Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm

•Gathering a database for the compressive strength of concrete with GGBFS.•Modeling the compressive strength of concrete with GGBFS using machine learning.•Hybridization of ANN and multi-objective salp swarm algorithm.•Using M5P model tree to model the concrete compressive strength with GGBFS. The u...

Full description

Saved in:
Bibliographic Details
Published inConstruction & building materials Vol. 248; p. 118676
Main Authors Kandiri, Amirreza, Mohammadi Golafshani, Emadaldin, Behnood, Ali
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 10.07.2020
Subjects
Online AccessGet full text
ISSN0950-0618
1879-0526
DOI10.1016/j.conbuildmat.2020.118676

Cover

Abstract •Gathering a database for the compressive strength of concrete with GGBFS.•Modeling the compressive strength of concrete with GGBFS using machine learning.•Hybridization of ANN and multi-objective salp swarm algorithm.•Using M5P model tree to model the concrete compressive strength with GGBFS. The use of supplementary cementitious materials such as ground granulated blast furnace slag (GGBFS) in concrete mixtures provides many technical and economic benefits. The use of GGBFS as a partial replacement for cement in concrete mixtures can also decrease the energy consumption and reduce the greenhouse gas emissions. Developing an accurate model for estimating the compressive strength of the concretes containing GGBFS is a necessity since the value of the compressive strength is a required parameter in various design codes. Besides, a predictive model for the compressive strength instead of direct laboratory-based measurements can save in energy, cost, and time. Artificial neural network (ANN) algorithm was used in this research to develop a model for the estimation of the compressive strength of concretes containing GGBFS. To optimize the error and complexity of the developed ANN models, a multi-objective slap swarm algorithm (MOSSA), as a multi-objective optimization method, was proposed. The M5P model tree algorithm, as one of the most used classification techniques to solve engineering problems, was also used to develop predictive models of compressive strength. The efficiency of the proposed model developed based on the ANN algorithm was compared with that of the model developed based on the M5P model tree technique using various error measures. The findings from this research indicate that the M5P model tree and the proposed ANN model can successfully provide predictive tools for estimating the compressive strength of concretes containing GGBFS with 12.05% and 7.25% mean absolute percentage error (MAPE), respectively. These values indicate that the proposed model based on ANN algorithm has superior efficiency compared to the one developed using M5P model tree.
AbstractList •Gathering a database for the compressive strength of concrete with GGBFS.•Modeling the compressive strength of concrete with GGBFS using machine learning.•Hybridization of ANN and multi-objective salp swarm algorithm.•Using M5P model tree to model the concrete compressive strength with GGBFS. The use of supplementary cementitious materials such as ground granulated blast furnace slag (GGBFS) in concrete mixtures provides many technical and economic benefits. The use of GGBFS as a partial replacement for cement in concrete mixtures can also decrease the energy consumption and reduce the greenhouse gas emissions. Developing an accurate model for estimating the compressive strength of the concretes containing GGBFS is a necessity since the value of the compressive strength is a required parameter in various design codes. Besides, a predictive model for the compressive strength instead of direct laboratory-based measurements can save in energy, cost, and time. Artificial neural network (ANN) algorithm was used in this research to develop a model for the estimation of the compressive strength of concretes containing GGBFS. To optimize the error and complexity of the developed ANN models, a multi-objective slap swarm algorithm (MOSSA), as a multi-objective optimization method, was proposed. The M5P model tree algorithm, as one of the most used classification techniques to solve engineering problems, was also used to develop predictive models of compressive strength. The efficiency of the proposed model developed based on the ANN algorithm was compared with that of the model developed based on the M5P model tree technique using various error measures. The findings from this research indicate that the M5P model tree and the proposed ANN model can successfully provide predictive tools for estimating the compressive strength of concretes containing GGBFS with 12.05% and 7.25% mean absolute percentage error (MAPE), respectively. These values indicate that the proposed model based on ANN algorithm has superior efficiency compared to the one developed using M5P model tree.
ArticleNumber 118676
Author Kandiri, Amirreza
Behnood, Ali
Mohammadi Golafshani, Emadaldin
Author_xml – sequence: 1
  givenname: Amirreza
  surname: Kandiri
  fullname: Kandiri, Amirreza
  organization: Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
– sequence: 2
  givenname: Emadaldin
  orcidid: 0000-0001-8499-3975
  surname: Mohammadi Golafshani
  fullname: Mohammadi Golafshani, Emadaldin
  email: Golafshani@srbiau.ac.ir
  organization: Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
– sequence: 3
  givenname: Ali
  orcidid: 0000-0003-2537-1863
  surname: Behnood
  fullname: Behnood, Ali
  email: abehnood@purdue.edu
  organization: Lyles School of Civil Engineering, Purdue University, 550 W Stadium Ave, West Lafayette, IN, 47907-2051, USA
BookMark eNqNkNFuFCEUhompidvqO-ADzArMDjtzZZpNtSZNvdFrcoAzs2wY2ABTU9_GN5VxvTBe9eoQ-P_vhO-aXIUYkJD3nG054_LDaWti0IvzdoayFUzUe97LvXxFNrzfDw3rhLwiGzZ0rGGS92_Idc4nxpgUUmzIr7tcXK26GGgcaTkiNXE-J8zZPSHNJWGYynF9q4tMwoJ5PRVwwYWJTikuwdYBYfFQ0FLtIRc6LimAqQAPE13yGj0-6-Ss-1kz8-KLa6I-oSnrmtvHRwoVk8Gfaf4Baabgp5hcOc5vyesRfMZ3f-cN-f7p7tvhvnn4-vnL4fahMa3gpdnZdq-llZ0ezU5rvgPDcJBy3IvODNKwDvXQC2C9BmFFO1iD0LG2r3Hb79r2hgwXrkkx54SjOqdqJj0rztTqWp3UP67V6lpdXNfux_-6xpU_UksC519EOFwIWL_45DCpbBwGg9alKknZ6F5A-Q2Ja6tc
CitedBy_id crossref_primary_10_1007_s42107_023_00635_z
crossref_primary_10_1038_s41598_022_17670_6
crossref_primary_10_1007_s41939_024_00378_7
crossref_primary_10_1016_j_heliyon_2023_e15362
crossref_primary_10_1016_j_cscm_2024_e03063
crossref_primary_10_1016_j_conbuildmat_2022_126592
crossref_primary_10_1016_j_autcon_2021_103883
crossref_primary_10_1016_j_measurement_2021_109790
crossref_primary_10_1016_j_conbuildmat_2023_133299
crossref_primary_10_1016_j_cscm_2021_e00628
crossref_primary_10_1016_j_conbuildmat_2024_138985
crossref_primary_10_1007_s12517_021_08869_4
crossref_primary_10_3390_su12187541
crossref_primary_10_1007_s10098_021_02239_0
crossref_primary_10_1080_10298436_2021_2005056
crossref_primary_10_1016_j_cscm_2025_e04305
crossref_primary_10_3390_ijerph17103730
crossref_primary_10_1016_j_jclepro_2021_129518
crossref_primary_10_1007_s10462_022_10373_4
crossref_primary_10_1016_j_conbuildmat_2020_122140
crossref_primary_10_1016_j_conbuildmat_2023_133835
crossref_primary_10_1016_j_matpr_2023_07_258
crossref_primary_10_1016_j_chaos_2020_110051
crossref_primary_10_1016_j_jclepro_2021_129355
crossref_primary_10_1016_j_jobe_2023_108160
crossref_primary_10_3390_app11167191
crossref_primary_10_1007_s12665_024_11443_2
crossref_primary_10_1007_s43452_022_00421_9
crossref_primary_10_1016_j_mtcomm_2024_109676
crossref_primary_10_1016_j_conbuildmat_2021_125944
crossref_primary_10_35234_fumbd_1375026
crossref_primary_10_1007_s41939_023_00154_z
crossref_primary_10_1038_s41598_023_30606_y
crossref_primary_10_3390_electronics11234054
crossref_primary_10_1016_j_rineng_2023_101595
crossref_primary_10_1016_j_cscm_2023_e02153
crossref_primary_10_2139_ssrn_4067947
crossref_primary_10_3390_app12104851
crossref_primary_10_1016_j_seta_2023_103317
crossref_primary_10_1007_s11356_021_15223_4
crossref_primary_10_1016_j_aei_2023_102215
crossref_primary_10_1002_suco_202200034
crossref_primary_10_1016_j_asej_2021_04_008
crossref_primary_10_1007_s41939_023_00181_w
crossref_primary_10_1016_j_measurement_2020_108951
crossref_primary_10_1016_j_conbuildmat_2021_124589
crossref_primary_10_1088_1757_899X_1203_3_032096
crossref_primary_10_3390_app131910588
crossref_primary_10_3390_app112210826
crossref_primary_10_1016_j_treng_2024_100272
crossref_primary_10_1007_s40948_024_00805_6
crossref_primary_10_1061__ASCE_SC_1943_5576_0000683
crossref_primary_10_1186_s40069_022_00554_4
crossref_primary_10_1007_s12205_024_1647_6
crossref_primary_10_3390_su132413663
crossref_primary_10_1007_s00521_020_05062_8
crossref_primary_10_1016_j_istruc_2022_02_003
crossref_primary_10_1016_j_conbuildmat_2024_137002
crossref_primary_10_1155_2021_6694918
crossref_primary_10_3390_su13158561
crossref_primary_10_1016_j_clema_2022_100044
crossref_primary_10_1016_j_conbuildmat_2022_126835
crossref_primary_10_3390_ma15217432
crossref_primary_10_1155_2021_5540853
crossref_primary_10_1002_suco_202200260
crossref_primary_10_1016_j_conbuildmat_2021_123946
crossref_primary_10_3390_cryst11020210
crossref_primary_10_1515_ijcre_2021_0160
crossref_primary_10_31127_tuje_1422225
crossref_primary_10_1016_j_asoc_2023_111174
crossref_primary_10_3390_app12199766
crossref_primary_10_1016_j_mtcomm_2023_107725
crossref_primary_10_1371_journal_pone_0260847
crossref_primary_10_1016_j_asoc_2023_110997
crossref_primary_10_1007_s41939_024_00587_0
crossref_primary_10_1002_suco_202300508
crossref_primary_10_1016_j_conbuildmat_2021_123314
crossref_primary_10_1002_suco_202000047
crossref_primary_10_1016_j_cscm_2022_e01238
crossref_primary_10_3390_buildings12070914
crossref_primary_10_1007_s00521_021_06004_8
crossref_primary_10_1016_j_jclepro_2025_144734
crossref_primary_10_61112_jiens_1555284
crossref_primary_10_1155_2020_8852842
crossref_primary_10_3390_ma14195637
crossref_primary_10_1002_suco_202300452
crossref_primary_10_1016_j_conbuildmat_2023_131851
crossref_primary_10_1016_j_cscm_2024_e03092
crossref_primary_10_1007_s00521_022_07360_9
crossref_primary_10_3390_ma15155436
crossref_primary_10_1007_s42947_024_00481_5
crossref_primary_10_1007_s43503_024_00029_3
crossref_primary_10_1016_j_cscm_2021_e00839
crossref_primary_10_1016_j_trgeo_2023_101172
crossref_primary_10_3390_ma14081983
crossref_primary_10_3390_app14177598
crossref_primary_10_3390_app11093866
crossref_primary_10_3390_ma17163908
crossref_primary_10_56748_ejse_234413
crossref_primary_10_1155_2022_5433474
crossref_primary_10_3390_app11020485
crossref_primary_10_1016_j_aej_2022_12_062
crossref_primary_10_3233_JIFS_233428
crossref_primary_10_1016_j_jclepro_2021_127053
crossref_primary_10_1016_j_conbuildmat_2020_120983
crossref_primary_10_1016_j_clet_2023_100604
crossref_primary_10_1007_s10706_021_01889_7
crossref_primary_10_1016_j_conbuildmat_2021_125876
crossref_primary_10_1016_j_conbuildmat_2022_126525
crossref_primary_10_1080_24705314_2021_1892572
crossref_primary_10_3390_jcs4020061
crossref_primary_10_1016_j_istruc_2021_02_015
crossref_primary_10_3390_buildings13071852
crossref_primary_10_1016_j_cemconres_2021_106449
crossref_primary_10_1007_s42107_024_01175_w
crossref_primary_10_1016_j_jobe_2022_105293
crossref_primary_10_1007_s41939_024_00597_y
crossref_primary_10_1002_suco_202300313
crossref_primary_10_1155_2021_6671448
crossref_primary_10_35234_fumbd_1464418
crossref_primary_10_1002_eng2_12676
crossref_primary_10_1016_j_matpr_2024_03_046
crossref_primary_10_1007_s11831_021_09644_0
crossref_primary_10_1016_j_conbuildmat_2020_120457
crossref_primary_10_1016_j_jclepro_2021_128771
crossref_primary_10_1134_S1061830923600375
crossref_primary_10_1016_j_jclepro_2022_134021
crossref_primary_10_3233_JIFS_222805
crossref_primary_10_1016_j_jobe_2020_102138
Cites_doi 10.1016/j.advengsoft.2017.07.002
10.1016/j.conbuildmat.2018.09.173
10.1109/72.329697
10.1016/j.advengsoft.2008.05.005
10.1016/j.ceramint.2015.06.037
10.1016/j.conbuildmat.2019.07.155
10.1016/j.conbuildmat.2012.09.026
10.1016/j.advengsoft.2015.05.007
10.1016/j.jclepro.2018.08.065
10.1016/j.jclepro.2017.11.186
10.1016/j.conbuildmat.2018.05.201
10.1016/j.conbuildmat.2010.11.108
10.1016/j.buildenv.2006.07.003
10.1016/j.jclepro.2015.08.070
10.1016/j.cemconcomp.2007.01.001
10.1016/j.conbuildmat.2016.03.214
10.1016/j.asoc.2017.12.030
10.1016/j.conbuildmat.2009.02.011
10.1016/j.conbuildmat.2013.08.078
10.1016/j.conbuildmat.2010.01.007
10.1016/j.conbuildmat.2008.07.021
10.1016/j.asoc.2018.05.036
10.1016/j.jobe.2018.12.013
10.1016/j.conbuildmat.2012.08.043
10.1016/j.conbuildmat.2018.09.096
10.1016/j.conbuildmat.2015.08.124
10.1016/j.cemconcomp.2018.11.005
10.1016/j.conbuildmat.2008.12.003
10.1016/j.cemconcomp.2008.12.010
10.1016/j.buildenv.2006.07.027
10.1016/j.conbuildmat.2019.117266
10.1061/(ASCE)CP.1943-5487.0000561
10.1016/j.conbuildmat.2018.09.097
10.1016/j.eswa.2011.01.156
10.1016/j.conbuildmat.2015.06.055
10.1016/j.conbuildmat.2018.01.065
10.1016/j.conbuildmat.2011.04.042
10.1016/j.conbuildmat.2017.03.061
10.1016/j.conbuildmat.2015.12.153
10.1016/j.conbuildmat.2016.05.034
10.1016/j.commatsci.2007.04.009
10.1016/j.jclepro.2018.12.059
10.1016/j.conbuildmat.2016.06.144
10.1016/j.advengsoft.2009.01.005
10.1016/j.conbuildmat.2019.03.234
10.1016/j.cemconcomp.2018.03.009
10.1016/j.jclepro.2009.12.014
10.1016/j.cemconcomp.2007.09.003
10.1016/j.autcon.2015.12.026
10.1016/j.conbuildmat.2012.04.046
10.1016/j.enconman.2013.03.004
10.1617/s11527-014-0256-0
10.1016/j.compstruc.2011.08.019
10.1016/j.jobe.2018.01.007
10.1016/j.conbuildmat.2005.08.009
10.1016/j.commatsci.2015.02.045
10.4028/www.scientific.net/MSF.685.181
10.1007/BF02551274
10.1016/j.conbuildmat.2020.118152
10.1016/j.conbuildmat.2008.01.014
10.1007/s11704-009-0005-7
10.1617/s11527-013-0039-z
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conbuildmat.2020.118676
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0526
ExternalDocumentID 10_1016_j_conbuildmat_2020_118676
S0950061820306814
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAAKF
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IAO
IEA
IGG
IHE
IHM
IOF
ISM
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N95
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PV9
Q38
ROL
RPZ
RZL
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
UNMZH
XI7
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHDLI
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
ITC
R2-
RNS
SET
SEW
SMS
VH1
WUQ
ZMT
~HD
ID FETCH-LOGICAL-c321t-4d37b6d65bfc4bb14ac0e966f725c96c05eb982a08ba2d239dcea5038fc4d8433
IEDL.DBID .~1
ISSN 0950-0618
IngestDate Thu Apr 24 23:07:15 EDT 2025
Sat Oct 25 06:09:59 EDT 2025
Fri Feb 23 02:46:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Salp swarm algorithm
Multi-objective optimization
Artificial neural network
M5P model tree
Concrete compressive strength
Ground granulated blast furnace slag
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-4d37b6d65bfc4bb14ac0e966f725c96c05eb982a08ba2d239dcea5038fc4d8433
ORCID 0000-0003-2537-1863
0000-0001-8499-3975
ParticipantIDs crossref_primary_10_1016_j_conbuildmat_2020_118676
crossref_citationtrail_10_1016_j_conbuildmat_2020_118676
elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2020_118676
PublicationCentury 2000
PublicationDate 2020-07-10
PublicationDateYYYYMMDD 2020-07-10
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-10
  day: 10
PublicationDecade 2020
PublicationTitle Construction & building materials
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References S. Cramer, C. Sippel, Wisconsin Highway Research Program: Effects of Ground Granulated Blast Furnace Concrete, (February) (2005).
Peng, Huang, Zhao, Chen, Zeng, Zheng (b0010) 2013; 610–613
Golafshani, Rahai, Sebt (b0275) 2015; 48
Gandomi, Roke (b0265) 2015
D. Elwell, G. Fu, Compression testing of concrete: Cylinders VS. cubes, Newyork State Department of Transportation, 1995.
Tenza-Abril, Villacampa, Solak, Baeza-Brotons (b0175) 2018; 189
Shariq, Prasad, Masood (b0075) 2010; 24
Nazari, Sanjayan (b0305) 2015; 41
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0295) 2017; 114
Chidiac, Panesar (b0060) 2008; 30
Xu, Zhao, Yu, Xie, Yang, Xue (b0205) 2019; 211
Li, Gong, Cui, Wang, Zheng, Chi (b0015) 2011; 685
Cybenko (b0285) 1989; 2
J.R. Quinlan, Learning with continuous classes, in: Proceedings of the Australian Joint Conference on Artificial Intelligence, 1992: pp. 343–348.
Duran Atiş, Bilim (b0070) 2007; 42
Atici (b0125) 2011; 38
Golafshani, Behnood (b0220) 2018; 176
Golafshani, Rahai, Sebt, Akbarpour (b0280) 2012; 36
Meyer (b0025) 2009; 31
I.K. Labarca, R.D. Foley, S.M. Cramer, Wisconsin Highway Research Program: Effects of Ground Granulated Blast Furnace Slag in Portland Cement Concrete (PCC) - Expanded Study, (January) (2007) 1–75.
Oner, Akyuz (b0245) 2007; 29
Coello Coello (b0300) 2009; 3
Golafshani, Behnood, Arashpour (b0090) 2020; 232
Özbay, Erdemir, Durmuş (b0085) 2016; 105
Y. Wang, I.H. Witten, Induction of model trees for predicting continuous classes, in: Proc of the Poster Papers of the European Conference on Machine Learning, University of Economics, Faculty of Informatics and Statistics., Prague, 1997.
Behnood, Golafshani (b0105) 2018; 202
Pfingsten, Rickert, Lipus (b0080) 2018; 165
Chen, Habert, Bouzidi, Jullien (b0020) 2010; 18
Li, Tang, Wu, Bin Liu (b0355) 2013; 70
Akçaözoğlu, Atiş (b0055) 2011; 25
Hamdia, Lahmer, Nguyen-Thoi, Rabczuk (b0310) 2015; 102
Chou, Pham (b0320) 2013; 49
Uysal, Tanyildizi (b0155) 2011; 25
Gandomi, Yun, Alavi (b0325) 2013; 46
Bilim, Atiş, Tanyildizi, Karahan (b0030) 2009; 40
Yüksel, Bilir, Özkan (b0035) 2007; 42
Alavi, Gandomi (b0270) 2011; 89
Topçu, Sarıdemir (b0120) 2008; 41
Liu, El-Tawil, Hansen, Wang (b0065) 2018; 190
Alshihri, Azmy, El-Bisy (b0180) 2009; 23
Verian, Behnood (b0005) 2018; 90
Dantas, Batista Leite, De Jesus Nagahama (b0145) 2013; 38
Sarıdemir, Topçu, Özcan, Severcan (b0135) 2009; 23
Golafshani (b0335) 2015; 270
Golafshani, Ashour (b0235) 2016; 64
Hagan, Menhaj (b0290) 1994; 5
Getahun, Shitote, Abiero Gariy (b0195) 2018; 190
Bostanci, Limbachiya, Kew (b0050) 2016; 112
Behnood, Verian, Modiri Gharehveran (b0230) 2015; 98
Golafshani, Behnood (b0170) 2019; 96
Saha, Sarker (b0040) 2016; 123
Prasad, Eskandari, Reddy (b0130) 2009; 23
Özcan, Atiş, Karahan, Uncuoğlu, Tanyildizi (b0165) 2009; 40
Bui, Nguyen, Chou, Nguyen-Xuan, Ngo (b0110) 2018; 180
Golafshani, Pazouki (b0160) 2018; 22
Berndt (b0045) 2009; 23
Xu, Chen, Xie, Zhao, Xiong, Chen (b0200) 2019; 226
Golafshani, Behnood (b0215) 2018; 64
Najimi, Ghafoori, Nikoo (b0100) 2019; 22
Bal, Buyle-Bodin (b0225) 2013; 38
Behnood, Behnood, Modiri Gharehveran, Alyamac (b0095) 2017; 142
Chou, Chong, Bui (b0315) 2016; 30
Behnood, Olek, Glinicki (b0210) 2015; 94
Mashhadban, Kutanaei, Sayarinejad (b0115) 2016; 119
Sadowski, Piechówka-Mielnik, Widziszowski, Gardynik, Mackiewicz (b0185) 2019; 221
Behnood, Golafshani (b0240) 2020; 243
Pala, Özbay, Öztaş, Yuce (b0150) 2007; 21
Golafshani, Talatahari (b0330) 2018; 70
Chithra, Kumar, Chinnaraju, Alfin Ashmita (b0140) 2016; 114
Naderpour, Rafiean, Fakharian (b0190) 2018; 16
Berndt (10.1016/j.conbuildmat.2020.118676_b0045) 2009; 23
Chou (10.1016/j.conbuildmat.2020.118676_b0315) 2016; 30
Golafshani (10.1016/j.conbuildmat.2020.118676_b0330) 2018; 70
Bostanci (10.1016/j.conbuildmat.2020.118676_b0050) 2016; 112
Atici (10.1016/j.conbuildmat.2020.118676_b0125) 2011; 38
Cybenko (10.1016/j.conbuildmat.2020.118676_b0285) 1989; 2
Getahun (10.1016/j.conbuildmat.2020.118676_b0195) 2018; 190
Xu (10.1016/j.conbuildmat.2020.118676_b0200) 2019; 226
Bui (10.1016/j.conbuildmat.2020.118676_b0110) 2018; 180
Golafshani (10.1016/j.conbuildmat.2020.118676_b0335) 2015; 270
Pala (10.1016/j.conbuildmat.2020.118676_b0150) 2007; 21
Verian (10.1016/j.conbuildmat.2020.118676_b0005) 2018; 90
Bilim (10.1016/j.conbuildmat.2020.118676_b0030) 2009; 40
Golafshani (10.1016/j.conbuildmat.2020.118676_b0160) 2018; 22
Golafshani (10.1016/j.conbuildmat.2020.118676_b0170) 2019; 96
Özbay (10.1016/j.conbuildmat.2020.118676_b0085) 2016; 105
Behnood (10.1016/j.conbuildmat.2020.118676_b0095) 2017; 142
Behnood (10.1016/j.conbuildmat.2020.118676_b0240) 2020; 243
10.1016/j.conbuildmat.2020.118676_b0255
Duran Atiş (10.1016/j.conbuildmat.2020.118676_b0070) 2007; 42
Behnood (10.1016/j.conbuildmat.2020.118676_b0105) 2018; 202
10.1016/j.conbuildmat.2020.118676_b0250
Chithra (10.1016/j.conbuildmat.2020.118676_b0140) 2016; 114
Liu (10.1016/j.conbuildmat.2020.118676_b0065) 2018; 190
Dantas (10.1016/j.conbuildmat.2020.118676_b0145) 2013; 38
Hamdia (10.1016/j.conbuildmat.2020.118676_b0310) 2015; 102
Yüksel (10.1016/j.conbuildmat.2020.118676_b0035) 2007; 42
Li (10.1016/j.conbuildmat.2020.118676_b0015) 2011; 685
Mirjalili (10.1016/j.conbuildmat.2020.118676_b0295) 2017; 114
Hagan (10.1016/j.conbuildmat.2020.118676_b0290) 1994; 5
Golafshani (10.1016/j.conbuildmat.2020.118676_b0275) 2015; 48
Chen (10.1016/j.conbuildmat.2020.118676_b0020) 2010; 18
10.1016/j.conbuildmat.2020.118676_b0345
Li (10.1016/j.conbuildmat.2020.118676_b0355) 2013; 70
Mashhadban (10.1016/j.conbuildmat.2020.118676_b0115) 2016; 119
10.1016/j.conbuildmat.2020.118676_b0260
Bal (10.1016/j.conbuildmat.2020.118676_b0225) 2013; 38
10.1016/j.conbuildmat.2020.118676_b0340
Shariq (10.1016/j.conbuildmat.2020.118676_b0075) 2010; 24
Golafshani (10.1016/j.conbuildmat.2020.118676_b0280) 2012; 36
Gandomi (10.1016/j.conbuildmat.2020.118676_b0265) 2015
Tenza-Abril (10.1016/j.conbuildmat.2020.118676_b0175) 2018; 189
Naderpour (10.1016/j.conbuildmat.2020.118676_b0190) 2018; 16
Behnood (10.1016/j.conbuildmat.2020.118676_b0210) 2015; 94
Özcan (10.1016/j.conbuildmat.2020.118676_b0165) 2009; 40
Chidiac (10.1016/j.conbuildmat.2020.118676_b0060) 2008; 30
Pfingsten (10.1016/j.conbuildmat.2020.118676_b0080) 2018; 165
Golafshani (10.1016/j.conbuildmat.2020.118676_b0235) 2016; 64
Meyer (10.1016/j.conbuildmat.2020.118676_b0025) 2009; 31
Golafshani (10.1016/j.conbuildmat.2020.118676_b0215) 2018; 64
Sarıdemir (10.1016/j.conbuildmat.2020.118676_b0135) 2009; 23
Gandomi (10.1016/j.conbuildmat.2020.118676_b0325) 2013; 46
Alshihri (10.1016/j.conbuildmat.2020.118676_b0180) 2009; 23
Xu (10.1016/j.conbuildmat.2020.118676_b0205) 2019; 211
Coello Coello (10.1016/j.conbuildmat.2020.118676_b0300) 2009; 3
Chou (10.1016/j.conbuildmat.2020.118676_b0320) 2013; 49
Nazari (10.1016/j.conbuildmat.2020.118676_b0305) 2015; 41
Akçaözoğlu (10.1016/j.conbuildmat.2020.118676_b0055) 2011; 25
Uysal (10.1016/j.conbuildmat.2020.118676_b0155) 2011; 25
Peng (10.1016/j.conbuildmat.2020.118676_b0010) 2013; 610–613
Najimi (10.1016/j.conbuildmat.2020.118676_b0100) 2019; 22
Sadowski (10.1016/j.conbuildmat.2020.118676_b0185) 2019; 221
Prasad (10.1016/j.conbuildmat.2020.118676_b0130) 2009; 23
Alavi (10.1016/j.conbuildmat.2020.118676_b0270) 2011; 89
Golafshani (10.1016/j.conbuildmat.2020.118676_b0220) 2018; 176
Behnood (10.1016/j.conbuildmat.2020.118676_b0230) 2015; 98
Golafshani (10.1016/j.conbuildmat.2020.118676_b0090) 2020; 232
Saha (10.1016/j.conbuildmat.2020.118676_b0040) 2016; 123
Oner (10.1016/j.conbuildmat.2020.118676_b0245) 2007; 29
Topçu (10.1016/j.conbuildmat.2020.118676_b0120) 2008; 41
References_xml – volume: 221
  start-page: 727
  year: 2019
  end-page: 740
  ident: b0185
  article-title: Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust
  publication-title: J. Clean. Prod.
– volume: 23
  start-page: 2606
  year: 2009
  end-page: 2613
  ident: b0045
  article-title: Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate
  publication-title: Constr. Build. Mater.
– volume: 41
  start-page: 12164
  year: 2015
  end-page: 12177
  ident: b0305
  article-title: Modelling of compressive strength of geopolymer paste, mortar and concrete by optimized support vector machine
  publication-title: Ceram. Int.
– year: 2015
  ident: b0265
  article-title: Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Adv. Eng. Softw.
– volume: 105
  start-page: 423
  year: 2016
  end-page: 434
  ident: b0085
  article-title: Utilization and efficiency of ground granulated blast furnace slag on concrete properties - a review
  publication-title: Constr. Build. Mater.
– volume: 123
  start-page: 135
  year: 2016
  end-page: 142
  ident: b0040
  article-title: Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars
  publication-title: Constr. Build. Mater.
– volume: 42
  start-page: 3060
  year: 2007
  end-page: 3065
  ident: b0070
  article-title: Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag
  publication-title: Build. Environ.
– volume: 64
  start-page: 7
  year: 2016
  end-page: 19
  ident: b0235
  article-title: Prediction of self-compacting concrete elastic modulus using two symbolic regression techniques
  publication-title: Autom. Constr.
– volume: 685
  start-page: 181
  year: 2011
  end-page: 187
  ident: b0015
  article-title: CO2 emissions due to cement manufacture
  publication-title: Mater. Sci. Forum
– volume: 94
  start-page: 137
  year: 2015
  end-page: 147
  ident: b0210
  article-title: Predicting modulus elasticity of recycled aggregate concrete using M5′ model tree algorithm
  publication-title: Constr. Build. Mater.
– volume: 102
  start-page: 304
  year: 2015
  end-page: 313
  ident: b0310
  article-title: Predicting the fracture toughness of PNCs: a stochastic approach based on ANN and ANFIS
  publication-title: Comput. Mater. Sci.
– volume: 42
  start-page: 2651
  year: 2007
  end-page: 2659
  ident: b0035
  article-title: Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate
  publication-title: Build. Environ.
– reference: S. Cramer, C. Sippel, Wisconsin Highway Research Program: Effects of Ground Granulated Blast Furnace Concrete, (February) (2005).
– volume: 29
  start-page: 505
  year: 2007
  end-page: 514
  ident: b0245
  article-title: An experimental study on optimum usage of GGBS for the compressive strength of concrete
  publication-title: Cem. Concr. Compos.
– volume: 16
  start-page: 213
  year: 2018
  end-page: 219
  ident: b0190
  article-title: Compressive strength prediction of environmentally friendly concrete using artificial neural networks
  publication-title: J. Build. Eng.
– volume: 119
  start-page: 277
  year: 2016
  end-page: 287
  ident: b0115
  article-title: Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network
  publication-title: Constr. Build. Mater.
– volume: 70
  year: 2018
  ident: b0330
  article-title: Predicting the climbing rate of slip formwork systems using linear biogeography-based programming
  publication-title: Appl. Soft Comput. J.
– volume: 36
  start-page: 411
  year: 2012
  end-page: 418
  ident: b0280
  article-title: Prediction of bond strength of spliced steel bars in concrete using artificial neural network and fuzzy logic
  publication-title: Constr. Build. Mater.
– reference: D. Elwell, G. Fu, Compression testing of concrete: Cylinders VS. cubes, Newyork State Department of Transportation, 1995.
– volume: 38
  start-page: 248
  year: 2013
  end-page: 254
  ident: b0225
  article-title: Artificial neural network for predicting drying shrinkage of concrete
  publication-title: Constr. Build. Mater.
– reference: Y. Wang, I.H. Witten, Induction of model trees for predicting continuous classes, in: Proc of the Poster Papers of the European Conference on Machine Learning, University of Economics, Faculty of Informatics and Statistics., Prague, 1997.
– volume: 40
  start-page: 334
  year: 2009
  end-page: 340
  ident: b0030
  article-title: Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network
  publication-title: Adv. Eng. Softw.
– volume: 189
  start-page: 1173
  year: 2018
  end-page: 1183
  ident: b0175
  article-title: Prediction and sensitivity analysis of compressive strength in segregated lightweight concrete based on artificial neural network using ultrasonic pulse velocity
  publication-title: Constr. Build. Mater.
– volume: 190
  start-page: 830
  year: 2018
  end-page: 837
  ident: b0065
  article-title: Effect of slag cement on the properties of ultra-high performance concrete
  publication-title: Constr. Build. Mater.
– volume: 22
  start-page: 216
  year: 2019
  end-page: 226
  ident: b0100
  article-title: Modeling chloride penetration in self-consolidating concrete using artificial neural network combined with artificial bee colony algorithm
  publication-title: J. Build. Eng.
– volume: 24
  start-page: 1469
  year: 2010
  end-page: 1478
  ident: b0075
  article-title: Effect of GGBFS on time dependent compressive strength of concrete
  publication-title: Constr. Build. Mater.
– volume: 202
  start-page: 54
  year: 2018
  end-page: 64
  ident: b0105
  article-title: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves
  publication-title: J. Clean. Prod.
– volume: 232
  year: 2020
  ident: b0090
  article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer
  publication-title: Constr. Build. Mater.
– volume: 270
  year: 2015
  ident: b0335
  article-title: Introduction of Biogeography-Based Programming as a new algorithm for solving problems
  publication-title: Appl. Math. Comput.
– volume: 180
  start-page: 320
  year: 2018
  end-page: 333
  ident: b0110
  article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete
  publication-title: Constr. Build. Mater.
– volume: 5
  start-page: 989
  year: 1994
  end-page: 993
  ident: b0290
  article-title: Training feedforward networks with the marquardt algorithm
  publication-title: IEEE Trans. Neural Networks
– volume: 25
  start-page: 4105
  year: 2011
  end-page: 4111
  ident: b0155
  article-title: Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network
  publication-title: Constr. Build. Mater.
– volume: 165
  start-page: 931
  year: 2018
  end-page: 938
  ident: b0080
  article-title: Estimation of the content of ground granulated blast furnace slag and different pozzolanas in hardened concrete
  publication-title: Constr. Build. Mater.
– volume: 226
  start-page: 534
  year: 2019
  end-page: 554
  ident: b0200
  article-title: Prediction of triaxial behavior of recycled aggregate concrete using multivariable regression and artificial neural network techniques
  publication-title: Constr. Build. Mater.
– volume: 41
  start-page: 305
  year: 2008
  end-page: 311
  ident: b0120
  article-title: Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic
  publication-title: Comput. Mater. Sci.
– volume: 190
  start-page: 517
  year: 2018
  end-page: 525
  ident: b0195
  article-title: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes
  publication-title: Constr. Build. Mater.
– volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  ident: b0285
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math. Control Signals Syst.
– volume: 98
  start-page: 519
  year: 2015
  end-page: 529
  ident: b0230
  article-title: Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength
  publication-title: Constr. Build. Mater.
– volume: 25
  start-page: 4052
  year: 2011
  end-page: 4058
  ident: b0055
  article-title: Effect of Granulated Blast Furnace Slag and fly ash addition on the strength properties of lightweight mortars containing waste PET aggregates
  publication-title: Constr. Build. Mater.
– volume: 64
  start-page: 377
  year: 2018
  end-page: 400
  ident: b0215
  article-title: Automatic regression methods for formulation of elastic modulus of recycled aggregate concrete
  publication-title: Appl. Soft Comput.
– volume: 23
  start-page: 1279
  year: 2009
  end-page: 1286
  ident: b0135
  article-title: Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic
  publication-title: Constr. Build. Mater.
– volume: 48
  start-page: 1581
  year: 2015
  end-page: 1602
  ident: b0275
  article-title: Artificial neural network and genetic programming for predicting the bond strength of GFRP bars in concrete
  publication-title: Mater. Struct./Materiaux et Constructions
– volume: 70
  start-page: 139
  year: 2013
  end-page: 148
  ident: b0355
  article-title: General models for estimating daily global solar radiation for different solar radiation zones in mainland China
  publication-title: Energy Convers. Manage.
– volume: 49
  start-page: 554
  year: 2013
  end-page: 563
  ident: b0320
  article-title: Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength
  publication-title: Constr. Build. Mater.
– volume: 22
  start-page: 419
  year: 2018
  end-page: 437
  ident: b0160
  article-title: Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method
  publication-title: Comput. Concr.
– volume: 21
  start-page: 384
  year: 2007
  end-page: 394
  ident: b0150
  article-title: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks
  publication-title: Constr. Build. Mater.
– volume: 112
  start-page: 542
  year: 2016
  end-page: 552
  ident: b0050
  article-title: Portland slag and composites cement concretes: engineering and durability properties
  publication-title: J. Clean. Prod.
– volume: 40
  start-page: 856
  year: 2009
  end-page: 863
  ident: b0165
  article-title: Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete
  publication-title: Adv. Eng. Softw.
– volume: 23
  start-page: 2214
  year: 2009
  end-page: 2219
  ident: b0180
  article-title: Neural networks for predicting compressive strength of structural light weight concrete
  publication-title: Constr. Build. Mater.
– volume: 243
  year: 2020
  ident: b0240
  article-title: Machine learning study of the mechanical properties of concretes containing waste foundry sand
  publication-title: Constr. Build. Mater.
– volume: 142
  start-page: 199
  year: 2017
  end-page: 207
  ident: b0095
  article-title: Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm
  publication-title: Constr. Build. Mater.
– volume: 114
  start-page: 528
  year: 2016
  end-page: 535
  ident: b0140
  article-title: A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks
  publication-title: Constr. Build. Mater.
– volume: 38
  start-page: 9609
  year: 2011
  end-page: 9618
  ident: b0125
  article-title: Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network
  publication-title: Expert Syst. Appl.
– volume: 30
  start-page: 63
  year: 2008
  end-page: 71
  ident: b0060
  article-title: Evolution of mechanical properties of concrete containing ground granulated blast furnace slag and effects on the scaling resistance test at 28 days
  publication-title: Cem. Concr. Compos.
– volume: 31
  start-page: 601
  year: 2009
  end-page: 605
  ident: b0025
  article-title: The greening of the concrete industry
  publication-title: Cem. Concr. Compos.
– volume: 18
  start-page: 478
  year: 2010
  end-page: 485
  ident: b0020
  article-title: Environmental impact of cement production: detail of the different processes and cement plant variability evaluation
  publication-title: J. Clean. Prod.
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b0295
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– volume: 176
  start-page: 1163
  year: 2018
  end-page: 1176
  ident: b0220
  article-title: Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete
  publication-title: J. Clean. Prod.
– reference: J.R. Quinlan, Learning with continuous classes, in: Proceedings of the Australian Joint Conference on Artificial Intelligence, 1992: pp. 343–348.
– volume: 3
  start-page: 18
  year: 2009
  end-page: 30
  ident: b0300
  article-title: Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored
  publication-title: Front. Comput. Sci. China
– volume: 23
  start-page: 117
  year: 2009
  end-page: 128
  ident: b0130
  article-title: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN
  publication-title: Constr. Build. Mater.
– volume: 610–613
  start-page: 2120
  year: 2013
  end-page: 2128
  ident: b0010
  article-title: Modeling of carbon dioxide measurement on cement plants
  publication-title: Adv. Mater. Res.
– volume: 38
  start-page: 717
  year: 2013
  end-page: 722
  ident: b0145
  article-title: Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks
  publication-title: Constr. Build. Mater.
– volume: 211
  start-page: 479
  year: 2019
  end-page: 491
  ident: b0205
  article-title: Parametric sensitivity analysis and modelling of mechanical properties of normal- and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks
  publication-title: Constr. Build. Mater.
– reference: I.K. Labarca, R.D. Foley, S.M. Cramer, Wisconsin Highway Research Program: Effects of Ground Granulated Blast Furnace Slag in Portland Cement Concrete (PCC) - Expanded Study, (January) (2007) 1–75.
– volume: 96
  start-page: 95
  year: 2019
  end-page: 105
  ident: b0170
  article-title: Estimating the optimal mix design of silica fume concrete using biogeography-based programming
  publication-title: Cem. Concr. Compos.
– volume: 90
  start-page: 27
  year: 2018
  end-page: 41
  ident: b0005
  article-title: Effects of deicers on the performance of concrete pavements containing air-cooled blast furnace slag and supplementary cementitious materials
  publication-title: Cem. Concr. Compos.
– volume: 89
  start-page: 2176
  year: 2011
  end-page: 2194
  ident: b0270
  article-title: Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing
  publication-title: Comput. Struct.
– volume: 46
  start-page: 2109
  year: 2013
  end-page: 2119
  ident: b0325
  article-title: An evolutionary approach for modeling of shear strength of RC deep beams
  publication-title: Mater. Struct.
– volume: 30
  year: 2016
  ident: b0315
  article-title: Nature-inspired metaheuristic regression system: programming and implementation for civil engineering applications
  publication-title: J. Comput. Civ. Eng.
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.conbuildmat.2020.118676_b0295
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 190
  start-page: 830
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.118676_b0065
  article-title: Effect of slag cement on the properties of ultra-high performance concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.09.173
– volume: 5
  start-page: 989
  issue: 6
  year: 1994
  ident: 10.1016/j.conbuildmat.2020.118676_b0290
  article-title: Training feedforward networks with the marquardt algorithm
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.329697
– volume: 40
  start-page: 334
  issue: 5
  year: 2009
  ident: 10.1016/j.conbuildmat.2020.118676_b0030
  article-title: Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2008.05.005
– volume: 41
  start-page: 12164
  issue: 9
  year: 2015
  ident: 10.1016/j.conbuildmat.2020.118676_b0305
  article-title: Modelling of compressive strength of geopolymer paste, mortar and concrete by optimized support vector machine
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.06.037
– ident: 10.1016/j.conbuildmat.2020.118676_b0345
– volume: 226
  start-page: 534
  year: 2019
  ident: 10.1016/j.conbuildmat.2020.118676_b0200
  article-title: Prediction of triaxial behavior of recycled aggregate concrete using multivariable regression and artificial neural network techniques
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.07.155
– ident: 10.1016/j.conbuildmat.2020.118676_b0255
– volume: 38
  start-page: 717
  year: 2013
  ident: 10.1016/j.conbuildmat.2020.118676_b0145
  article-title: Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.09.026
– year: 2015
  ident: 10.1016/j.conbuildmat.2020.118676_b0265
  article-title: Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.05.007
– volume: 202
  start-page: 54
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.118676_b0105
  article-title: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.065
– volume: 176
  start-page: 1163
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.118676_b0220
  article-title: Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.11.186
– volume: 180
  start-page: 320
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.118676_b0110
  article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.05.201
– volume: 25
  start-page: 4105
  issue: 11
  year: 2011
  ident: 10.1016/j.conbuildmat.2020.118676_b0155
  article-title: Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2010.11.108
– volume: 42
  start-page: 2651
  issue: 7
  year: 2007
  ident: 10.1016/j.conbuildmat.2020.118676_b0035
  article-title: Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2006.07.003
– volume: 112
  start-page: 542
  issue: Part 1
  year: 2016
  ident: 10.1016/j.conbuildmat.2020.118676_b0050
  article-title: Portland slag and composites cement concretes: engineering and durability properties
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.08.070
– volume: 29
  start-page: 505
  issue: 6
  year: 2007
  ident: 10.1016/j.conbuildmat.2020.118676_b0245
  article-title: An experimental study on optimum usage of GGBS for the compressive strength of concrete
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2007.01.001
– volume: 114
  start-page: 528
  year: 2016
  ident: 10.1016/j.conbuildmat.2020.118676_b0140
  article-title: A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.03.214
– volume: 64
  start-page: 377
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.118676_b0215
  article-title: Automatic regression methods for formulation of elastic modulus of recycled aggregate concrete
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.12.030
– volume: 23
  start-page: 2606
  issue: 7
  year: 2009
  ident: 10.1016/j.conbuildmat.2020.118676_b0045
  article-title: Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2009.02.011
– volume: 49
  start-page: 554
  year: 2013
  ident: 10.1016/j.conbuildmat.2020.118676_b0320
  article-title: Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.08.078
– volume: 24
  start-page: 1469
  issue: 8
  year: 2010
  ident: 10.1016/j.conbuildmat.2020.118676_b0075
  article-title: Effect of GGBFS on time dependent compressive strength of concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2010.01.007
– volume: 23
  start-page: 1279
  issue: 3
  year: 2009
  ident: 10.1016/j.conbuildmat.2020.118676_b0135
  article-title: Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2008.07.021
– volume: 70
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.118676_b0330
  article-title: Predicting the climbing rate of slip formwork systems using linear biogeography-based programming
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2018.05.036
– volume: 22
  start-page: 216
  year: 2019
  ident: 10.1016/j.conbuildmat.2020.118676_b0100
  article-title: Modeling chloride penetration in self-consolidating concrete using artificial neural network combined with artificial bee colony algorithm
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2018.12.013
– volume: 38
  start-page: 248
  year: 2013
  ident: 10.1016/j.conbuildmat.2020.118676_b0225
  article-title: Artificial neural network for predicting drying shrinkage of concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.08.043
– volume: 189
  start-page: 1173
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.118676_b0175
  article-title: Prediction and sensitivity analysis of compressive strength in segregated lightweight concrete based on artificial neural network using ultrasonic pulse velocity
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.09.096
– volume: 98
  start-page: 519
  year: 2015
  ident: 10.1016/j.conbuildmat.2020.118676_b0230
  article-title: Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.08.124
– volume: 96
  start-page: 95
  year: 2019
  ident: 10.1016/j.conbuildmat.2020.118676_b0170
  article-title: Estimating the optimal mix design of silica fume concrete using biogeography-based programming
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2018.11.005
– volume: 23
  start-page: 2214
  issue: 6
  year: 2009
  ident: 10.1016/j.conbuildmat.2020.118676_b0180
  article-title: Neural networks for predicting compressive strength of structural light weight concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2008.12.003
– volume: 31
  start-page: 601
  issue: 8
  year: 2009
  ident: 10.1016/j.conbuildmat.2020.118676_b0025
  article-title: The greening of the concrete industry
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2008.12.010
– volume: 42
  start-page: 3060
  issue: 8
  year: 2007
  ident: 10.1016/j.conbuildmat.2020.118676_b0070
  article-title: Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2006.07.027
– volume: 232
  year: 2020
  ident: 10.1016/j.conbuildmat.2020.118676_b0090
  article-title: Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117266
– volume: 30
  issue: 5
  year: 2016
  ident: 10.1016/j.conbuildmat.2020.118676_b0315
  article-title: Nature-inspired metaheuristic regression system: programming and implementation for civil engineering applications
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000561
– volume: 190
  start-page: 517
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.118676_b0195
  article-title: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.09.097
– volume: 38
  start-page: 9609
  issue: 8
  year: 2011
  ident: 10.1016/j.conbuildmat.2020.118676_b0125
  article-title: Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.156
– volume: 94
  start-page: 137
  year: 2015
  ident: 10.1016/j.conbuildmat.2020.118676_b0210
  article-title: Predicting modulus elasticity of recycled aggregate concrete using M5′ model tree algorithm
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.06.055
– volume: 165
  start-page: 931
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.118676_b0080
  article-title: Estimation of the content of ground granulated blast furnace slag and different pozzolanas in hardened concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.01.065
– volume: 25
  start-page: 4052
  issue: 10
  year: 2011
  ident: 10.1016/j.conbuildmat.2020.118676_b0055
  article-title: Effect of Granulated Blast Furnace Slag and fly ash addition on the strength properties of lightweight mortars containing waste PET aggregates
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2011.04.042
– ident: 10.1016/j.conbuildmat.2020.118676_b0250
– volume: 142
  start-page: 199
  year: 2017
  ident: 10.1016/j.conbuildmat.2020.118676_b0095
  article-title: Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.03.061
– volume: 105
  start-page: 423
  year: 2016
  ident: 10.1016/j.conbuildmat.2020.118676_b0085
  article-title: Utilization and efficiency of ground granulated blast furnace slag on concrete properties - a review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.12.153
– volume: 610–613
  start-page: 2120
  issue: 1
  year: 2013
  ident: 10.1016/j.conbuildmat.2020.118676_b0010
  article-title: Modeling of carbon dioxide measurement on cement plants
  publication-title: Adv. Mater. Res.
– volume: 119
  start-page: 277
  year: 2016
  ident: 10.1016/j.conbuildmat.2020.118676_b0115
  article-title: Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.05.034
– volume: 41
  start-page: 305
  issue: 3
  year: 2008
  ident: 10.1016/j.conbuildmat.2020.118676_b0120
  article-title: Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2007.04.009
– volume: 221
  start-page: 727
  year: 2019
  ident: 10.1016/j.conbuildmat.2020.118676_b0185
  article-title: Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.12.059
– ident: 10.1016/j.conbuildmat.2020.118676_b0260
– volume: 123
  start-page: 135
  year: 2016
  ident: 10.1016/j.conbuildmat.2020.118676_b0040
  article-title: Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.06.144
– volume: 40
  start-page: 856
  issue: 9
  year: 2009
  ident: 10.1016/j.conbuildmat.2020.118676_b0165
  article-title: Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2009.01.005
– ident: 10.1016/j.conbuildmat.2020.118676_b0340
– volume: 211
  start-page: 479
  year: 2019
  ident: 10.1016/j.conbuildmat.2020.118676_b0205
  article-title: Parametric sensitivity analysis and modelling of mechanical properties of normal- and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.03.234
– volume: 90
  start-page: 27
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.118676_b0005
  article-title: Effects of deicers on the performance of concrete pavements containing air-cooled blast furnace slag and supplementary cementitious materials
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2018.03.009
– volume: 18
  start-page: 478
  issue: 5
  year: 2010
  ident: 10.1016/j.conbuildmat.2020.118676_b0020
  article-title: Environmental impact of cement production: detail of the different processes and cement plant variability evaluation
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2009.12.014
– volume: 30
  start-page: 63
  issue: 2
  year: 2008
  ident: 10.1016/j.conbuildmat.2020.118676_b0060
  article-title: Evolution of mechanical properties of concrete containing ground granulated blast furnace slag and effects on the scaling resistance test at 28 days
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2007.09.003
– volume: 64
  start-page: 7
  year: 2016
  ident: 10.1016/j.conbuildmat.2020.118676_b0235
  article-title: Prediction of self-compacting concrete elastic modulus using two symbolic regression techniques
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2015.12.026
– volume: 36
  start-page: 411
  year: 2012
  ident: 10.1016/j.conbuildmat.2020.118676_b0280
  article-title: Prediction of bond strength of spliced steel bars in concrete using artificial neural network and fuzzy logic
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.04.046
– volume: 70
  start-page: 139
  year: 2013
  ident: 10.1016/j.conbuildmat.2020.118676_b0355
  article-title: General models for estimating daily global solar radiation for different solar radiation zones in mainland China
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2013.03.004
– volume: 48
  start-page: 1581
  issue: 5
  year: 2015
  ident: 10.1016/j.conbuildmat.2020.118676_b0275
  article-title: Artificial neural network and genetic programming for predicting the bond strength of GFRP bars in concrete
  publication-title: Mater. Struct./Materiaux et Constructions
  doi: 10.1617/s11527-014-0256-0
– volume: 89
  start-page: 2176
  issue: 23–24
  year: 2011
  ident: 10.1016/j.conbuildmat.2020.118676_b0270
  article-title: Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2011.08.019
– volume: 16
  start-page: 213
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.118676_b0190
  article-title: Compressive strength prediction of environmentally friendly concrete using artificial neural networks
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2018.01.007
– volume: 21
  start-page: 384
  issue: 2
  year: 2007
  ident: 10.1016/j.conbuildmat.2020.118676_b0150
  article-title: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2005.08.009
– volume: 270
  year: 2015
  ident: 10.1016/j.conbuildmat.2020.118676_b0335
  article-title: Introduction of Biogeography-Based Programming as a new algorithm for solving problems
  publication-title: Appl. Math. Comput.
– volume: 102
  start-page: 304
  year: 2015
  ident: 10.1016/j.conbuildmat.2020.118676_b0310
  article-title: Predicting the fracture toughness of PNCs: a stochastic approach based on ANN and ANFIS
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.02.045
– volume: 685
  start-page: 181
  issue: 1
  year: 2011
  ident: 10.1016/j.conbuildmat.2020.118676_b0015
  article-title: CO2 emissions due to cement manufacture
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.685.181
– volume: 2
  start-page: 303
  issue: 4
  year: 1989
  ident: 10.1016/j.conbuildmat.2020.118676_b0285
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math. Control Signals Syst.
  doi: 10.1007/BF02551274
– volume: 22
  start-page: 419
  issue: 4
  year: 2018
  ident: 10.1016/j.conbuildmat.2020.118676_b0160
  article-title: Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method
  publication-title: Comput. Concr.
– volume: 243
  year: 2020
  ident: 10.1016/j.conbuildmat.2020.118676_b0240
  article-title: Machine learning study of the mechanical properties of concretes containing waste foundry sand
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118152
– volume: 23
  start-page: 117
  issue: 1
  year: 2009
  ident: 10.1016/j.conbuildmat.2020.118676_b0130
  article-title: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2008.01.014
– volume: 3
  start-page: 18
  issue: 1
  year: 2009
  ident: 10.1016/j.conbuildmat.2020.118676_b0300
  article-title: Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored
  publication-title: Front. Comput. Sci. China
  doi: 10.1007/s11704-009-0005-7
– volume: 46
  start-page: 2109
  issue: 12
  year: 2013
  ident: 10.1016/j.conbuildmat.2020.118676_b0325
  article-title: An evolutionary approach for modeling of shear strength of RC deep beams
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-013-0039-z
SSID ssj0006262
Score 2.617213
Snippet •Gathering a database for the compressive strength of concrete with GGBFS.•Modeling the compressive strength of concrete with GGBFS using machine...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 118676
SubjectTerms Artificial neural network
Concrete compressive strength
Ground granulated blast furnace slag
M5P model tree
Multi-objective optimization
Salp swarm algorithm
Title Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm
URI https://dx.doi.org/10.1016/j.conbuildmat.2020.118676
Volume 248
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006262
  issn: 0950-0618
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006262
  issn: 0950-0618
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006262
  issn: 0950-0618
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006262
  issn: 0950-0618
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006262
  issn: 0950-0618
  databaseCode: AKRWK
  dateStart: 19870301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF6MCyU5lKZJidMkbKFX1dJqJK-gF2McnJr60CQkN7Ev-YEtG1ttaQ_5L_mnmZHkxoFCCz2tHrurZWc18-0yMx9jH1wnsWCk9YjZxYMgMJ6i0yYFaC0BlAsSinf-MooHN_D5LrprsN42FobcKmvdX-n0UlvXT9r1bLZX02n7CsEBGWA0YQh7ZUlmDdAhFoOP909uHgjYRZVvjwhWAvmSvX_y8cItpyb2aQSHuFUUpEBkTOlH_mSjduzOxWv2qgaMvFuN6YA1XP6G7e-kETxkD338T6sQRL7MOEI6Tp7ipYfrd8cpHCQfFxN6h0NBmIjwkq6Kih2CU2RHbrFQOZF5Ocs1YuqCZ_Rpgx3M1ZiTg_yYT35ShNf0F9YpXRG9pZ5VKpN3RyOusJuNmq_45odaL7iaj5fraTFZHLGbi_51b-DV1AueCUVQeGDDjo5tHOnMgNYBKOM73BllHRGZJDZ-5HQihfKlVsKKMLHGKcosg9WthDB8y5r5MnfHjCeKeM2Eb2MlQILRAJkOQyGNzMBErsXkdrJTU-clJ3qMebp1QJulO3JKSU5pJacWE7-brqrkHP_S6NNWoumzlZaiEfl785P_a_6O7dEdnQ4H_ilrFutv7gxhTaHPy3V7zl50L4eDEZXDr7fDRxgu_24
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6Kgo-D-MS3K3iNTTabdANepFTqqxdb6C3sK31Q01Kjogf_i__UmSbVCoKCp4TsbrLsbGa-WWbmI-TEViLDtTAOMrs43PO0I_G0SXKwlpxL60WY73zbCOstftUO2iVSnebCYFhloftznT7R1sWTcrGa5VGvV74DcIAGGEwYwF6BZNbzPGAV9MBO377iPACxs7zgHjKseGKBHH8FeYHPqZB-GtAh-IoMNYgIsf7IT0ZqxvBcrJKVAjHS83xSa6Rk03WyPFNHcIO81-BHzXMQ6TChgOkohopPQlyfLMV8kLSTdbENpgI4EfAl3mU5PQTF1I7UwEWmyOZlDVUAqjOa4Kc1vGAgOxQj5Du0-4IpXr1X6DOJRXSGqp_rTHreaFAJr3mQgxF9eJbjeyoHneG4l3XvN0nrotas1p2Ce8HRPvMyhxu_okITBirRXCmPS-1acI2SCgt0FGo3sCoSTLpCSWaYHxltJZaWge5GcN_fInPpMLXbhEYSic2Ya0LJuOBacZ4o32dCi4TrwO4QMV3sWBeFyZEfYxBPI9D68YycYpRTnMtph7DPoaO8OsdfBp1NJRp_22oxWJHfh-_-b_gRWaw3b2_im8vG9R5ZwhY8KvbcfTKXjR_tAWCcTB1O9vAH87r_YA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+the+compressive+strength+of+concretes+containing+ground+granulated+blast+furnace+slag+using+hybridized+multi-objective+ANN+and+salp+swarm+algorithm&rft.jtitle=Construction+%26+building+materials&rft.au=Kandiri%2C+Amirreza&rft.au=Mohammadi+Golafshani%2C+Emadaldin&rft.au=Behnood%2C+Ali&rft.date=2020-07-10&rft.pub=Elsevier+Ltd&rft.issn=0950-0618&rft.eissn=1879-0526&rft.volume=248&rft_id=info:doi/10.1016%2Fj.conbuildmat.2020.118676&rft.externalDocID=S0950061820306814
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon