Sustainable EDM production of micro-textured die-surfaces: Modeling and optimizing the process using machine learning techniques

[Display omitted] •Parametric correlation of responses using RSM and ANN modeling in EDM of H13 alloy is studied.•Formulation of a combined objective to minimize surface roughness and overcut is done.•The effectiveness of metaheuristic algorithms (PSO, TLBO) over desirability function-based methods...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 242; p. 115775
Main Authors Mahanti, Ranajit, Das, Manas
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2025
Subjects
Online AccessGet full text
ISSN0263-2241
DOI10.1016/j.measurement.2024.115775

Cover

Abstract [Display omitted] •Parametric correlation of responses using RSM and ANN modeling in EDM of H13 alloy is studied.•Formulation of a combined objective to minimize surface roughness and overcut is done.•The effectiveness of metaheuristic algorithms (PSO, TLBO) over desirability function-based methods is emphasized.•Sustainability in EDM for fabrication of large-area micro-textured surfaces is explored. The present research explores the role of die-sinking EDM parameters, such as peak current, pulse duration, and gap voltage, and their proper selection for the cost-effective fabrication of negative micro-pillar-textured surfaces using a die-material of H13 steel alloy. The developed artificial neural networks (ANN) models of surface roughness and overcut outperform the response surface methodology models in predicting responses as higher ‘R2 values’ and lower ‘mean squared error’ with ANN models. A lower peak current of 2 A, lower pulse duration of 55.46 µs, and intermediate gap voltage of 37.83 V is selected from metaheuristic optimization approaches such as teaching–learning-based optimization and particle swarm optimization that are efficient and comparable with the desirability function-based approach while finding optimum parameter values. Further, sustainable fabrication of micro-textured H13 die surfaces is carried out on large areas using selected optimized parameters with a form tool electrode. The negative micro-pillar pattern surface demonstrates an average overcut of ∼ 40 ± 15 µm in comparison to the dimensions of the form tool. This research emphasized the sustainability of the EDM process by utilizing reusable dielectric fluid, prioritizing optimal parameters for high-quality fabrication using low electrical-energy utilization, and enabling large-scale production using a form tool.
AbstractList [Display omitted] •Parametric correlation of responses using RSM and ANN modeling in EDM of H13 alloy is studied.•Formulation of a combined objective to minimize surface roughness and overcut is done.•The effectiveness of metaheuristic algorithms (PSO, TLBO) over desirability function-based methods is emphasized.•Sustainability in EDM for fabrication of large-area micro-textured surfaces is explored. The present research explores the role of die-sinking EDM parameters, such as peak current, pulse duration, and gap voltage, and their proper selection for the cost-effective fabrication of negative micro-pillar-textured surfaces using a die-material of H13 steel alloy. The developed artificial neural networks (ANN) models of surface roughness and overcut outperform the response surface methodology models in predicting responses as higher ‘R2 values’ and lower ‘mean squared error’ with ANN models. A lower peak current of 2 A, lower pulse duration of 55.46 µs, and intermediate gap voltage of 37.83 V is selected from metaheuristic optimization approaches such as teaching–learning-based optimization and particle swarm optimization that are efficient and comparable with the desirability function-based approach while finding optimum parameter values. Further, sustainable fabrication of micro-textured H13 die surfaces is carried out on large areas using selected optimized parameters with a form tool electrode. The negative micro-pillar pattern surface demonstrates an average overcut of ∼ 40 ± 15 µm in comparison to the dimensions of the form tool. This research emphasized the sustainability of the EDM process by utilizing reusable dielectric fluid, prioritizing optimal parameters for high-quality fabrication using low electrical-energy utilization, and enabling large-scale production using a form tool.
ArticleNumber 115775
Author Mahanti, Ranajit
Das, Manas
Author_xml – sequence: 1
  givenname: Ranajit
  orcidid: 0000-0002-5307-1211
  surname: Mahanti
  fullname: Mahanti, Ranajit
– sequence: 2
  givenname: Manas
  orcidid: 0000-0001-8185-9367
  surname: Das
  fullname: Das, Manas
  email: manasdas@iitg.ernet.in
BookMark eNqNkM1OwzAQhH0oEm3hHcwDpNhxfhouCJXyI7XiAJwtZ72hrhKn2A4CTjw6CeWAOPW02tXMt5qZkJFtLRJyxtmMM56db2cNKt85bNCGWcziZMZ5mufpiIxZnIkojhN-TCbebxljmSiyMfl67HxQxqqyRrq8XtOda3UHwbSWthVtDLg2Cvgeeqym2mDUP6gUoL-g61ZjbewLVVbTdhdMYz6HNWxwwPQaTzs_XBoFG2OR1qic_ZEgbKx57dCfkKNK1R5Pf-eUPN8snxZ30erh9n5xtYpAxDxEaSFwXmVVCUyJXM1zkTAQaZLESmVZJUqWpyIpQaPKQWuIuU44FAXkZZqKrBRTcrnn9oG8d1hJMEENOYNTppacyaFEuZV_SpRDiXJfYk8o_hF2zjTKfRzkXey92Ed8M-ikB4MWUBuHEKRuzQGUb_C6nMI
CitedBy_id crossref_primary_10_3390_mi15121469
crossref_primary_10_1080_10426914_2025_2476452
crossref_primary_10_3390_sym17020229
Cites_doi 10.1016/j.heliyon.2019.e01813
10.1201/9780429160011-4
10.1016/j.precisioneng.2016.01.012
10.1007/s00170-018-2150-3
10.3390/ma14040928
10.1007/s12206-012-0411-x
10.1016/j.jmatprotec.2003.11.046
10.1177/0954405413479505
10.1590/S1678-58782007000400004
10.1016/j.jmapro.2019.04.011
10.1088/2053-1591/ab3d73
10.1016/j.chemolab.2011.04.004
10.1080/10426914.2017.1292037
10.1177/0954408915593875
10.1007/s40430-021-03291-z
10.1016/j.cad.2010.12.015
10.1080/10426914.2022.2030876
10.1007/s10845-009-0320-8
10.1016/j.jmapro.2019.03.002
10.1007/s00170-015-7880-x
10.1016/j.jmrt.2023.03.005
10.1016/j.jmapro.2022.04.046
10.1016/j.triboint.2023.108527
10.1109/ICNN.1995.488968
10.1007/s00170-007-1084-y
10.1088/1757-899X/1057/1/012061
10.3390/technologies6020054
10.1007/s40430-019-2149-1
10.1016/j.jmatprotec.2017.12.016
10.1007/s00170-010-2531-8
10.1016/j.jestch.2015.03.009
10.1016/j.jmapro.2021.10.035
10.1016/j.jclepro.2023.138388
10.1080/00224065.1980.11980968
10.1080/10426914.2011.654151
10.1243/09544054JEM1188
10.1186/s40759-017-0022-4
10.1108/ILT-06-2021-0233
10.1016/j.jestch.2016.07.003
10.1080/10426914.2019.1566959
10.1016/S0731-7085(99)00272-1
10.1016/B978-0-12-818232-1.00011-4
10.1016/j.jallcom.2016.08.110
10.1007/s00170-009-2298-y
10.1007/s00170-007-1162-1
10.1007/s00170-023-11603-x
10.1080/10426914.2022.2149788
10.1177/09544062221140735
10.1007/s00170-019-03453-3
10.1080/02670844.2022.2089801
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2024.115775
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_measurement_2024_115775
S0263224124016609
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c321t-593e8f6fbc0a37a87340c35442aa66f3b07534bcdea7cddc21d41c99c7b5536b3
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Thu Apr 24 23:00:53 EDT 2025
Wed Oct 01 01:37:53 EDT 2025
Sat Dec 21 16:01:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Optimization-algorithms
Micro-pillar-textured die surface
Sustainable production
Electrical discharge machining
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-593e8f6fbc0a37a87340c35442aa66f3b07534bcdea7cddc21d41c99c7b5536b3
ORCID 0000-0002-5307-1211
0000-0001-8185-9367
ParticipantIDs crossref_citationtrail_10_1016_j_measurement_2024_115775
crossref_primary_10_1016_j_measurement_2024_115775
elsevier_sciencedirect_doi_10_1016_j_measurement_2024_115775
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ming, Xie, Ma, Du, Zhang, Cao, Zhang (b0140) 2021; 72
Gopalakannan, Senthilvelan (b0160) 2012; 11
Gong, Sun (b0165) 2022; 79
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. IEEE Int. Conf. Neural Netw., Washington, USA, 1995: pp. 1942–1948. 10.4018/ijmfmp.2015010104.
Bahgat, Shash, Abd-Rabou, El-Mahallawi (b0185) 2019; 5
Senthilkumar, Muralikannan (b0130) 2019; 6
Bharti, Maheshwari, Sharma (b0075) 2012; 26
Kurnia, Tan, Yeo, Tan (b0290) 2009; 223
Tiwari, Dvivedi, Kumar (b0025) 2023; 185
Torres, Luis, Puertas (b0055) 2017; 690
R. Mahanti, M. Das, Micro-EDM : Modeling and Optimization, in: V.K. Jain (Ed.), Adv. Mach. Sci., CRC Press, Boca Raton, 2022: pp. 79–116. 10.1201/9780429160011-4.
Gupta, Mia, Pruncu, Kapłonek, Nadolny, Patra, Mikolajczyk, Pimenov, Sarikaya, Sharma (b0210) 2019; 102
A.K. Jana, R. Ranjith Kumar, S.C. Mohanty, K. Mangapathi Rao, V.G. Shanker, A.Y. Reddy, Parametric Optimization of Die Sinking EDM in AISI D2 Steel considering Canola oil as Dielectric using TOPSIS and GRA, IOP Conf. Ser. Mater. Sci. Eng. 1057 (2021) 012061. 10.1088/1757-899x/1057/1/012061.
Debnath, Patowari (b0285) 2019; 34
Dang (b0085) 2018; 33
A. Kumar, R. Mahanti, M. Das, Investigation of electropolishing performance on surface residual stress and morphology of electrical discharge machined maraging steel, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 238 (2022). 10.1177/09544062221140735.
Kibria, Sarkar, Pradhan, Bhattacharyya (b0170) 2010; 48
Agatonovic-Kustrin, Beresford (b0220) 2000; 22
Pradhan, Biswas (b0080) 2010; 50
Torres, Puertas, Luis (b0045) 2016; 84
Singh, Maheshwari, Pandey (b0265) 2004; 149
M. Ratmond H., M. Douglas C., A.-C. Christine M., Response surface methodology: Process and product optimization using designed experiments, 4th ed., John Wiley & Sons, New Jersey, 2016.
Kumar, Dhingra, Kumar (b0105) 2017; 3
Kolli, Kumar (b0115) 2015; 18
D.C. Montgomery, Design and analysis of experiments, 9th ed., John Wiley and Sons Inc, Arisona, State University, 2017.
Faisal, Kumar (b0245) 2018; 6
Chekuri, Eshwar, Kotteda, Srikanth Varma (b0180) 2022; 50
Kumar, Maheshwari, Sharma, Beri (b0110) 2012; 27
Chen, Hu, Li, Cao, Zhao, Ming (b0135) 2023; 13
Pellicer, Ciurana, Delgado (b0190) 2011; 22
S. Gopalakannan, T. Senthilvelan, A parametric study of electrical discharge machining process parameters on machining of cast Al/B4C metal matrix nanocomposites, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 227 (2013) 993–1004. 10.1177/0954405413479505.
(accessed July 8, 2023).
Hasan, Saleh, Sophian, Rahman, Huang, Mohamed Ali (b0225) 2023; 127
Kumar, Mahanti, Das (b0030) 2022; 38
Çaydaş, Hasçalik (b0195) 2008; 38
DEF 92 (EDM fluid), (2021).
Mohanty, Mahapatra, Singh (b0090) 2017; 20
Tanjilul, Ahmed, Kumar, Rahman (b0270) 2018; 255
Derringer, Suich (b0235) 1980; 12
Barenji, Pourasl, Khojastehnezhad (b0100) 2016; 45
Straka, Hašová (b0040) 2018; 97
Ogbezode, Ajide (b0150) 2021; 43
Amorim, Weingaertner (b0050) 2007; 29
Singh, Tripathi, Ramkumar (b0020) 2022; 38
Guenther, Kahlert, Vollmer, Niendorf, Greiner (b0155) 2021; 14
Ranjan, Hiremath (b0005) 2019; 43
J.C. Outeiro, Residual stresses in machining, in: Mech. Mater. Mod. Manuf. Methods Process. Tech., Elsevier, 2020: pp. 297–360. 10.1016/B978-0-12-818232-1.00011-4.
M.K. Dikshit, S. Singh, V.K. Pathak, K.K. Saxena, M.K. Agrawal, V. Malik, K. hazim Salem, M.I. Khan, Surface characteristics optimization of biocompatible Ti6Al4V with RCCD and NSGA II using die sinking EDM, J. Mater. Res. Technol. 24 (2023) 223–235. 10.1016/j.jmrt.2023.03.005.
A. Saffaran, M. Azadi Moghaddam, F. Kolahan, Optimization of backpropagation neural network-based models in EDM process using particle swarm optimization and simulated annealing algorithms, J. Brazilian Soc. Mech. Sci. Eng. 42 (2020) 1–14. 10.1007/s40430-019-2149-1.
S. Kumar, R. Singh, A. Batish, T.P. Singh, Modeling the tool wear rate in powder mixed electro-discharge machining of titanium alloys using dimensional analysis of cryogenically treated electrodes and workpiece, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 231 (2015) 271–282. 10.1177/0954408915593875.
B. George EP, D. Norman R, Response surfaces, mixtures, and ridge analyses, 2nd edn, John Wiley & Sons, New Jersey, 2007. 10.1111/J.1751-5823.2007.00015_17.X.
Costa, Lourenço, Pereira (b0230) 2011; 107
Sahu, George, Kuriachen, Mathew, Dhanish (b0015) 2022; 74
Kuppan, Rajadurai, Narayanan (b0095) 2008; 38
Deshmukh, Goswami (b0255) 2022; 37
Kliuev, Florio, Akbari, Wegener (b0260) 2019; 40
Ishfaq, Sana, Ashraf, Dua (b0280) 2023; 421
Mishra, Routara (b0275) 2020; 159
Rao, Savsani, Vakharia (b0250) 2011; 43
Dang (10.1016/j.measurement.2024.115775_b0085) 2018; 33
Chekuri (10.1016/j.measurement.2024.115775_b0180) 2022; 50
10.1016/j.measurement.2024.115775_b0145
Torres (10.1016/j.measurement.2024.115775_b0045) 2016; 84
Kolli (10.1016/j.measurement.2024.115775_b0115) 2015; 18
Straka (10.1016/j.measurement.2024.115775_b0040) 2018; 97
Kurnia (10.1016/j.measurement.2024.115775_b0290) 2009; 223
Costa (10.1016/j.measurement.2024.115775_b0230) 2011; 107
Çaydaş (10.1016/j.measurement.2024.115775_b0195) 2008; 38
Faisal (10.1016/j.measurement.2024.115775_b0245) 2018; 6
Singh (10.1016/j.measurement.2024.115775_b0020) 2022; 38
Amorim (10.1016/j.measurement.2024.115775_b0050) 2007; 29
Pellicer (10.1016/j.measurement.2024.115775_b0190) 2011; 22
10.1016/j.measurement.2024.115775_b0070
Sahu (10.1016/j.measurement.2024.115775_b0015) 2022; 74
Torres (10.1016/j.measurement.2024.115775_b0055) 2017; 690
10.1016/j.measurement.2024.115775_b0215
Agatonovic-Kustrin (10.1016/j.measurement.2024.115775_b0220) 2000; 22
Barenji (10.1016/j.measurement.2024.115775_b0100) 2016; 45
Chen (10.1016/j.measurement.2024.115775_b0135) 2023; 13
Bahgat (10.1016/j.measurement.2024.115775_b0185) 2019; 5
Ogbezode (10.1016/j.measurement.2024.115775_b0150) 2021; 43
Mishra (10.1016/j.measurement.2024.115775_b0275) 2020; 159
Pradhan (10.1016/j.measurement.2024.115775_b0080) 2010; 50
Ming (10.1016/j.measurement.2024.115775_b0140) 2021; 72
Ranjan (10.1016/j.measurement.2024.115775_b0005) 2019; 43
10.1016/j.measurement.2024.115775_b0060
10.1016/j.measurement.2024.115775_b0065
10.1016/j.measurement.2024.115775_b0125
10.1016/j.measurement.2024.115775_b0200
Gupta (10.1016/j.measurement.2024.115775_b0210) 2019; 102
10.1016/j.measurement.2024.115775_b0205
Kumar (10.1016/j.measurement.2024.115775_b0110) 2012; 27
Singh (10.1016/j.measurement.2024.115775_b0265) 2004; 149
Kumar (10.1016/j.measurement.2024.115775_b0105) 2017; 3
Senthilkumar (10.1016/j.measurement.2024.115775_b0130) 2019; 6
Rao (10.1016/j.measurement.2024.115775_b0250) 2011; 43
Ishfaq (10.1016/j.measurement.2024.115775_b0280) 2023; 421
10.1016/j.measurement.2024.115775_b0010
10.1016/j.measurement.2024.115775_b0175
Debnath (10.1016/j.measurement.2024.115775_b0285) 2019; 34
10.1016/j.measurement.2024.115775_b0035
Kibria (10.1016/j.measurement.2024.115775_b0170) 2010; 48
Kumar (10.1016/j.measurement.2024.115775_b0030) 2022; 38
Guenther (10.1016/j.measurement.2024.115775_b0155) 2021; 14
Derringer (10.1016/j.measurement.2024.115775_b0235) 1980; 12
Tanjilul (10.1016/j.measurement.2024.115775_b0270) 2018; 255
Kliuev (10.1016/j.measurement.2024.115775_b0260) 2019; 40
Tiwari (10.1016/j.measurement.2024.115775_b0025) 2023; 185
Gong (10.1016/j.measurement.2024.115775_b0165) 2022; 79
Bharti (10.1016/j.measurement.2024.115775_b0075) 2012; 26
Hasan (10.1016/j.measurement.2024.115775_b0225) 2023; 127
Kuppan (10.1016/j.measurement.2024.115775_b0095) 2008; 38
Deshmukh (10.1016/j.measurement.2024.115775_b0255) 2022; 37
10.1016/j.measurement.2024.115775_b0120
Mohanty (10.1016/j.measurement.2024.115775_b0090) 2017; 20
Gopalakannan (10.1016/j.measurement.2024.115775_b0160) 2012; 11
10.1016/j.measurement.2024.115775_b0240
References_xml – volume: 29
  start-page: 366
  year: 2007
  end-page: 371
  ident: b0050
  article-title: The behavior of graphite and copper electrodes on the finish die-sinking electrical discharge machining (EDM) of AISI P20 tool steel
  publication-title: J. Brazilian Soc. Mech. Sci. Eng.
– volume: 27
  start-page: 1051
  year: 2012
  end-page: 1058
  ident: b0110
  article-title: Machining efficiency evaluation of cryogenically treated copper electrode in additive mixed EDM
  publication-title: Mater. Manuf. Process.
– volume: 223
  start-page: 279
  year: 2009
  end-page: 287
  ident: b0290
  article-title: Surface roughness model for micro electrical discharge machining
  publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
– volume: 107
  start-page: 234
  year: 2011
  end-page: 244
  ident: b0230
  article-title: Desirability function approach: A review and performance evaluation in adverse conditions
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 12
  start-page: 214
  year: 1980
  end-page: 219
  ident: b0235
  article-title: Simultaneous optimization of several response variables
  publication-title: J. Qual. Technol.
– volume: 38
  start-page: 74
  year: 2008
  end-page: 84
  ident: b0095
  article-title: Influence of EDM process parameters in deep hole drilling of Inconel 718
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 33
  start-page: 397
  year: 2018
  end-page: 404
  ident: b0085
  article-title: Constrained multi-objective optimization of EDM process parameters using kriging model and particle swarm algorithm
  publication-title: Mater. Manuf. Process.
– reference: A. Saffaran, M. Azadi Moghaddam, F. Kolahan, Optimization of backpropagation neural network-based models in EDM process using particle swarm optimization and simulated annealing algorithms, J. Brazilian Soc. Mech. Sci. Eng. 42 (2020) 1–14. 10.1007/s40430-019-2149-1.
– volume: 18
  start-page: 524
  year: 2015
  end-page: 535
  ident: b0115
  article-title: Effect of dielectric fluid with surfactant and graphite powder on Electrical Discharge Machining of titanium alloy using Taguchi method
  publication-title: Eng. Sci. Technol. an Int. J.
– volume: 50
  start-page: 591
  year: 2010
  end-page: 610
  ident: b0080
  article-title: Neuro-fuzzy and neural network-based prediction of various responses in electrical discharge machining of AISID2 steel “NF and NN based prediction of responses in EDM of D2 steel
  publication-title: Int. J. Adv. Manuf. Technol.
– reference: (accessed July 8, 2023).
– volume: 3
  year: 2017
  ident: b0105
  article-title: Parametric optimization of powder mixed electrical discharge machining for nickel-based superalloy inconel-800 using response surface methodology
  publication-title: Mech. Adv. Mater. Mod. Process.
– volume: 43
  start-page: 47
  year: 2019
  end-page: 73
  ident: b0005
  article-title: Role of textured tool in improving machining performance: A review
  publication-title: J. Manuf. Process.
– reference: M.K. Dikshit, S. Singh, V.K. Pathak, K.K. Saxena, M.K. Agrawal, V. Malik, K. hazim Salem, M.I. Khan, Surface characteristics optimization of biocompatible Ti6Al4V with RCCD and NSGA II using die sinking EDM, J. Mater. Res. Technol. 24 (2023) 223–235. 10.1016/j.jmrt.2023.03.005.
– volume: 13
  year: 2023
  ident: b0135
  article-title: Parameters optimization of electrical discharge machining process using swarm intelligence: A review
  publication-title: Metals (Basel)
– volume: 421
  year: 2023
  ident: b0280
  article-title: Sustainable EDM of Inconel 600 in Cu-mixed biodegradable dielectrics: Modelling and optimizing the process by artificial neural network for supporting net-zero from industry
  publication-title: J. Clean. Prod.
– volume: 38
  start-page: 1307
  year: 2022
  end-page: 1319
  ident: b0030
  article-title: Electropolishing of thin-cruciform gimbal flexure of gyroscope fabricated by electrical discharge machining
  publication-title: Mater. Manuf. Process.
– volume: 97
  start-page: 2647
  year: 2018
  end-page: 2654
  ident: b0040
  article-title: Optimization of material removal rate and tool wear rate of Cu electrode in die-sinking EDM of tool steel
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 40
  start-page: 84
  year: 2019
  end-page: 93
  ident: b0260
  article-title: Influence of energy fraction in EDM drilling of Inconel 718 by statistical analysis and finite element crater-modelling
  publication-title: J. Manuf. Process.
– volume: 11
  start-page: 685
  year: 2012
  end-page: 690
  ident: b0160
  article-title: Effect of electrode materials on electric discharge machining of 316 L and 17–4 PH stainless steels
  publication-title: J. Miner. Mater. Charact. Eng.
– volume: 5
  start-page: e01813
  year: 2019
  ident: b0185
  article-title: Influence of process parameters in electrical discharge machining on H13 die steel
  publication-title: Heliyon
– volume: 255
  start-page: 263
  year: 2018
  end-page: 274
  ident: b0270
  article-title: A study on EDM debris particle size and flushing mechanism for efficient debris removal in EDM-drilling of Inconel 718
  publication-title: J. Mater. Process. Technol.
– volume: 79
  start-page: 126
  year: 2022
  end-page: 141
  ident: b0165
  article-title: Experimental study on forming consistent accuracy and tool electrode wear involved in fabricating array microelectrodes and array micro holes using electrical discharge machining
  publication-title: J. Manuf. Process.
– reference: A.K. Jana, R. Ranjith Kumar, S.C. Mohanty, K. Mangapathi Rao, V.G. Shanker, A.Y. Reddy, Parametric Optimization of Die Sinking EDM in AISI D2 Steel considering Canola oil as Dielectric using TOPSIS and GRA, IOP Conf. Ser. Mater. Sci. Eng. 1057 (2021) 012061. 10.1088/1757-899x/1057/1/012061.
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. IEEE Int. Conf. Neural Netw., Washington, USA, 1995: pp. 1942–1948. 10.4018/ijmfmp.2015010104.
– volume: 22
  start-page: 717
  year: 2000
  end-page: 727
  ident: b0220
  article-title: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research
  publication-title: J. Pharm. Biomed. Anal.
– volume: 20
  start-page: 552
  year: 2017
  end-page: 562
  ident: b0090
  article-title: An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm
  publication-title: Eng. Sci. Technol. an Int. J.
– volume: 6
  year: 2019
  ident: b0130
  article-title: Evaluation of recast layer and parametric optimization of EDM process on aluminium based HMMCs using grey relational analysis
  publication-title: Mater. Res. Express
– reference: S. Kumar, R. Singh, A. Batish, T.P. Singh, Modeling the tool wear rate in powder mixed electro-discharge machining of titanium alloys using dimensional analysis of cryogenically treated electrodes and workpiece, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 231 (2015) 271–282. 10.1177/0954408915593875.
– volume: 149
  start-page: 272
  year: 2004
  end-page: 277
  ident: b0265
  article-title: Some investigations into the electric discharge machining of hardened tool steel using different electrode materials
  publication-title: J. Mater. Process. Technol.
– volume: 50
  year: 2022
  ident: b0180
  article-title: Experimental and thermal investigation on die-sinking EDM using FEM and multi-objective optimization using WOA-CS
  publication-title: Sustain. Energy Technol. Assessments
– volume: 34
  start-page: 580
  year: 2019
  end-page: 589
  ident: b0285
  article-title: Fabrication of an array of micro-fins using Wire-EDM and its parametric analysis
  publication-title: Mater. Manuf. Process.
– volume: 22
  start-page: 575
  year: 2011
  end-page: 584
  ident: b0190
  article-title: Tool electrode geometry and process parameters influence on different feature geometry and surface quality in electrical discharge machining of AISI H13 steel
  publication-title: J. Intell. Manuf.
– volume: 690
  start-page: 337
  year: 2017
  end-page: 347
  ident: b0055
  article-title: EDM machinability and surface roughness analysis of TiB2using copper electrodes
  publication-title: J. Alloys Compd.
– reference: DEF 92 (EDM fluid), (2021).
– reference: R. Mahanti, M. Das, Micro-EDM : Modeling and Optimization, in: V.K. Jain (Ed.), Adv. Mach. Sci., CRC Press, Boca Raton, 2022: pp. 79–116. 10.1201/9780429160011-4.
– volume: 43
  start-page: 1
  year: 2021
  end-page: 11
  ident: b0150
  article-title: Tool wear analysis of C-shaped equal channel reciprocating extrusion process of AISI-H13 steel die using finite element method
  publication-title: J. Brazilian Soc. Mech. Sci. Eng.
– volume: 72
  start-page: 375
  year: 2021
  end-page: 399
  ident: b0140
  article-title: Critical review on sustainable techniques in electrical discharge machining
  publication-title: J. Manuf. Process.
– volume: 102
  start-page: 3995
  year: 2019
  end-page: 4009
  ident: b0210
  article-title: Parametric optimization and process capability analysis for machining of nickel-based superalloy
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 6
  start-page: 54
  year: 2018
  ident: b0245
  article-title: Optimization of machine process parameters in EDM for EN 31 using evolutionary optimization techniques
  publication-title: Technologies
– volume: 38
  start-page: 448
  year: 2022
  end-page: 464
  ident: b0020
  article-title: Electrical discharge micro-texturing using compound tool electrodes for tribological and wettability applications
  publication-title: Surf. Eng.
– reference: M. Ratmond H., M. Douglas C., A.-C. Christine M., Response surface methodology: Process and product optimization using designed experiments, 4th ed., John Wiley & Sons, New Jersey, 2016.
– volume: 48
  start-page: 557
  year: 2010
  end-page: 570
  ident: b0170
  article-title: Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4V alloy
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 45
  start-page: 435
  year: 2016
  end-page: 444
  ident: b0100
  article-title: Electrical discharge machining of the AISI D6 tool steel: Prediction and modeling of the material removal rate and tool wear ratio
  publication-title: Precis. Eng.
– volume: 14
  start-page: 1
  year: 2021
  end-page: 10
  ident: b0155
  article-title: Tribological performance of additively manufactured aisi h13 steel in different surface conditions
  publication-title: Materials (Basel)
– volume: 185
  year: 2023
  ident: b0025
  article-title: Analysis of tribological behavior of dual-textured Ti-6Al-4 V alloy surfaces fabricated using a tool-mimic approach
  publication-title: Tribol. Int.
– reference: J.C. Outeiro, Residual stresses in machining, in: Mech. Mater. Mod. Manuf. Methods Process. Tech., Elsevier, 2020: pp. 297–360. 10.1016/B978-0-12-818232-1.00011-4.
– reference: S. Gopalakannan, T. Senthilvelan, A parametric study of electrical discharge machining process parameters on machining of cast Al/B4C metal matrix nanocomposites, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 227 (2013) 993–1004. 10.1177/0954405413479505.
– volume: 26
  start-page: 1875
  year: 2012
  end-page: 1883
  ident: b0075
  article-title: Multi-objective optimization of electric-discharge machining process using controlled elitist NSGA-II
  publication-title: J. Mech. Sci. Technol.
– volume: 84
  start-page: 2671
  year: 2016
  end-page: 2688
  ident: b0045
  article-title: EDM machinability and surface roughness analysis of INCONEL 600 using graphite electrodes
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 159
  year: 2020
  ident: b0275
  article-title: Evaluation of technical feasibility and environmental impact of Calophyllum Inophyllum (Polanga) oil based bio-dielectric fluid for green EDM
  publication-title: Meas. J. Int. Meas. Confed.
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: b0250
  article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: CAD Comput. Aided Des.
– volume: 74
  start-page: 26
  year: 2022
  end-page: 33
  ident: b0015
  article-title: Experimental investigations on the wear behaviour of micro-EDM-fabricated textured tools during dry turning of Ti6Al4V
  publication-title: Ind. Lubr. Tribol.
– reference: A. Kumar, R. Mahanti, M. Das, Investigation of electropolishing performance on surface residual stress and morphology of electrical discharge machined maraging steel, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 238 (2022). 10.1177/09544062221140735.
– reference: D.C. Montgomery, Design and analysis of experiments, 9th ed., John Wiley and Sons Inc, Arisona, State University, 2017.
– volume: 38
  start-page: 1148
  year: 2008
  end-page: 1156
  ident: b0195
  article-title: Modeling and analysis of electrode wear and white layer thickness in die-sinking EDM process through response surface methodology
  publication-title: Int. J. Adv. Manuf. Technol.
– reference: B. George EP, D. Norman R, Response surfaces, mixtures, and ridge analyses, 2nd edn, John Wiley & Sons, New Jersey, 2007. 10.1111/J.1751-5823.2007.00015_17.X.
– volume: 127
  start-page: 2125
  year: 2023
  end-page: 2150
  ident: b0225
  article-title: Experimental modeling techniques in electrical discharge machining (EDM): A review
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 37
  start-page: 1540
  year: 2022
  end-page: 1554
  ident: b0255
  article-title: Microlens array through induction-aided hot embossing: Fabrication, optimization, and characterization
  publication-title: Mater. Manuf. Process.
– volume: 5
  start-page: e01813
  year: 2019
  ident: 10.1016/j.measurement.2024.115775_b0185
  article-title: Influence of process parameters in electrical discharge machining on H13 die steel
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e01813
– ident: 10.1016/j.measurement.2024.115775_b0010
  doi: 10.1201/9780429160011-4
– volume: 45
  start-page: 435
  year: 2016
  ident: 10.1016/j.measurement.2024.115775_b0100
  article-title: Electrical discharge machining of the AISI D6 tool steel: Prediction and modeling of the material removal rate and tool wear ratio
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2016.01.012
– volume: 97
  start-page: 2647
  year: 2018
  ident: 10.1016/j.measurement.2024.115775_b0040
  article-title: Optimization of material removal rate and tool wear rate of Cu electrode in die-sinking EDM of tool steel
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-2150-3
– volume: 14
  start-page: 1
  year: 2021
  ident: 10.1016/j.measurement.2024.115775_b0155
  article-title: Tribological performance of additively manufactured aisi h13 steel in different surface conditions
  publication-title: Materials (Basel)
  doi: 10.3390/ma14040928
– volume: 26
  start-page: 1875
  year: 2012
  ident: 10.1016/j.measurement.2024.115775_b0075
  article-title: Multi-objective optimization of electric-discharge machining process using controlled elitist NSGA-II
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-012-0411-x
– volume: 149
  start-page: 272
  year: 2004
  ident: 10.1016/j.measurement.2024.115775_b0265
  article-title: Some investigations into the electric discharge machining of hardened tool steel using different electrode materials
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2003.11.046
– ident: 10.1016/j.measurement.2024.115775_b0060
  doi: 10.1177/0954405413479505
– volume: 29
  start-page: 366
  year: 2007
  ident: 10.1016/j.measurement.2024.115775_b0050
  article-title: The behavior of graphite and copper electrodes on the finish die-sinking electrical discharge machining (EDM) of AISI P20 tool steel
  publication-title: J. Brazilian Soc. Mech. Sci. Eng.
  doi: 10.1590/S1678-58782007000400004
– volume: 43
  start-page: 47
  year: 2019
  ident: 10.1016/j.measurement.2024.115775_b0005
  article-title: Role of textured tool in improving machining performance: A review
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2019.04.011
– volume: 6
  year: 2019
  ident: 10.1016/j.measurement.2024.115775_b0130
  article-title: Evaluation of recast layer and parametric optimization of EDM process on aluminium based HMMCs using grey relational analysis
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab3d73
– volume: 107
  start-page: 234
  year: 2011
  ident: 10.1016/j.measurement.2024.115775_b0230
  article-title: Desirability function approach: A review and performance evaluation in adverse conditions
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2011.04.004
– volume: 33
  start-page: 397
  year: 2018
  ident: 10.1016/j.measurement.2024.115775_b0085
  article-title: Constrained multi-objective optimization of EDM process parameters using kriging model and particle swarm algorithm
  publication-title: Mater. Manuf. Process.
  doi: 10.1080/10426914.2017.1292037
– ident: 10.1016/j.measurement.2024.115775_b0215
– ident: 10.1016/j.measurement.2024.115775_b0120
  doi: 10.1177/0954408915593875
– volume: 43
  start-page: 1
  year: 2021
  ident: 10.1016/j.measurement.2024.115775_b0150
  article-title: Tool wear analysis of C-shaped equal channel reciprocating extrusion process of AISI-H13 steel die using finite element method
  publication-title: J. Brazilian Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-021-03291-z
– volume: 50
  year: 2022
  ident: 10.1016/j.measurement.2024.115775_b0180
  article-title: Experimental and thermal investigation on die-sinking EDM using FEM and multi-objective optimization using WOA-CS
  publication-title: Sustain. Energy Technol. Assessments
– volume: 43
  start-page: 303
  year: 2011
  ident: 10.1016/j.measurement.2024.115775_b0250
  article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: CAD Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 37
  start-page: 1540
  year: 2022
  ident: 10.1016/j.measurement.2024.115775_b0255
  article-title: Microlens array through induction-aided hot embossing: Fabrication, optimization, and characterization
  publication-title: Mater. Manuf. Process.
  doi: 10.1080/10426914.2022.2030876
– volume: 22
  start-page: 575
  year: 2011
  ident: 10.1016/j.measurement.2024.115775_b0190
  article-title: Tool electrode geometry and process parameters influence on different feature geometry and surface quality in electrical discharge machining of AISI H13 steel
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-009-0320-8
– volume: 40
  start-page: 84
  year: 2019
  ident: 10.1016/j.measurement.2024.115775_b0260
  article-title: Influence of energy fraction in EDM drilling of Inconel 718 by statistical analysis and finite element crater-modelling
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2019.03.002
– volume: 84
  start-page: 2671
  year: 2016
  ident: 10.1016/j.measurement.2024.115775_b0045
  article-title: EDM machinability and surface roughness analysis of INCONEL 600 using graphite electrodes
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-7880-x
– ident: 10.1016/j.measurement.2024.115775_b0070
  doi: 10.1016/j.jmrt.2023.03.005
– volume: 79
  start-page: 126
  year: 2022
  ident: 10.1016/j.measurement.2024.115775_b0165
  article-title: Experimental study on forming consistent accuracy and tool electrode wear involved in fabricating array microelectrodes and array micro holes using electrical discharge machining
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2022.04.046
– volume: 11
  start-page: 685
  year: 2012
  ident: 10.1016/j.measurement.2024.115775_b0160
  article-title: Effect of electrode materials on electric discharge machining of 316 L and 17–4 PH stainless steels
  publication-title: J. Miner. Mater. Charact. Eng.
– volume: 185
  year: 2023
  ident: 10.1016/j.measurement.2024.115775_b0025
  article-title: Analysis of tribological behavior of dual-textured Ti-6Al-4 V alloy surfaces fabricated using a tool-mimic approach
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2023.108527
– ident: 10.1016/j.measurement.2024.115775_b0240
  doi: 10.1109/ICNN.1995.488968
– volume: 38
  start-page: 74
  year: 2008
  ident: 10.1016/j.measurement.2024.115775_b0095
  article-title: Influence of EDM process parameters in deep hole drilling of Inconel 718
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-007-1084-y
– ident: 10.1016/j.measurement.2024.115775_b0125
  doi: 10.1088/1757-899X/1057/1/012061
– volume: 6
  start-page: 54
  year: 2018
  ident: 10.1016/j.measurement.2024.115775_b0245
  article-title: Optimization of machine process parameters in EDM for EN 31 using evolutionary optimization techniques
  publication-title: Technologies
  doi: 10.3390/technologies6020054
– ident: 10.1016/j.measurement.2024.115775_b0065
  doi: 10.1007/s40430-019-2149-1
– volume: 255
  start-page: 263
  year: 2018
  ident: 10.1016/j.measurement.2024.115775_b0270
  article-title: A study on EDM debris particle size and flushing mechanism for efficient debris removal in EDM-drilling of Inconel 718
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.12.016
– volume: 50
  start-page: 591
  year: 2010
  ident: 10.1016/j.measurement.2024.115775_b0080
  article-title: Neuro-fuzzy and neural network-based prediction of various responses in electrical discharge machining of AISID2 steel “NF and NN based prediction of responses in EDM of D2 steel
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-010-2531-8
– volume: 18
  start-page: 524
  year: 2015
  ident: 10.1016/j.measurement.2024.115775_b0115
  article-title: Effect of dielectric fluid with surfactant and graphite powder on Electrical Discharge Machining of titanium alloy using Taguchi method
  publication-title: Eng. Sci. Technol. an Int. J.
  doi: 10.1016/j.jestch.2015.03.009
– volume: 72
  start-page: 375
  year: 2021
  ident: 10.1016/j.measurement.2024.115775_b0140
  article-title: Critical review on sustainable techniques in electrical discharge machining
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2021.10.035
– ident: 10.1016/j.measurement.2024.115775_b0200
– volume: 421
  year: 2023
  ident: 10.1016/j.measurement.2024.115775_b0280
  article-title: Sustainable EDM of Inconel 600 in Cu-mixed biodegradable dielectrics: Modelling and optimizing the process by artificial neural network for supporting net-zero from industry
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.138388
– volume: 12
  start-page: 214
  year: 1980
  ident: 10.1016/j.measurement.2024.115775_b0235
  article-title: Simultaneous optimization of several response variables
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.1980.11980968
– volume: 27
  start-page: 1051
  year: 2012
  ident: 10.1016/j.measurement.2024.115775_b0110
  article-title: Machining efficiency evaluation of cryogenically treated copper electrode in additive mixed EDM
  publication-title: Mater. Manuf. Process.
  doi: 10.1080/10426914.2011.654151
– volume: 223
  start-page: 279
  year: 2009
  ident: 10.1016/j.measurement.2024.115775_b0290
  article-title: Surface roughness model for micro electrical discharge machining
  publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
  doi: 10.1243/09544054JEM1188
– volume: 3
  year: 2017
  ident: 10.1016/j.measurement.2024.115775_b0105
  article-title: Parametric optimization of powder mixed electrical discharge machining for nickel-based superalloy inconel-800 using response surface methodology
  publication-title: Mech. Adv. Mater. Mod. Process.
  doi: 10.1186/s40759-017-0022-4
– ident: 10.1016/j.measurement.2024.115775_b0175
– volume: 74
  start-page: 26
  year: 2022
  ident: 10.1016/j.measurement.2024.115775_b0015
  article-title: Experimental investigations on the wear behaviour of micro-EDM-fabricated textured tools during dry turning of Ti6Al4V
  publication-title: Ind. Lubr. Tribol.
  doi: 10.1108/ILT-06-2021-0233
– volume: 20
  start-page: 552
  year: 2017
  ident: 10.1016/j.measurement.2024.115775_b0090
  article-title: An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm
  publication-title: Eng. Sci. Technol. an Int. J.
  doi: 10.1016/j.jestch.2016.07.003
– volume: 13
  year: 2023
  ident: 10.1016/j.measurement.2024.115775_b0135
  article-title: Parameters optimization of electrical discharge machining process using swarm intelligence: A review
  publication-title: Metals (Basel)
– volume: 34
  start-page: 580
  year: 2019
  ident: 10.1016/j.measurement.2024.115775_b0285
  article-title: Fabrication of an array of micro-fins using Wire-EDM and its parametric analysis
  publication-title: Mater. Manuf. Process.
  doi: 10.1080/10426914.2019.1566959
– volume: 22
  start-page: 717
  year: 2000
  ident: 10.1016/j.measurement.2024.115775_b0220
  article-title: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/S0731-7085(99)00272-1
– volume: 159
  year: 2020
  ident: 10.1016/j.measurement.2024.115775_b0275
  article-title: Evaluation of technical feasibility and environmental impact of Calophyllum Inophyllum (Polanga) oil based bio-dielectric fluid for green EDM
  publication-title: Meas. J. Int. Meas. Confed.
– ident: 10.1016/j.measurement.2024.115775_b0145
  doi: 10.1016/B978-0-12-818232-1.00011-4
– volume: 690
  start-page: 337
  year: 2017
  ident: 10.1016/j.measurement.2024.115775_b0055
  article-title: EDM machinability and surface roughness analysis of TiB2using copper electrodes
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.08.110
– volume: 48
  start-page: 557
  year: 2010
  ident: 10.1016/j.measurement.2024.115775_b0170
  article-title: Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4V alloy
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-009-2298-y
– ident: 10.1016/j.measurement.2024.115775_b0205
– volume: 38
  start-page: 1148
  year: 2008
  ident: 10.1016/j.measurement.2024.115775_b0195
  article-title: Modeling and analysis of electrode wear and white layer thickness in die-sinking EDM process through response surface methodology
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-007-1162-1
– volume: 127
  start-page: 2125
  year: 2023
  ident: 10.1016/j.measurement.2024.115775_b0225
  article-title: Experimental modeling techniques in electrical discharge machining (EDM): A review
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-023-11603-x
– volume: 38
  start-page: 1307
  year: 2022
  ident: 10.1016/j.measurement.2024.115775_b0030
  article-title: Electropolishing of thin-cruciform gimbal flexure of gyroscope fabricated by electrical discharge machining
  publication-title: Mater. Manuf. Process.
  doi: 10.1080/10426914.2022.2149788
– ident: 10.1016/j.measurement.2024.115775_b0035
  doi: 10.1177/09544062221140735
– volume: 102
  start-page: 3995
  year: 2019
  ident: 10.1016/j.measurement.2024.115775_b0210
  article-title: Parametric optimization and process capability analysis for machining of nickel-based superalloy
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-019-03453-3
– volume: 38
  start-page: 448
  year: 2022
  ident: 10.1016/j.measurement.2024.115775_b0020
  article-title: Electrical discharge micro-texturing using compound tool electrodes for tribological and wettability applications
  publication-title: Surf. Eng.
  doi: 10.1080/02670844.2022.2089801
SSID ssj0006396
Score 2.4238884
Snippet [Display omitted] •Parametric correlation of responses using RSM and ANN modeling in EDM of H13 alloy is studied.•Formulation of a combined objective to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115775
SubjectTerms Electrical discharge machining
Machine learning
Micro-pillar-textured die surface
Optimization-algorithms
Sustainable production
Title Sustainable EDM production of micro-textured die-surfaces: Modeling and optimizing the process using machine learning techniques
URI https://dx.doi.org/10.1016/j.measurement.2024.115775
Volume 242
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0263-2241
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006396
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0263-2241
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006396
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0263-2241
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006396
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 0263-2241
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006396
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0263-2241
  databaseCode: AKRWK
  dateStart: 19830101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5EUfQgPvFNBK9x27y6FS_LqqyKXlTwVtI0lRX3ga4XD-JPd6YPdwVBwWNLBoZMmPkSvpkP4CBIY2cQafAcwSpXViqeWh9wH-Sht8SrKsQmrq5N505d3Ov7KWjXvTBEq6xyf5nTi2xd_WlUu9kYdruNm4BGjQtST0bYYoomPqUiUjE4fB_TPLACm_KdRXJaPQf7Y45Xb_wOh1dFoQ5p9AxRDn-qURN152wJFivAyFqlT8sw5fsrsDAxRnAFZgsap3tZhY-bcT8UOz25YsNyoCtuPhvkrEfsO05cD3QnY1nXc3QsJ1bWESNVNOpNZ7afsQFmkl73jT4RIbJh2U7AiCX_wHoFAdOzSnECl9SDYF_W4O7s9Lbd4ZXGAndShCOuY-mbuclTF1gZ2WYkVeCkVkpYa0wuU4QUUqUu8zZyWeZEmKnQxbGLUq2lSeU6TPcHfb8BLBRZrH0g8UKlEJYgErLahbGPjddaqOYmNOtdTVw1gJx0MJ6Smmn2mEwEJKGAJGVANkF8mQ7LKRx_MTquQ5d8O1IJVovfzbf-Z74N84KkgovXmh2YHj2_-l3EL6N0rzigezDTOr_sXH8CYevzRg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixNBEC5CFtfdw6JZxeiqLXjtZKZfkxEvErNEN8klCeQ29PT0LBHzYBMvHsSfbtU8TBYEBY8zdEHR1VR93XxVH8DbII2dQaTBcwSrXFmpeGp9wH2Qh94Sr6oQmxhPzHCuPi_0ogH9uheGaJVV7i9zepGtqz_daje72-WyOw1o1Lgg9WSELYaa-E6UFhHdwDo_DjwPLMGmfGiRnJafwpsDyWt1eIjDu6JQHZo9Q5zDPxWpo8Jz_QguKsTIPpROPYaGX7fg_GiOYAseFDxOt7uEn9NDQxQbfByzbTnRFXefbXK2IvodJ7IHupOxbOk5OpYTLesdI1k0ak5ndp2xDaaS1fI7fSJEZNuyn4ARTf6WrQoGpmeV5AQuqSfB7p7A_How6w95JbLAnRThnutY-l5u8tQFVka2F0kVOKmVEtYak8sUMYVUqcu8jVyWORFmKnRx7KJUa2lS-RSa683aPwMWiizWPpB4o1KISxAKWe3C2MfGay1Urw29elcTV00gJyGMr0lNNfuSHAUkoYAkZUDaIH6bbssxHP9i9L4OXXLvTCVYLv5u_vz_zF_Dw-FsPEpGnyY3L-BMkG5w8XRzBc393Tf_EsHMPn1VHNZfAqb02w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainable+EDM+production+of+micro-textured+die-surfaces%3A+Modeling+and+optimizing+the+process+using+machine+learning+techniques&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Mahanti%2C+Ranajit&rft.au=Das%2C+Manas&rft.date=2025-01-01&rft.issn=0263-2241&rft.volume=242&rft.spage=115775&rft_id=info:doi/10.1016%2Fj.measurement.2024.115775&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2024_115775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon