measurement.2024.115775_b0170 article-title: Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4V alloy publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-009-2298-y – ident: 10.1016/j.measurement.2024.115775_b0205 – volume: 38 start-page: 1148 year: 2008 ident: 10.1016/j.measurement.2024.115775_b0195 article-title: Modeling and analysis of electrode wear and white layer thickness in die-sinking EDM process through response surface methodology publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-007-1162-1 – volume: 127 start-page: 2125 year: 2023 ident: 10.1016/j.measurement.2024.115775_b0225 article-title: Experimental modeling techniques in electrical discharge machining (EDM): A review publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-023-11603-x – volume: 38 start-page: 1307 year: 2022 ident: 10.1016/j.measurement.2024.115775_b0030 article-title: Electropolishing of thin-cruciform gimbal flexure of gyroscope fabricated by electrical discharge machining publication-title: Mater. Manuf. Process. doi: 10.1080/10426914.2022.2149788 – ident: 10.1016/j.measurement.2024.115775_b0035 doi: 10.1177/09544062221140735 – volume: 102 start-page: 3995 year: 2019 ident: 10.1016/j.measurement.2024.115775_b0210 article-title: Parametric optimization and process capability analysis for machining of nickel-based superalloy publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-019-03453-3 – volume: 38 start-page: 448 year: 2022 ident: 10.1016/j.measurement.2024.115775_b0020 article-title: Electrical discharge micro-texturing using compound tool electrodes for tribological and wettability applications publication-title: Surf. Eng. doi: 10.1080/02670844.2022.2089801 |
| SSID | ssj0006396 |
| Score | 2.4238884 |
| Snippet | [Display omitted]
•Parametric correlation of responses using RSM and ANN modeling in EDM of H13 alloy is studied.•Formulation of a combined objective to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 115775 |
| SubjectTerms | Electrical discharge machining Machine learning Micro-pillar-textured die surface Optimization-algorithms Sustainable production |
| Title | Sustainable EDM production of micro-textured die-surfaces: Modeling and optimizing the process using machine learning techniques |
| URI | https://dx.doi.org/10.1016/j.measurement.2024.115775 |
| Volume | 242 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0263-2241 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006396 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0263-2241 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006396 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0263-2241 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006396 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0263-2241 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006396 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0263-2241 databaseCode: AKRWK dateStart: 19830101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EUfQgPvFNBK9x27y6FS_LqqyKXlTwVtI0lRX3ga4XD-JPd6YPdwVBwWNLBoZMmPkSvpkP4CBIY2cQafAcwSpXViqeWh9wH-Sht8SrKsQmrq5N505d3Ov7KWjXvTBEq6xyf5nTi2xd_WlUu9kYdruNm4BGjQtST0bYYoomPqUiUjE4fB_TPLACm_KdRXJaPQf7Y45Xb_wOh1dFoQ5p9AxRDn-qURN152wJFivAyFqlT8sw5fsrsDAxRnAFZgsap3tZhY-bcT8UOz25YsNyoCtuPhvkrEfsO05cD3QnY1nXc3QsJ1bWESNVNOpNZ7afsQFmkl73jT4RIbJh2U7AiCX_wHoFAdOzSnECl9SDYF_W4O7s9Lbd4ZXGAndShCOuY-mbuclTF1gZ2WYkVeCkVkpYa0wuU4QUUqUu8zZyWeZEmKnQxbGLUq2lSeU6TPcHfb8BLBRZrH0g8UKlEJYgErLahbGPjddaqOYmNOtdTVw1gJx0MJ6Smmn2mEwEJKGAJGVANkF8mQ7LKRx_MTquQ5d8O1IJVovfzbf-Z74N84KkgovXmh2YHj2_-l3EL6N0rzigezDTOr_sXH8CYevzRg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixNBEC5CFtfdw6JZxeiqLXjtZKZfkxEvErNEN8klCeQ29PT0LBHzYBMvHsSfbtU8TBYEBY8zdEHR1VR93XxVH8DbII2dQaTBcwSrXFmpeGp9wH2Qh94Sr6oQmxhPzHCuPi_0ogH9uheGaJVV7i9zepGtqz_daje72-WyOw1o1Lgg9WSELYaa-E6UFhHdwDo_DjwPLMGmfGiRnJafwpsDyWt1eIjDu6JQHZo9Q5zDPxWpo8Jz_QguKsTIPpROPYaGX7fg_GiOYAseFDxOt7uEn9NDQxQbfByzbTnRFXefbXK2IvodJ7IHupOxbOk5OpYTLesdI1k0ak5ndp2xDaaS1fI7fSJEZNuyn4ARTf6WrQoGpmeV5AQuqSfB7p7A_How6w95JbLAnRThnutY-l5u8tQFVka2F0kVOKmVEtYak8sUMYVUqcu8jVyWORFmKnRx7KJUa2lS-RSa683aPwMWiizWPpB4o1KISxAKWe3C2MfGay1Urw29elcTV00gJyGMr0lNNfuSHAUkoYAkZUDaIH6bbssxHP9i9L4OXXLvTCVYLv5u_vz_zF_Dw-FsPEpGnyY3L-BMkG5w8XRzBc393Tf_EsHMPn1VHNZfAqb02w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainable+EDM+production+of+micro-textured+die-surfaces%3A+Modeling+and+optimizing+the+process+using+machine+learning+techniques&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Mahanti%2C+Ranajit&rft.au=Das%2C+Manas&rft.date=2025-01-01&rft.issn=0263-2241&rft.volume=242&rft.spage=115775&rft_id=info:doi/10.1016%2Fj.measurement.2024.115775&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2024_115775 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |