Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm
•Gathering a database for the compressive strength of concrete with GGBFS.•Modeling the compressive strength of concrete with GGBFS using machine learning.•Hybridization of ANN and multi-objective salp swarm algorithm.•Using M5P model tree to model the concrete compressive strength with GGBFS. The u...
Saved in:
| Published in | Construction & building materials Vol. 248; p. 118676 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
10.07.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0950-0618 1879-0526 |
| DOI | 10.1016/j.conbuildmat.2020.118676 |
Cover
| Abstract | •Gathering a database for the compressive strength of concrete with GGBFS.•Modeling the compressive strength of concrete with GGBFS using machine learning.•Hybridization of ANN and multi-objective salp swarm algorithm.•Using M5P model tree to model the concrete compressive strength with GGBFS.
The use of supplementary cementitious materials such as ground granulated blast furnace slag (GGBFS) in concrete mixtures provides many technical and economic benefits. The use of GGBFS as a partial replacement for cement in concrete mixtures can also decrease the energy consumption and reduce the greenhouse gas emissions. Developing an accurate model for estimating the compressive strength of the concretes containing GGBFS is a necessity since the value of the compressive strength is a required parameter in various design codes. Besides, a predictive model for the compressive strength instead of direct laboratory-based measurements can save in energy, cost, and time. Artificial neural network (ANN) algorithm was used in this research to develop a model for the estimation of the compressive strength of concretes containing GGBFS. To optimize the error and complexity of the developed ANN models, a multi-objective slap swarm algorithm (MOSSA), as a multi-objective optimization method, was proposed. The M5P model tree algorithm, as one of the most used classification techniques to solve engineering problems, was also used to develop predictive models of compressive strength. The efficiency of the proposed model developed based on the ANN algorithm was compared with that of the model developed based on the M5P model tree technique using various error measures. The findings from this research indicate that the M5P model tree and the proposed ANN model can successfully provide predictive tools for estimating the compressive strength of concretes containing GGBFS with 12.05% and 7.25% mean absolute percentage error (MAPE), respectively. These values indicate that the proposed model based on ANN algorithm has superior efficiency compared to the one developed using M5P model tree. |
|---|---|
| AbstractList | •Gathering a database for the compressive strength of concrete with GGBFS.•Modeling the compressive strength of concrete with GGBFS using machine learning.•Hybridization of ANN and multi-objective salp swarm algorithm.•Using M5P model tree to model the concrete compressive strength with GGBFS.
The use of supplementary cementitious materials such as ground granulated blast furnace slag (GGBFS) in concrete mixtures provides many technical and economic benefits. The use of GGBFS as a partial replacement for cement in concrete mixtures can also decrease the energy consumption and reduce the greenhouse gas emissions. Developing an accurate model for estimating the compressive strength of the concretes containing GGBFS is a necessity since the value of the compressive strength is a required parameter in various design codes. Besides, a predictive model for the compressive strength instead of direct laboratory-based measurements can save in energy, cost, and time. Artificial neural network (ANN) algorithm was used in this research to develop a model for the estimation of the compressive strength of concretes containing GGBFS. To optimize the error and complexity of the developed ANN models, a multi-objective slap swarm algorithm (MOSSA), as a multi-objective optimization method, was proposed. The M5P model tree algorithm, as one of the most used classification techniques to solve engineering problems, was also used to develop predictive models of compressive strength. The efficiency of the proposed model developed based on the ANN algorithm was compared with that of the model developed based on the M5P model tree technique using various error measures. The findings from this research indicate that the M5P model tree and the proposed ANN model can successfully provide predictive tools for estimating the compressive strength of concretes containing GGBFS with 12.05% and 7.25% mean absolute percentage error (MAPE), respectively. These values indicate that the proposed model based on ANN algorithm has superior efficiency compared to the one developed using M5P model tree. |
| ArticleNumber | 118676 |
| Author | Kandiri, Amirreza Behnood, Ali Mohammadi Golafshani, Emadaldin |
| Author_xml | – sequence: 1 givenname: Amirreza surname: Kandiri fullname: Kandiri, Amirreza organization: Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran – sequence: 2 givenname: Emadaldin orcidid: 0000-0001-8499-3975 surname: Mohammadi Golafshani fullname: Mohammadi Golafshani, Emadaldin email: Golafshani@srbiau.ac.ir organization: Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran – sequence: 3 givenname: Ali orcidid: 0000-0003-2537-1863 surname: Behnood fullname: Behnood, Ali email: abehnood@purdue.edu organization: Lyles School of Civil Engineering, Purdue University, 550 W Stadium Ave, West Lafayette, IN, 47907-2051, USA |
| BookMark | eNqNkNFuFCEUhompidvqO-ADzArMDjtzZZpNtSZNvdFrcoAzs2wY2ABTU9_GN5VxvTBe9eoQ-P_vhO-aXIUYkJD3nG054_LDaWti0IvzdoayFUzUe97LvXxFNrzfDw3rhLwiGzZ0rGGS92_Idc4nxpgUUmzIr7tcXK26GGgcaTkiNXE-J8zZPSHNJWGYynF9q4tMwoJ5PRVwwYWJTikuwdYBYfFQ0FLtIRc6LimAqQAPE13yGj0-6-Ss-1kz8-KLa6I-oSnrmtvHRwoVk8Gfaf4Baabgp5hcOc5vyesRfMZ3f-cN-f7p7tvhvnn4-vnL4fahMa3gpdnZdq-llZ0ezU5rvgPDcJBy3IvODNKwDvXQC2C9BmFFO1iD0LG2r3Hb79r2hgwXrkkx54SjOqdqJj0rztTqWp3UP67V6lpdXNfux_-6xpU_UksC519EOFwIWL_45DCpbBwGg9alKknZ6F5A-Q2Ja6tc |
| CitedBy_id | crossref_primary_10_1007_s42107_023_00635_z crossref_primary_10_1038_s41598_022_17670_6 crossref_primary_10_1007_s41939_024_00378_7 crossref_primary_10_1016_j_heliyon_2023_e15362 crossref_primary_10_1016_j_cscm_2024_e03063 crossref_primary_10_1016_j_conbuildmat_2022_126592 crossref_primary_10_1016_j_autcon_2021_103883 crossref_primary_10_1016_j_measurement_2021_109790 crossref_primary_10_1016_j_conbuildmat_2023_133299 crossref_primary_10_1016_j_cscm_2021_e00628 crossref_primary_10_1016_j_conbuildmat_2024_138985 crossref_primary_10_1007_s12517_021_08869_4 crossref_primary_10_3390_su12187541 crossref_primary_10_1007_s10098_021_02239_0 crossref_primary_10_1080_10298436_2021_2005056 crossref_primary_10_1016_j_cscm_2025_e04305 crossref_primary_10_3390_ijerph17103730 crossref_primary_10_1016_j_jclepro_2021_129518 crossref_primary_10_1007_s10462_022_10373_4 crossref_primary_10_1016_j_conbuildmat_2020_122140 crossref_primary_10_1016_j_conbuildmat_2023_133835 crossref_primary_10_1016_j_matpr_2023_07_258 crossref_primary_10_1016_j_chaos_2020_110051 crossref_primary_10_1016_j_jclepro_2021_129355 crossref_primary_10_1016_j_jobe_2023_108160 crossref_primary_10_3390_app11167191 crossref_primary_10_1007_s12665_024_11443_2 crossref_primary_10_1007_s43452_022_00421_9 crossref_primary_10_1016_j_mtcomm_2024_109676 crossref_primary_10_1016_j_conbuildmat_2021_125944 crossref_primary_10_35234_fumbd_1375026 crossref_primary_10_1007_s41939_023_00154_z crossref_primary_10_1038_s41598_023_30606_y crossref_primary_10_3390_electronics11234054 crossref_primary_10_1016_j_rineng_2023_101595 crossref_primary_10_1016_j_cscm_2023_e02153 crossref_primary_10_2139_ssrn_4067947 crossref_primary_10_3390_app12104851 crossref_primary_10_1016_j_seta_2023_103317 crossref_primary_10_1007_s11356_021_15223_4 crossref_primary_10_1016_j_aei_2023_102215 crossref_primary_10_1002_suco_202200034 crossref_primary_10_1016_j_asej_2021_04_008 crossref_primary_10_1007_s41939_023_00181_w crossref_primary_10_1016_j_measurement_2020_108951 crossref_primary_10_1016_j_conbuildmat_2021_124589 crossref_primary_10_1088_1757_899X_1203_3_032096 crossref_primary_10_3390_app131910588 crossref_primary_10_3390_app112210826 crossref_primary_10_1016_j_treng_2024_100272 crossref_primary_10_1007_s40948_024_00805_6 crossref_primary_10_1061__ASCE_SC_1943_5576_0000683 crossref_primary_10_1186_s40069_022_00554_4 crossref_primary_10_1007_s12205_024_1647_6 crossref_primary_10_3390_su132413663 crossref_primary_10_1007_s00521_020_05062_8 crossref_primary_10_1016_j_istruc_2022_02_003 crossref_primary_10_1016_j_conbuildmat_2024_137002 crossref_primary_10_1155_2021_6694918 crossref_primary_10_3390_su13158561 crossref_primary_10_1016_j_clema_2022_100044 crossref_primary_10_1016_j_conbuildmat_2022_126835 crossref_primary_10_3390_ma15217432 crossref_primary_10_1155_2021_5540853 crossref_primary_10_1002_suco_202200260 crossref_primary_10_1016_j_conbuildmat_2021_123946 crossref_primary_10_3390_cryst11020210 crossref_primary_10_1515_ijcre_2021_0160 crossref_primary_10_31127_tuje_1422225 crossref_primary_10_1016_j_asoc_2023_111174 crossref_primary_10_3390_app12199766 crossref_primary_10_1016_j_mtcomm_2023_107725 crossref_primary_10_1371_journal_pone_0260847 crossref_primary_10_1016_j_asoc_2023_110997 crossref_primary_10_1007_s41939_024_00587_0 crossref_primary_10_1002_suco_202300508 crossref_primary_10_1016_j_conbuildmat_2021_123314 crossref_primary_10_1002_suco_202000047 crossref_primary_10_1016_j_cscm_2022_e01238 crossref_primary_10_3390_buildings12070914 crossref_primary_10_1007_s00521_021_06004_8 crossref_primary_10_1016_j_jclepro_2025_144734 crossref_primary_10_61112_jiens_1555284 crossref_primary_10_1155_2020_8852842 crossref_primary_10_3390_ma14195637 crossref_primary_10_1002_suco_202300452 crossref_primary_10_1016_j_conbuildmat_2023_131851 crossref_primary_10_1016_j_cscm_2024_e03092 crossref_primary_10_1007_s00521_022_07360_9 crossref_primary_10_3390_ma15155436 crossref_primary_10_1007_s42947_024_00481_5 crossref_primary_10_1007_s43503_024_00029_3 crossref_primary_10_1016_j_cscm_2021_e00839 crossref_primary_10_1016_j_trgeo_2023_101172 crossref_primary_10_3390_ma14081983 crossref_primary_10_3390_app14177598 crossref_primary_10_3390_app11093866 crossref_primary_10_3390_ma17163908 crossref_primary_10_56748_ejse_234413 crossref_primary_10_1155_2022_5433474 crossref_primary_10_3390_app11020485 crossref_primary_10_1016_j_aej_2022_12_062 crossref_primary_10_3233_JIFS_233428 crossref_primary_10_1016_j_jclepro_2021_127053 crossref_primary_10_1016_j_conbuildmat_2020_120983 crossref_primary_10_1016_j_clet_2023_100604 crossref_primary_10_1007_s10706_021_01889_7 crossref_primary_10_1016_j_conbuildmat_2021_125876 crossref_primary_10_1016_j_conbuildmat_2022_126525 crossref_primary_10_1080_24705314_2021_1892572 crossref_primary_10_3390_jcs4020061 crossref_primary_10_1016_j_istruc_2021_02_015 crossref_primary_10_3390_buildings13071852 crossref_primary_10_1016_j_cemconres_2021_106449 crossref_primary_10_1007_s42107_024_01175_w crossref_primary_10_1016_j_jobe_2022_105293 crossref_primary_10_1007_s41939_024_00597_y crossref_primary_10_1002_suco_202300313 crossref_primary_10_1155_2021_6671448 crossref_primary_10_35234_fumbd_1464418 crossref_primary_10_1002_eng2_12676 crossref_primary_10_1016_j_matpr_2024_03_046 crossref_primary_10_1007_s11831_021_09644_0 crossref_primary_10_1016_j_conbuildmat_2020_120457 crossref_primary_10_1016_j_jclepro_2021_128771 crossref_primary_10_1134_S1061830923600375 crossref_primary_10_1016_j_jclepro_2022_134021 crossref_primary_10_3233_JIFS_222805 crossref_primary_10_1016_j_jobe_2020_102138 |
| Cites_doi | 10.1016/j.advengsoft.2017.07.002 10.1016/j.conbuildmat.2018.09.173 10.1109/72.329697 10.1016/j.advengsoft.2008.05.005 10.1016/j.ceramint.2015.06.037 10.1016/j.conbuildmat.2019.07.155 10.1016/j.conbuildmat.2012.09.026 10.1016/j.advengsoft.2015.05.007 10.1016/j.jclepro.2018.08.065 10.1016/j.jclepro.2017.11.186 10.1016/j.conbuildmat.2018.05.201 10.1016/j.conbuildmat.2010.11.108 10.1016/j.buildenv.2006.07.003 10.1016/j.jclepro.2015.08.070 10.1016/j.cemconcomp.2007.01.001 10.1016/j.conbuildmat.2016.03.214 10.1016/j.asoc.2017.12.030 10.1016/j.conbuildmat.2009.02.011 10.1016/j.conbuildmat.2013.08.078 10.1016/j.conbuildmat.2010.01.007 10.1016/j.conbuildmat.2008.07.021 10.1016/j.asoc.2018.05.036 10.1016/j.jobe.2018.12.013 10.1016/j.conbuildmat.2012.08.043 10.1016/j.conbuildmat.2018.09.096 10.1016/j.conbuildmat.2015.08.124 10.1016/j.cemconcomp.2018.11.005 10.1016/j.conbuildmat.2008.12.003 10.1016/j.cemconcomp.2008.12.010 10.1016/j.buildenv.2006.07.027 10.1016/j.conbuildmat.2019.117266 10.1061/(ASCE)CP.1943-5487.0000561 10.1016/j.conbuildmat.2018.09.097 10.1016/j.eswa.2011.01.156 10.1016/j.conbuildmat.2015.06.055 10.1016/j.conbuildmat.2018.01.065 10.1016/j.conbuildmat.2011.04.042 10.1016/j.conbuildmat.2017.03.061 10.1016/j.conbuildmat.2015.12.153 10.1016/j.conbuildmat.2016.05.034 10.1016/j.commatsci.2007.04.009 10.1016/j.jclepro.2018.12.059 10.1016/j.conbuildmat.2016.06.144 10.1016/j.advengsoft.2009.01.005 10.1016/j.conbuildmat.2019.03.234 10.1016/j.cemconcomp.2018.03.009 10.1016/j.jclepro.2009.12.014 10.1016/j.cemconcomp.2007.09.003 10.1016/j.autcon.2015.12.026 10.1016/j.conbuildmat.2012.04.046 10.1016/j.enconman.2013.03.004 10.1617/s11527-014-0256-0 10.1016/j.compstruc.2011.08.019 10.1016/j.jobe.2018.01.007 10.1016/j.conbuildmat.2005.08.009 10.1016/j.commatsci.2015.02.045 10.4028/www.scientific.net/MSF.685.181 10.1007/BF02551274 10.1016/j.conbuildmat.2020.118152 10.1016/j.conbuildmat.2008.01.014 10.1007/s11704-009-0005-7 10.1617/s11527-013-0039-z |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.conbuildmat.2020.118676 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0526 |
| ExternalDocumentID | 10_1016_j_conbuildmat_2020_118676 S0950061820306814 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADHUB ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAAKF BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IAO IEA IGG IHE IHM IOF ISM J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N95 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PV9 Q38 ROL RPZ RZL SDF SDG SES SPC SPCBC SSM SST SSZ T5K UNMZH XI7 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AHDLI AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ ITC R2- RNS SET SEW SMS VH1 WUQ ZMT ~HD |
| ID | FETCH-LOGICAL-c321t-4d37b6d65bfc4bb14ac0e966f725c96c05eb982a08ba2d239dcea5038fc4d8433 |
| IEDL.DBID | .~1 |
| ISSN | 0950-0618 |
| IngestDate | Thu Apr 24 23:07:15 EDT 2025 Sat Oct 25 06:09:59 EDT 2025 Fri Feb 23 02:46:43 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Salp swarm algorithm Multi-objective optimization Artificial neural network M5P model tree Concrete compressive strength Ground granulated blast furnace slag |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c321t-4d37b6d65bfc4bb14ac0e966f725c96c05eb982a08ba2d239dcea5038fc4d8433 |
| ORCID | 0000-0003-2537-1863 0000-0001-8499-3975 |
| ParticipantIDs | crossref_primary_10_1016_j_conbuildmat_2020_118676 crossref_citationtrail_10_1016_j_conbuildmat_2020_118676 elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2020_118676 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-10 |
| PublicationDateYYYYMMDD | 2020-07-10 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Construction & building materials |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | S. Cramer, C. Sippel, Wisconsin Highway Research Program: Effects of Ground Granulated Blast Furnace Concrete, (February) (2005). Peng, Huang, Zhao, Chen, Zeng, Zheng (b0010) 2013; 610–613 Golafshani, Rahai, Sebt (b0275) 2015; 48 Gandomi, Roke (b0265) 2015 D. Elwell, G. Fu, Compression testing of concrete: Cylinders VS. cubes, Newyork State Department of Transportation, 1995. Tenza-Abril, Villacampa, Solak, Baeza-Brotons (b0175) 2018; 189 Shariq, Prasad, Masood (b0075) 2010; 24 Nazari, Sanjayan (b0305) 2015; 41 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0295) 2017; 114 Chidiac, Panesar (b0060) 2008; 30 Xu, Zhao, Yu, Xie, Yang, Xue (b0205) 2019; 211 Li, Gong, Cui, Wang, Zheng, Chi (b0015) 2011; 685 Cybenko (b0285) 1989; 2 J.R. Quinlan, Learning with continuous classes, in: Proceedings of the Australian Joint Conference on Artificial Intelligence, 1992: pp. 343–348. Duran Atiş, Bilim (b0070) 2007; 42 Atici (b0125) 2011; 38 Golafshani, Behnood (b0220) 2018; 176 Golafshani, Rahai, Sebt, Akbarpour (b0280) 2012; 36 Meyer (b0025) 2009; 31 I.K. Labarca, R.D. Foley, S.M. Cramer, Wisconsin Highway Research Program: Effects of Ground Granulated Blast Furnace Slag in Portland Cement Concrete (PCC) - Expanded Study, (January) (2007) 1–75. Oner, Akyuz (b0245) 2007; 29 Coello Coello (b0300) 2009; 3 Golafshani, Behnood, Arashpour (b0090) 2020; 232 Özbay, Erdemir, Durmuş (b0085) 2016; 105 Y. Wang, I.H. Witten, Induction of model trees for predicting continuous classes, in: Proc of the Poster Papers of the European Conference on Machine Learning, University of Economics, Faculty of Informatics and Statistics., Prague, 1997. Behnood, Golafshani (b0105) 2018; 202 Pfingsten, Rickert, Lipus (b0080) 2018; 165 Chen, Habert, Bouzidi, Jullien (b0020) 2010; 18 Li, Tang, Wu, Bin Liu (b0355) 2013; 70 Akçaözoğlu, Atiş (b0055) 2011; 25 Hamdia, Lahmer, Nguyen-Thoi, Rabczuk (b0310) 2015; 102 Chou, Pham (b0320) 2013; 49 Uysal, Tanyildizi (b0155) 2011; 25 Gandomi, Yun, Alavi (b0325) 2013; 46 Bilim, Atiş, Tanyildizi, Karahan (b0030) 2009; 40 Yüksel, Bilir, Özkan (b0035) 2007; 42 Alavi, Gandomi (b0270) 2011; 89 Topçu, Sarıdemir (b0120) 2008; 41 Liu, El-Tawil, Hansen, Wang (b0065) 2018; 190 Alshihri, Azmy, El-Bisy (b0180) 2009; 23 Verian, Behnood (b0005) 2018; 90 Dantas, Batista Leite, De Jesus Nagahama (b0145) 2013; 38 Sarıdemir, Topçu, Özcan, Severcan (b0135) 2009; 23 Golafshani (b0335) 2015; 270 Golafshani, Ashour (b0235) 2016; 64 Hagan, Menhaj (b0290) 1994; 5 Getahun, Shitote, Abiero Gariy (b0195) 2018; 190 Bostanci, Limbachiya, Kew (b0050) 2016; 112 Behnood, Verian, Modiri Gharehveran (b0230) 2015; 98 Golafshani, Behnood (b0170) 2019; 96 Saha, Sarker (b0040) 2016; 123 Prasad, Eskandari, Reddy (b0130) 2009; 23 Özcan, Atiş, Karahan, Uncuoğlu, Tanyildizi (b0165) 2009; 40 Bui, Nguyen, Chou, Nguyen-Xuan, Ngo (b0110) 2018; 180 Golafshani, Pazouki (b0160) 2018; 22 Berndt (b0045) 2009; 23 Xu, Chen, Xie, Zhao, Xiong, Chen (b0200) 2019; 226 Golafshani, Behnood (b0215) 2018; 64 Najimi, Ghafoori, Nikoo (b0100) 2019; 22 Bal, Buyle-Bodin (b0225) 2013; 38 Behnood, Behnood, Modiri Gharehveran, Alyamac (b0095) 2017; 142 Chou, Chong, Bui (b0315) 2016; 30 Behnood, Olek, Glinicki (b0210) 2015; 94 Mashhadban, Kutanaei, Sayarinejad (b0115) 2016; 119 Sadowski, Piechówka-Mielnik, Widziszowski, Gardynik, Mackiewicz (b0185) 2019; 221 Behnood, Golafshani (b0240) 2020; 243 Pala, Özbay, Öztaş, Yuce (b0150) 2007; 21 Golafshani, Talatahari (b0330) 2018; 70 Chithra, Kumar, Chinnaraju, Alfin Ashmita (b0140) 2016; 114 Naderpour, Rafiean, Fakharian (b0190) 2018; 16 Berndt (10.1016/j.conbuildmat.2020.118676_b0045) 2009; 23 Chou (10.1016/j.conbuildmat.2020.118676_b0315) 2016; 30 Golafshani (10.1016/j.conbuildmat.2020.118676_b0330) 2018; 70 Bostanci (10.1016/j.conbuildmat.2020.118676_b0050) 2016; 112 Atici (10.1016/j.conbuildmat.2020.118676_b0125) 2011; 38 Cybenko (10.1016/j.conbuildmat.2020.118676_b0285) 1989; 2 Getahun (10.1016/j.conbuildmat.2020.118676_b0195) 2018; 190 Xu (10.1016/j.conbuildmat.2020.118676_b0200) 2019; 226 Bui (10.1016/j.conbuildmat.2020.118676_b0110) 2018; 180 Golafshani (10.1016/j.conbuildmat.2020.118676_b0335) 2015; 270 Pala (10.1016/j.conbuildmat.2020.118676_b0150) 2007; 21 Verian (10.1016/j.conbuildmat.2020.118676_b0005) 2018; 90 Bilim (10.1016/j.conbuildmat.2020.118676_b0030) 2009; 40 Golafshani (10.1016/j.conbuildmat.2020.118676_b0160) 2018; 22 Golafshani (10.1016/j.conbuildmat.2020.118676_b0170) 2019; 96 Özbay (10.1016/j.conbuildmat.2020.118676_b0085) 2016; 105 Behnood (10.1016/j.conbuildmat.2020.118676_b0095) 2017; 142 Behnood (10.1016/j.conbuildmat.2020.118676_b0240) 2020; 243 10.1016/j.conbuildmat.2020.118676_b0255 Duran Atiş (10.1016/j.conbuildmat.2020.118676_b0070) 2007; 42 Behnood (10.1016/j.conbuildmat.2020.118676_b0105) 2018; 202 10.1016/j.conbuildmat.2020.118676_b0250 Chithra (10.1016/j.conbuildmat.2020.118676_b0140) 2016; 114 Liu (10.1016/j.conbuildmat.2020.118676_b0065) 2018; 190 Dantas (10.1016/j.conbuildmat.2020.118676_b0145) 2013; 38 Hamdia (10.1016/j.conbuildmat.2020.118676_b0310) 2015; 102 Yüksel (10.1016/j.conbuildmat.2020.118676_b0035) 2007; 42 Li (10.1016/j.conbuildmat.2020.118676_b0015) 2011; 685 Mirjalili (10.1016/j.conbuildmat.2020.118676_b0295) 2017; 114 Hagan (10.1016/j.conbuildmat.2020.118676_b0290) 1994; 5 Golafshani (10.1016/j.conbuildmat.2020.118676_b0275) 2015; 48 Chen (10.1016/j.conbuildmat.2020.118676_b0020) 2010; 18 10.1016/j.conbuildmat.2020.118676_b0345 Li (10.1016/j.conbuildmat.2020.118676_b0355) 2013; 70 Mashhadban (10.1016/j.conbuildmat.2020.118676_b0115) 2016; 119 10.1016/j.conbuildmat.2020.118676_b0260 Bal (10.1016/j.conbuildmat.2020.118676_b0225) 2013; 38 10.1016/j.conbuildmat.2020.118676_b0340 Shariq (10.1016/j.conbuildmat.2020.118676_b0075) 2010; 24 Golafshani (10.1016/j.conbuildmat.2020.118676_b0280) 2012; 36 Gandomi (10.1016/j.conbuildmat.2020.118676_b0265) 2015 Tenza-Abril (10.1016/j.conbuildmat.2020.118676_b0175) 2018; 189 Naderpour (10.1016/j.conbuildmat.2020.118676_b0190) 2018; 16 Behnood (10.1016/j.conbuildmat.2020.118676_b0210) 2015; 94 Özcan (10.1016/j.conbuildmat.2020.118676_b0165) 2009; 40 Chidiac (10.1016/j.conbuildmat.2020.118676_b0060) 2008; 30 Pfingsten (10.1016/j.conbuildmat.2020.118676_b0080) 2018; 165 Golafshani (10.1016/j.conbuildmat.2020.118676_b0235) 2016; 64 Meyer (10.1016/j.conbuildmat.2020.118676_b0025) 2009; 31 Golafshani (10.1016/j.conbuildmat.2020.118676_b0215) 2018; 64 Sarıdemir (10.1016/j.conbuildmat.2020.118676_b0135) 2009; 23 Gandomi (10.1016/j.conbuildmat.2020.118676_b0325) 2013; 46 Alshihri (10.1016/j.conbuildmat.2020.118676_b0180) 2009; 23 Xu (10.1016/j.conbuildmat.2020.118676_b0205) 2019; 211 Coello Coello (10.1016/j.conbuildmat.2020.118676_b0300) 2009; 3 Chou (10.1016/j.conbuildmat.2020.118676_b0320) 2013; 49 Nazari (10.1016/j.conbuildmat.2020.118676_b0305) 2015; 41 Akçaözoğlu (10.1016/j.conbuildmat.2020.118676_b0055) 2011; 25 Uysal (10.1016/j.conbuildmat.2020.118676_b0155) 2011; 25 Peng (10.1016/j.conbuildmat.2020.118676_b0010) 2013; 610–613 Najimi (10.1016/j.conbuildmat.2020.118676_b0100) 2019; 22 Sadowski (10.1016/j.conbuildmat.2020.118676_b0185) 2019; 221 Prasad (10.1016/j.conbuildmat.2020.118676_b0130) 2009; 23 Alavi (10.1016/j.conbuildmat.2020.118676_b0270) 2011; 89 Golafshani (10.1016/j.conbuildmat.2020.118676_b0220) 2018; 176 Behnood (10.1016/j.conbuildmat.2020.118676_b0230) 2015; 98 Golafshani (10.1016/j.conbuildmat.2020.118676_b0090) 2020; 232 Saha (10.1016/j.conbuildmat.2020.118676_b0040) 2016; 123 Oner (10.1016/j.conbuildmat.2020.118676_b0245) 2007; 29 Topçu (10.1016/j.conbuildmat.2020.118676_b0120) 2008; 41 |
| References_xml | – volume: 221 start-page: 727 year: 2019 end-page: 740 ident: b0185 article-title: Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust publication-title: J. Clean. Prod. – volume: 23 start-page: 2606 year: 2009 end-page: 2613 ident: b0045 article-title: Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate publication-title: Constr. Build. Mater. – volume: 41 start-page: 12164 year: 2015 end-page: 12177 ident: b0305 article-title: Modelling of compressive strength of geopolymer paste, mortar and concrete by optimized support vector machine publication-title: Ceram. Int. – year: 2015 ident: b0265 article-title: Assessment of artificial neural network and genetic programming as predictive tools publication-title: Adv. Eng. Softw. – volume: 105 start-page: 423 year: 2016 end-page: 434 ident: b0085 article-title: Utilization and efficiency of ground granulated blast furnace slag on concrete properties - a review publication-title: Constr. Build. Mater. – volume: 123 start-page: 135 year: 2016 end-page: 142 ident: b0040 article-title: Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars publication-title: Constr. Build. Mater. – volume: 42 start-page: 3060 year: 2007 end-page: 3065 ident: b0070 article-title: Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag publication-title: Build. Environ. – volume: 64 start-page: 7 year: 2016 end-page: 19 ident: b0235 article-title: Prediction of self-compacting concrete elastic modulus using two symbolic regression techniques publication-title: Autom. Constr. – volume: 685 start-page: 181 year: 2011 end-page: 187 ident: b0015 article-title: CO2 emissions due to cement manufacture publication-title: Mater. Sci. Forum – volume: 94 start-page: 137 year: 2015 end-page: 147 ident: b0210 article-title: Predicting modulus elasticity of recycled aggregate concrete using M5′ model tree algorithm publication-title: Constr. Build. Mater. – volume: 102 start-page: 304 year: 2015 end-page: 313 ident: b0310 article-title: Predicting the fracture toughness of PNCs: a stochastic approach based on ANN and ANFIS publication-title: Comput. Mater. Sci. – volume: 42 start-page: 2651 year: 2007 end-page: 2659 ident: b0035 article-title: Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate publication-title: Build. Environ. – reference: S. Cramer, C. Sippel, Wisconsin Highway Research Program: Effects of Ground Granulated Blast Furnace Concrete, (February) (2005). – volume: 29 start-page: 505 year: 2007 end-page: 514 ident: b0245 article-title: An experimental study on optimum usage of GGBS for the compressive strength of concrete publication-title: Cem. Concr. Compos. – volume: 16 start-page: 213 year: 2018 end-page: 219 ident: b0190 article-title: Compressive strength prediction of environmentally friendly concrete using artificial neural networks publication-title: J. Build. Eng. – volume: 119 start-page: 277 year: 2016 end-page: 287 ident: b0115 article-title: Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network publication-title: Constr. Build. Mater. – volume: 70 year: 2018 ident: b0330 article-title: Predicting the climbing rate of slip formwork systems using linear biogeography-based programming publication-title: Appl. Soft Comput. J. – volume: 36 start-page: 411 year: 2012 end-page: 418 ident: b0280 article-title: Prediction of bond strength of spliced steel bars in concrete using artificial neural network and fuzzy logic publication-title: Constr. Build. Mater. – reference: D. Elwell, G. Fu, Compression testing of concrete: Cylinders VS. cubes, Newyork State Department of Transportation, 1995. – volume: 38 start-page: 248 year: 2013 end-page: 254 ident: b0225 article-title: Artificial neural network for predicting drying shrinkage of concrete publication-title: Constr. Build. Mater. – reference: Y. Wang, I.H. Witten, Induction of model trees for predicting continuous classes, in: Proc of the Poster Papers of the European Conference on Machine Learning, University of Economics, Faculty of Informatics and Statistics., Prague, 1997. – volume: 40 start-page: 334 year: 2009 end-page: 340 ident: b0030 article-title: Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network publication-title: Adv. Eng. Softw. – volume: 189 start-page: 1173 year: 2018 end-page: 1183 ident: b0175 article-title: Prediction and sensitivity analysis of compressive strength in segregated lightweight concrete based on artificial neural network using ultrasonic pulse velocity publication-title: Constr. Build. Mater. – volume: 190 start-page: 830 year: 2018 end-page: 837 ident: b0065 article-title: Effect of slag cement on the properties of ultra-high performance concrete publication-title: Constr. Build. Mater. – volume: 22 start-page: 216 year: 2019 end-page: 226 ident: b0100 article-title: Modeling chloride penetration in self-consolidating concrete using artificial neural network combined with artificial bee colony algorithm publication-title: J. Build. Eng. – volume: 24 start-page: 1469 year: 2010 end-page: 1478 ident: b0075 article-title: Effect of GGBFS on time dependent compressive strength of concrete publication-title: Constr. Build. Mater. – volume: 202 start-page: 54 year: 2018 end-page: 64 ident: b0105 article-title: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves publication-title: J. Clean. Prod. – volume: 232 year: 2020 ident: b0090 article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer publication-title: Constr. Build. Mater. – volume: 270 year: 2015 ident: b0335 article-title: Introduction of Biogeography-Based Programming as a new algorithm for solving problems publication-title: Appl. Math. Comput. – volume: 180 start-page: 320 year: 2018 end-page: 333 ident: b0110 article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete publication-title: Constr. Build. Mater. – volume: 5 start-page: 989 year: 1994 end-page: 993 ident: b0290 article-title: Training feedforward networks with the marquardt algorithm publication-title: IEEE Trans. Neural Networks – volume: 25 start-page: 4105 year: 2011 end-page: 4111 ident: b0155 article-title: Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network publication-title: Constr. Build. Mater. – volume: 165 start-page: 931 year: 2018 end-page: 938 ident: b0080 article-title: Estimation of the content of ground granulated blast furnace slag and different pozzolanas in hardened concrete publication-title: Constr. Build. Mater. – volume: 226 start-page: 534 year: 2019 end-page: 554 ident: b0200 article-title: Prediction of triaxial behavior of recycled aggregate concrete using multivariable regression and artificial neural network techniques publication-title: Constr. Build. Mater. – volume: 41 start-page: 305 year: 2008 end-page: 311 ident: b0120 article-title: Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic publication-title: Comput. Mater. Sci. – volume: 190 start-page: 517 year: 2018 end-page: 525 ident: b0195 article-title: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes publication-title: Constr. Build. Mater. – volume: 2 start-page: 303 year: 1989 end-page: 314 ident: b0285 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control Signals Syst. – volume: 98 start-page: 519 year: 2015 end-page: 529 ident: b0230 article-title: Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength publication-title: Constr. Build. Mater. – volume: 25 start-page: 4052 year: 2011 end-page: 4058 ident: b0055 article-title: Effect of Granulated Blast Furnace Slag and fly ash addition on the strength properties of lightweight mortars containing waste PET aggregates publication-title: Constr. Build. Mater. – volume: 64 start-page: 377 year: 2018 end-page: 400 ident: b0215 article-title: Automatic regression methods for formulation of elastic modulus of recycled aggregate concrete publication-title: Appl. Soft Comput. – volume: 23 start-page: 1279 year: 2009 end-page: 1286 ident: b0135 article-title: Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic publication-title: Constr. Build. Mater. – volume: 48 start-page: 1581 year: 2015 end-page: 1602 ident: b0275 article-title: Artificial neural network and genetic programming for predicting the bond strength of GFRP bars in concrete publication-title: Mater. Struct./Materiaux et Constructions – volume: 70 start-page: 139 year: 2013 end-page: 148 ident: b0355 article-title: General models for estimating daily global solar radiation for different solar radiation zones in mainland China publication-title: Energy Convers. Manage. – volume: 49 start-page: 554 year: 2013 end-page: 563 ident: b0320 article-title: Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength publication-title: Constr. Build. Mater. – volume: 22 start-page: 419 year: 2018 end-page: 437 ident: b0160 article-title: Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method publication-title: Comput. Concr. – volume: 21 start-page: 384 year: 2007 end-page: 394 ident: b0150 article-title: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks publication-title: Constr. Build. Mater. – volume: 112 start-page: 542 year: 2016 end-page: 552 ident: b0050 article-title: Portland slag and composites cement concretes: engineering and durability properties publication-title: J. Clean. Prod. – volume: 40 start-page: 856 year: 2009 end-page: 863 ident: b0165 article-title: Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete publication-title: Adv. Eng. Softw. – volume: 23 start-page: 2214 year: 2009 end-page: 2219 ident: b0180 article-title: Neural networks for predicting compressive strength of structural light weight concrete publication-title: Constr. Build. Mater. – volume: 243 year: 2020 ident: b0240 article-title: Machine learning study of the mechanical properties of concretes containing waste foundry sand publication-title: Constr. Build. Mater. – volume: 142 start-page: 199 year: 2017 end-page: 207 ident: b0095 article-title: Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm publication-title: Constr. Build. Mater. – volume: 114 start-page: 528 year: 2016 end-page: 535 ident: b0140 article-title: A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks publication-title: Constr. Build. Mater. – volume: 38 start-page: 9609 year: 2011 end-page: 9618 ident: b0125 article-title: Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network publication-title: Expert Syst. Appl. – volume: 30 start-page: 63 year: 2008 end-page: 71 ident: b0060 article-title: Evolution of mechanical properties of concrete containing ground granulated blast furnace slag and effects on the scaling resistance test at 28 days publication-title: Cem. Concr. Compos. – volume: 31 start-page: 601 year: 2009 end-page: 605 ident: b0025 article-title: The greening of the concrete industry publication-title: Cem. Concr. Compos. – volume: 18 start-page: 478 year: 2010 end-page: 485 ident: b0020 article-title: Environmental impact of cement production: detail of the different processes and cement plant variability evaluation publication-title: J. Clean. Prod. – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b0295 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – volume: 176 start-page: 1163 year: 2018 end-page: 1176 ident: b0220 article-title: Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete publication-title: J. Clean. Prod. – reference: J.R. Quinlan, Learning with continuous classes, in: Proceedings of the Australian Joint Conference on Artificial Intelligence, 1992: pp. 343–348. – volume: 3 start-page: 18 year: 2009 end-page: 30 ident: b0300 article-title: Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored publication-title: Front. Comput. Sci. China – volume: 23 start-page: 117 year: 2009 end-page: 128 ident: b0130 article-title: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN publication-title: Constr. Build. Mater. – volume: 610–613 start-page: 2120 year: 2013 end-page: 2128 ident: b0010 article-title: Modeling of carbon dioxide measurement on cement plants publication-title: Adv. Mater. Res. – volume: 38 start-page: 717 year: 2013 end-page: 722 ident: b0145 article-title: Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks publication-title: Constr. Build. Mater. – volume: 211 start-page: 479 year: 2019 end-page: 491 ident: b0205 article-title: Parametric sensitivity analysis and modelling of mechanical properties of normal- and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks publication-title: Constr. Build. Mater. – reference: I.K. Labarca, R.D. Foley, S.M. Cramer, Wisconsin Highway Research Program: Effects of Ground Granulated Blast Furnace Slag in Portland Cement Concrete (PCC) - Expanded Study, (January) (2007) 1–75. – volume: 96 start-page: 95 year: 2019 end-page: 105 ident: b0170 article-title: Estimating the optimal mix design of silica fume concrete using biogeography-based programming publication-title: Cem. Concr. Compos. – volume: 90 start-page: 27 year: 2018 end-page: 41 ident: b0005 article-title: Effects of deicers on the performance of concrete pavements containing air-cooled blast furnace slag and supplementary cementitious materials publication-title: Cem. Concr. Compos. – volume: 89 start-page: 2176 year: 2011 end-page: 2194 ident: b0270 article-title: Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing publication-title: Comput. Struct. – volume: 46 start-page: 2109 year: 2013 end-page: 2119 ident: b0325 article-title: An evolutionary approach for modeling of shear strength of RC deep beams publication-title: Mater. Struct. – volume: 30 year: 2016 ident: b0315 article-title: Nature-inspired metaheuristic regression system: programming and implementation for civil engineering applications publication-title: J. Comput. Civ. Eng. – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.conbuildmat.2020.118676_b0295 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: 190 start-page: 830 year: 2018 ident: 10.1016/j.conbuildmat.2020.118676_b0065 article-title: Effect of slag cement on the properties of ultra-high performance concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.09.173 – volume: 5 start-page: 989 issue: 6 year: 1994 ident: 10.1016/j.conbuildmat.2020.118676_b0290 article-title: Training feedforward networks with the marquardt algorithm publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.329697 – volume: 40 start-page: 334 issue: 5 year: 2009 ident: 10.1016/j.conbuildmat.2020.118676_b0030 article-title: Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2008.05.005 – volume: 41 start-page: 12164 issue: 9 year: 2015 ident: 10.1016/j.conbuildmat.2020.118676_b0305 article-title: Modelling of compressive strength of geopolymer paste, mortar and concrete by optimized support vector machine publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.06.037 – ident: 10.1016/j.conbuildmat.2020.118676_b0345 – volume: 226 start-page: 534 year: 2019 ident: 10.1016/j.conbuildmat.2020.118676_b0200 article-title: Prediction of triaxial behavior of recycled aggregate concrete using multivariable regression and artificial neural network techniques publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.07.155 – ident: 10.1016/j.conbuildmat.2020.118676_b0255 – volume: 38 start-page: 717 year: 2013 ident: 10.1016/j.conbuildmat.2020.118676_b0145 article-title: Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.09.026 – year: 2015 ident: 10.1016/j.conbuildmat.2020.118676_b0265 article-title: Assessment of artificial neural network and genetic programming as predictive tools publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.05.007 – volume: 202 start-page: 54 year: 2018 ident: 10.1016/j.conbuildmat.2020.118676_b0105 article-title: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.08.065 – volume: 176 start-page: 1163 year: 2018 ident: 10.1016/j.conbuildmat.2020.118676_b0220 article-title: Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.11.186 – volume: 180 start-page: 320 year: 2018 ident: 10.1016/j.conbuildmat.2020.118676_b0110 article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.05.201 – volume: 25 start-page: 4105 issue: 11 year: 2011 ident: 10.1016/j.conbuildmat.2020.118676_b0155 article-title: Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2010.11.108 – volume: 42 start-page: 2651 issue: 7 year: 2007 ident: 10.1016/j.conbuildmat.2020.118676_b0035 article-title: Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate publication-title: Build. Environ. doi: 10.1016/j.buildenv.2006.07.003 – volume: 112 start-page: 542 issue: Part 1 year: 2016 ident: 10.1016/j.conbuildmat.2020.118676_b0050 article-title: Portland slag and composites cement concretes: engineering and durability properties publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.08.070 – volume: 29 start-page: 505 issue: 6 year: 2007 ident: 10.1016/j.conbuildmat.2020.118676_b0245 article-title: An experimental study on optimum usage of GGBS for the compressive strength of concrete publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2007.01.001 – volume: 114 start-page: 528 year: 2016 ident: 10.1016/j.conbuildmat.2020.118676_b0140 article-title: A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.03.214 – volume: 64 start-page: 377 year: 2018 ident: 10.1016/j.conbuildmat.2020.118676_b0215 article-title: Automatic regression methods for formulation of elastic modulus of recycled aggregate concrete publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.12.030 – volume: 23 start-page: 2606 issue: 7 year: 2009 ident: 10.1016/j.conbuildmat.2020.118676_b0045 article-title: Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2009.02.011 – volume: 49 start-page: 554 year: 2013 ident: 10.1016/j.conbuildmat.2020.118676_b0320 article-title: Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.08.078 – volume: 24 start-page: 1469 issue: 8 year: 2010 ident: 10.1016/j.conbuildmat.2020.118676_b0075 article-title: Effect of GGBFS on time dependent compressive strength of concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2010.01.007 – volume: 23 start-page: 1279 issue: 3 year: 2009 ident: 10.1016/j.conbuildmat.2020.118676_b0135 article-title: Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2008.07.021 – volume: 70 year: 2018 ident: 10.1016/j.conbuildmat.2020.118676_b0330 article-title: Predicting the climbing rate of slip formwork systems using linear biogeography-based programming publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2018.05.036 – volume: 22 start-page: 216 year: 2019 ident: 10.1016/j.conbuildmat.2020.118676_b0100 article-title: Modeling chloride penetration in self-consolidating concrete using artificial neural network combined with artificial bee colony algorithm publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2018.12.013 – volume: 38 start-page: 248 year: 2013 ident: 10.1016/j.conbuildmat.2020.118676_b0225 article-title: Artificial neural network for predicting drying shrinkage of concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.08.043 – volume: 189 start-page: 1173 year: 2018 ident: 10.1016/j.conbuildmat.2020.118676_b0175 article-title: Prediction and sensitivity analysis of compressive strength in segregated lightweight concrete based on artificial neural network using ultrasonic pulse velocity publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.09.096 – volume: 98 start-page: 519 year: 2015 ident: 10.1016/j.conbuildmat.2020.118676_b0230 article-title: Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.08.124 – volume: 96 start-page: 95 year: 2019 ident: 10.1016/j.conbuildmat.2020.118676_b0170 article-title: Estimating the optimal mix design of silica fume concrete using biogeography-based programming publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2018.11.005 – volume: 23 start-page: 2214 issue: 6 year: 2009 ident: 10.1016/j.conbuildmat.2020.118676_b0180 article-title: Neural networks for predicting compressive strength of structural light weight concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2008.12.003 – volume: 31 start-page: 601 issue: 8 year: 2009 ident: 10.1016/j.conbuildmat.2020.118676_b0025 article-title: The greening of the concrete industry publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2008.12.010 – volume: 42 start-page: 3060 issue: 8 year: 2007 ident: 10.1016/j.conbuildmat.2020.118676_b0070 article-title: Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag publication-title: Build. Environ. doi: 10.1016/j.buildenv.2006.07.027 – volume: 232 year: 2020 ident: 10.1016/j.conbuildmat.2020.118676_b0090 article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117266 – volume: 30 issue: 5 year: 2016 ident: 10.1016/j.conbuildmat.2020.118676_b0315 article-title: Nature-inspired metaheuristic regression system: programming and implementation for civil engineering applications publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000561 – volume: 190 start-page: 517 year: 2018 ident: 10.1016/j.conbuildmat.2020.118676_b0195 article-title: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.09.097 – volume: 38 start-page: 9609 issue: 8 year: 2011 ident: 10.1016/j.conbuildmat.2020.118676_b0125 article-title: Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.01.156 – volume: 94 start-page: 137 year: 2015 ident: 10.1016/j.conbuildmat.2020.118676_b0210 article-title: Predicting modulus elasticity of recycled aggregate concrete using M5′ model tree algorithm publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.06.055 – volume: 165 start-page: 931 year: 2018 ident: 10.1016/j.conbuildmat.2020.118676_b0080 article-title: Estimation of the content of ground granulated blast furnace slag and different pozzolanas in hardened concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.01.065 – volume: 25 start-page: 4052 issue: 10 year: 2011 ident: 10.1016/j.conbuildmat.2020.118676_b0055 article-title: Effect of Granulated Blast Furnace Slag and fly ash addition on the strength properties of lightweight mortars containing waste PET aggregates publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2011.04.042 – ident: 10.1016/j.conbuildmat.2020.118676_b0250 – volume: 142 start-page: 199 year: 2017 ident: 10.1016/j.conbuildmat.2020.118676_b0095 article-title: Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.03.061 – volume: 105 start-page: 423 year: 2016 ident: 10.1016/j.conbuildmat.2020.118676_b0085 article-title: Utilization and efficiency of ground granulated blast furnace slag on concrete properties - a review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.12.153 – volume: 610–613 start-page: 2120 issue: 1 year: 2013 ident: 10.1016/j.conbuildmat.2020.118676_b0010 article-title: Modeling of carbon dioxide measurement on cement plants publication-title: Adv. Mater. Res. – volume: 119 start-page: 277 year: 2016 ident: 10.1016/j.conbuildmat.2020.118676_b0115 article-title: Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.05.034 – volume: 41 start-page: 305 issue: 3 year: 2008 ident: 10.1016/j.conbuildmat.2020.118676_b0120 article-title: Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2007.04.009 – volume: 221 start-page: 727 year: 2019 ident: 10.1016/j.conbuildmat.2020.118676_b0185 article-title: Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.12.059 – ident: 10.1016/j.conbuildmat.2020.118676_b0260 – volume: 123 start-page: 135 year: 2016 ident: 10.1016/j.conbuildmat.2020.118676_b0040 article-title: Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.06.144 – volume: 40 start-page: 856 issue: 9 year: 2009 ident: 10.1016/j.conbuildmat.2020.118676_b0165 article-title: Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2009.01.005 – ident: 10.1016/j.conbuildmat.2020.118676_b0340 – volume: 211 start-page: 479 year: 2019 ident: 10.1016/j.conbuildmat.2020.118676_b0205 article-title: Parametric sensitivity analysis and modelling of mechanical properties of normal- and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.03.234 – volume: 90 start-page: 27 year: 2018 ident: 10.1016/j.conbuildmat.2020.118676_b0005 article-title: Effects of deicers on the performance of concrete pavements containing air-cooled blast furnace slag and supplementary cementitious materials publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2018.03.009 – volume: 18 start-page: 478 issue: 5 year: 2010 ident: 10.1016/j.conbuildmat.2020.118676_b0020 article-title: Environmental impact of cement production: detail of the different processes and cement plant variability evaluation publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2009.12.014 – volume: 30 start-page: 63 issue: 2 year: 2008 ident: 10.1016/j.conbuildmat.2020.118676_b0060 article-title: Evolution of mechanical properties of concrete containing ground granulated blast furnace slag and effects on the scaling resistance test at 28 days publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2007.09.003 – volume: 64 start-page: 7 year: 2016 ident: 10.1016/j.conbuildmat.2020.118676_b0235 article-title: Prediction of self-compacting concrete elastic modulus using two symbolic regression techniques publication-title: Autom. Constr. doi: 10.1016/j.autcon.2015.12.026 – volume: 36 start-page: 411 year: 2012 ident: 10.1016/j.conbuildmat.2020.118676_b0280 article-title: Prediction of bond strength of spliced steel bars in concrete using artificial neural network and fuzzy logic publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.04.046 – volume: 70 start-page: 139 year: 2013 ident: 10.1016/j.conbuildmat.2020.118676_b0355 article-title: General models for estimating daily global solar radiation for different solar radiation zones in mainland China publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2013.03.004 – volume: 48 start-page: 1581 issue: 5 year: 2015 ident: 10.1016/j.conbuildmat.2020.118676_b0275 article-title: Artificial neural network and genetic programming for predicting the bond strength of GFRP bars in concrete publication-title: Mater. Struct./Materiaux et Constructions doi: 10.1617/s11527-014-0256-0 – volume: 89 start-page: 2176 issue: 23–24 year: 2011 ident: 10.1016/j.conbuildmat.2020.118676_b0270 article-title: Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2011.08.019 – volume: 16 start-page: 213 year: 2018 ident: 10.1016/j.conbuildmat.2020.118676_b0190 article-title: Compressive strength prediction of environmentally friendly concrete using artificial neural networks publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2018.01.007 – volume: 21 start-page: 384 issue: 2 year: 2007 ident: 10.1016/j.conbuildmat.2020.118676_b0150 article-title: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2005.08.009 – volume: 270 year: 2015 ident: 10.1016/j.conbuildmat.2020.118676_b0335 article-title: Introduction of Biogeography-Based Programming as a new algorithm for solving problems publication-title: Appl. Math. Comput. – volume: 102 start-page: 304 year: 2015 ident: 10.1016/j.conbuildmat.2020.118676_b0310 article-title: Predicting the fracture toughness of PNCs: a stochastic approach based on ANN and ANFIS publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2015.02.045 – volume: 685 start-page: 181 issue: 1 year: 2011 ident: 10.1016/j.conbuildmat.2020.118676_b0015 article-title: CO2 emissions due to cement manufacture publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.685.181 – volume: 2 start-page: 303 issue: 4 year: 1989 ident: 10.1016/j.conbuildmat.2020.118676_b0285 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control Signals Syst. doi: 10.1007/BF02551274 – volume: 22 start-page: 419 issue: 4 year: 2018 ident: 10.1016/j.conbuildmat.2020.118676_b0160 article-title: Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method publication-title: Comput. Concr. – volume: 243 year: 2020 ident: 10.1016/j.conbuildmat.2020.118676_b0240 article-title: Machine learning study of the mechanical properties of concretes containing waste foundry sand publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118152 – volume: 23 start-page: 117 issue: 1 year: 2009 ident: 10.1016/j.conbuildmat.2020.118676_b0130 article-title: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2008.01.014 – volume: 3 start-page: 18 issue: 1 year: 2009 ident: 10.1016/j.conbuildmat.2020.118676_b0300 article-title: Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored publication-title: Front. Comput. Sci. China doi: 10.1007/s11704-009-0005-7 – volume: 46 start-page: 2109 issue: 12 year: 2013 ident: 10.1016/j.conbuildmat.2020.118676_b0325 article-title: An evolutionary approach for modeling of shear strength of RC deep beams publication-title: Mater. Struct. doi: 10.1617/s11527-013-0039-z |
| SSID | ssj0006262 |
| Score | 2.617213 |
| Snippet | •Gathering a database for the compressive strength of concrete with GGBFS.•Modeling the compressive strength of concrete with GGBFS using machine... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 118676 |
| SubjectTerms | Artificial neural network Concrete compressive strength Ground granulated blast furnace slag M5P model tree Multi-objective optimization Salp swarm algorithm |
| Title | Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm |
| URI | https://dx.doi.org/10.1016/j.conbuildmat.2020.118676 |
| Volume | 248 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006262 issn: 0950-0618 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006262 issn: 0950-0618 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006262 issn: 0950-0618 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006262 issn: 0950-0618 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006262 issn: 0950-0618 databaseCode: AKRWK dateStart: 19870301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF6MCyU5lKZJidMkbKFX1dJqJK-gF2McnJr60CQkN7Ev-YEtG1ttaQ_5L_mnmZHkxoFCCz2tHrurZWc18-0yMx9jH1wnsWCk9YjZxYMgMJ6i0yYFaC0BlAsSinf-MooHN_D5LrprsN42FobcKmvdX-n0UlvXT9r1bLZX02n7CsEBGWA0YQh7ZUlmDdAhFoOP909uHgjYRZVvjwhWAvmSvX_y8cItpyb2aQSHuFUUpEBkTOlH_mSjduzOxWv2qgaMvFuN6YA1XP6G7e-kETxkD338T6sQRL7MOEI6Tp7ipYfrd8cpHCQfFxN6h0NBmIjwkq6Kih2CU2RHbrFQOZF5Ocs1YuqCZ_Rpgx3M1ZiTg_yYT35ShNf0F9YpXRG9pZ5VKpN3RyOusJuNmq_45odaL7iaj5fraTFZHLGbi_51b-DV1AueCUVQeGDDjo5tHOnMgNYBKOM73BllHRGZJDZ-5HQihfKlVsKKMLHGKcosg9WthDB8y5r5MnfHjCeKeM2Eb2MlQILRAJkOQyGNzMBErsXkdrJTU-clJ3qMebp1QJulO3JKSU5pJacWE7-brqrkHP_S6NNWoumzlZaiEfl785P_a_6O7dEdnQ4H_ilrFutv7gxhTaHPy3V7zl50L4eDEZXDr7fDRxgu_24 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6Kgo-D-MS3K3iNTTabdANepFTqqxdb6C3sK31Q01Kjogf_i__UmSbVCoKCp4TsbrLsbGa-WWbmI-TEViLDtTAOMrs43PO0I_G0SXKwlpxL60WY73zbCOstftUO2iVSnebCYFhloftznT7R1sWTcrGa5VGvV74DcIAGGEwYwF6BZNbzPGAV9MBO377iPACxs7zgHjKseGKBHH8FeYHPqZB-GtAh-IoMNYgIsf7IT0ZqxvBcrJKVAjHS83xSa6Rk03WyPFNHcIO81-BHzXMQ6TChgOkohopPQlyfLMV8kLSTdbENpgI4EfAl3mU5PQTF1I7UwEWmyOZlDVUAqjOa4Kc1vGAgOxQj5Du0-4IpXr1X6DOJRXSGqp_rTHreaFAJr3mQgxF9eJbjeyoHneG4l3XvN0nrotas1p2Ce8HRPvMyhxu_okITBirRXCmPS-1acI2SCgt0FGo3sCoSTLpCSWaYHxltJZaWge5GcN_fInPpMLXbhEYSic2Ya0LJuOBacZ4o32dCi4TrwO4QMV3sWBeFyZEfYxBPI9D68YycYpRTnMtph7DPoaO8OsdfBp1NJRp_22oxWJHfh-_-b_gRWaw3b2_im8vG9R5ZwhY8KvbcfTKXjR_tAWCcTB1O9vAH87r_YA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+the+compressive+strength+of+concretes+containing+ground+granulated+blast+furnace+slag+using+hybridized+multi-objective+ANN+and+salp+swarm+algorithm&rft.jtitle=Construction+%26+building+materials&rft.au=Kandiri%2C+Amirreza&rft.au=Mohammadi+Golafshani%2C+Emadaldin&rft.au=Behnood%2C+Ali&rft.date=2020-07-10&rft.pub=Elsevier+Ltd&rft.issn=0950-0618&rft.eissn=1879-0526&rft.volume=248&rft_id=info:doi/10.1016%2Fj.conbuildmat.2020.118676&rft.externalDocID=S0950061820306814 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon |