Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis

•Light GBM and XGBoost prediction models for estimating RCPT of metakaolin-containing concrete.•Accuracy Analysis of the developed models using statistical evaluation.•Optimization of water-binder ratio and percentage of metakaolin using interpretable machine learning SHAP analysis.•Light GBM surpas...

Full description

Saved in:
Bibliographic Details
Published inConstruction & building materials Vol. 345; p. 128296
Main Authors Abdulalim Alabdullah, Anas, Iqbal, Mudassir, Zahid, Muhammad, Khan, Kaffayatullah, Nasir Amin, Muhammad, Jalal, Fazal E.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 22.08.2022
Subjects
Online AccessGet full text
ISSN0950-0618
1879-0526
DOI10.1016/j.conbuildmat.2022.128296

Cover

Abstract •Light GBM and XGBoost prediction models for estimating RCPT of metakaolin-containing concrete.•Accuracy Analysis of the developed models using statistical evaluation.•Optimization of water-binder ratio and percentage of metakaolin using interpretable machine learning SHAP analysis.•Light GBM surpasses in accuracy compared to XGBoost. This study investigates the non-linear capabilities of two machine learning prediction models, namely Light GBM and XGBoost, for predicting the values of Rapid Chloride Penetration Test (RCPT). Chloride penetration is one of the most significant issues affecting reinforced concrete (RC) structures, which necessitate frequent maintenance and repair. The mix design of concrete play a vital role in the formation of pore structure that is relatively more resistant to chloride attacks. For estimating the chloride resistance of concrete, 201 experimental records, incorporating aging of concrete, binder content, water-binder ratio, percentage of metakaolin, and content of fine and coarse aggregates as input variables. The models were trained using grid search optimization for tuning setting parameters to yield the best performance for the models. The performance of the models using statistical indices indicated LightGBM surpasses in prediction accuracy as compared to XGBoost model. The coefficient of determination (R2) values revealed 0.9738 and 0.9379 for LightGBM and XGBoost models, respectively. The minimum value of MAE was recorded for the training data of the LightGBM model equalling 172.7 C. The best fit model, i.e., the LightGBM model, was used for SHAP analysis to see the relative importance of contributing attributes and optimization of input variables. The SHAP analysis revealed fc’, aging, and W/B ratio as most significant in yielding RCPT, whereas individual interpretation of Shapley values showed that W/B ratio of 0.30 – 0.35 and 15% MK replacement highly resisted chloride penetration at higher compressive strength values.
AbstractList •Light GBM and XGBoost prediction models for estimating RCPT of metakaolin-containing concrete.•Accuracy Analysis of the developed models using statistical evaluation.•Optimization of water-binder ratio and percentage of metakaolin using interpretable machine learning SHAP analysis.•Light GBM surpasses in accuracy compared to XGBoost. This study investigates the non-linear capabilities of two machine learning prediction models, namely Light GBM and XGBoost, for predicting the values of Rapid Chloride Penetration Test (RCPT). Chloride penetration is one of the most significant issues affecting reinforced concrete (RC) structures, which necessitate frequent maintenance and repair. The mix design of concrete play a vital role in the formation of pore structure that is relatively more resistant to chloride attacks. For estimating the chloride resistance of concrete, 201 experimental records, incorporating aging of concrete, binder content, water-binder ratio, percentage of metakaolin, and content of fine and coarse aggregates as input variables. The models were trained using grid search optimization for tuning setting parameters to yield the best performance for the models. The performance of the models using statistical indices indicated LightGBM surpasses in prediction accuracy as compared to XGBoost model. The coefficient of determination (R2) values revealed 0.9738 and 0.9379 for LightGBM and XGBoost models, respectively. The minimum value of MAE was recorded for the training data of the LightGBM model equalling 172.7 C. The best fit model, i.e., the LightGBM model, was used for SHAP analysis to see the relative importance of contributing attributes and optimization of input variables. The SHAP analysis revealed fc’, aging, and W/B ratio as most significant in yielding RCPT, whereas individual interpretation of Shapley values showed that W/B ratio of 0.30 – 0.35 and 15% MK replacement highly resisted chloride penetration at higher compressive strength values.
ArticleNumber 128296
Author Abdulalim Alabdullah, Anas
Jalal, Fazal E.
Zahid, Muhammad
Iqbal, Mudassir
Nasir Amin, Muhammad
Khan, Kaffayatullah
Author_xml – sequence: 1
  givenname: Anas
  surname: Abdulalim Alabdullah
  fullname: Abdulalim Alabdullah, Anas
  organization: Department of Civil and Environmental Engineering, College of Engineering, King Faisal University (KFU), Al-Ahsa 31982, Saudi Arabia
– sequence: 2
  givenname: Mudassir
  surname: Iqbal
  fullname: Iqbal, Mudassir
  organization: Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 3
  givenname: Muhammad
  surname: Zahid
  fullname: Zahid, Muhammad
  organization: Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Canada
– sequence: 4
  givenname: Kaffayatullah
  surname: Khan
  fullname: Khan, Kaffayatullah
  email: kkhan@kfu.edu.sa
  organization: Department of Civil and Environmental Engineering, College of Engineering, King Faisal University (KFU), Al-Ahsa 31982, Saudi Arabia
– sequence: 5
  givenname: Muhammad
  surname: Nasir Amin
  fullname: Nasir Amin, Muhammad
  organization: Department of Civil and Environmental Engineering, College of Engineering, King Faisal University (KFU), Al-Ahsa 31982, Saudi Arabia
– sequence: 6
  givenname: Fazal E.
  surname: Jalal
  fullname: Jalal, Fazal E.
  organization: Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
BookMark eNqNkE1OIzEQhS0EEuHnDuYAHWx32ulejSAaAhIIJEBiZ_mnOqlMx45sM1JuM0fFISxGrFiVVPXeq6rvhBz64IGQC87GnHF5uRrb4M07Dm6t81gwIcZctKKTB2TE22lXsUbIQzJiXcMqJnl7TE5SWjHGpJBiRP49RXBoMwZPQ0-j3qCjdjmEiA7oBjzkqD-nERKmrL2FnXANWf_RYUBPjU7g6BIXS5pyBL_IS1qOshEy0PeEfkGHMsx0fv1AtXf0bX4dQsp0HRwMiZotRW9D3ITdpqJ-vr16KkI9bMvGM3LU6yHB-Vc9Ja83v19mt9X94_xudnVf2VrwXIlpX_NJI53u2dQ1TcNbJ3WtrZk4KSeWTWvjRMNNK6DtelPLzkDp9bIG0za2PiW_9rk2hpQi9Mpi_vy8AMBBcaZ2wNVK_Qdc7YCrPfCS0H1L2ERc67j9kXe29xYg8BchqmQRCmuHEWxWLuAPUj4AzMapcQ
CitedBy_id crossref_primary_10_3390_buildings14082455
crossref_primary_10_1016_j_ecolind_2023_111320
crossref_primary_10_3390_polym16182680
crossref_primary_10_1007_s41939_024_00439_x
crossref_primary_10_1016_j_conbuildmat_2023_130339
crossref_primary_10_1680_jadcr_24_00133
crossref_primary_10_1007_s12559_024_10365_2
crossref_primary_10_1016_j_conbuildmat_2024_137370
crossref_primary_10_3390_math11102371
crossref_primary_10_1002_vms3_70149
crossref_primary_10_3390_s24144472
crossref_primary_10_1108_ACMM_01_2024_2950
crossref_primary_10_3390_jmse11051069
crossref_primary_10_3390_su16104215
crossref_primary_10_1038_s41598_024_79502_z
crossref_primary_10_3390_w15101827
crossref_primary_10_1007_s41939_024_00672_4
crossref_primary_10_1016_j_conbuildmat_2023_134092
crossref_primary_10_1166_sam_2022_4341
crossref_primary_10_1016_j_conbuildmat_2022_129209
crossref_primary_10_1061_JSDCCC_SCENG_1496
crossref_primary_10_3390_buildings14061879
crossref_primary_10_1108_ACMM_12_2023_2935
crossref_primary_10_1016_j_cscm_2024_e02991
crossref_primary_10_1016_j_jobe_2024_109002
crossref_primary_10_1016_j_caeai_2023_100166
crossref_primary_10_1016_j_fuel_2024_132958
crossref_primary_10_1080_21650373_2024_2416962
crossref_primary_10_1186_s13065_024_01127_0
crossref_primary_10_1016_j_engappai_2025_110123
crossref_primary_10_1016_j_mtcomm_2023_107428
crossref_primary_10_1038_s41598_024_85079_4
crossref_primary_10_1007_s11837_023_05773_y
crossref_primary_10_1016_j_buildenv_2024_112035
crossref_primary_10_1016_j_jobe_2023_107977
crossref_primary_10_1016_j_cscm_2024_e02901
crossref_primary_10_1016_j_jclepro_2023_138733
crossref_primary_10_1007_s11869_023_01380_7
crossref_primary_10_1109_ACCESS_2023_3265019
crossref_primary_10_1016_j_scitotenv_2024_171931
crossref_primary_10_3390_app132112048
crossref_primary_10_1016_j_rineng_2024_102637
crossref_primary_10_1038_s41598_024_64204_3
crossref_primary_10_34133_remotesensing_0071
crossref_primary_10_1007_s10064_024_03896_3
crossref_primary_10_1016_j_cscm_2024_e03030
crossref_primary_10_1016_j_conbuildmat_2023_133412
crossref_primary_10_1016_j_jwpe_2024_104789
crossref_primary_10_1007_s12205_024_1647_6
crossref_primary_10_3390_su17062516
crossref_primary_10_1016_j_conbuildmat_2024_136711
crossref_primary_10_1007_s41024_024_00445_z
crossref_primary_10_2118_223123_PA
crossref_primary_10_1007_s11053_023_10227_y
crossref_primary_10_3390_polym14214717
crossref_primary_10_3390_polym15193962
crossref_primary_10_1016_j_corsci_2023_111513
crossref_primary_10_1016_j_engappai_2024_109090
crossref_primary_10_3390_buildings13051155
crossref_primary_10_1016_j_cscm_2023_e02173
crossref_primary_10_1007_s10999_023_09695_0
crossref_primary_10_1108_ACMM_04_2024_3007
crossref_primary_10_1016_j_cscm_2023_e02728
crossref_primary_10_1051_matecconf_202440002007
crossref_primary_10_1007_s42107_023_00980_z
crossref_primary_10_1080_21650373_2025_2462183
crossref_primary_10_1016_j_est_2023_106872
crossref_primary_10_3390_ma16031277
crossref_primary_10_1016_j_scitotenv_2023_167386
crossref_primary_10_1016_j_cscm_2023_e02723
crossref_primary_10_1016_j_cscm_2024_e03135
crossref_primary_10_1080_15376494_2023_2224782
crossref_primary_10_1109_TIM_2023_3241060
crossref_primary_10_1016_j_psep_2024_06_028
crossref_primary_10_3390_ma15186477
crossref_primary_10_1016_j_conbuildmat_2023_131973
crossref_primary_10_1016_j_rineng_2023_101625
crossref_primary_10_1038_s41598_023_42270_3
crossref_primary_10_1007_s42107_023_00707_0
crossref_primary_10_1038_s41598_024_52046_y
crossref_primary_10_1080_19648189_2024_2428979
crossref_primary_10_1016_j_compag_2023_108254
crossref_primary_10_1016_j_asoc_2024_111956
crossref_primary_10_1186_s40069_023_00653_w
crossref_primary_10_1007_s11709_024_1124_9
crossref_primary_10_1007_s40996_023_01320_6
crossref_primary_10_1016_j_jmrt_2023_07_041
crossref_primary_10_1016_j_conbuildmat_2025_140722
crossref_primary_10_3390_environments10090157
crossref_primary_10_32604_cmes_2024_054766
crossref_primary_10_1016_j_jobe_2024_109844
crossref_primary_10_1007_s10489_023_05121_2
crossref_primary_10_1016_j_apr_2024_102200
crossref_primary_10_1061_JMCEE7_MTENG_15589
crossref_primary_10_1016_j_mtcomm_2024_108832
crossref_primary_10_1038_s41598_023_47196_4
crossref_primary_10_1016_j_conbuildmat_2025_139897
crossref_primary_10_1016_j_ijimpeng_2025_105276
crossref_primary_10_3390_buildings14113627
crossref_primary_10_1002_suco_202301135
crossref_primary_10_1016_j_jobe_2023_108065
crossref_primary_10_1016_j_cscm_2024_e03990
crossref_primary_10_1007_s44290_025_00204_0
crossref_primary_10_3390_buildings14051223
crossref_primary_10_1108_EC_07_2024_0635
crossref_primary_10_1016_j_asoc_2024_111661
crossref_primary_10_1016_j_conbuildmat_2023_132012
crossref_primary_10_1038_s41598_024_69046_7
crossref_primary_10_1080_10298436_2024_2343087
crossref_primary_10_1007_s11831_023_10043_w
crossref_primary_10_1016_j_cscm_2024_e03868
crossref_primary_10_1016_j_mtcomm_2024_110759
crossref_primary_10_3390_app14083512
Cites_doi 10.1007/s00366-020-01003-0
10.1016/j.cemconres.2021.106449
10.1617/s11527-021-01783-x
10.1016/j.conbuildmat.2012.02.038
10.1016/j.geotexmem.2021.04.007
10.1016/j.conbuildmat.2016.03.187
10.1016/j.conbuildmat.2010.11.069
10.1016/j.conbuildmat.2021.126188
10.1016/j.jobe.2022.104086
10.1016/j.conbuildmat.2022.126872
10.3390/math8050765
10.1155/2020/1510969
10.1016/j.eswa.2022.116624
10.3847/1538-3881/ac4d97
10.3390/polym14102016
10.1016/j.eswa.2008.01.026
10.1016/j.jobe.2022.104302
10.1061/(ASCE)ST.1943-541X.0003115
10.1016/j.trgeo.2021.100608
10.1155/2019/3761203
10.1155/2021/9918757
10.1016/j.conbuildmat.2011.12.050
10.1016/j.oceaneng.2021.109134
10.1016/j.enconman.2018.02.087
10.1016/j.jenvman.2021.112420
10.3390/polym14071303
10.1016/j.ijthermalsci.2021.107427
10.3390/su14052768
10.1016/j.chemolab.2021.104461
10.1177/0958305X211044998
10.1016/j.conbuildmat.2021.126081
10.1016/j.conbuildmat.2022.126525
10.1111/mice.12564
10.1016/j.enggeo.2021.106239
10.1016/j.asoc.2021.107595
10.1007/s11600-019-00268-4
10.1016/j.jclepro.2019.02.010
10.1680/jgein.20.00049
10.1016/j.cemconcomp.2015.09.004
10.1016/j.rser.2021.111315
10.1007/s40999-019-00432-3
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conbuildmat.2022.128296
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0526
ExternalDocumentID 10_1016_j_conbuildmat_2022_128296
S0950061822019560
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAAKF
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IAO
IEA
IGG
IHE
IHM
IOF
ISM
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N95
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PV9
Q38
ROL
RPZ
RZL
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
UNMZH
XI7
~G-
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHDLI
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
ITC
R2-
RIG
RNS
SET
SEW
SMS
SSH
VH1
WUQ
ZMT
ID FETCH-LOGICAL-c321t-27f31456daf07d55518d6a3acb4d664c073bd251b82e89fb369be73bf63eb85c3
IEDL.DBID AIKHN
ISSN 0950-0618
IngestDate Thu Apr 24 23:09:06 EDT 2025
Tue Jul 01 04:33:38 EDT 2025
Fri Feb 23 02:37:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Water-binder ratio
Rapid Chloride Penetration test
SHAP Analysis
LightGBM
XGBoost
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-27f31456daf07d55518d6a3acb4d664c073bd251b82e89fb369be73bf63eb85c3
ParticipantIDs crossref_citationtrail_10_1016_j_conbuildmat_2022_128296
crossref_primary_10_1016_j_conbuildmat_2022_128296
elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2022_128296
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-22
PublicationDateYYYYMMDD 2022-08-22
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-22
  day: 22
PublicationDecade 2020
PublicationTitle Construction & building materials
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kaloop, Bardhan, Kardani, Samui, Hu, Ramzy (b0150) 2021; 148
Park, Chun, Han (b0185) 2019; 17
Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (b0220) 2017; 30
Liu, Zhang, Fan (b0245) 2022; 195
Kardani, Bardhan, Kim, Samui, Zhou (b0145) 2021; 35
Kijjanon, Sumranwanich (b0090) 2022; 32
Tran (b0205) 2022; 328
de Brito, Agrela (b0020) 2018
Rossi, Roy, Copuroglu, Jonkers (b0085) 2022; 319
Bardhan, Samui, Ghosh, Gandomi, Bhattacharyya (b0335) 2021; 110
Chen, He, Benesty, Khotilovich, Tang, Cho (b0240) 2015; 1
Safarzadegan Gilan, Bahrami Jovein, Ramezanianpour (b0275) 2012; 34
A. (b0055) 1990
Ramezanianpour, Pilvar, Mahdikhani, Moodi (b0035) 2011; 25
Zhang, Lei, Liu (b0225) 2021; 12
Li, Easterbrook, Xia, Jin (b0040) 2015; 63
Duan, Asteris, Nguyen, Bui, Moayedi (b0260) 2021; 37
Nguyen, Abellán-García, Lee, Garcia-Castano, Vo (b0270) 2022
P.j. Chun, S. Izumi, T. Yamane, Automatic detection method of cracks from concrete surface imagery using two‐step light gradient boosting machine, Computer‐Aided Civil and Infrastructure Engineering 36(1) (2021) 61-72.
Ramezanianpour, Jovein (b0290) 2012; 30
Kardani, Bardhan, Samui, Nazem, Zhou, Armaghani (b0155) 2021
Zeng, Yang, Zhang, Wu, Zhang, Dai, Babiloni, Kong (b0305) 2019; 2019
Gilan, Jovein, Ramezanianpour (b0285) 2012; 34
Jeong, Yang, Kim, Lee (b0095) 2022; 22
Carmichael, Arulraj (b0030) 2019; 8
Fan, Wang, Wu, Zhou, Zhang, Yu, Lu, Xiang (b0320) 2018; 164
Liang, Luo, Zhao, Wu (b0300) 2020; 8
Hilloulin, Tran (b0005) 2022
Al-alaily, Hassan (b0280) 2016; 114
Iqbal, Zhang, Jalal, Javed (b0180) 2021; 232
Pacheco-Torgal, Labrincha, Leonelli, Palomo, Chindaprasit (b0010) 2014
Adel, Ghazaan, Korayem (b0015) 2022
Nilsson, Ngo, Gjørv (b0105) 1998
Rahla, Mateus, Bragança (b0125) 2019; 220
Hao, Zhang, Xu, Huang, Wang (b0215) 2022; 220
Jalal, Xu, Iqbal, Javed, Jamhiri (b0195) 2021; 289
Nguyen, Bui, Bui, Cuong (b0250) 2019; 67
Iqbal, Zhang, Jalal, M. (b0345) 2021; 232
Yuhan, Cuiwen (b0235) 2020; 36
Sun, Koopialipoor, Armaghani, Tarinejad, Tahir (b0295) 2019
Jalal, Xu, Jamhiri, Memon (b0115) 2020; 2020
Feng, Wang, Mangalathu, Taciroglu (b0360) 2021; 147
Iqbal, Zhao, Zhang, Jalal, Jamal (b0355) 2021; 54
Chen, Liu, Mu (b0050) 2022; 321
Raja, Shukla (b0175) 2021; 49
Imran, Ibrahim, Al-Shoukry, Rustam, Ashraf (b0265) 2022; 325
Asteris, Skentou, Bardhan, Samui, Pilakoutas (b0160) 2021; 145
Ji, Yu (b0065) 2018
de Brito, Thomas, Medina, Agrela (b0120) 2021
Amin, Iqbal, Jamal, Ullah, Khan, Abu-Arab, Al-Ahmad, Khan (b0365) 2022; 14
Hua, Hu, Tang, Wang, Li, Liu (b0080) 2022; 326
Ekanayake, Meddage, Rathnayake (b0140) 2022
Mousavinejad, Sammak (b0045) 2021
A.S.f. Testing, M.C.C.-o. Concrete, C. Aggregates, Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, ASTM International2012.
Poursaee (b0135) 2016
M. shangchen (b0230) 2020
Obla, Lobo, Hong, Berke (b0025) 2017
Kodaz, Özşen, Arslan, Güneş (b0310) 2009; 36
Chen, Guestrin (b0315) 2016
Pacheco-Torgal, Cabeza, Labrincha, De Magalhaes (b0130) 2014
I. Ullah K. Liu T. Yamamoto R.E. Al Mamlook A. Jamal A comparative performance of machine learning algorithm to predict electric vehicles energy consumption: A path towards sustainability Energy & Environment 2021 0958305X211044998.
Liang, Bu, Tan, Pan, Yi, Kong, Fan (b0210) 2022; 163
Jalal, Xu, Iqbal, Jamhiri, Javed (b0190) 2021; 30
T.S. Abdennaji, N.B. Jamaa, I.K. Kammoun, M.M. Ismail, New Formulation Method for Concrete Sand made with Dune Sand and Fillers from Limestone and Marble Industry by Product in Northern Borders Region of Saudi Arabia.
Khan, Sutanto, Khan, Iqbal, Napiah, Zoorob, Klemeš, Bokhari, Rafiq (b0350) 2022; 130840
Al Daoud (b0255) 2019; 13
Jalal, Mulk, Memon, Jamhiri, Naseem (b0110) 2021; 2021
Kardani, Bardhan, Samui, Nazem, Asteris, Zhou (b0165) 2022; 173
Yodsudjai, Nitichote (b0100) 2022; 14
Bardhan, Gokceoglu, Burman, Samui, Asteris (b0330) 2021; 291
Raja, Shukla (b0170) 2021; 28
Amin, Iqbal, Khan, Qadir, Shalabi, Jamal (b0340) 2022; 14
Newman, Choo (b0075) 2003
Lundberg, Lee (b0370) 2017; 30
de Brito (10.1016/j.conbuildmat.2022.128296_b0120) 2021
Kijjanon (10.1016/j.conbuildmat.2022.128296_b0090) 2022; 32
Kardani (10.1016/j.conbuildmat.2022.128296_b0145) 2021; 35
Imran (10.1016/j.conbuildmat.2022.128296_b0265) 2022; 325
Jeong (10.1016/j.conbuildmat.2022.128296_b0095) 2022; 22
Tran (10.1016/j.conbuildmat.2022.128296_b0205) 2022; 328
Hilloulin (10.1016/j.conbuildmat.2022.128296_b0005) 2022
Lundberg (10.1016/j.conbuildmat.2022.128296_b0370) 2017; 30
Ji (10.1016/j.conbuildmat.2022.128296_b0065) 2018
Iqbal (10.1016/j.conbuildmat.2022.128296_b0180) 2021; 232
Iqbal (10.1016/j.conbuildmat.2022.128296_b0345) 2021; 232
Asteris (10.1016/j.conbuildmat.2022.128296_b0160) 2021; 145
Poursaee (10.1016/j.conbuildmat.2022.128296_b0135) 2016
Amin (10.1016/j.conbuildmat.2022.128296_b0365) 2022; 14
Ekanayake (10.1016/j.conbuildmat.2022.128296_b0140) 2022
Newman (10.1016/j.conbuildmat.2022.128296_b0075) 2003
Nguyen (10.1016/j.conbuildmat.2022.128296_b0250) 2019; 67
Jalal (10.1016/j.conbuildmat.2022.128296_b0110) 2021; 2021
Kodaz (10.1016/j.conbuildmat.2022.128296_b0310) 2009; 36
Hua (10.1016/j.conbuildmat.2022.128296_b0080) 2022; 326
Pacheco-Torgal (10.1016/j.conbuildmat.2022.128296_b0130) 2014
Al-alaily (10.1016/j.conbuildmat.2022.128296_b0280) 2016; 114
Ramezanianpour (10.1016/j.conbuildmat.2022.128296_b0290) 2012; 30
Sun (10.1016/j.conbuildmat.2022.128296_b0295) 2019
de Brito (10.1016/j.conbuildmat.2022.128296_b0020) 2018
Ramezanianpour (10.1016/j.conbuildmat.2022.128296_b0035) 2011; 25
10.1016/j.conbuildmat.2022.128296_b0060
Rahla (10.1016/j.conbuildmat.2022.128296_b0125) 2019; 220
Fan (10.1016/j.conbuildmat.2022.128296_b0320) 2018; 164
Yuhan (10.1016/j.conbuildmat.2022.128296_b0235) 2020; 36
Chen (10.1016/j.conbuildmat.2022.128296_b0240) 2015; 1
Mousavinejad (10.1016/j.conbuildmat.2022.128296_b0045) 2021
Liang (10.1016/j.conbuildmat.2022.128296_b0300) 2020; 8
Amin (10.1016/j.conbuildmat.2022.128296_b0340) 2022; 14
Kardani (10.1016/j.conbuildmat.2022.128296_b0155) 2021
Chen (10.1016/j.conbuildmat.2022.128296_b0315) 2016
Iqbal (10.1016/j.conbuildmat.2022.128296_b0355) 2021; 54
Obla (10.1016/j.conbuildmat.2022.128296_b0025) 2017
M. shangchen (10.1016/j.conbuildmat.2022.128296_b0230) 2020
Jalal (10.1016/j.conbuildmat.2022.128296_b0195) 2021; 289
Park (10.1016/j.conbuildmat.2022.128296_b0185) 2019; 17
Jalal (10.1016/j.conbuildmat.2022.128296_b0115) 2020; 2020
Duan (10.1016/j.conbuildmat.2022.128296_b0260) 2021; 37
Nilsson (10.1016/j.conbuildmat.2022.128296_b0105) 1998
Gilan (10.1016/j.conbuildmat.2022.128296_b0285) 2012; 34
Zhang (10.1016/j.conbuildmat.2022.128296_b0225) 2021; 12
Raja (10.1016/j.conbuildmat.2022.128296_b0175) 2021; 49
Nguyen (10.1016/j.conbuildmat.2022.128296_b0270) 2022
Chen (10.1016/j.conbuildmat.2022.128296_b0050) 2022; 321
Feng (10.1016/j.conbuildmat.2022.128296_b0360) 2021; 147
10.1016/j.conbuildmat.2022.128296_b0070
Zeng (10.1016/j.conbuildmat.2022.128296_b0305) 2019; 2019
Hao (10.1016/j.conbuildmat.2022.128296_b0215) 2022; 220
Liu (10.1016/j.conbuildmat.2022.128296_b0245) 2022; 195
Kaloop (10.1016/j.conbuildmat.2022.128296_b0150) 2021; 148
Raja (10.1016/j.conbuildmat.2022.128296_b0170) 2021; 28
Kardani (10.1016/j.conbuildmat.2022.128296_b0165) 2022; 173
Al Daoud (10.1016/j.conbuildmat.2022.128296_b0255) 2019; 13
10.1016/j.conbuildmat.2022.128296_b0325
Bardhan (10.1016/j.conbuildmat.2022.128296_b0330) 2021; 291
Carmichael (10.1016/j.conbuildmat.2022.128296_b0030) 2019; 8
10.1016/j.conbuildmat.2022.128296_b0200
Adel (10.1016/j.conbuildmat.2022.128296_b0015) 2022
Ke (10.1016/j.conbuildmat.2022.128296_b0220) 2017; 30
Bardhan (10.1016/j.conbuildmat.2022.128296_b0335) 2021; 110
Khan (10.1016/j.conbuildmat.2022.128296_b0350) 2022; 130840
Liang (10.1016/j.conbuildmat.2022.128296_b0210) 2022; 163
Yodsudjai (10.1016/j.conbuildmat.2022.128296_b0100) 2022; 14
Safarzadegan Gilan (10.1016/j.conbuildmat.2022.128296_b0275) 2012; 34
Rossi (10.1016/j.conbuildmat.2022.128296_b0085) 2022; 319
Li (10.1016/j.conbuildmat.2022.128296_b0040) 2015; 63
Jalal (10.1016/j.conbuildmat.2022.128296_b0190) 2021; 30
A. (10.1016/j.conbuildmat.2022.128296_b0055) 1990
Pacheco-Torgal (10.1016/j.conbuildmat.2022.128296_b0010) 2014
References_xml – volume: 147
  start-page: 04021173
  year: 2021
  ident: b0360
  article-title: Interpretable XGBoost-SHAP machine-learning model for shear strength prediction of squat RC walls
  publication-title: J. Struct. Eng.
– volume: 12
  start-page: 446
  year: 2021
  ident: b0225
  article-title: Predicting metabolite-disease associations based on LightGBM model
  publication-title: Frontiers in Genetics
– volume: 130840
  year: 2022
  ident: b0350
  article-title: Effective use of recycled waste PET in cementitious grouts for developing sustainable semi-flexible pavement surfacing using artificial neural network
  publication-title: J. Clean. Prod.
– volume: 114
  start-page: 564
  year: 2016
  end-page: 579
  ident: b0280
  article-title: Refined statistical modeling for chloride permeability and strength of concrete containing metakaolin
  publication-title: Constr. Build. Mater.
– start-page: 19
  year: 2016
  end-page: 33
  ident: b0135
  article-title: Corrosion of steel in concrete structures, Corrosion of steel in concrete structures
  publication-title: Elsevier
– year: 2003
  ident: b0075
  article-title: Advanced concrete technology set
– start-page: e01059
  year: 2022
  ident: b0140
  article-title: A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP), Case Studies
  publication-title: Constr. Mater.
– volume: 35
  year: 2021
  ident: b0145
  article-title: Modelling the energy performance of residential buildings using advanced computational frameworks based on RVM GMDH, ANFIS-BBO and ANFIS-IPSO
  publication-title: J. Build. Eng.
– volume: 110
  year: 2021
  ident: b0335
  article-title: ELM-based adaptive neuro swarm intelligence techniques for predicting the California bearing ratio of soils in soaked conditions
  publication-title: Applied Soft Computing
– volume: 163
  start-page: 153
  year: 2022
  ident: b0210
  article-title: Estimation of stellar atmospheric parameters with light gradient boosting machine algorithm and principal component analysis
  publication-title: The Astronomical Journal
– reference: I. Ullah K. Liu T. Yamamoto R.E. Al Mamlook A. Jamal A comparative performance of machine learning algorithm to predict electric vehicles energy consumption: A path towards sustainability Energy & Environment 2021 0958305X211044998.
– start-page: 1193
  year: 1998
  end-page: 1198
  ident: b0105
  article-title: High-performance repair materials for concrete structures in the port of Gothenburg
  publication-title: Second international conference on concrete under severe conditions: environment and loading
– volume: 30
  year: 2017
  ident: b0220
  article-title: Lightgbm: A highly efficient gradient boosting decision tree
  publication-title: Advances in neural information processing systems
– volume: 291
  year: 2021
  ident: b0330
  article-title: Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions
  publication-title: Engineering Geology
– volume: 328
  year: 2022
  ident: b0205
  article-title: Machine learning approach for investigating chloride diffusion coefficient of concrete containing supplementary cementitious materials
  publication-title: Constr. Build. Mater.
– volume: 54
  start-page: 1
  year: 2021
  end-page: 20
  ident: b0355
  article-title: Evaluation of tensile strength degradation of GFRP rebars in harsh alkaline conditions using non-linear genetic-based models
  publication-title: Materials and Structures
– volume: 232
  year: 2021
  ident: b0345
  article-title: Faisal Javed, Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment
  publication-title: Ocean Engineering
– reference: T.S. Abdennaji, N.B. Jamaa, I.K. Kammoun, M.M. Ismail, New Formulation Method for Concrete Sand made with Dune Sand and Fillers from Limestone and Marble Industry by Product in Northern Borders Region of Saudi Arabia.
– year: 2022
  ident: b0270
  article-title: Efficient estimating compressive strength of ultra-high performance concrete using XGBoost model
  publication-title: J. Build. Eng.
– volume: 148
  year: 2021
  ident: b0150
  article-title: Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power
  publication-title: Renew. Sustain. Energy Rev.
– volume: 30
  year: 2017
  ident: b0370
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv. Neural Inform. Processing Systems
– year: 2014
  ident: b0010
  article-title: Handbook of alkali-activated cements, mortars and concretes
– start-page: 02019
  year: 2020
  ident: b0230
  article-title: Predicting the SP500 index trend based on GBDT and LightGBM methods, E3S Web of Conferences
  publication-title: EDP Sciences
– volume: 22
  start-page: 35
  year: 2022
  end-page: 43
  ident: b0095
  article-title: Evaluation of chloride ion penetration resistance of high calcium silicate cement concrete
  publication-title: J. Korea Inst. Build. Constr.
– volume: 28
  start-page: 368
  year: 2021
  end-page: 390
  ident: b0170
  article-title: Multivariate adaptive regression splines model for reinforced soil foundations
  publication-title: Geosynthetics International
– start-page: 179
  year: 2022
  end-page: 210
  ident: b0015
  article-title: Machine learning applications for developing sustainable construction materials, Artificial Intelligence and Data Science in Environmental Sensing
  publication-title: Elsevier
– volume: 8
  start-page: 765
  year: 2020
  ident: b0300
  article-title: Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms
  publication-title: Mathematics
– volume: 34
  start-page: 321
  year: 2012
  end-page: 329
  ident: b0285
  article-title: Hybrid support vector regression–Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin
  publication-title: Constr. Build. Mater.
– volume: 36
  start-page: 756
  year: 2020
  ident: b0235
  article-title: Product prediction technology and optimal operation correlation analysis for catalytic reforming unit based on lightgbM
  publication-title: Acta Petrolei Sinica (Petroleum Processing Section)
– volume: 326
  year: 2022
  ident: b0080
  article-title: Influence of CaO-based expansive agent on chloride penetration resistance of marine concrete
  publication-title: Constr. Build. Mater.
– volume: 145
  year: 2021
  ident: b0160
  article-title: Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models
  publication-title: Cement and Concrete Research
– volume: 2020
  start-page: 1510969
  year: 2020
  ident: b0115
  article-title: On the recent trends in expansive soil stabilization using calcium-based stabilizer materials (CSMs): A comprehensive review
  publication-title: Adv. Mater. Sci. Eng.
– volume: 14
  start-page: 2768
  year: 2022
  ident: b0100
  article-title: Chloride penetration behavior of concrete made from various types of recycled concrete aggregate
  publication-title: Sustainability
– volume: 1
  start-page: 1
  year: 2015
  end-page: 4
  ident: b0240
  publication-title: Xgboost: extreme gradient boosting, R package version 0.4-2
– volume: 36
  start-page: 3086
  year: 2009
  end-page: 3092
  ident: b0310
  article-title: Medical application of information gain based artificial immune recognition system (AIRS): Diagnosis of thyroid disease
  publication-title: Expert Systems with Applications
– year: 2022
  ident: b0005
  article-title: Using machine learning techniques for predicting autogenous shrinkage of concrete incorporating superabsorbent polymers and supplementary cementitious materials
  publication-title: J. Build. Eng.
– volume: 164
  start-page: 102
  year: 2018
  end-page: 111
  ident: b0320
  article-title: Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China
  publication-title: Energy Convers. Manag.
– year: 2021
  ident: b0120
  article-title: Waste and byproducts in cement-based materials: innovative sustainable materials for a circular economy
– volume: 25
  start-page: 2472
  year: 2011
  end-page: 2479
  ident: b0035
  article-title: Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength
  publication-title: Constr. Build. Mater.
– volume: 17
  start-page: 1729
  year: 2019
  end-page: 1737
  ident: b0185
  article-title: Application of falling weight deflectometer (FWD) data and energy ratio (ER) approach for cracking performance evaluation of asphalt pavements
  publication-title: Int. J. Civil Eng.
– reference: A.S.f. Testing, M.C.C.-o. Concrete, C. Aggregates, Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, ASTM International2012.
– volume: 32
  start-page: 87
  year: 2022
  end-page: 96
  ident: b0090
  article-title: Effect of recycled concrete aggregates from ready-mixed concrete plant on chloride penetration resistance and compressive strength of concrete
  publication-title: วารสาร วิชาการ พระจอมเกล้า พระนครเหนือ
– start-page: 1
  year: 2021
  end-page: 20
  ident: b0155
  article-title: A novel technique based on the improved firefly algorithm coupled with extreme learning machine (ELM-IFF) for predicting the thermal conductivity of soil
  publication-title: Eng. Computers
– volume: 232
  year: 2021
  ident: b0180
  article-title: Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment
  publication-title: Ocean Eng.
– volume: 2019
  year: 2019
  ident: b0305
  article-title: A lightGBM-based EEG analysis method for driver mental states classification
  publication-title: Computational Intelligence and Neuroscience
– volume: 8
  year: 2019
  ident: b0030
  article-title: Rapid chloride permeability test on concrete with nano materials
  publication-title: Int. J. Eng. Adv. Tech.
– volume: 2021
  year: 2021
  ident: b0110
  article-title: Strength, hydraulic, and microstructural characteristics of expansive soils incorporating marble dust and rice husk ash
  publication-title: Adv. Civil Eng.
– volume: 173
  year: 2022
  ident: b0165
  article-title: Predicting the thermal conductivity of soils using integrated approach of ANN and PSO with adaptive and time-varying acceleration coefficients
  publication-title: Int. J. Therm. Sci.
– year: 1990
  ident: b0055
  article-title: T277–86, Rapid determination of the chloride permeability of concrete
  publication-title: American Association of States Highway and Transportation Officials
– year: 2014
  ident: b0130
  article-title: Eco-efficient construction and building materials: life cycle assessment (LCA), eco-labelling and case studies
– start-page: 1
  year: 2019
  end-page: 13
  ident: b0295
  article-title: Applying a meta-heuristic algorithm to predict and optimize compressive strength of concrete samples
  publication-title: Engineering with Computers
– year: 2017
  ident: b0025
  article-title: Evaluation of chloride limits for reinforced concrete phase A, national ready mixed concrete association
– volume: 37
  start-page: 3329
  year: 2021
  end-page: 3346
  ident: b0260
  article-title: A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model
  publication-title: Engineering with Computers
– volume: 289
  year: 2021
  ident: b0195
  article-title: Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP
  publication-title: J. Environ. Manag.
– year: 2018
  ident: b0020
  article-title: New trends in eco-efficient and recycled concrete
– volume: 321
  year: 2022
  ident: b0050
  article-title: Chloride ion penetration resistance and microstructural modification of concrete with the addition of calcium stearate
  publication-title: Constr. Build. Mater.
– volume: 220
  year: 2022
  ident: b0215
  article-title: Prediction of f-CaO content in cement clinker: A novel prediction method based on LightGBM and Bayesian optimization
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 30
  year: 2021
  ident: b0190
  article-title: Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms
  publication-title: Transportation Geotechnics
– volume: 34
  start-page: 321
  year: 2012
  end-page: 329
  ident: b0275
  article-title: Hybrid support vector regression – Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin
  publication-title: Constr. Build. Mater.
– volume: 14
  start-page: 1303
  year: 2022
  ident: b0340
  article-title: Ensemble tree-based approach towards flexural strength prediction of FRP reinforced concrete beams
  publication-title: Polymers
– volume: 30
  start-page: 470
  year: 2012
  end-page: 479
  ident: b0290
  article-title: Influence of metakaolin as supplementary cementing material on strength and durability of concretes
  publication-title: Constr. Build. Mater.
– volume: 49
  start-page: 1280
  year: 2021
  end-page: 1293
  ident: b0175
  article-title: Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique
  publication-title: Geotextiles and Geomembranes
– volume: 13
  start-page: 6
  year: 2019
  end-page: 10
  ident: b0255
  article-title: Comparison between XGBoost, LightGBM and CatBoost using a home credit dataset
  publication-title: Int. J. Computer Inform. Eng.
– start-page: 785
  year: 2016
  end-page: 794
  ident: b0315
  article-title: Xgboost: A scalable tree boosting system
  publication-title: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining
– volume: 14
  start-page: 2016
  year: 2022
  ident: b0365
  article-title: GEP tree-based prediction model for interfacial bond strength of externally bonded FRP laminates on grooves with concrete prism
  publication-title: Polymers
– start-page: 1420
  year: 2021
  end-page: 1427
  ident: b0045
  article-title: Strength and chloride ion penetration resistance of ultra-high-performance fiber reinforced geopolymer concrete
– volume: 67
  start-page: 477
  year: 2019
  end-page: 490
  ident: b0250
  article-title: Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study
  publication-title: Acta Geophysica
– volume: 319
  year: 2022
  ident: b0085
  article-title: Influence of self-healing induced by polylactic-acid and alkanoates-derivates precursors on transport properties and chloride penetration resistance of sound and cracked mortar specimens
  publication-title: Constr. Build. Mater.
– volume: 325
  year: 2022
  ident: b0265
  article-title: Latest concrete materials dataset and ensemble prediction model for concrete compressive strength containing RCA and GGBFS materials
  publication-title: Constr. Build. Mater.
– year: 2018
  ident: b0065
  article-title: Carbon dioxide sequestration in cementitious construction materials
– volume: 220
  start-page: 445
  year: 2019
  end-page: 459
  ident: b0125
  article-title: Comparative sustainability assessment of binary blended concretes using Supplementary Cementitious Materials
  publication-title: J. Clean. Prod.
– volume: 63
  start-page: 113
  year: 2015
  end-page: 121
  ident: b0040
  article-title: Numerical simulation of chloride penetration in concrete in rapid chloride migration tests
  publication-title: Cement and Concrete Composites
– reference: P.j. Chun, S. Izumi, T. Yamane, Automatic detection method of cracks from concrete surface imagery using two‐step light gradient boosting machine, Computer‐Aided Civil and Infrastructure Engineering 36(1) (2021) 61-72.
– volume: 195
  year: 2022
  ident: b0245
  article-title: A two-stage hybrid credit risk prediction model based on XGBoost and graph-based deep neural network
  publication-title: Expert Systems with Applications
– start-page: e01059
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0140
  article-title: A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP), Case Studies
  publication-title: Constr. Mater.
– volume: 37
  start-page: 3329
  issue: 4
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0260
  article-title: A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-020-01003-0
– volume: 145
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0160
  article-title: Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models
  publication-title: Cement and Concrete Research
  doi: 10.1016/j.cemconres.2021.106449
– volume: 54
  start-page: 1
  issue: 5
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0355
  article-title: Evaluation of tensile strength degradation of GFRP rebars in harsh alkaline conditions using non-linear genetic-based models
  publication-title: Materials and Structures
  doi: 10.1617/s11527-021-01783-x
– start-page: 179
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0015
  article-title: Machine learning applications for developing sustainable construction materials, Artificial Intelligence and Data Science in Environmental Sensing
  publication-title: Elsevier
– year: 1990
  ident: 10.1016/j.conbuildmat.2022.128296_b0055
  article-title: T277–86, Rapid determination of the chloride permeability of concrete
  publication-title: American Association of States Highway and Transportation Officials
– volume: 34
  start-page: 321
  year: 2012
  ident: 10.1016/j.conbuildmat.2022.128296_b0275
  article-title: Hybrid support vector regression – Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.02.038
– year: 2003
  ident: 10.1016/j.conbuildmat.2022.128296_b0075
– volume: 49
  start-page: 1280
  issue: 5
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0175
  article-title: Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique
  publication-title: Geotextiles and Geomembranes
  doi: 10.1016/j.geotexmem.2021.04.007
– volume: 114
  start-page: 564
  year: 2016
  ident: 10.1016/j.conbuildmat.2022.128296_b0280
  article-title: Refined statistical modeling for chloride permeability and strength of concrete containing metakaolin
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.03.187
– volume: 25
  start-page: 2472
  issue: 5
  year: 2011
  ident: 10.1016/j.conbuildmat.2022.128296_b0035
  article-title: Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2010.11.069
– volume: 321
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0050
  article-title: Chloride ion penetration resistance and microstructural modification of concrete with the addition of calcium stearate
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.126188
– volume: 30
  year: 2017
  ident: 10.1016/j.conbuildmat.2022.128296_b0220
  article-title: Lightgbm: A highly efficient gradient boosting decision tree
  publication-title: Advances in neural information processing systems
– volume: 36
  start-page: 756
  issue: 4
  year: 2020
  ident: 10.1016/j.conbuildmat.2022.128296_b0235
  article-title: Product prediction technology and optimal operation correlation analysis for catalytic reforming unit based on lightgbM
  publication-title: Acta Petrolei Sinica (Petroleum Processing Section)
– year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0005
  article-title: Using machine learning techniques for predicting autogenous shrinkage of concrete incorporating superabsorbent polymers and supplementary cementitious materials
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2022.104086
– volume: 326
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0080
  article-title: Influence of CaO-based expansive agent on chloride penetration resistance of marine concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.126872
– start-page: 1420
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0045
– volume: 8
  start-page: 765
  issue: 5
  year: 2020
  ident: 10.1016/j.conbuildmat.2022.128296_b0300
  article-title: Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms
  publication-title: Mathematics
  doi: 10.3390/math8050765
– volume: 2020
  start-page: 1510969
  year: 2020
  ident: 10.1016/j.conbuildmat.2022.128296_b0115
  article-title: On the recent trends in expansive soil stabilization using calcium-based stabilizer materials (CSMs): A comprehensive review
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2020/1510969
– volume: 195
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0245
  article-title: A two-stage hybrid credit risk prediction model based on XGBoost and graph-based deep neural network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.116624
– volume: 163
  start-page: 153
  issue: 4
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0210
  article-title: Estimation of stellar atmospheric parameters with light gradient boosting machine algorithm and principal component analysis
  publication-title: The Astronomical Journal
  doi: 10.3847/1538-3881/ac4d97
– year: 2018
  ident: 10.1016/j.conbuildmat.2022.128296_b0020
– volume: 14
  start-page: 2016
  issue: 10
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0365
  article-title: GEP tree-based prediction model for interfacial bond strength of externally bonded FRP laminates on grooves with concrete prism
  publication-title: Polymers
  doi: 10.3390/polym14102016
– volume: 36
  start-page: 3086
  issue: 2
  year: 2009
  ident: 10.1016/j.conbuildmat.2022.128296_b0310
  article-title: Medical application of information gain based artificial immune recognition system (AIRS): Diagnosis of thyroid disease
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.01.026
– year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0270
  article-title: Efficient estimating compressive strength of ultra-high performance concrete using XGBoost model
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2022.104302
– volume: 147
  start-page: 04021173
  issue: 11
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0360
  article-title: Interpretable XGBoost-SHAP machine-learning model for shear strength prediction of squat RC walls
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0003115
– volume: 30
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0190
  article-title: Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms
  publication-title: Transportation Geotechnics
  doi: 10.1016/j.trgeo.2021.100608
– year: 2018
  ident: 10.1016/j.conbuildmat.2022.128296_b0065
– volume: 13
  start-page: 6
  issue: 1
  year: 2019
  ident: 10.1016/j.conbuildmat.2022.128296_b0255
  article-title: Comparison between XGBoost, LightGBM and CatBoost using a home credit dataset
  publication-title: Int. J. Computer Inform. Eng.
– volume: 2019
  year: 2019
  ident: 10.1016/j.conbuildmat.2022.128296_b0305
  article-title: A lightGBM-based EEG analysis method for driver mental states classification
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2019/3761203
– volume: 2021
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0110
  article-title: Strength, hydraulic, and microstructural characteristics of expansive soils incorporating marble dust and rice husk ash
  publication-title: Adv. Civil Eng.
  doi: 10.1155/2021/9918757
– volume: 130840
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0350
  article-title: Effective use of recycled waste PET in cementitious grouts for developing sustainable semi-flexible pavement surfacing using artificial neural network
  publication-title: J. Clean. Prod.
– year: 2014
  ident: 10.1016/j.conbuildmat.2022.128296_b0130
– volume: 34
  start-page: 321
  year: 2012
  ident: 10.1016/j.conbuildmat.2022.128296_b0285
  article-title: Hybrid support vector regression–Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.02.038
– volume: 30
  start-page: 470
  year: 2012
  ident: 10.1016/j.conbuildmat.2022.128296_b0290
  article-title: Influence of metakaolin as supplementary cementing material on strength and durability of concretes
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2011.12.050
– volume: 232
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0345
  article-title: Faisal Javed, Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2021.109134
– year: 2014
  ident: 10.1016/j.conbuildmat.2022.128296_b0010
– volume: 164
  start-page: 102
  year: 2018
  ident: 10.1016/j.conbuildmat.2022.128296_b0320
  article-title: Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.02.087
– volume: 8
  issue: 3
  year: 2019
  ident: 10.1016/j.conbuildmat.2022.128296_b0030
  article-title: Rapid chloride permeability test on concrete with nano materials
  publication-title: Int. J. Eng. Adv. Tech.
– start-page: 1193
  year: 1998
  ident: 10.1016/j.conbuildmat.2022.128296_b0105
  article-title: High-performance repair materials for concrete structures in the port of Gothenburg
  publication-title: Second international conference on concrete under severe conditions: environment and loading
– volume: 289
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0195
  article-title: Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112420
– ident: 10.1016/j.conbuildmat.2022.128296_b0060
– volume: 328
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0205
  article-title: Machine learning approach for investigating chloride diffusion coefficient of concrete containing supplementary cementitious materials
  publication-title: Constr. Build. Mater.
– volume: 14
  start-page: 1303
  issue: 7
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0340
  article-title: Ensemble tree-based approach towards flexural strength prediction of FRP reinforced concrete beams
  publication-title: Polymers
  doi: 10.3390/polym14071303
– volume: 173
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0165
  article-title: Predicting the thermal conductivity of soils using integrated approach of ANN and PSO with adaptive and time-varying acceleration coefficients
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2021.107427
– volume: 14
  start-page: 2768
  issue: 5
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0100
  article-title: Chloride penetration behavior of concrete made from various types of recycled concrete aggregate
  publication-title: Sustainability
  doi: 10.3390/su14052768
– volume: 220
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0215
  article-title: Prediction of f-CaO content in cement clinker: A novel prediction method based on LightGBM and Bayesian optimization
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2021.104461
– ident: 10.1016/j.conbuildmat.2022.128296_b0070
– volume: 22
  start-page: 35
  issue: 1
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0095
  article-title: Evaluation of chloride ion penetration resistance of high calcium silicate cement concrete
  publication-title: J. Korea Inst. Build. Constr.
– ident: 10.1016/j.conbuildmat.2022.128296_b0325
  doi: 10.1177/0958305X211044998
– start-page: 19
  year: 2016
  ident: 10.1016/j.conbuildmat.2022.128296_b0135
  article-title: Corrosion of steel in concrete structures, Corrosion of steel in concrete structures
  publication-title: Elsevier
– volume: 35
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0145
  article-title: Modelling the energy performance of residential buildings using advanced computational frameworks based on RVM GMDH, ANFIS-BBO and ANFIS-IPSO
  publication-title: J. Build. Eng.
– volume: 232
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0180
  article-title: Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109134
– volume: 30
  year: 2017
  ident: 10.1016/j.conbuildmat.2022.128296_b0370
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv. Neural Inform. Processing Systems
– volume: 319
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0085
  article-title: Influence of self-healing induced by polylactic-acid and alkanoates-derivates precursors on transport properties and chloride penetration resistance of sound and cracked mortar specimens
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.126081
– volume: 325
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0265
  article-title: Latest concrete materials dataset and ensemble prediction model for concrete compressive strength containing RCA and GGBFS materials
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.126525
– ident: 10.1016/j.conbuildmat.2022.128296_b0200
  doi: 10.1111/mice.12564
– start-page: 785
  year: 2016
  ident: 10.1016/j.conbuildmat.2022.128296_b0315
  article-title: Xgboost: A scalable tree boosting system
– volume: 12
  start-page: 446
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0225
  article-title: Predicting metabolite-disease associations based on LightGBM model
  publication-title: Frontiers in Genetics
– volume: 291
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0330
  article-title: Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2021.106239
– volume: 110
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0335
  article-title: ELM-based adaptive neuro swarm intelligence techniques for predicting the California bearing ratio of soils in soaked conditions
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107595
– volume: 67
  start-page: 477
  issue: 2
  year: 2019
  ident: 10.1016/j.conbuildmat.2022.128296_b0250
  article-title: Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study
  publication-title: Acta Geophysica
  doi: 10.1007/s11600-019-00268-4
– volume: 32
  start-page: 87
  issue: 1
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.128296_b0090
  article-title: Effect of recycled concrete aggregates from ready-mixed concrete plant on chloride penetration resistance and compressive strength of concrete
  publication-title: วารสาร วิชาการ พระจอมเกล้า พระนครเหนือ
– start-page: 02019
  year: 2020
  ident: 10.1016/j.conbuildmat.2022.128296_b0230
  article-title: Predicting the SP500 index trend based on GBDT and LightGBM methods, E3S Web of Conferences
  publication-title: EDP Sciences
– volume: 1
  start-page: 1
  issue: 4
  year: 2015
  ident: 10.1016/j.conbuildmat.2022.128296_b0240
  publication-title: Xgboost: extreme gradient boosting, R package version 0.4-2
– start-page: 1
  year: 2019
  ident: 10.1016/j.conbuildmat.2022.128296_b0295
  article-title: Applying a meta-heuristic algorithm to predict and optimize compressive strength of concrete samples
  publication-title: Engineering with Computers
– year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0120
– volume: 220
  start-page: 445
  year: 2019
  ident: 10.1016/j.conbuildmat.2022.128296_b0125
  article-title: Comparative sustainability assessment of binary blended concretes using Supplementary Cementitious Materials
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.02.010
– volume: 28
  start-page: 368
  issue: 4
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0170
  article-title: Multivariate adaptive regression splines model for reinforced soil foundations
  publication-title: Geosynthetics International
  doi: 10.1680/jgein.20.00049
– year: 2017
  ident: 10.1016/j.conbuildmat.2022.128296_b0025
– volume: 63
  start-page: 113
  year: 2015
  ident: 10.1016/j.conbuildmat.2022.128296_b0040
  article-title: Numerical simulation of chloride penetration in concrete in rapid chloride migration tests
  publication-title: Cement and Concrete Composites
  doi: 10.1016/j.cemconcomp.2015.09.004
– start-page: 1
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0155
  article-title: A novel technique based on the improved firefly algorithm coupled with extreme learning machine (ELM-IFF) for predicting the thermal conductivity of soil
  publication-title: Eng. Computers
– volume: 148
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.128296_b0150
  article-title: Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111315
– volume: 17
  start-page: 1729
  issue: 11
  year: 2019
  ident: 10.1016/j.conbuildmat.2022.128296_b0185
  article-title: Application of falling weight deflectometer (FWD) data and energy ratio (ER) approach for cracking performance evaluation of asphalt pavements
  publication-title: Int. J. Civil Eng.
  doi: 10.1007/s40999-019-00432-3
SSID ssj0006262
Score 2.687364
Snippet •Light GBM and XGBoost prediction models for estimating RCPT of metakaolin-containing concrete.•Accuracy Analysis of the developed models using statistical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 128296
SubjectTerms LightGBM
Machine learning
Rapid Chloride Penetration test
SHAP Analysis
Water-binder ratio
XGBoost
Title Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis
URI https://dx.doi.org/10.1016/j.conbuildmat.2022.128296
Volume 345
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEB7sCVIfpLUtaq1Moa_xks0ml0BfzqPntYciWvHewv7UazV3nPHBl_4t_VOdueTsCUILfQpZdmCzs8x8k535BuBTIkLjCBYEykU5BSiqE-TWpAGToFqZhyoSXO98dJwOzuW3UTJagd6iFobTKhvbX9v0ubVuRtrNbran43H7jMABO2DycPOiN4rbVwV5-6wFq92vw8Hxo0EmzC5qyj3usRJla_DxT5oXRZ2aG1ATPqRoUYj9iO8W0-fd1JLr6b-CjQYzYrde1mtYceUmrC8xCb6B3yczvnHhXcaJx5maji2aK06vsw6nZNAaelyk8JohI30nT7xxlfqpuHEPsj-zyPTFyAUk5WV1hbRsQpWVQ06Pv8RrjuTx8OAIVWlxdHgwmdxWOG-mc4v6HpnpoSZG5tlng-4JTaxJT97Cef_L994gaJovBCYWURWIjo8jQldW-bBjEyZus6mKldHSpqk0ZBq0JXCkM-Gy3Os4zbWjMZ_GTmeJid9Bq5yUbgtQWJ3ksbcUm3iZS6cymQgT-iQ0UuY-3oZssdeFaZjJuUHGdbFIQftRLKmpYDUVtZq2QTyKTmt6jn8R-rxQaPHkrBXkRv4uvvN_4u_hJb_xf2khdqFVze7cBwI2ld6DF_u_or3m-PJzeHoxfAClZv5Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6hIJX2UNHSCvqgU6lXN_Z67dhSLwEB5pEICZBys_YJAepEwT303_SndiZ2IJWQqMR1d0da76xmvvHOfAPwLRGhcQQLAuWinAIU1Qtya9KASVCtzEMVCa53HgzT4kIejZLRCuwuamE4rbK1_Y1Nn1vrdqTbnmZ3Oh53zwgcsAMmDzcveqO4fVVyU-sOrPYPj4vhvUEmzC4ayj3usRJlL-DrQ5oXRZ2aG1ATPqRoUYjvEb8tpo-7qSXXs78Or1vMiP1mW29gxVVv4dUSk-AG_Dmd8YsLnzJOPM7UdGzRXHF6nXU4JYPW0uMihdcMGek7eeFPV6sbxY17kP2ZRaYvRi4gqS7rK6RtE6qsHXJ6_CXeciSPBzsDVJXF0cHOZHJX47yZzh3q38hMDw0xMq8-K_qntLAhPXkHF_t757tF0DZfCEwsojoQPR9HhK6s8mHPJkzcZlMVK6OlTVNpyDRoS-BIZ8JluddxmmtHYz6Nnc4SE7-HTjWp3CagsDrJY28pNvEyl05lMhEm9ElopMx9vAXZ4qxL0zKTc4OM23KRgnZdLqmpZDWVjZq2QNyLTht6jv8R-rFQaPnPXSvJjTwt_uF54l9grTgfnJQnh8Pjj_CSZ_gftRCfoFPPfrnPBHJqvd1e4r-uav6T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+rapid+chloride+penetration+resistance+of+metakaolin+based+high+strength+concrete+using+light+GBM+and+XGBoost+models+by+incorporating+SHAP+analysis&rft.jtitle=Construction+%26+building+materials&rft.au=Abdulalim+Alabdullah%2C+Anas&rft.au=Iqbal%2C+Mudassir&rft.au=Zahid%2C+Muhammad&rft.au=Khan%2C+Kaffayatullah&rft.date=2022-08-22&rft.issn=0950-0618&rft.volume=345&rft.spage=128296&rft_id=info:doi/10.1016%2Fj.conbuildmat.2022.128296&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conbuildmat_2022_128296
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon