Multiscale fatigue-prediction method to assess life of A356-T6 alloy wheel under biaxial loads
•An efficient tetrahedral mesh data-mapping algorithm is developed for defects and SDAS data.•A mesoscopic fatigue-strength prediction method considering the effects of the defects and SDAS is developed based on the meso-cell model and stress-gradient theory.•Combined with the BP neural-network mode...
Saved in:
| Published in | Engineering failure analysis Vol. 130; p. 105752 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.12.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1350-6307 1873-1961 |
| DOI | 10.1016/j.engfailanal.2021.105752 |
Cover
| Abstract | •An efficient tetrahedral mesh data-mapping algorithm is developed for defects and SDAS data.•A mesoscopic fatigue-strength prediction method considering the effects of the defects and SDAS is developed based on the meso-cell model and stress-gradient theory.•Combined with the BP neural-network model, Two S-N data prediction methods driven by the coupling model and data and by solely data are established.•According to the biaxial physical experiment, a biaxial virtual experiment is established for the wheel.
The real stress of a car wheel can be reproduced by biaxial tests. However, in the cases of complicated loads, these tests are expensive and time-consuming. Additionally, shrinkage cavities and uneven microstructures can be introduced in A356 cast aluminum alloys, which has a certain influence on fatigue life. Therefore, a new simulation method for the biaxial wheel fatigue test, including the effects of the shrinkage cavity and secondary dendrite arm spacing (SDAS), is urgently needed to avoid the dispersion of the simulation results and reduce costs. In this paper, a new multiscale biaxial fatigue simulation method is proposed. An efficient tetrahedral mesh data-mapping algorithm is developed, in which the natural coordinates are introduced, and transfer of the SDAS and porosity between the cast wheel and finished wheel are realized. Based on the meso-cell model and stress-gradient theory, a mesoscopic fatigue-strength prediction method with defects and SDAS effects is developed. The two pieces style fatigue strength surface is determined. S-N data prediction methods driven by the coupling model and data and solely by the data are developed respectively. The generalization accuracy is within 4%, the structure of the pure data model is simple. The prediction accuracy is verified by performing a uniaxial tensile experiment. A wheel biaxial simulation model is established, and a continuous biaxial load is realized using the sequence amplitude curve family. Finally, a new multiscale biaxial fatigue simulation method with multiple load spectra is created using Fe-safe. The prediction result for the minimum life starting point (considering casting defects) is consistent with the test results, and the overall prediction results are significantly improved. The proposed method lays a solid foundation for optimization design and Big Data fatigue prediction of aluminum alloy wheels. |
|---|---|
| AbstractList | •An efficient tetrahedral mesh data-mapping algorithm is developed for defects and SDAS data.•A mesoscopic fatigue-strength prediction method considering the effects of the defects and SDAS is developed based on the meso-cell model and stress-gradient theory.•Combined with the BP neural-network model, Two S-N data prediction methods driven by the coupling model and data and by solely data are established.•According to the biaxial physical experiment, a biaxial virtual experiment is established for the wheel.
The real stress of a car wheel can be reproduced by biaxial tests. However, in the cases of complicated loads, these tests are expensive and time-consuming. Additionally, shrinkage cavities and uneven microstructures can be introduced in A356 cast aluminum alloys, which has a certain influence on fatigue life. Therefore, a new simulation method for the biaxial wheel fatigue test, including the effects of the shrinkage cavity and secondary dendrite arm spacing (SDAS), is urgently needed to avoid the dispersion of the simulation results and reduce costs. In this paper, a new multiscale biaxial fatigue simulation method is proposed. An efficient tetrahedral mesh data-mapping algorithm is developed, in which the natural coordinates are introduced, and transfer of the SDAS and porosity between the cast wheel and finished wheel are realized. Based on the meso-cell model and stress-gradient theory, a mesoscopic fatigue-strength prediction method with defects and SDAS effects is developed. The two pieces style fatigue strength surface is determined. S-N data prediction methods driven by the coupling model and data and solely by the data are developed respectively. The generalization accuracy is within 4%, the structure of the pure data model is simple. The prediction accuracy is verified by performing a uniaxial tensile experiment. A wheel biaxial simulation model is established, and a continuous biaxial load is realized using the sequence amplitude curve family. Finally, a new multiscale biaxial fatigue simulation method with multiple load spectra is created using Fe-safe. The prediction result for the minimum life starting point (considering casting defects) is consistent with the test results, and the overall prediction results are significantly improved. The proposed method lays a solid foundation for optimization design and Big Data fatigue prediction of aluminum alloy wheels. |
| ArticleNumber | 105752 |
| Author | Duan, Yong-chuan Dong, Rui Guan, Ying-ping Zhao, Xu Zhang, Fang-fang Yao, Dan Hu, Jin-hua |
| Author_xml | – sequence: 1 givenname: Yong-chuan surname: Duan fullname: Duan, Yong-chuan organization: Key Laboratory of Advanced Forming & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, Hebei, China – sequence: 2 givenname: Fang-fang surname: Zhang fullname: Zhang, Fang-fang email: fangfang.zhang@ysu.edu.cn organization: Key Laboratory of Advanced Forming & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, Hebei, China – sequence: 3 givenname: Dan surname: Yao fullname: Yao, Dan organization: Key Laboratory of Advanced Forming & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, Hebei, China – sequence: 4 givenname: Jin-hua surname: Hu fullname: Hu, Jin-hua email: hujinhuaysu@163.com organization: Technical Center, CITIC Dicastal Limited Company, Qinhuangdao 066004, Hebei, China – sequence: 5 givenname: Rui surname: Dong fullname: Dong, Rui organization: Key Laboratory of Advanced Forming & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, Hebei, China – sequence: 6 givenname: Xu surname: Zhao fullname: Zhao, Xu organization: Key Laboratory of Advanced Forming & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, Hebei, China – sequence: 7 givenname: Ying-ping surname: Guan fullname: Guan, Ying-ping organization: Key Laboratory of Advanced Forming & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, Hebei, China |
| BookMark | eNqNkMtOAjEUhhuDiYC-Q32AwV5mOnRlCPGWYNzg1qbTOQMlZUraovL2luDCuGL1n3OS_0vON0KD3veA0C0lE0qouNtMoF912jrdazdhhNF8r-qKXaAhnda8oFLQQZ55RQrBSX2FRjFuCCE1k3SIPl73LtlotAPc6WRXeyh2AVprkvU93kJa-xYnj3WMECN2tgPsOzzjlSiWAmvn_AF_rQEc3vctBNxY_W21w87rNl6jy067CDe_OUbvjw_L-XOxeHt6mc8WheGMpqKiJCfXpeGaTKdG8I41TS1FORWEGVky0dZCU5l3QWRpSihbzlsBBCQ0go_R_Ylrgo8xQKeMTfr4QgpZjqJEHXWpjfqjSx11qZOuTJD_CLtgtzoczurOT13IL35aCCoaC73JGgOYpFpvz6D8APCXjd4 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3279277 crossref_primary_10_1007_s11668_022_01447_0 crossref_primary_10_1016_j_advengsoft_2023_103543 crossref_primary_10_1016_j_engfailanal_2024_107979 crossref_primary_10_1016_j_compstruc_2024_107475 crossref_primary_10_1007_s40962_024_01505_3 crossref_primary_10_1016_j_jmrt_2023_03_214 crossref_primary_10_1111_ffe_14085 crossref_primary_10_1177_16878132231189119 crossref_primary_10_3390_machines10100924 |
| Cites_doi | 10.1016/S1350-6307(00)00031-5 10.1016/j.ijfatigue.2016.12.029 10.1016/j.actamat.2004.05.006 10.1016/j.engfailanal.2003.05.018 10.1016/S0261-3069(03)00157-2 10.1016/j.ijfatigue.2012.08.004 10.1111/j.1460-2695.2012.01702.x 10.1016/j.mtcomm.2020.101567 10.1016/j.proeng.2010.03.208 10.1016/j.matdes.2011.01.039 10.1016/j.msea.2007.03.112 10.1016/j.ijfatigue.2012.07.008 10.1016/j.advengsoft.2017.08.006 10.1016/j.engfailanal.2020.104903 10.1016/j.engfailanal.2008.10.005 10.1046/j.1460-2695.2000.00239.x 10.1016/j.advengsoft.2017.11.004 10.1016/j.ijfatigue.2018.05.026 10.1007/s12540-014-4004-3 10.1016/j.actamat.2016.10.028 10.1016/j.actamat.2004.07.035 10.1016/j.ijfatigue.2010.12.011 10.1016/j.advengsoft.2015.11.005 10.1016/j.proeng.2010.03.122 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engfailanal.2021.105752 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-1961 |
| ExternalDocumentID | 10_1016_j_engfailanal_2021_105752 S1350630721006130 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K WUQ XPP XSW ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c321t-5103213a4c3a088c63f2bb79648602c9426d76a194866094c4e4d33d6e0e9eb63 |
| IEDL.DBID | .~1 |
| ISSN | 1350-6307 |
| IngestDate | Thu Apr 24 23:11:46 EDT 2025 Wed Oct 29 21:17:54 EDT 2025 Sat Feb 17 16:07:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Mean stress Data-mapping algorithm Shrinkage cavity Biaxial wheel fatigue test SDAS |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c321t-5103213a4c3a088c63f2bb79648602c9426d76a194866094c4e4d33d6e0e9eb63 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_engfailanal_2021_105752 crossref_primary_10_1016_j_engfailanal_2021_105752 elsevier_sciencedirect_doi_10_1016_j_engfailanal_2021_105752 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 2021-12-00 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering failure analysis |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Fernández-Canteli, Castillo, López-Aenlle, Seitl (b0055) 2010; 2 Li, Zhang, Xu (b0040) 2008; 21 Roy, Nadot, Maijer (b0105) 2014; 35 Billaudeau, Nadot, Bezine (b0035) 2004; 52 Wa Fabio, M. Santiciolli, Riccardo Möller, Ivo Krause, et al. Simulation of the scenario of the biaxial wheel fatigue test. Adv. Eng. Software 114 (2017) 337–347. ng GF. Study on steel wheel’s fatigue virtual evaluation. Yanshan University; 2011. Dissertation (in Chinese) p. 80–93. Chai, Liu, Shan, Wan, Jiang (b0005) 2018; 116 Lee, Yoo (b0020) 2014; 20 Nourian-Avval, Fatemi (b0135) 2020; 25 Duan, Zhang, Yao, Tian, Yang, Guan, Hu (b0140) 2020; 118 Ueno, Miyakawa, Yamada, Sugiyama (b0045) 2010; 2 Koutiri, Bellett, Morel, Augustins, Adrien (b0125) 2013; 47 Kocabicak, Firat (b0095) 2001; 8 EUWA Standard ES 3.23. Biaxial fatigue test for truck wheels, Germany, 2006. Roy, Nadot, Nadot-Martin, Bardin, Maijer (b0115) 2011; 33 Firat, Kozan, Ozsoy, Mete (b0100) 2009; 16 Gall, Yang, Horstemeyer, McDowell, Fan (b0120) 2000; 23 Ammar, Samuel, Samuel (b0065) 2008; 473 Gao, Yi, Lee, Lindley (b0110) 2004; 52 Rotella, Nadot, Piellard, Augustin, Fleuriot (b0015) 2018; 114 M. Firat, U. Kocabicak, Analytical durability modeling and evaluation-complementary techniques for physical testing of automotive components. Eng. Fail. Anal. 1 1(04) (2004) 655–674. Kocabicak, Firat (b0085) 2004; 25 SAE J2562. Biaxial Wheel Fatigue Test, Revised 2005. Koutiri, Bellett, Morel, Pessard (b0130) 2013; 47 Wan, Shan, Liu, Wang, Wang (b0075) 2016; 92 Li, Shen, Hu (b0060) 2011; 32 Dezecot, Maurel, Buffiere, Szmytka, Koster (b0050) 2017; 123 Spangenberger, Lados, Coleman, Birosca, Hardy (b0010) 2017; 97 Firat (10.1016/j.engfailanal.2021.105752_b0100) 2009; 16 Gao (10.1016/j.engfailanal.2021.105752_b0110) 2004; 52 Duan (10.1016/j.engfailanal.2021.105752_b0140) 2020; 118 Gall (10.1016/j.engfailanal.2021.105752_b0120) 2000; 23 10.1016/j.engfailanal.2021.105752_b0030 Rotella (10.1016/j.engfailanal.2021.105752_b0015) 2018; 114 10.1016/j.engfailanal.2021.105752_b0070 10.1016/j.engfailanal.2021.105752_b0090 Roy (10.1016/j.engfailanal.2021.105752_b0105) 2014; 35 Dezecot (10.1016/j.engfailanal.2021.105752_b0050) 2017; 123 Kocabicak (10.1016/j.engfailanal.2021.105752_b0095) 2001; 8 Koutiri (10.1016/j.engfailanal.2021.105752_b0125) 2013; 47 Fernández-Canteli (10.1016/j.engfailanal.2021.105752_b0055) 2010; 2 Roy (10.1016/j.engfailanal.2021.105752_b0115) 2011; 33 10.1016/j.engfailanal.2021.105752_b0025 Wan (10.1016/j.engfailanal.2021.105752_b0075) 2016; 92 Lee (10.1016/j.engfailanal.2021.105752_b0020) 2014; 20 Li (10.1016/j.engfailanal.2021.105752_b0040) 2008; 21 Spangenberger (10.1016/j.engfailanal.2021.105752_b0010) 2017; 97 Billaudeau (10.1016/j.engfailanal.2021.105752_b0035) 2004; 52 10.1016/j.engfailanal.2021.105752_b0080 Ammar (10.1016/j.engfailanal.2021.105752_b0065) 2008; 473 Nourian-Avval (10.1016/j.engfailanal.2021.105752_b0135) 2020; 25 Chai (10.1016/j.engfailanal.2021.105752_b0005) 2018; 116 Kocabicak (10.1016/j.engfailanal.2021.105752_b0085) 2004; 25 Li (10.1016/j.engfailanal.2021.105752_b0060) 2011; 32 Koutiri (10.1016/j.engfailanal.2021.105752_b0130) 2013; 47 Ueno (10.1016/j.engfailanal.2021.105752_b0045) 2010; 2 |
| References_xml | – volume: 114 start-page: 177 year: 2018 end-page: 188 ident: b0015 article-title: Fatigue limit of a cast Al-Si-Mg alloy (A357–T6) with natural casting shrinkages using ASTM standard X-Ray inspection publication-title: Int. J. Fatigue – volume: 20 start-page: 601 year: 2014 end-page: 612 ident: b0020 article-title: Dependence of fatigue life of low-pressure die-cast A356 aluminum alloy on microporosity variation publication-title: Met. Mater. Int. – volume: 32 start-page: 2570 year: 2011 end-page: 2582 ident: b0060 article-title: Casting defects induced fatigue damage in aircraft frames of ZL205A aluminum alloy – A failure analysis publication-title: Mater. Des. – reference: Wa Fabio, M. Santiciolli, Riccardo Möller, Ivo Krause, et al. Simulation of the scenario of the biaxial wheel fatigue test. Adv. Eng. Software 114 (2017) 337–347. – volume: 21 start-page: 39 year: 2008 end-page: 43 ident: b0040 article-title: Study on determination method of high cycle stress fatigue S-N curve publication-title: Gas Turbine Test Res. – reference: SAE J2562. Biaxial Wheel Fatigue Test, Revised 2005. – volume: 47 start-page: 44 year: 2013 end-page: 57 ident: b0125 article-title: High cycle fatigue damage mechanisms in cast aluminium subject to complex loads publication-title: Int. J. Fatigue – volume: 2 start-page: 1131 year: 2010 end-page: 1140 ident: b0055 article-title: Using statistical compatibility to derive advanced probabilistic fatigue models publication-title: Procedia Eng. – volume: 52 start-page: 3911 year: 2004 end-page: 3920 ident: b0035 article-title: Multiaxial fatigue limit for defective materials: mechanisms and experiments publication-title: Acta Mater. – volume: 116 start-page: 1 year: 2018 end-page: 8 ident: b0005 article-title: Research on simulation of the bending fatigue test of automotive wheel made of long glass fiber reinforced thermoplastic considering anisotropic property publication-title: Adv. Eng. Software – reference: M. Firat, U. Kocabicak, Analytical durability modeling and evaluation-complementary techniques for physical testing of automotive components. Eng. Fail. Anal. 1 1(04) (2004) 655–674. – volume: 118 start-page: 104903 year: 2020 ident: b0140 article-title: Numerical prediction of fatigue life of an A356–T6 alloy wheel considering the influence of casting defect and mean stress publication-title: Eng. Fail. Anal. – volume: 52 start-page: 5435 year: 2004 end-page: 5449 ident: b0110 article-title: A micro-cell model of the effect of microstructure and defects on fatigue resistance in cast aluminum alloys publication-title: Acta Mater. – volume: 8 start-page: 339 year: 2001 end-page: 354 ident: b0095 article-title: Numerical analysis of wheel cornering fatigue tests publication-title: Eng. Fail. Anal. – volume: 25 start-page: 73 year: 2004 end-page: 82 ident: b0085 article-title: A simple approach for multiaxial fatigue damage prediction based on FEM post-processing publication-title: Mater. Des. – volume: 473 start-page: 65 year: 2008 end-page: 75 ident: b0065 article-title: Effect of casting imperfections on the fatigue life of 319-F and A356–T6 Al–Si casting alloys publication-title: Mater. Sci. Eng. A (Structural Materials: Properties, Microstructure and Processing) – volume: 23 start-page: 159 year: 2000 end-page: 172 ident: b0120 article-title: The influence of modified intermetallics and Si particles on fatigue crack paths in a cast A356 Al alloy publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 2 start-page: 1937 year: 2010 end-page: 1943 ident: b0045 article-title: Fatigue behavior of die casting aluminum alloys in air and vacuum publication-title: Procedia Eng. – volume: 25 start-page: 101567 year: 2020 ident: b0135 article-title: Fatigue design with high pressure die cast aluminum including the effects of defects, section size, stress gradient, and mean stress publication-title: Mater. Today Commun. – volume: 35 year: 2014 ident: b0105 article-title: Multi axial fatigue behaviour of A356–T6 publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 97 start-page: 202 year: 2017 end-page: 213 ident: b0010 article-title: Microstructural mechanisms and advanced characterization of long and small fatigue crack growth in cast A356–T61 aluminum alloys publication-title: Int. J. Fatigue – volume: 123 start-page: 24 year: 2017 end-page: 34 ident: b0050 article-title: 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy publication-title: Acta Mater. – reference: ng GF. Study on steel wheel’s fatigue virtual evaluation. Yanshan University; 2011. Dissertation (in Chinese) p. 80–93. – volume: 47 start-page: 137 year: 2013 end-page: 147 ident: b0130 article-title: A probabilistic model for the high cycle fatigue behaviour of cast aluminium alloys subject to complex loads publication-title: Int. J. Fatigue – reference: EUWA Standard ES 3.23. Biaxial fatigue test for truck wheels, Germany, 2006. – volume: 92 start-page: 57 year: 2016 end-page: 64 ident: b0075 article-title: Simulation of Biaxial Wheel Test and Fatigue Life Estimation Considering the Influence of Tire and Wheel Camber publication-title: Adv. Eng. Softw. – volume: 33 start-page: 823 year: 2011 end-page: 832 ident: b0115 article-title: Multiaxial Kitagawaanalysis of A356–T6 publication-title: Int. J. Fatigue – volume: 16 start-page: 1533 year: 2009 end-page: 1541 ident: b0100 article-title: Numerical modeling and simulation of wheel radial fatigue tests publication-title: Eng. Fail Anal. – volume: 8 start-page: 339 issue: 4 year: 2001 ident: 10.1016/j.engfailanal.2021.105752_b0095 article-title: Numerical analysis of wheel cornering fatigue tests publication-title: Eng. Fail. Anal. doi: 10.1016/S1350-6307(00)00031-5 – volume: 97 start-page: 202 year: 2017 ident: 10.1016/j.engfailanal.2021.105752_b0010 article-title: Microstructural mechanisms and advanced characterization of long and small fatigue crack growth in cast A356–T61 aluminum alloys publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2016.12.029 – volume: 52 start-page: 3911 issue: 13 year: 2004 ident: 10.1016/j.engfailanal.2021.105752_b0035 article-title: Multiaxial fatigue limit for defective materials: mechanisms and experiments publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.05.006 – ident: 10.1016/j.engfailanal.2021.105752_b0025 – ident: 10.1016/j.engfailanal.2021.105752_b0090 doi: 10.1016/j.engfailanal.2003.05.018 – volume: 25 start-page: 73 issue: 1 year: 2004 ident: 10.1016/j.engfailanal.2021.105752_b0085 article-title: A simple approach for multiaxial fatigue damage prediction based on FEM post-processing publication-title: Mater. Des. doi: 10.1016/S0261-3069(03)00157-2 – volume: 47 start-page: 137 year: 2013 ident: 10.1016/j.engfailanal.2021.105752_b0130 article-title: A probabilistic model for the high cycle fatigue behaviour of cast aluminium alloys subject to complex loads publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2012.08.004 – volume: 35 issue: 12 year: 2014 ident: 10.1016/j.engfailanal.2021.105752_b0105 article-title: Multi axial fatigue behaviour of A356–T6 publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/j.1460-2695.2012.01702.x – volume: 25 start-page: 101567 year: 2020 ident: 10.1016/j.engfailanal.2021.105752_b0135 article-title: Fatigue design with high pressure die cast aluminum including the effects of defects, section size, stress gradient, and mean stress publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2020.101567 – volume: 2 start-page: 1937 issue: 1 year: 2010 ident: 10.1016/j.engfailanal.2021.105752_b0045 article-title: Fatigue behavior of die casting aluminum alloys in air and vacuum publication-title: Procedia Eng. doi: 10.1016/j.proeng.2010.03.208 – volume: 32 start-page: 2570 issue: 5 year: 2011 ident: 10.1016/j.engfailanal.2021.105752_b0060 article-title: Casting defects induced fatigue damage in aircraft frames of ZL205A aluminum alloy – A failure analysis publication-title: Mater. Des. doi: 10.1016/j.matdes.2011.01.039 – volume: 473 start-page: 65 issue: 1-2 year: 2008 ident: 10.1016/j.engfailanal.2021.105752_b0065 article-title: Effect of casting imperfections on the fatigue life of 319-F and A356–T6 Al–Si casting alloys publication-title: Mater. Sci. Eng. A (Structural Materials: Properties, Microstructure and Processing) doi: 10.1016/j.msea.2007.03.112 – ident: 10.1016/j.engfailanal.2021.105752_b0030 – volume: 47 start-page: 44 year: 2013 ident: 10.1016/j.engfailanal.2021.105752_b0125 article-title: High cycle fatigue damage mechanisms in cast aluminium subject to complex loads publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2012.07.008 – ident: 10.1016/j.engfailanal.2021.105752_b0070 doi: 10.1016/j.advengsoft.2017.08.006 – ident: 10.1016/j.engfailanal.2021.105752_b0080 – volume: 118 start-page: 104903 year: 2020 ident: 10.1016/j.engfailanal.2021.105752_b0140 article-title: Numerical prediction of fatigue life of an A356–T6 alloy wheel considering the influence of casting defect and mean stress publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2020.104903 – volume: 21 start-page: 39 issue: 2 year: 2008 ident: 10.1016/j.engfailanal.2021.105752_b0040 article-title: Study on determination method of high cycle stress fatigue S-N curve publication-title: Gas Turbine Test Res. – volume: 16 start-page: 1533 issue: 5 year: 2009 ident: 10.1016/j.engfailanal.2021.105752_b0100 article-title: Numerical modeling and simulation of wheel radial fatigue tests publication-title: Eng. Fail Anal. doi: 10.1016/j.engfailanal.2008.10.005 – volume: 23 start-page: 159 issue: 2 year: 2000 ident: 10.1016/j.engfailanal.2021.105752_b0120 article-title: The influence of modified intermetallics and Si particles on fatigue crack paths in a cast A356 Al alloy publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1046/j.1460-2695.2000.00239.x – volume: 116 start-page: 1 year: 2018 ident: 10.1016/j.engfailanal.2021.105752_b0005 article-title: Research on simulation of the bending fatigue test of automotive wheel made of long glass fiber reinforced thermoplastic considering anisotropic property publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2017.11.004 – volume: 114 start-page: 177 year: 2018 ident: 10.1016/j.engfailanal.2021.105752_b0015 article-title: Fatigue limit of a cast Al-Si-Mg alloy (A357–T6) with natural casting shrinkages using ASTM standard X-Ray inspection publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2018.05.026 – volume: 20 start-page: 601 issue: 4 year: 2014 ident: 10.1016/j.engfailanal.2021.105752_b0020 article-title: Dependence of fatigue life of low-pressure die-cast A356 aluminum alloy on microporosity variation publication-title: Met. Mater. Int. doi: 10.1007/s12540-014-4004-3 – volume: 123 start-page: 24 year: 2017 ident: 10.1016/j.engfailanal.2021.105752_b0050 article-title: 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.10.028 – volume: 52 start-page: 5435 issue: 19 year: 2004 ident: 10.1016/j.engfailanal.2021.105752_b0110 article-title: A micro-cell model of the effect of microstructure and defects on fatigue resistance in cast aluminum alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.07.035 – volume: 33 start-page: 823 issue: 6 year: 2011 ident: 10.1016/j.engfailanal.2021.105752_b0115 article-title: Multiaxial Kitagawaanalysis of A356–T6 publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2010.12.011 – volume: 92 start-page: 57 year: 2016 ident: 10.1016/j.engfailanal.2021.105752_b0075 article-title: Simulation of Biaxial Wheel Test and Fatigue Life Estimation Considering the Influence of Tire and Wheel Camber publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.11.005 – volume: 2 start-page: 1131 issue: 1 year: 2010 ident: 10.1016/j.engfailanal.2021.105752_b0055 article-title: Using statistical compatibility to derive advanced probabilistic fatigue models publication-title: Procedia Eng. doi: 10.1016/j.proeng.2010.03.122 |
| SSID | ssj0007291 |
| Score | 2.357107 |
| Snippet | •An efficient tetrahedral mesh data-mapping algorithm is developed for defects and SDAS data.•A mesoscopic fatigue-strength prediction method considering the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105752 |
| SubjectTerms | Biaxial wheel fatigue test Data-mapping algorithm Mean stress SDAS Shrinkage cavity |
| Title | Multiscale fatigue-prediction method to assess life of A356-T6 alloy wheel under biaxial loads |
| URI | https://dx.doi.org/10.1016/j.engfailanal.2021.105752 |
| Volume | 130 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-1961 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007291 issn: 1350-6307 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-1961 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007291 issn: 1350-6307 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-1961 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007291 issn: 1350-6307 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-1961 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007291 issn: 1350-6307 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-1961 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007291 issn: 1350-6307 databaseCode: AKRWK dateStart: 19940301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5DQfRBvOK8jAi-xq1Jmq3gyxiOeRuiG-zJkqTprJR1bB3qi7_dk7ZzEwQFn0pKTinfOZwL54bQmaPASlDqkZrxJOFB6BEVeJQoJrT0aq5izDYK33VFp8-vB-6ghFrzXhhbVlno_lynZ9q6eFMt0KyOo6j66DDXDoyCEMbaYWbjds7rdovB-ceizAOcxzzociFMgttr6HRR42VGw1BGsQSeQahInWzrrUt_tlFLdqe9hTYLhxE383_aRiUz2kEbS2MEd9FT1kU7BbQNDgHp4cyQ8cRmYCzqOF8SjdMEyyzDi-MoNDgJcZO5gvQEtrn3d_z6bEyMbU_ZBKtIvoFg4jiRwXQP9duXvVaHFHsTiGbUSUk2JM9hkmsmQYlowUKqlO05tQuntAdGOagL6XhwFhDeaW54wFggDDDMKMH20cooGZkDhLVD69o1oqGMA58TDQ3qkBvQkprTmnLLqDFHytfFUHG72yL259VjL_4SyL4F2c9BLiP6RTrOJ2v8hehizg7_m5j4YAF-Jz_8H_kRWrenvJrlGK2kk5k5AZ8kVZVM6Cpotdl6uL23z6ubTvcTbRXiVA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBR8H8Yn1uYLXtc1udtuAl1IsVdtebKEnw-5mUyMhLX2gXvztziaprSAoeMxjQvhmmJmPnQdCV46CKEGpRyrGk8QNQo-owKNEMaGlV-GKMdso3OmKVt-9H_BBATUWvTC2rDL3_ZlPT711fqeco1keR1H50WHcDowCCmPjMAPevuZyWrUM7PpjWecB2WPGujjwJHh9HV0ui7xMMgxlFEtQGnBF6qRrbzn9OUitBJ7mDtrOM0Zcz35qFxVMsoe2VuYI7qOntI12CnAbHALUw7kh44k9grGw42xLNJ6NsEyPeHEchQaPQlxnXJCewPbw_R2_PhsTY9tUNsEqkm9gmTgeyWB6gPrN216jRfLFCUQz6sxIOiXPYdLVTIIX0YKFVCnbdGo3TmkPonJQFdLx4FoAv9OucQPGAmFAY0YJdoiKySgxRwhrh1Y1N6KmjAOfEzUN_tA14Ca1SyuKl1BtgZSv86nidrlF7C_Kx178FZB9C7KfgVxC9Et0nI3W-IvQzUId_jc78SEE_C5-_D_xC7TR6nXafvuu-3CCNu2TrLTlFBVnk7k5gwRlps5TA_wErlDiVA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+fatigue-prediction+method+to+assess+life+of+A356-T6+alloy+wheel+under+biaxial+loads&rft.jtitle=Engineering+failure+analysis&rft.au=Duan%2C+Yong-chuan&rft.au=Zhang%2C+Fang-fang&rft.au=Yao%2C+Dan&rft.au=Hu%2C+Jin-hua&rft.date=2021-12-01&rft.issn=1350-6307&rft.volume=130&rft.spage=105752&rft_id=info:doi/10.1016%2Fj.engfailanal.2021.105752&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engfailanal_2021_105752 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-6307&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-6307&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-6307&client=summon |