Multiscale fatigue-prediction method to assess life of A356-T6 alloy wheel under biaxial loads

•An efficient tetrahedral mesh data-mapping algorithm is developed for defects and SDAS data.•A mesoscopic fatigue-strength prediction method considering the effects of the defects and SDAS is developed based on the meso-cell model and stress-gradient theory.•Combined with the BP neural-network mode...

Full description

Saved in:
Bibliographic Details
Published inEngineering failure analysis Vol. 130; p. 105752
Main Authors Duan, Yong-chuan, Zhang, Fang-fang, Yao, Dan, Hu, Jin-hua, Dong, Rui, Zhao, Xu, Guan, Ying-ping
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2021
Subjects
Online AccessGet full text
ISSN1350-6307
1873-1961
DOI10.1016/j.engfailanal.2021.105752

Cover

Abstract •An efficient tetrahedral mesh data-mapping algorithm is developed for defects and SDAS data.•A mesoscopic fatigue-strength prediction method considering the effects of the defects and SDAS is developed based on the meso-cell model and stress-gradient theory.•Combined with the BP neural-network model, Two S-N data prediction methods driven by the coupling model and data and by solely data are established.•According to the biaxial physical experiment, a biaxial virtual experiment is established for the wheel. The real stress of a car wheel can be reproduced by biaxial tests. However, in the cases of complicated loads, these tests are expensive and time-consuming. Additionally, shrinkage cavities and uneven microstructures can be introduced in A356 cast aluminum alloys, which has a certain influence on fatigue life. Therefore, a new simulation method for the biaxial wheel fatigue test, including the effects of the shrinkage cavity and secondary dendrite arm spacing (SDAS), is urgently needed to avoid the dispersion of the simulation results and reduce costs. In this paper, a new multiscale biaxial fatigue simulation method is proposed. An efficient tetrahedral mesh data-mapping algorithm is developed, in which the natural coordinates are introduced, and transfer of the SDAS and porosity between the cast wheel and finished wheel are realized. Based on the meso-cell model and stress-gradient theory, a mesoscopic fatigue-strength prediction method with defects and SDAS effects is developed. The two pieces style fatigue strength surface is determined. S-N data prediction methods driven by the coupling model and data and solely by the data are developed respectively. The generalization accuracy is within 4%, the structure of the pure data model is simple. The prediction accuracy is verified by performing a uniaxial tensile experiment. A wheel biaxial simulation model is established, and a continuous biaxial load is realized using the sequence amplitude curve family. Finally, a new multiscale biaxial fatigue simulation method with multiple load spectra is created using Fe-safe. The prediction result for the minimum life starting point (considering casting defects) is consistent with the test results, and the overall prediction results are significantly improved. The proposed method lays a solid foundation for optimization design and Big Data fatigue prediction of aluminum alloy wheels.
AbstractList •An efficient tetrahedral mesh data-mapping algorithm is developed for defects and SDAS data.•A mesoscopic fatigue-strength prediction method considering the effects of the defects and SDAS is developed based on the meso-cell model and stress-gradient theory.•Combined with the BP neural-network model, Two S-N data prediction methods driven by the coupling model and data and by solely data are established.•According to the biaxial physical experiment, a biaxial virtual experiment is established for the wheel. The real stress of a car wheel can be reproduced by biaxial tests. However, in the cases of complicated loads, these tests are expensive and time-consuming. Additionally, shrinkage cavities and uneven microstructures can be introduced in A356 cast aluminum alloys, which has a certain influence on fatigue life. Therefore, a new simulation method for the biaxial wheel fatigue test, including the effects of the shrinkage cavity and secondary dendrite arm spacing (SDAS), is urgently needed to avoid the dispersion of the simulation results and reduce costs. In this paper, a new multiscale biaxial fatigue simulation method is proposed. An efficient tetrahedral mesh data-mapping algorithm is developed, in which the natural coordinates are introduced, and transfer of the SDAS and porosity between the cast wheel and finished wheel are realized. Based on the meso-cell model and stress-gradient theory, a mesoscopic fatigue-strength prediction method with defects and SDAS effects is developed. The two pieces style fatigue strength surface is determined. S-N data prediction methods driven by the coupling model and data and solely by the data are developed respectively. The generalization accuracy is within 4%, the structure of the pure data model is simple. The prediction accuracy is verified by performing a uniaxial tensile experiment. A wheel biaxial simulation model is established, and a continuous biaxial load is realized using the sequence amplitude curve family. Finally, a new multiscale biaxial fatigue simulation method with multiple load spectra is created using Fe-safe. The prediction result for the minimum life starting point (considering casting defects) is consistent with the test results, and the overall prediction results are significantly improved. The proposed method lays a solid foundation for optimization design and Big Data fatigue prediction of aluminum alloy wheels.
ArticleNumber 105752
Author Duan, Yong-chuan
Dong, Rui
Guan, Ying-ping
Zhao, Xu
Zhang, Fang-fang
Yao, Dan
Hu, Jin-hua
Author_xml – sequence: 1
  givenname: Yong-chuan
  surname: Duan
  fullname: Duan, Yong-chuan
  organization: Key Laboratory of Advanced Forming & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, Hebei, China
– sequence: 2
  givenname: Fang-fang
  surname: Zhang
  fullname: Zhang, Fang-fang
  email: fangfang.zhang@ysu.edu.cn
  organization: Key Laboratory of Advanced Forming & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, Hebei, China
– sequence: 3
  givenname: Dan
  surname: Yao
  fullname: Yao, Dan
  organization: Key Laboratory of Advanced Forming & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, Hebei, China
– sequence: 4
  givenname: Jin-hua
  surname: Hu
  fullname: Hu, Jin-hua
  email: hujinhuaysu@163.com
  organization: Technical Center, CITIC Dicastal Limited Company, Qinhuangdao 066004, Hebei, China
– sequence: 5
  givenname: Rui
  surname: Dong
  fullname: Dong, Rui
  organization: Key Laboratory of Advanced Forming & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, Hebei, China
– sequence: 6
  givenname: Xu
  surname: Zhao
  fullname: Zhao, Xu
  organization: Key Laboratory of Advanced Forming & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, Hebei, China
– sequence: 7
  givenname: Ying-ping
  surname: Guan
  fullname: Guan, Ying-ping
  organization: Key Laboratory of Advanced Forming & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, Hebei, China
BookMark eNqNkMtOAjEUhhuDiYC-Q32AwV5mOnRlCPGWYNzg1qbTOQMlZUraovL2luDCuGL1n3OS_0vON0KD3veA0C0lE0qouNtMoF912jrdazdhhNF8r-qKXaAhnda8oFLQQZ55RQrBSX2FRjFuCCE1k3SIPl73LtlotAPc6WRXeyh2AVprkvU93kJa-xYnj3WMECN2tgPsOzzjlSiWAmvn_AF_rQEc3vctBNxY_W21w87rNl6jy067CDe_OUbvjw_L-XOxeHt6mc8WheGMpqKiJCfXpeGaTKdG8I41TS1FORWEGVky0dZCU5l3QWRpSihbzlsBBCQ0go_R_Ylrgo8xQKeMTfr4QgpZjqJEHXWpjfqjSx11qZOuTJD_CLtgtzoczurOT13IL35aCCoaC73JGgOYpFpvz6D8APCXjd4
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3279277
crossref_primary_10_1007_s11668_022_01447_0
crossref_primary_10_1016_j_advengsoft_2023_103543
crossref_primary_10_1016_j_engfailanal_2024_107979
crossref_primary_10_1016_j_compstruc_2024_107475
crossref_primary_10_1007_s40962_024_01505_3
crossref_primary_10_1016_j_jmrt_2023_03_214
crossref_primary_10_1111_ffe_14085
crossref_primary_10_1177_16878132231189119
crossref_primary_10_3390_machines10100924
Cites_doi 10.1016/S1350-6307(00)00031-5
10.1016/j.ijfatigue.2016.12.029
10.1016/j.actamat.2004.05.006
10.1016/j.engfailanal.2003.05.018
10.1016/S0261-3069(03)00157-2
10.1016/j.ijfatigue.2012.08.004
10.1111/j.1460-2695.2012.01702.x
10.1016/j.mtcomm.2020.101567
10.1016/j.proeng.2010.03.208
10.1016/j.matdes.2011.01.039
10.1016/j.msea.2007.03.112
10.1016/j.ijfatigue.2012.07.008
10.1016/j.advengsoft.2017.08.006
10.1016/j.engfailanal.2020.104903
10.1016/j.engfailanal.2008.10.005
10.1046/j.1460-2695.2000.00239.x
10.1016/j.advengsoft.2017.11.004
10.1016/j.ijfatigue.2018.05.026
10.1007/s12540-014-4004-3
10.1016/j.actamat.2016.10.028
10.1016/j.actamat.2004.07.035
10.1016/j.ijfatigue.2010.12.011
10.1016/j.advengsoft.2015.11.005
10.1016/j.proeng.2010.03.122
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engfailanal.2021.105752
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-1961
ExternalDocumentID 10_1016_j_engfailanal_2021_105752
S1350630721006130
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
WUQ
XPP
XSW
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c321t-5103213a4c3a088c63f2bb79648602c9426d76a194866094c4e4d33d6e0e9eb63
IEDL.DBID .~1
ISSN 1350-6307
IngestDate Thu Apr 24 23:11:46 EDT 2025
Wed Oct 29 21:17:54 EDT 2025
Sat Feb 17 16:07:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mean stress
Data-mapping algorithm
Shrinkage cavity
Biaxial wheel fatigue test
SDAS
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-5103213a4c3a088c63f2bb79648602c9426d76a194866094c4e4d33d6e0e9eb63
ParticipantIDs crossref_citationtrail_10_1016_j_engfailanal_2021_105752
crossref_primary_10_1016_j_engfailanal_2021_105752
elsevier_sciencedirect_doi_10_1016_j_engfailanal_2021_105752
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Engineering failure analysis
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fernández-Canteli, Castillo, López-Aenlle, Seitl (b0055) 2010; 2
Li, Zhang, Xu (b0040) 2008; 21
Roy, Nadot, Maijer (b0105) 2014; 35
Billaudeau, Nadot, Bezine (b0035) 2004; 52
Wa Fabio, M. Santiciolli, Riccardo Möller, Ivo Krause, et al. Simulation of the scenario of the biaxial wheel fatigue test. Adv. Eng. Software 114 (2017) 337–347.
ng GF. Study on steel wheel’s fatigue virtual evaluation. Yanshan University; 2011. Dissertation (in Chinese) p. 80–93.
Chai, Liu, Shan, Wan, Jiang (b0005) 2018; 116
Lee, Yoo (b0020) 2014; 20
Nourian-Avval, Fatemi (b0135) 2020; 25
Duan, Zhang, Yao, Tian, Yang, Guan, Hu (b0140) 2020; 118
Ueno, Miyakawa, Yamada, Sugiyama (b0045) 2010; 2
Koutiri, Bellett, Morel, Augustins, Adrien (b0125) 2013; 47
Kocabicak, Firat (b0095) 2001; 8
EUWA Standard ES 3.23. Biaxial fatigue test for truck wheels, Germany, 2006.
Roy, Nadot, Nadot-Martin, Bardin, Maijer (b0115) 2011; 33
Firat, Kozan, Ozsoy, Mete (b0100) 2009; 16
Gall, Yang, Horstemeyer, McDowell, Fan (b0120) 2000; 23
Ammar, Samuel, Samuel (b0065) 2008; 473
Gao, Yi, Lee, Lindley (b0110) 2004; 52
Rotella, Nadot, Piellard, Augustin, Fleuriot (b0015) 2018; 114
M. Firat, U. Kocabicak, Analytical durability modeling and evaluation-complementary techniques for physical testing of automotive components. Eng. Fail. Anal. 1 1(04) (2004) 655–674.
Kocabicak, Firat (b0085) 2004; 25
SAE J2562. Biaxial Wheel Fatigue Test, Revised 2005.
Koutiri, Bellett, Morel, Pessard (b0130) 2013; 47
Wan, Shan, Liu, Wang, Wang (b0075) 2016; 92
Li, Shen, Hu (b0060) 2011; 32
Dezecot, Maurel, Buffiere, Szmytka, Koster (b0050) 2017; 123
Spangenberger, Lados, Coleman, Birosca, Hardy (b0010) 2017; 97
Firat (10.1016/j.engfailanal.2021.105752_b0100) 2009; 16
Gao (10.1016/j.engfailanal.2021.105752_b0110) 2004; 52
Duan (10.1016/j.engfailanal.2021.105752_b0140) 2020; 118
Gall (10.1016/j.engfailanal.2021.105752_b0120) 2000; 23
10.1016/j.engfailanal.2021.105752_b0030
Rotella (10.1016/j.engfailanal.2021.105752_b0015) 2018; 114
10.1016/j.engfailanal.2021.105752_b0070
10.1016/j.engfailanal.2021.105752_b0090
Roy (10.1016/j.engfailanal.2021.105752_b0105) 2014; 35
Dezecot (10.1016/j.engfailanal.2021.105752_b0050) 2017; 123
Kocabicak (10.1016/j.engfailanal.2021.105752_b0095) 2001; 8
Koutiri (10.1016/j.engfailanal.2021.105752_b0125) 2013; 47
Fernández-Canteli (10.1016/j.engfailanal.2021.105752_b0055) 2010; 2
Roy (10.1016/j.engfailanal.2021.105752_b0115) 2011; 33
10.1016/j.engfailanal.2021.105752_b0025
Wan (10.1016/j.engfailanal.2021.105752_b0075) 2016; 92
Lee (10.1016/j.engfailanal.2021.105752_b0020) 2014; 20
Li (10.1016/j.engfailanal.2021.105752_b0040) 2008; 21
Spangenberger (10.1016/j.engfailanal.2021.105752_b0010) 2017; 97
Billaudeau (10.1016/j.engfailanal.2021.105752_b0035) 2004; 52
10.1016/j.engfailanal.2021.105752_b0080
Ammar (10.1016/j.engfailanal.2021.105752_b0065) 2008; 473
Nourian-Avval (10.1016/j.engfailanal.2021.105752_b0135) 2020; 25
Chai (10.1016/j.engfailanal.2021.105752_b0005) 2018; 116
Kocabicak (10.1016/j.engfailanal.2021.105752_b0085) 2004; 25
Li (10.1016/j.engfailanal.2021.105752_b0060) 2011; 32
Koutiri (10.1016/j.engfailanal.2021.105752_b0130) 2013; 47
Ueno (10.1016/j.engfailanal.2021.105752_b0045) 2010; 2
References_xml – volume: 114
  start-page: 177
  year: 2018
  end-page: 188
  ident: b0015
  article-title: Fatigue limit of a cast Al-Si-Mg alloy (A357–T6) with natural casting shrinkages using ASTM standard X-Ray inspection
  publication-title: Int. J. Fatigue
– volume: 20
  start-page: 601
  year: 2014
  end-page: 612
  ident: b0020
  article-title: Dependence of fatigue life of low-pressure die-cast A356 aluminum alloy on microporosity variation
  publication-title: Met. Mater. Int.
– volume: 32
  start-page: 2570
  year: 2011
  end-page: 2582
  ident: b0060
  article-title: Casting defects induced fatigue damage in aircraft frames of ZL205A aluminum alloy – A failure analysis
  publication-title: Mater. Des.
– reference: Wa Fabio, M. Santiciolli, Riccardo Möller, Ivo Krause, et al. Simulation of the scenario of the biaxial wheel fatigue test. Adv. Eng. Software 114 (2017) 337–347.
– volume: 21
  start-page: 39
  year: 2008
  end-page: 43
  ident: b0040
  article-title: Study on determination method of high cycle stress fatigue S-N curve
  publication-title: Gas Turbine Test Res.
– reference: SAE J2562. Biaxial Wheel Fatigue Test, Revised 2005.
– volume: 47
  start-page: 44
  year: 2013
  end-page: 57
  ident: b0125
  article-title: High cycle fatigue damage mechanisms in cast aluminium subject to complex loads
  publication-title: Int. J. Fatigue
– volume: 2
  start-page: 1131
  year: 2010
  end-page: 1140
  ident: b0055
  article-title: Using statistical compatibility to derive advanced probabilistic fatigue models
  publication-title: Procedia Eng.
– volume: 52
  start-page: 3911
  year: 2004
  end-page: 3920
  ident: b0035
  article-title: Multiaxial fatigue limit for defective materials: mechanisms and experiments
  publication-title: Acta Mater.
– volume: 116
  start-page: 1
  year: 2018
  end-page: 8
  ident: b0005
  article-title: Research on simulation of the bending fatigue test of automotive wheel made of long glass fiber reinforced thermoplastic considering anisotropic property
  publication-title: Adv. Eng. Software
– reference: M. Firat, U. Kocabicak, Analytical durability modeling and evaluation-complementary techniques for physical testing of automotive components. Eng. Fail. Anal. 1 1(04) (2004) 655–674.
– volume: 118
  start-page: 104903
  year: 2020
  ident: b0140
  article-title: Numerical prediction of fatigue life of an A356–T6 alloy wheel considering the influence of casting defect and mean stress
  publication-title: Eng. Fail. Anal.
– volume: 52
  start-page: 5435
  year: 2004
  end-page: 5449
  ident: b0110
  article-title: A micro-cell model of the effect of microstructure and defects on fatigue resistance in cast aluminum alloys
  publication-title: Acta Mater.
– volume: 8
  start-page: 339
  year: 2001
  end-page: 354
  ident: b0095
  article-title: Numerical analysis of wheel cornering fatigue tests
  publication-title: Eng. Fail. Anal.
– volume: 25
  start-page: 73
  year: 2004
  end-page: 82
  ident: b0085
  article-title: A simple approach for multiaxial fatigue damage prediction based on FEM post-processing
  publication-title: Mater. Des.
– volume: 473
  start-page: 65
  year: 2008
  end-page: 75
  ident: b0065
  article-title: Effect of casting imperfections on the fatigue life of 319-F and A356–T6 Al–Si casting alloys
  publication-title: Mater. Sci. Eng. A (Structural Materials: Properties, Microstructure and Processing)
– volume: 23
  start-page: 159
  year: 2000
  end-page: 172
  ident: b0120
  article-title: The influence of modified intermetallics and Si particles on fatigue crack paths in a cast A356 Al alloy
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 2
  start-page: 1937
  year: 2010
  end-page: 1943
  ident: b0045
  article-title: Fatigue behavior of die casting aluminum alloys in air and vacuum
  publication-title: Procedia Eng.
– volume: 25
  start-page: 101567
  year: 2020
  ident: b0135
  article-title: Fatigue design with high pressure die cast aluminum including the effects of defects, section size, stress gradient, and mean stress
  publication-title: Mater. Today Commun.
– volume: 35
  year: 2014
  ident: b0105
  article-title: Multi axial fatigue behaviour of A356–T6
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 97
  start-page: 202
  year: 2017
  end-page: 213
  ident: b0010
  article-title: Microstructural mechanisms and advanced characterization of long and small fatigue crack growth in cast A356–T61 aluminum alloys
  publication-title: Int. J. Fatigue
– volume: 123
  start-page: 24
  year: 2017
  end-page: 34
  ident: b0050
  article-title: 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy
  publication-title: Acta Mater.
– reference: ng GF. Study on steel wheel’s fatigue virtual evaluation. Yanshan University; 2011. Dissertation (in Chinese) p. 80–93.
– volume: 47
  start-page: 137
  year: 2013
  end-page: 147
  ident: b0130
  article-title: A probabilistic model for the high cycle fatigue behaviour of cast aluminium alloys subject to complex loads
  publication-title: Int. J. Fatigue
– reference: EUWA Standard ES 3.23. Biaxial fatigue test for truck wheels, Germany, 2006.
– volume: 92
  start-page: 57
  year: 2016
  end-page: 64
  ident: b0075
  article-title: Simulation of Biaxial Wheel Test and Fatigue Life Estimation Considering the Influence of Tire and Wheel Camber
  publication-title: Adv. Eng. Softw.
– volume: 33
  start-page: 823
  year: 2011
  end-page: 832
  ident: b0115
  article-title: Multiaxial Kitagawaanalysis of A356–T6
  publication-title: Int. J. Fatigue
– volume: 16
  start-page: 1533
  year: 2009
  end-page: 1541
  ident: b0100
  article-title: Numerical modeling and simulation of wheel radial fatigue tests
  publication-title: Eng. Fail Anal.
– volume: 8
  start-page: 339
  issue: 4
  year: 2001
  ident: 10.1016/j.engfailanal.2021.105752_b0095
  article-title: Numerical analysis of wheel cornering fatigue tests
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/S1350-6307(00)00031-5
– volume: 97
  start-page: 202
  year: 2017
  ident: 10.1016/j.engfailanal.2021.105752_b0010
  article-title: Microstructural mechanisms and advanced characterization of long and small fatigue crack growth in cast A356–T61 aluminum alloys
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2016.12.029
– volume: 52
  start-page: 3911
  issue: 13
  year: 2004
  ident: 10.1016/j.engfailanal.2021.105752_b0035
  article-title: Multiaxial fatigue limit for defective materials: mechanisms and experiments
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.05.006
– ident: 10.1016/j.engfailanal.2021.105752_b0025
– ident: 10.1016/j.engfailanal.2021.105752_b0090
  doi: 10.1016/j.engfailanal.2003.05.018
– volume: 25
  start-page: 73
  issue: 1
  year: 2004
  ident: 10.1016/j.engfailanal.2021.105752_b0085
  article-title: A simple approach for multiaxial fatigue damage prediction based on FEM post-processing
  publication-title: Mater. Des.
  doi: 10.1016/S0261-3069(03)00157-2
– volume: 47
  start-page: 137
  year: 2013
  ident: 10.1016/j.engfailanal.2021.105752_b0130
  article-title: A probabilistic model for the high cycle fatigue behaviour of cast aluminium alloys subject to complex loads
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2012.08.004
– volume: 35
  issue: 12
  year: 2014
  ident: 10.1016/j.engfailanal.2021.105752_b0105
  article-title: Multi axial fatigue behaviour of A356–T6
  publication-title: Fatigue Fract. Eng. Mater. Struct.
  doi: 10.1111/j.1460-2695.2012.01702.x
– volume: 25
  start-page: 101567
  year: 2020
  ident: 10.1016/j.engfailanal.2021.105752_b0135
  article-title: Fatigue design with high pressure die cast aluminum including the effects of defects, section size, stress gradient, and mean stress
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2020.101567
– volume: 2
  start-page: 1937
  issue: 1
  year: 2010
  ident: 10.1016/j.engfailanal.2021.105752_b0045
  article-title: Fatigue behavior of die casting aluminum alloys in air and vacuum
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2010.03.208
– volume: 32
  start-page: 2570
  issue: 5
  year: 2011
  ident: 10.1016/j.engfailanal.2021.105752_b0060
  article-title: Casting defects induced fatigue damage in aircraft frames of ZL205A aluminum alloy – A failure analysis
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2011.01.039
– volume: 473
  start-page: 65
  issue: 1-2
  year: 2008
  ident: 10.1016/j.engfailanal.2021.105752_b0065
  article-title: Effect of casting imperfections on the fatigue life of 319-F and A356–T6 Al–Si casting alloys
  publication-title: Mater. Sci. Eng. A (Structural Materials: Properties, Microstructure and Processing)
  doi: 10.1016/j.msea.2007.03.112
– ident: 10.1016/j.engfailanal.2021.105752_b0030
– volume: 47
  start-page: 44
  year: 2013
  ident: 10.1016/j.engfailanal.2021.105752_b0125
  article-title: High cycle fatigue damage mechanisms in cast aluminium subject to complex loads
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2012.07.008
– ident: 10.1016/j.engfailanal.2021.105752_b0070
  doi: 10.1016/j.advengsoft.2017.08.006
– ident: 10.1016/j.engfailanal.2021.105752_b0080
– volume: 118
  start-page: 104903
  year: 2020
  ident: 10.1016/j.engfailanal.2021.105752_b0140
  article-title: Numerical prediction of fatigue life of an A356–T6 alloy wheel considering the influence of casting defect and mean stress
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2020.104903
– volume: 21
  start-page: 39
  issue: 2
  year: 2008
  ident: 10.1016/j.engfailanal.2021.105752_b0040
  article-title: Study on determination method of high cycle stress fatigue S-N curve
  publication-title: Gas Turbine Test Res.
– volume: 16
  start-page: 1533
  issue: 5
  year: 2009
  ident: 10.1016/j.engfailanal.2021.105752_b0100
  article-title: Numerical modeling and simulation of wheel radial fatigue tests
  publication-title: Eng. Fail Anal.
  doi: 10.1016/j.engfailanal.2008.10.005
– volume: 23
  start-page: 159
  issue: 2
  year: 2000
  ident: 10.1016/j.engfailanal.2021.105752_b0120
  article-title: The influence of modified intermetallics and Si particles on fatigue crack paths in a cast A356 Al alloy
  publication-title: Fatigue Fract. Eng. Mater. Struct.
  doi: 10.1046/j.1460-2695.2000.00239.x
– volume: 116
  start-page: 1
  year: 2018
  ident: 10.1016/j.engfailanal.2021.105752_b0005
  article-title: Research on simulation of the bending fatigue test of automotive wheel made of long glass fiber reinforced thermoplastic considering anisotropic property
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2017.11.004
– volume: 114
  start-page: 177
  year: 2018
  ident: 10.1016/j.engfailanal.2021.105752_b0015
  article-title: Fatigue limit of a cast Al-Si-Mg alloy (A357–T6) with natural casting shrinkages using ASTM standard X-Ray inspection
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2018.05.026
– volume: 20
  start-page: 601
  issue: 4
  year: 2014
  ident: 10.1016/j.engfailanal.2021.105752_b0020
  article-title: Dependence of fatigue life of low-pressure die-cast A356 aluminum alloy on microporosity variation
  publication-title: Met. Mater. Int.
  doi: 10.1007/s12540-014-4004-3
– volume: 123
  start-page: 24
  year: 2017
  ident: 10.1016/j.engfailanal.2021.105752_b0050
  article-title: 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.10.028
– volume: 52
  start-page: 5435
  issue: 19
  year: 2004
  ident: 10.1016/j.engfailanal.2021.105752_b0110
  article-title: A micro-cell model of the effect of microstructure and defects on fatigue resistance in cast aluminum alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.07.035
– volume: 33
  start-page: 823
  issue: 6
  year: 2011
  ident: 10.1016/j.engfailanal.2021.105752_b0115
  article-title: Multiaxial Kitagawaanalysis of A356–T6
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2010.12.011
– volume: 92
  start-page: 57
  year: 2016
  ident: 10.1016/j.engfailanal.2021.105752_b0075
  article-title: Simulation of Biaxial Wheel Test and Fatigue Life Estimation Considering the Influence of Tire and Wheel Camber
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.11.005
– volume: 2
  start-page: 1131
  issue: 1
  year: 2010
  ident: 10.1016/j.engfailanal.2021.105752_b0055
  article-title: Using statistical compatibility to derive advanced probabilistic fatigue models
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2010.03.122
SSID ssj0007291
Score 2.357107
Snippet •An efficient tetrahedral mesh data-mapping algorithm is developed for defects and SDAS data.•A mesoscopic fatigue-strength prediction method considering the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105752
SubjectTerms Biaxial wheel fatigue test
Data-mapping algorithm
Mean stress
SDAS
Shrinkage cavity
Title Multiscale fatigue-prediction method to assess life of A356-T6 alloy wheel under biaxial loads
URI https://dx.doi.org/10.1016/j.engfailanal.2021.105752
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-1961
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007291
  issn: 1350-6307
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-1961
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007291
  issn: 1350-6307
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-1961
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007291
  issn: 1350-6307
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-1961
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007291
  issn: 1350-6307
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-1961
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007291
  issn: 1350-6307
  databaseCode: AKRWK
  dateStart: 19940301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5DQfRBvOK8jAi-xq1Jmq3gyxiOeRuiG-zJkqTprJR1bB3qi7_dk7ZzEwQFn0pKTinfOZwL54bQmaPASlDqkZrxJOFB6BEVeJQoJrT0aq5izDYK33VFp8-vB-6ghFrzXhhbVlno_lynZ9q6eFMt0KyOo6j66DDXDoyCEMbaYWbjds7rdovB-ceizAOcxzzociFMgttr6HRR42VGw1BGsQSeQahInWzrrUt_tlFLdqe9hTYLhxE383_aRiUz2kEbS2MEd9FT1kU7BbQNDgHp4cyQ8cRmYCzqOF8SjdMEyyzDi-MoNDgJcZO5gvQEtrn3d_z6bEyMbU_ZBKtIvoFg4jiRwXQP9duXvVaHFHsTiGbUSUk2JM9hkmsmQYlowUKqlO05tQuntAdGOagL6XhwFhDeaW54wFggDDDMKMH20cooGZkDhLVD69o1oqGMA58TDQ3qkBvQkprTmnLLqDFHytfFUHG72yL259VjL_4SyL4F2c9BLiP6RTrOJ2v8hehizg7_m5j4YAF-Jz_8H_kRWrenvJrlGK2kk5k5AZ8kVZVM6Cpotdl6uL23z6ubTvcTbRXiVA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBR8H8Yn1uYLXtc1udtuAl1IsVdtebKEnw-5mUyMhLX2gXvztziaprSAoeMxjQvhmmJmPnQdCV46CKEGpRyrGk8QNQo-owKNEMaGlV-GKMdso3OmKVt-9H_BBATUWvTC2rDL3_ZlPT711fqeco1keR1H50WHcDowCCmPjMAPevuZyWrUM7PpjWecB2WPGujjwJHh9HV0ui7xMMgxlFEtQGnBF6qRrbzn9OUitBJ7mDtrOM0Zcz35qFxVMsoe2VuYI7qOntI12CnAbHALUw7kh44k9grGw42xLNJ6NsEyPeHEchQaPQlxnXJCewPbw_R2_PhsTY9tUNsEqkm9gmTgeyWB6gPrN216jRfLFCUQz6sxIOiXPYdLVTIIX0YKFVCnbdGo3TmkPonJQFdLx4FoAv9OucQPGAmFAY0YJdoiKySgxRwhrh1Y1N6KmjAOfEzUN_tA14Ca1SyuKl1BtgZSv86nidrlF7C_Kx178FZB9C7KfgVxC9Et0nI3W-IvQzUId_jc78SEE_C5-_D_xC7TR6nXafvuu-3CCNu2TrLTlFBVnk7k5gwRlps5TA_wErlDiVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+fatigue-prediction+method+to+assess+life+of+A356-T6+alloy+wheel+under+biaxial+loads&rft.jtitle=Engineering+failure+analysis&rft.au=Duan%2C+Yong-chuan&rft.au=Zhang%2C+Fang-fang&rft.au=Yao%2C+Dan&rft.au=Hu%2C+Jin-hua&rft.date=2021-12-01&rft.issn=1350-6307&rft.volume=130&rft.spage=105752&rft_id=info:doi/10.1016%2Fj.engfailanal.2021.105752&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engfailanal_2021_105752
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-6307&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-6307&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-6307&client=summon