The Lindstedt-Poincaré Technique as an Algorithm for Computing Periodic Orbits
The Lindstedt-Poincaré technique in perturbation theory is used to calculate periodic orbits of perturbed differential equations. It uses a nearby periodic orbit of the unperturbed differential equation as the first approximation. We derive a numerical algorithm based upon this technique for computi...
Saved in:
Published in | SIAM review Vol. 43; no. 3; pp. 478 - 495 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.09.2001
|
Subjects | |
Online Access | Get full text |
ISSN | 0036-1445 1095-7200 |
DOI | 10.1137/S0036144500375292 |
Cover
Abstract | The Lindstedt-Poincaré technique in perturbation theory is used to calculate periodic orbits of perturbed differential equations. It uses a nearby periodic orbit of the unperturbed differential equation as the first approximation. We derive a numerical algorithm based upon this technique for computing periodic orbits of dynamical systems. The algorithm, unlike the Lindstedt-Poincaré technique, does not require the dynamical system to be a small perturbation of a solvable differential equation. This makes it more broadly applicable. The algorithm is quadratically convergent. It works with equal facility, as examples show, irrespective of whether the periodic orbit is attracting, or repelling, or a saddle. One of the examples presents what is possibly the most accurate computation of Hill's orbit of lunation since its justly celebrated discovery in 1878. |
---|---|
AbstractList | The Lindstedt-Poincare technique in perturbation theory is used to calculate periodic orbits of perturbed differential equations. It uses a nearby periodic orbit of the unperturbed differential equation as the first approximation. The Lindstedt-Poincaré technique in perturbation theory is used to calculate periodic orbits of perturbed differential equations. It uses a nearby periodic orbit of the unperturbed differential equation as the first approximation. We derive a numerical algorithm based upon this technique for computing periodic orbits of dynamical systems. The algorithm, unlike the Lindstedt-Poincaré technique, does not require the dynamical system to be a small perturbation of a solvable differential equation. This makes it more broadly applicable. The algorithm is quadratically convergent. It works with equal facility, as examples show, irrespective of whether the periodic orbit is attracting, or repelling, or a saddle. One of the examples presents what is possibly the most accurate computation of Hill's orbit of lunation since its justly celebrated discovery in 1878. |
Author | Viswanath, Divakar |
Author_xml | – sequence: 1 givenname: Divakar surname: Viswanath fullname: Viswanath, Divakar |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14086094$$DView record in Pascal Francis |
BookMark | eNp9kM1KAzEUhYNUsK0-gOAiCC5Hk0wymSxL8Q8KLVjXQyaTtCltUpN04SP5HL6YKS0KCq4Ol_udew53AHrOOw3AJUa3GJf87gWhssKUsqycEUFOQB8jwQpOEOqB_n5d7PdnYBDjCuW5LkUfTOdLDSfWdTHpLhUzb52S4fMDzrVaOvu201BGKB0crRc-2LTcQOMDHPvNdpesW8CZDtZ3VsFpaG2K5-DUyHXUF0cdgteH-_n4qZhMH5_Ho0mhSoJTQbE0Leu0llxTQgTnJeKt6LSoGOamNlQawxBhqKtUp1pMeFsjUVXKMEWNLIfg-nB3G3wuGVOz8rvgcmSDBSUI1xXJ0M0RklHJtQnSKRubbbAbGd4bTFFdIUEzhw-cCj7GoM0Pgpr9e5s_780e_sujbJLJepeCtOt_nVcH5yomH76jyooKnst8AePviRc |
CODEN | SIREAD |
CitedBy_id | crossref_primary_10_1007_s10827_013_0453_9 crossref_primary_10_1016_j_jcp_2019_04_021 crossref_primary_10_1155_2012_716024 crossref_primary_10_1063_1_1613551 crossref_primary_10_1103_PhysRevE_84_016701 crossref_primary_10_1016_j_ymssp_2022_109261 crossref_primary_10_1142_S0218127404009703 crossref_primary_10_2514_1_51101 crossref_primary_10_3934_mbe_2021391 crossref_primary_10_1016_j_physd_2003_10_006 crossref_primary_10_1016_j_chaos_2008_02_032 crossref_primary_10_1016_j_physd_2017_07_007 crossref_primary_10_1137_19M1267647 crossref_primary_10_1137_S0036142903434175 crossref_primary_10_1007_s10509_012_1039_0 crossref_primary_10_1016_j_amc_2012_03_087 crossref_primary_10_1016_j_cnsns_2013_12_025 crossref_primary_10_3390_photonics11060551 crossref_primary_10_1142_S0218127403007291 crossref_primary_10_1016_j_cnsns_2009_04_022 crossref_primary_10_1016_j_ymssp_2022_109712 crossref_primary_10_1016_j_physd_2017_10_001 crossref_primary_10_1007_s10665_014_9762_x crossref_primary_10_1137_17M114354X crossref_primary_10_1007_s10569_007_9078_5 crossref_primary_10_1103_PhysRevE_102_052220 crossref_primary_10_1137_17M1113254 crossref_primary_10_1016_S0167_739X_02_00160_7 crossref_primary_10_3390_math3020337 crossref_primary_10_1088_0951_7715_16_3_314 crossref_primary_10_1016_j_ijnonlinmec_2023_104388 crossref_primary_10_1016_j_chaos_2007_06_086 crossref_primary_10_1007_s11071_020_05856_4 crossref_primary_10_1002_mma_4522 crossref_primary_10_1016_j_chinastron_2022_11_010 crossref_primary_10_3390_sym14071313 crossref_primary_10_1137_140960207 crossref_primary_10_1016_S1474_6670_17_36428_5 crossref_primary_10_1016_j_ifacol_2020_12_1245 crossref_primary_10_1063_1_2904823 crossref_primary_10_1007_s10910_012_9978_9 crossref_primary_10_1016_j_ifacol_2021_11_121 crossref_primary_10_46481_jnsps_2020_44 |
Cites_doi | 10.1145/229473.229474 10.1093/imanum/21.1.387 10.1016/S0016-0032(97)00027-6 10.1137/1.9780898719598 10.1007/978-3-662-03319-7 10.1007/s003329900038 10.1016/0020-7462(87)90012-6 10.1016/S0045-7825(98)00201-1 10.1137/S1064827599359278 10.1115/1.3162626 10.1137/1.9781611971200 10.1007/978-1-4612-3968-0 10.1007/BF00280410 10.2307/2369304 |
ContentType | Journal Article |
Copyright | Copyright 2001 Society for Industrial and Applied Mathematics 2002 INIST-CNRS Copyright Society for Industrial and Applied Mathematics Sep 2001 |
Copyright_xml | – notice: Copyright 2001 Society for Industrial and Applied Mathematics – notice: 2002 INIST-CNRS – notice: Copyright Society for Industrial and Applied Mathematics Sep 2001 |
DBID | AAYXX CITATION IQODW JQ2 U9A |
DOI | 10.1137/S0036144500375292 |
DatabaseName | CrossRef Pascal-Francis ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection Career and Technical Education (Alumni Edition) |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1095-7200 |
EndPage | 495 |
ExternalDocumentID | 81911479 14086094 10_1137_S0036144500375292 3649794 |
Genre | Feature |
GroupedDBID | -DZ -~X .4S .DC 123 2AX 3R3 4.4 7WY 85S 8CJ 8FG 8FL 8G5 8V8 AALVN AAWIL ABAWQ ABBHK ABDBF ABFAN ABJCF ABKAD ABMZU ABPFR ABPPZ ABPQH ABXSQ ABYWD ACBEA ACGFO ACGOD ACHJO ACIWK ACMTB ACNCT ACPRK ACTMH ACUBG ACUHS ACUWV ADODI ADULT AEMOZ AENEX AEUPB AFRAH AFVYC AFXHP AGLNM AHQJS AIHAF AKVCP ALMA_UNASSIGNED_HOLDINGS ALRMG ANXRF ARAPS ARCSS ATCPS BBNVY BENPR BEZIV BHPHI BPHCQ CS3 D0L D1J DQ2 DQDLB DSRWC DU5 EAP EAS EBE EBR EBS EBU ECEWR ECS EDO EJD EMK EST ESX FEDTE FVMVE GUQSH H13 HGD HQ6 HVGLF I-F IPSME JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K1G K60 K6~ K7- M0C M0K M1Q M2O M2P M7P MVM NHB P1Q P2P RJG RNS RSI RXW SA0 TAE TH9 TN5 TUS U5U VOH WH7 XSW YNT YR2 ZCA ZCG 41~ 7RQ 7X2 7XC 88I 8FE 8FH AASXH AAYXX ABUWG ADBBV AETEA AFKRA AZQEC BGLVJ CCPQU CITATION CZ9 D1I D1K DWQXO FRNLG GNUQQ HCIFZ H~9 K6- K6V KB. KC. L6V LK5 LK8 M7R M7S P62 PATMY PDBOC PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY WHG YXE YYP IQODW PQGLB JQ2 U9A |
ID | FETCH-LOGICAL-c321t-41afb5deea7e422977307b9de96517f8f4aff50250d6cdcb127b80966cf5c4fa3 |
ISSN | 0036-1445 |
IngestDate | Sat Aug 23 13:32:13 EDT 2025 Mon Jul 21 09:15:45 EDT 2025 Tue Jul 01 04:15:07 EDT 2025 Thu Apr 24 23:07:11 EDT 2025 Thu May 29 08:39:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Perturbation theory Differential equation Josephson junction Periodic orbit Perturbation Dynamical system Computing Algorithm Equation system Kepler motion Hill problem Linear system Linstedt Poincaré technique Perturbation techniques Orbit determination Facility Periodic system |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c321t-41afb5deea7e422977307b9de96517f8f4aff50250d6cdcb127b80966cf5c4fa3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 194201862 |
PQPubID | 30748 |
PageCount | 18 |
ParticipantIDs | proquest_journals_194201862 pascalfrancis_primary_14086094 crossref_primary_10_1137_S0036144500375292 crossref_citationtrail_10_1137_S0036144500375292 jstor_primary_3649794 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-09-01 |
PublicationDateYYYYMMDD | 2001-09-01 |
PublicationDate_xml | – month: 09 year: 2001 text: 2001-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: Philadelphia |
PublicationTitle | SIAM review |
PublicationYear | 2001 |
Publisher | Society for Industrial and Applied Mathematics |
Publisher_xml | – name: Society for Industrial and Applied Mathematics |
References | R2 R3 R4 Pérez Chavela Ernesto (R19) 1999 R7 R9 R20 R12 R23 R22 R14 R25 R13 R15 R17 Hairer E. (R10) 1993 R1 |
References_xml | – ident: R7 doi: 10.1145/229473.229474 – ident: R23 doi: 10.1093/imanum/21.1.387 – ident: R4 doi: 10.1016/S0016-0032(97)00027-6 – ident: R22 doi: 10.1137/1.9780898719598 – ident: R20 doi: 10.1007/978-3-662-03319-7 – ident: R25 doi: 10.1007/s003329900038 – ident: R15 doi: 10.1016/0020-7462(87)90012-6 – ident: R1 doi: 10.1016/S0045-7825(98)00201-1 – volume-title: Solving ordinary differential equations. I year: 1993 ident: R10 – ident: R9 doi: 10.1137/S1064827599359278 – ident: R14 doi: 10.1115/1.3162626 – ident: R3 doi: 10.1137/1.9781611971200 – ident: R13 doi: 10.1007/978-1-4612-3968-0 – ident: R2 doi: 10.1007/BF00280410 – ident: R12 doi: 10.2307/2369304 – start-page: 5 year: 1999 ident: R19 publication-title: Miscelánea Mat. – ident: R17 |
SSID | ssj0003839 |
Score | 1.8510401 |
Snippet | The Lindstedt-Poincaré technique in perturbation theory is used to calculate periodic orbits of perturbed differential equations. It uses a nearby periodic... The Lindstedt-Poincare technique in perturbation theory is used to calculate periodic orbits of perturbed differential equations. It uses a nearby periodic... |
SourceID | proquest pascalfrancis crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 478 |
SubjectTerms | Algorithms Approximation Eigenvalues Exact sciences and technology Fourier series General topology Limit cycles Lunar orbits Mathematics Numerical analysis Numerical analysis. Scientific computation Orbits Ordinary differential equations Periodic orbits Problems and Techniques Sciences and techniques of general use Theory Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds Trajectories Vector fields |
Title | The Lindstedt-Poincaré Technique as an Algorithm for Computing Periodic Orbits |
URI | https://www.jstor.org/stable/3649794 https://www.proquest.com/docview/194201862 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVge4ED4qOIpVD5wIkqECdOHB-rqlUF7VKJ3Wpvke3YEFEStBtA4tcztpNsoqAKuESrxBtHfmN7ZjzzBqFXSkodkzQMeCajgBZZGvCYJEFhsoywNNHMpYtdLtLzFX23Tta7qqguu6SRb9SvP-aV_A-qcA9wtVmy_4Bs_1K4Ab8BX7gCwnD9a4ytUW1dlk1wVZeVC-Ta8bIKy8B8JG4-1Zuy-fzVxRQqV8fBJaHDN9ZFqY7qjSw9o1Onp34EC79Na-kguS63P4V1tbtlqvwhvojNyGdA-qCo1mc4CAgdVAixnvpO973sSWOHPkPLXgwWmD-G1n7FBB0tYJ5utF9SPfNSKzrxYH2kvl7PdN2O25Pj2BqoiavMG_kieWOO7MWH_Gx1cZEvT9fL8VO3J1vzk1DG76K9iIEyNUN7x--vT676zRkMct7xMNue2oNu6P_tpPeRquKjVW3orNjC7DG-7MlkB3dqyfIhetDaE_jYC8cjdEdXj9H9wbg-QQsQEzwVE9yLCRZbLCrciwkGxHAvJrgTE-zFZB-tzk6XJ-dBW0YjUHFEmoASYWRSaC2YplEECj-s65IXmqcJYSYzVBiTWF24SFWhJImYzMCyTZVJFDUifopmVV3pZwhzbZRQxlBOQ0q5kSrRScY0MWEa6pTNUdiNWK5ajnlb6uQmd7ZmzPLJIM_R6_4v3zzBym2N9x0Mfcs4pRx2lDk6HMGyexMFkz20DQ46nPJ2Am9zwimov2DSP7_16QG6t5tDL9Cs2XzXL0ETbeRhK12_ATKZh7M |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Lindstedt-Poincare+technique+as+an+algorithm+for+computing+periodic+orbits&rft.jtitle=SIAM+review&rft.au=Viswanath%2C+Divakar&rft.date=2001-09-01&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0036-1445&rft.eissn=1095-7200&rft.volume=43&rft.issue=3&rft.spage=478&rft_id=info:doi/10.1137%2FS0036144500375292&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=81911479 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-1445&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-1445&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-1445&client=summon |