The Lindstedt-Poincaré Technique as an Algorithm for Computing Periodic Orbits

The Lindstedt-Poincaré technique in perturbation theory is used to calculate periodic orbits of perturbed differential equations. It uses a nearby periodic orbit of the unperturbed differential equation as the first approximation. We derive a numerical algorithm based upon this technique for computi...

Full description

Saved in:
Bibliographic Details
Published inSIAM review Vol. 43; no. 3; pp. 478 - 495
Main Author Viswanath, Divakar
Format Journal Article
LanguageEnglish
Published Philadelphia, PA Society for Industrial and Applied Mathematics 01.09.2001
Subjects
Online AccessGet full text
ISSN0036-1445
1095-7200
DOI10.1137/S0036144500375292

Cover

Abstract The Lindstedt-Poincaré technique in perturbation theory is used to calculate periodic orbits of perturbed differential equations. It uses a nearby periodic orbit of the unperturbed differential equation as the first approximation. We derive a numerical algorithm based upon this technique for computing periodic orbits of dynamical systems. The algorithm, unlike the Lindstedt-Poincaré technique, does not require the dynamical system to be a small perturbation of a solvable differential equation. This makes it more broadly applicable. The algorithm is quadratically convergent. It works with equal facility, as examples show, irrespective of whether the periodic orbit is attracting, or repelling, or a saddle. One of the examples presents what is possibly the most accurate computation of Hill's orbit of lunation since its justly celebrated discovery in 1878.
AbstractList The Lindstedt-Poincare technique in perturbation theory is used to calculate periodic orbits of perturbed differential equations. It uses a nearby periodic orbit of the unperturbed differential equation as the first approximation.
The Lindstedt-Poincaré technique in perturbation theory is used to calculate periodic orbits of perturbed differential equations. It uses a nearby periodic orbit of the unperturbed differential equation as the first approximation. We derive a numerical algorithm based upon this technique for computing periodic orbits of dynamical systems. The algorithm, unlike the Lindstedt-Poincaré technique, does not require the dynamical system to be a small perturbation of a solvable differential equation. This makes it more broadly applicable. The algorithm is quadratically convergent. It works with equal facility, as examples show, irrespective of whether the periodic orbit is attracting, or repelling, or a saddle. One of the examples presents what is possibly the most accurate computation of Hill's orbit of lunation since its justly celebrated discovery in 1878.
Author Viswanath, Divakar
Author_xml – sequence: 1
  givenname: Divakar
  surname: Viswanath
  fullname: Viswanath, Divakar
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14086094$$DView record in Pascal Francis
BookMark eNp9kM1KAzEUhYNUsK0-gOAiCC5Hk0wymSxL8Q8KLVjXQyaTtCltUpN04SP5HL6YKS0KCq4Ol_udew53AHrOOw3AJUa3GJf87gWhssKUsqycEUFOQB8jwQpOEOqB_n5d7PdnYBDjCuW5LkUfTOdLDSfWdTHpLhUzb52S4fMDzrVaOvu201BGKB0crRc-2LTcQOMDHPvNdpesW8CZDtZ3VsFpaG2K5-DUyHXUF0cdgteH-_n4qZhMH5_Ho0mhSoJTQbE0Leu0llxTQgTnJeKt6LSoGOamNlQawxBhqKtUp1pMeFsjUVXKMEWNLIfg-nB3G3wuGVOz8rvgcmSDBSUI1xXJ0M0RklHJtQnSKRubbbAbGd4bTFFdIUEzhw-cCj7GoM0Pgpr9e5s_780e_sujbJLJepeCtOt_nVcH5yomH76jyooKnst8AePviRc
CODEN SIREAD
CitedBy_id crossref_primary_10_1007_s10827_013_0453_9
crossref_primary_10_1016_j_jcp_2019_04_021
crossref_primary_10_1155_2012_716024
crossref_primary_10_1063_1_1613551
crossref_primary_10_1103_PhysRevE_84_016701
crossref_primary_10_1016_j_ymssp_2022_109261
crossref_primary_10_1142_S0218127404009703
crossref_primary_10_2514_1_51101
crossref_primary_10_3934_mbe_2021391
crossref_primary_10_1016_j_physd_2003_10_006
crossref_primary_10_1016_j_chaos_2008_02_032
crossref_primary_10_1016_j_physd_2017_07_007
crossref_primary_10_1137_19M1267647
crossref_primary_10_1137_S0036142903434175
crossref_primary_10_1007_s10509_012_1039_0
crossref_primary_10_1016_j_amc_2012_03_087
crossref_primary_10_1016_j_cnsns_2013_12_025
crossref_primary_10_3390_photonics11060551
crossref_primary_10_1142_S0218127403007291
crossref_primary_10_1016_j_cnsns_2009_04_022
crossref_primary_10_1016_j_ymssp_2022_109712
crossref_primary_10_1016_j_physd_2017_10_001
crossref_primary_10_1007_s10665_014_9762_x
crossref_primary_10_1137_17M114354X
crossref_primary_10_1007_s10569_007_9078_5
crossref_primary_10_1103_PhysRevE_102_052220
crossref_primary_10_1137_17M1113254
crossref_primary_10_1016_S0167_739X_02_00160_7
crossref_primary_10_3390_math3020337
crossref_primary_10_1088_0951_7715_16_3_314
crossref_primary_10_1016_j_ijnonlinmec_2023_104388
crossref_primary_10_1016_j_chaos_2007_06_086
crossref_primary_10_1007_s11071_020_05856_4
crossref_primary_10_1002_mma_4522
crossref_primary_10_1016_j_chinastron_2022_11_010
crossref_primary_10_3390_sym14071313
crossref_primary_10_1137_140960207
crossref_primary_10_1016_S1474_6670_17_36428_5
crossref_primary_10_1016_j_ifacol_2020_12_1245
crossref_primary_10_1063_1_2904823
crossref_primary_10_1007_s10910_012_9978_9
crossref_primary_10_1016_j_ifacol_2021_11_121
crossref_primary_10_46481_jnsps_2020_44
Cites_doi 10.1145/229473.229474
10.1093/imanum/21.1.387
10.1016/S0016-0032(97)00027-6
10.1137/1.9780898719598
10.1007/978-3-662-03319-7
10.1007/s003329900038
10.1016/0020-7462(87)90012-6
10.1016/S0045-7825(98)00201-1
10.1137/S1064827599359278
10.1115/1.3162626
10.1137/1.9781611971200
10.1007/978-1-4612-3968-0
10.1007/BF00280410
10.2307/2369304
ContentType Journal Article
Copyright Copyright 2001 Society for Industrial and Applied Mathematics
2002 INIST-CNRS
Copyright Society for Industrial and Applied Mathematics Sep 2001
Copyright_xml – notice: Copyright 2001 Society for Industrial and Applied Mathematics
– notice: 2002 INIST-CNRS
– notice: Copyright Society for Industrial and Applied Mathematics Sep 2001
DBID AAYXX
CITATION
IQODW
JQ2
U9A
DOI 10.1137/S0036144500375292
DatabaseName CrossRef
Pascal-Francis
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
Career and Technical Education (Alumni Edition)
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1095-7200
EndPage 495
ExternalDocumentID 81911479
14086094
10_1137_S0036144500375292
3649794
Genre Feature
GroupedDBID -DZ
-~X
.4S
.DC
123
2AX
3R3
4.4
7WY
85S
8CJ
8FG
8FL
8G5
8V8
AALVN
AAWIL
ABAWQ
ABBHK
ABDBF
ABFAN
ABJCF
ABKAD
ABMZU
ABPFR
ABPPZ
ABPQH
ABXSQ
ABYWD
ACBEA
ACGFO
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACPRK
ACTMH
ACUBG
ACUHS
ACUWV
ADODI
ADULT
AEMOZ
AENEX
AEUPB
AFRAH
AFVYC
AFXHP
AGLNM
AHQJS
AIHAF
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ANXRF
ARAPS
ARCSS
ATCPS
BBNVY
BENPR
BEZIV
BHPHI
BPHCQ
CS3
D0L
D1J
DQ2
DQDLB
DSRWC
DU5
EAP
EAS
EBE
EBR
EBS
EBU
ECEWR
ECS
EDO
EJD
EMK
EST
ESX
FEDTE
FVMVE
GUQSH
H13
HGD
HQ6
HVGLF
I-F
IPSME
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K1G
K60
K6~
K7-
M0C
M0K
M1Q
M2O
M2P
M7P
MVM
NHB
P1Q
P2P
RJG
RNS
RSI
RXW
SA0
TAE
TH9
TN5
TUS
U5U
VOH
WH7
XSW
YNT
YR2
ZCA
ZCG
41~
7RQ
7X2
7XC
88I
8FE
8FH
AASXH
AAYXX
ABUWG
ADBBV
AETEA
AFKRA
AZQEC
BGLVJ
CCPQU
CITATION
CZ9
D1I
D1K
DWQXO
FRNLG
GNUQQ
HCIFZ
H~9
K6-
K6V
KB.
KC.
L6V
LK5
LK8
M7R
M7S
P62
PATMY
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
WHG
YXE
YYP
IQODW
PQGLB
JQ2
U9A
ID FETCH-LOGICAL-c321t-41afb5deea7e422977307b9de96517f8f4aff50250d6cdcb127b80966cf5c4fa3
ISSN 0036-1445
IngestDate Sat Aug 23 13:32:13 EDT 2025
Mon Jul 21 09:15:45 EDT 2025
Tue Jul 01 04:15:07 EDT 2025
Thu Apr 24 23:07:11 EDT 2025
Thu May 29 08:39:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Perturbation theory
Differential equation
Josephson junction
Periodic orbit
Perturbation
Dynamical system
Computing
Algorithm
Equation system
Kepler motion
Hill problem
Linear system
Linstedt Poincaré technique
Perturbation techniques
Orbit determination
Facility
Periodic system
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-41afb5deea7e422977307b9de96517f8f4aff50250d6cdcb127b80966cf5c4fa3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 194201862
PQPubID 30748
PageCount 18
ParticipantIDs proquest_journals_194201862
pascalfrancis_primary_14086094
crossref_primary_10_1137_S0036144500375292
crossref_citationtrail_10_1137_S0036144500375292
jstor_primary_3649794
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-09-01
PublicationDateYYYYMMDD 2001-09-01
PublicationDate_xml – month: 09
  year: 2001
  text: 2001-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: Philadelphia
PublicationTitle SIAM review
PublicationYear 2001
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References R2
R3
R4
Pérez Chavela Ernesto (R19) 1999
R7
R9
R20
R12
R23
R22
R14
R25
R13
R15
R17
Hairer E. (R10) 1993
R1
References_xml – ident: R7
  doi: 10.1145/229473.229474
– ident: R23
  doi: 10.1093/imanum/21.1.387
– ident: R4
  doi: 10.1016/S0016-0032(97)00027-6
– ident: R22
  doi: 10.1137/1.9780898719598
– ident: R20
  doi: 10.1007/978-3-662-03319-7
– ident: R25
  doi: 10.1007/s003329900038
– ident: R15
  doi: 10.1016/0020-7462(87)90012-6
– ident: R1
  doi: 10.1016/S0045-7825(98)00201-1
– volume-title: Solving ordinary differential equations. I
  year: 1993
  ident: R10
– ident: R9
  doi: 10.1137/S1064827599359278
– ident: R14
  doi: 10.1115/1.3162626
– ident: R3
  doi: 10.1137/1.9781611971200
– ident: R13
  doi: 10.1007/978-1-4612-3968-0
– ident: R2
  doi: 10.1007/BF00280410
– ident: R12
  doi: 10.2307/2369304
– start-page: 5
  year: 1999
  ident: R19
  publication-title: Miscelánea Mat.
– ident: R17
SSID ssj0003839
Score 1.8510401
Snippet The Lindstedt-Poincaré technique in perturbation theory is used to calculate periodic orbits of perturbed differential equations. It uses a nearby periodic...
The Lindstedt-Poincare technique in perturbation theory is used to calculate periodic orbits of perturbed differential equations. It uses a nearby periodic...
SourceID proquest
pascalfrancis
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 478
SubjectTerms Algorithms
Approximation
Eigenvalues
Exact sciences and technology
Fourier series
General topology
Limit cycles
Lunar orbits
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Orbits
Ordinary differential equations
Periodic orbits
Problems and Techniques
Sciences and techniques of general use
Theory
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Trajectories
Vector fields
Title The Lindstedt-Poincaré Technique as an Algorithm for Computing Periodic Orbits
URI https://www.jstor.org/stable/3649794
https://www.proquest.com/docview/194201862
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVge4ED4qOIpVD5wIkqECdOHB-rqlUF7VKJ3Wpvke3YEFEStBtA4tcztpNsoqAKuESrxBtHfmN7ZjzzBqFXSkodkzQMeCajgBZZGvCYJEFhsoywNNHMpYtdLtLzFX23Tta7qqguu6SRb9SvP-aV_A-qcA9wtVmy_4Bs_1K4Ab8BX7gCwnD9a4ytUW1dlk1wVZeVC-Ta8bIKy8B8JG4-1Zuy-fzVxRQqV8fBJaHDN9ZFqY7qjSw9o1Onp34EC79Na-kguS63P4V1tbtlqvwhvojNyGdA-qCo1mc4CAgdVAixnvpO973sSWOHPkPLXgwWmD-G1n7FBB0tYJ5utF9SPfNSKzrxYH2kvl7PdN2O25Pj2BqoiavMG_kieWOO7MWH_Gx1cZEvT9fL8VO3J1vzk1DG76K9iIEyNUN7x--vT676zRkMct7xMNue2oNu6P_tpPeRquKjVW3orNjC7DG-7MlkB3dqyfIhetDaE_jYC8cjdEdXj9H9wbg-QQsQEzwVE9yLCRZbLCrciwkGxHAvJrgTE-zFZB-tzk6XJ-dBW0YjUHFEmoASYWRSaC2YplEECj-s65IXmqcJYSYzVBiTWF24SFWhJImYzMCyTZVJFDUifopmVV3pZwhzbZRQxlBOQ0q5kSrRScY0MWEa6pTNUdiNWK5ajnlb6uQmd7ZmzPLJIM_R6_4v3zzBym2N9x0Mfcs4pRx2lDk6HMGyexMFkz20DQ46nPJ2Am9zwimov2DSP7_16QG6t5tDL9Cs2XzXL0ETbeRhK12_ATKZh7M
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Lindstedt-Poincare+technique+as+an+algorithm+for+computing+periodic+orbits&rft.jtitle=SIAM+review&rft.au=Viswanath%2C+Divakar&rft.date=2001-09-01&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0036-1445&rft.eissn=1095-7200&rft.volume=43&rft.issue=3&rft.spage=478&rft_id=info:doi/10.1137%2FS0036144500375292&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=81911479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-1445&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-1445&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-1445&client=summon