Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis
•Light GBM and XGBoost prediction models for estimating RCPT of metakaolin-containing concrete.•Accuracy Analysis of the developed models using statistical evaluation.•Optimization of water-binder ratio and percentage of metakaolin using interpretable machine learning SHAP analysis.•Light GBM surpas...
Saved in:
Published in | Construction & building materials Vol. 345; p. 128296 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
22.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0950-0618 1879-0526 |
DOI | 10.1016/j.conbuildmat.2022.128296 |
Cover
Abstract | •Light GBM and XGBoost prediction models for estimating RCPT of metakaolin-containing concrete.•Accuracy Analysis of the developed models using statistical evaluation.•Optimization of water-binder ratio and percentage of metakaolin using interpretable machine learning SHAP analysis.•Light GBM surpasses in accuracy compared to XGBoost.
This study investigates the non-linear capabilities of two machine learning prediction models, namely Light GBM and XGBoost, for predicting the values of Rapid Chloride Penetration Test (RCPT). Chloride penetration is one of the most significant issues affecting reinforced concrete (RC) structures, which necessitate frequent maintenance and repair. The mix design of concrete play a vital role in the formation of pore structure that is relatively more resistant to chloride attacks. For estimating the chloride resistance of concrete, 201 experimental records, incorporating aging of concrete, binder content, water-binder ratio, percentage of metakaolin, and content of fine and coarse aggregates as input variables. The models were trained using grid search optimization for tuning setting parameters to yield the best performance for the models. The performance of the models using statistical indices indicated LightGBM surpasses in prediction accuracy as compared to XGBoost model. The coefficient of determination (R2) values revealed 0.9738 and 0.9379 for LightGBM and XGBoost models, respectively. The minimum value of MAE was recorded for the training data of the LightGBM model equalling 172.7 C. The best fit model, i.e., the LightGBM model, was used for SHAP analysis to see the relative importance of contributing attributes and optimization of input variables. The SHAP analysis revealed fc’, aging, and W/B ratio as most significant in yielding RCPT, whereas individual interpretation of Shapley values showed that W/B ratio of 0.30 – 0.35 and 15% MK replacement highly resisted chloride penetration at higher compressive strength values. |
---|---|
AbstractList | •Light GBM and XGBoost prediction models for estimating RCPT of metakaolin-containing concrete.•Accuracy Analysis of the developed models using statistical evaluation.•Optimization of water-binder ratio and percentage of metakaolin using interpretable machine learning SHAP analysis.•Light GBM surpasses in accuracy compared to XGBoost.
This study investigates the non-linear capabilities of two machine learning prediction models, namely Light GBM and XGBoost, for predicting the values of Rapid Chloride Penetration Test (RCPT). Chloride penetration is one of the most significant issues affecting reinforced concrete (RC) structures, which necessitate frequent maintenance and repair. The mix design of concrete play a vital role in the formation of pore structure that is relatively more resistant to chloride attacks. For estimating the chloride resistance of concrete, 201 experimental records, incorporating aging of concrete, binder content, water-binder ratio, percentage of metakaolin, and content of fine and coarse aggregates as input variables. The models were trained using grid search optimization for tuning setting parameters to yield the best performance for the models. The performance of the models using statistical indices indicated LightGBM surpasses in prediction accuracy as compared to XGBoost model. The coefficient of determination (R2) values revealed 0.9738 and 0.9379 for LightGBM and XGBoost models, respectively. The minimum value of MAE was recorded for the training data of the LightGBM model equalling 172.7 C. The best fit model, i.e., the LightGBM model, was used for SHAP analysis to see the relative importance of contributing attributes and optimization of input variables. The SHAP analysis revealed fc’, aging, and W/B ratio as most significant in yielding RCPT, whereas individual interpretation of Shapley values showed that W/B ratio of 0.30 – 0.35 and 15% MK replacement highly resisted chloride penetration at higher compressive strength values. |
ArticleNumber | 128296 |
Author | Abdulalim Alabdullah, Anas Jalal, Fazal E. Zahid, Muhammad Iqbal, Mudassir Nasir Amin, Muhammad Khan, Kaffayatullah |
Author_xml | – sequence: 1 givenname: Anas surname: Abdulalim Alabdullah fullname: Abdulalim Alabdullah, Anas organization: Department of Civil and Environmental Engineering, College of Engineering, King Faisal University (KFU), Al-Ahsa 31982, Saudi Arabia – sequence: 2 givenname: Mudassir surname: Iqbal fullname: Iqbal, Mudassir organization: Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 3 givenname: Muhammad surname: Zahid fullname: Zahid, Muhammad organization: Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Canada – sequence: 4 givenname: Kaffayatullah surname: Khan fullname: Khan, Kaffayatullah email: kkhan@kfu.edu.sa organization: Department of Civil and Environmental Engineering, College of Engineering, King Faisal University (KFU), Al-Ahsa 31982, Saudi Arabia – sequence: 5 givenname: Muhammad surname: Nasir Amin fullname: Nasir Amin, Muhammad organization: Department of Civil and Environmental Engineering, College of Engineering, King Faisal University (KFU), Al-Ahsa 31982, Saudi Arabia – sequence: 6 givenname: Fazal E. surname: Jalal fullname: Jalal, Fazal E. organization: Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
BookMark | eNqNkE1OIzEQhS0EEuHnDuYAHWx32ulejSAaAhIIJEBiZ_mnOqlMx45sM1JuM0fFISxGrFiVVPXeq6rvhBz64IGQC87GnHF5uRrb4M07Dm6t81gwIcZctKKTB2TE22lXsUbIQzJiXcMqJnl7TE5SWjHGpJBiRP49RXBoMwZPQ0-j3qCjdjmEiA7oBjzkqD-nERKmrL2FnXANWf_RYUBPjU7g6BIXS5pyBL_IS1qOshEy0PeEfkGHMsx0fv1AtXf0bX4dQsp0HRwMiZotRW9D3ITdpqJ-vr16KkI9bMvGM3LU6yHB-Vc9Ja83v19mt9X94_xudnVf2VrwXIlpX_NJI53u2dQ1TcNbJ3WtrZk4KSeWTWvjRMNNK6DtelPLzkDp9bIG0za2PiW_9rk2hpQi9Mpi_vy8AMBBcaZ2wNVK_Qdc7YCrPfCS0H1L2ERc67j9kXe29xYg8BchqmQRCmuHEWxWLuAPUj4AzMapcQ |
CitedBy_id | crossref_primary_10_3390_buildings14082455 crossref_primary_10_1016_j_ecolind_2023_111320 crossref_primary_10_3390_polym16182680 crossref_primary_10_1007_s41939_024_00439_x crossref_primary_10_1016_j_conbuildmat_2023_130339 crossref_primary_10_1680_jadcr_24_00133 crossref_primary_10_1007_s12559_024_10365_2 crossref_primary_10_1016_j_conbuildmat_2024_137370 crossref_primary_10_3390_math11102371 crossref_primary_10_1002_vms3_70149 crossref_primary_10_3390_s24144472 crossref_primary_10_1108_ACMM_01_2024_2950 crossref_primary_10_3390_jmse11051069 crossref_primary_10_3390_su16104215 crossref_primary_10_1038_s41598_024_79502_z crossref_primary_10_3390_w15101827 crossref_primary_10_1007_s41939_024_00672_4 crossref_primary_10_1016_j_conbuildmat_2023_134092 crossref_primary_10_1166_sam_2022_4341 crossref_primary_10_1016_j_conbuildmat_2022_129209 crossref_primary_10_1061_JSDCCC_SCENG_1496 crossref_primary_10_3390_buildings14061879 crossref_primary_10_1108_ACMM_12_2023_2935 crossref_primary_10_1016_j_cscm_2024_e02991 crossref_primary_10_1016_j_jobe_2024_109002 crossref_primary_10_1016_j_caeai_2023_100166 crossref_primary_10_1016_j_fuel_2024_132958 crossref_primary_10_1080_21650373_2024_2416962 crossref_primary_10_1186_s13065_024_01127_0 crossref_primary_10_1016_j_engappai_2025_110123 crossref_primary_10_1016_j_mtcomm_2023_107428 crossref_primary_10_1038_s41598_024_85079_4 crossref_primary_10_1007_s11837_023_05773_y crossref_primary_10_1016_j_buildenv_2024_112035 crossref_primary_10_1016_j_jobe_2023_107977 crossref_primary_10_1016_j_cscm_2024_e02901 crossref_primary_10_1016_j_jclepro_2023_138733 crossref_primary_10_1007_s11869_023_01380_7 crossref_primary_10_1109_ACCESS_2023_3265019 crossref_primary_10_1016_j_scitotenv_2024_171931 crossref_primary_10_3390_app132112048 crossref_primary_10_1016_j_rineng_2024_102637 crossref_primary_10_1038_s41598_024_64204_3 crossref_primary_10_34133_remotesensing_0071 crossref_primary_10_1007_s10064_024_03896_3 crossref_primary_10_1016_j_cscm_2024_e03030 crossref_primary_10_1016_j_conbuildmat_2023_133412 crossref_primary_10_1016_j_jwpe_2024_104789 crossref_primary_10_1007_s12205_024_1647_6 crossref_primary_10_3390_su17062516 crossref_primary_10_1016_j_conbuildmat_2024_136711 crossref_primary_10_1007_s41024_024_00445_z crossref_primary_10_2118_223123_PA crossref_primary_10_1007_s11053_023_10227_y crossref_primary_10_3390_polym14214717 crossref_primary_10_3390_polym15193962 crossref_primary_10_1016_j_corsci_2023_111513 crossref_primary_10_1016_j_engappai_2024_109090 crossref_primary_10_3390_buildings13051155 crossref_primary_10_1016_j_cscm_2023_e02173 crossref_primary_10_1007_s10999_023_09695_0 crossref_primary_10_1108_ACMM_04_2024_3007 crossref_primary_10_1016_j_cscm_2023_e02728 crossref_primary_10_1051_matecconf_202440002007 crossref_primary_10_1007_s42107_023_00980_z crossref_primary_10_1080_21650373_2025_2462183 crossref_primary_10_1016_j_est_2023_106872 crossref_primary_10_3390_ma16031277 crossref_primary_10_1016_j_scitotenv_2023_167386 crossref_primary_10_1016_j_cscm_2023_e02723 crossref_primary_10_1016_j_cscm_2024_e03135 crossref_primary_10_1080_15376494_2023_2224782 crossref_primary_10_1109_TIM_2023_3241060 crossref_primary_10_1016_j_psep_2024_06_028 crossref_primary_10_3390_ma15186477 crossref_primary_10_1016_j_conbuildmat_2023_131973 crossref_primary_10_1016_j_rineng_2023_101625 crossref_primary_10_1038_s41598_023_42270_3 crossref_primary_10_1007_s42107_023_00707_0 crossref_primary_10_1038_s41598_024_52046_y crossref_primary_10_1080_19648189_2024_2428979 crossref_primary_10_1016_j_compag_2023_108254 crossref_primary_10_1016_j_asoc_2024_111956 crossref_primary_10_1186_s40069_023_00653_w crossref_primary_10_1007_s11709_024_1124_9 crossref_primary_10_1007_s40996_023_01320_6 crossref_primary_10_1016_j_jmrt_2023_07_041 crossref_primary_10_1016_j_conbuildmat_2025_140722 crossref_primary_10_3390_environments10090157 crossref_primary_10_32604_cmes_2024_054766 crossref_primary_10_1016_j_jobe_2024_109844 crossref_primary_10_1007_s10489_023_05121_2 crossref_primary_10_1016_j_apr_2024_102200 crossref_primary_10_1061_JMCEE7_MTENG_15589 crossref_primary_10_1016_j_mtcomm_2024_108832 crossref_primary_10_1038_s41598_023_47196_4 crossref_primary_10_1016_j_conbuildmat_2025_139897 crossref_primary_10_1016_j_ijimpeng_2025_105276 crossref_primary_10_3390_buildings14113627 crossref_primary_10_1002_suco_202301135 crossref_primary_10_1016_j_jobe_2023_108065 crossref_primary_10_1016_j_cscm_2024_e03990 crossref_primary_10_1007_s44290_025_00204_0 crossref_primary_10_3390_buildings14051223 crossref_primary_10_1108_EC_07_2024_0635 crossref_primary_10_1016_j_asoc_2024_111661 crossref_primary_10_1016_j_conbuildmat_2023_132012 crossref_primary_10_1038_s41598_024_69046_7 crossref_primary_10_1080_10298436_2024_2343087 crossref_primary_10_1007_s11831_023_10043_w crossref_primary_10_1016_j_cscm_2024_e03868 crossref_primary_10_1016_j_mtcomm_2024_110759 crossref_primary_10_3390_app14083512 |
Cites_doi | 10.1007/s00366-020-01003-0 10.1016/j.cemconres.2021.106449 10.1617/s11527-021-01783-x 10.1016/j.conbuildmat.2012.02.038 10.1016/j.geotexmem.2021.04.007 10.1016/j.conbuildmat.2016.03.187 10.1016/j.conbuildmat.2010.11.069 10.1016/j.conbuildmat.2021.126188 10.1016/j.jobe.2022.104086 10.1016/j.conbuildmat.2022.126872 10.3390/math8050765 10.1155/2020/1510969 10.1016/j.eswa.2022.116624 10.3847/1538-3881/ac4d97 10.3390/polym14102016 10.1016/j.eswa.2008.01.026 10.1016/j.jobe.2022.104302 10.1061/(ASCE)ST.1943-541X.0003115 10.1016/j.trgeo.2021.100608 10.1155/2019/3761203 10.1155/2021/9918757 10.1016/j.conbuildmat.2011.12.050 10.1016/j.oceaneng.2021.109134 10.1016/j.enconman.2018.02.087 10.1016/j.jenvman.2021.112420 10.3390/polym14071303 10.1016/j.ijthermalsci.2021.107427 10.3390/su14052768 10.1016/j.chemolab.2021.104461 10.1177/0958305X211044998 10.1016/j.conbuildmat.2021.126081 10.1016/j.conbuildmat.2022.126525 10.1111/mice.12564 10.1016/j.enggeo.2021.106239 10.1016/j.asoc.2021.107595 10.1007/s11600-019-00268-4 10.1016/j.jclepro.2019.02.010 10.1680/jgein.20.00049 10.1016/j.cemconcomp.2015.09.004 10.1016/j.rser.2021.111315 10.1007/s40999-019-00432-3 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.conbuildmat.2022.128296 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0526 |
ExternalDocumentID | 10_1016_j_conbuildmat_2022_128296 S0950061822019560 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADHUB ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAAKF BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IAO IEA IGG IHE IHM IOF ISM J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N95 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PV9 Q38 ROL RPZ RZL SDF SDG SES SPC SPCBC SSM SST SSZ T5K UNMZH XI7 ~G- AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHDLI AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ ITC R2- RIG RNS SET SEW SMS SSH VH1 WUQ ZMT |
ID | FETCH-LOGICAL-c321t-27f31456daf07d55518d6a3acb4d664c073bd251b82e89fb369be73bf63eb85c3 |
IEDL.DBID | AIKHN |
ISSN | 0950-0618 |
IngestDate | Thu Apr 24 23:09:06 EDT 2025 Tue Jul 01 04:33:38 EDT 2025 Fri Feb 23 02:37:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Water-binder ratio Rapid Chloride Penetration test SHAP Analysis LightGBM XGBoost Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c321t-27f31456daf07d55518d6a3acb4d664c073bd251b82e89fb369be73bf63eb85c3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_conbuildmat_2022_128296 crossref_primary_10_1016_j_conbuildmat_2022_128296 elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2022_128296 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-22 |
PublicationDateYYYYMMDD | 2022-08-22 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Construction & building materials |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kaloop, Bardhan, Kardani, Samui, Hu, Ramzy (b0150) 2021; 148 Park, Chun, Han (b0185) 2019; 17 Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (b0220) 2017; 30 Liu, Zhang, Fan (b0245) 2022; 195 Kardani, Bardhan, Kim, Samui, Zhou (b0145) 2021; 35 Kijjanon, Sumranwanich (b0090) 2022; 32 Tran (b0205) 2022; 328 de Brito, Agrela (b0020) 2018 Rossi, Roy, Copuroglu, Jonkers (b0085) 2022; 319 Bardhan, Samui, Ghosh, Gandomi, Bhattacharyya (b0335) 2021; 110 Chen, He, Benesty, Khotilovich, Tang, Cho (b0240) 2015; 1 Safarzadegan Gilan, Bahrami Jovein, Ramezanianpour (b0275) 2012; 34 A. (b0055) 1990 Ramezanianpour, Pilvar, Mahdikhani, Moodi (b0035) 2011; 25 Zhang, Lei, Liu (b0225) 2021; 12 Li, Easterbrook, Xia, Jin (b0040) 2015; 63 Duan, Asteris, Nguyen, Bui, Moayedi (b0260) 2021; 37 Nguyen, Abellán-García, Lee, Garcia-Castano, Vo (b0270) 2022 P.j. Chun, S. Izumi, T. Yamane, Automatic detection method of cracks from concrete surface imagery using two‐step light gradient boosting machine, Computer‐Aided Civil and Infrastructure Engineering 36(1) (2021) 61-72. Ramezanianpour, Jovein (b0290) 2012; 30 Kardani, Bardhan, Samui, Nazem, Zhou, Armaghani (b0155) 2021 Zeng, Yang, Zhang, Wu, Zhang, Dai, Babiloni, Kong (b0305) 2019; 2019 Gilan, Jovein, Ramezanianpour (b0285) 2012; 34 Jeong, Yang, Kim, Lee (b0095) 2022; 22 Carmichael, Arulraj (b0030) 2019; 8 Fan, Wang, Wu, Zhou, Zhang, Yu, Lu, Xiang (b0320) 2018; 164 Liang, Luo, Zhao, Wu (b0300) 2020; 8 Hilloulin, Tran (b0005) 2022 Al-alaily, Hassan (b0280) 2016; 114 Iqbal, Zhang, Jalal, Javed (b0180) 2021; 232 Pacheco-Torgal, Labrincha, Leonelli, Palomo, Chindaprasit (b0010) 2014 Adel, Ghazaan, Korayem (b0015) 2022 Nilsson, Ngo, Gjørv (b0105) 1998 Rahla, Mateus, Bragança (b0125) 2019; 220 Hao, Zhang, Xu, Huang, Wang (b0215) 2022; 220 Jalal, Xu, Iqbal, Javed, Jamhiri (b0195) 2021; 289 Nguyen, Bui, Bui, Cuong (b0250) 2019; 67 Iqbal, Zhang, Jalal, M. (b0345) 2021; 232 Yuhan, Cuiwen (b0235) 2020; 36 Sun, Koopialipoor, Armaghani, Tarinejad, Tahir (b0295) 2019 Jalal, Xu, Jamhiri, Memon (b0115) 2020; 2020 Feng, Wang, Mangalathu, Taciroglu (b0360) 2021; 147 Iqbal, Zhao, Zhang, Jalal, Jamal (b0355) 2021; 54 Chen, Liu, Mu (b0050) 2022; 321 Raja, Shukla (b0175) 2021; 49 Imran, Ibrahim, Al-Shoukry, Rustam, Ashraf (b0265) 2022; 325 Asteris, Skentou, Bardhan, Samui, Pilakoutas (b0160) 2021; 145 Ji, Yu (b0065) 2018 de Brito, Thomas, Medina, Agrela (b0120) 2021 Amin, Iqbal, Jamal, Ullah, Khan, Abu-Arab, Al-Ahmad, Khan (b0365) 2022; 14 Hua, Hu, Tang, Wang, Li, Liu (b0080) 2022; 326 Ekanayake, Meddage, Rathnayake (b0140) 2022 Mousavinejad, Sammak (b0045) 2021 A.S.f. Testing, M.C.C.-o. Concrete, C. Aggregates, Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, ASTM International2012. Poursaee (b0135) 2016 M. shangchen (b0230) 2020 Obla, Lobo, Hong, Berke (b0025) 2017 Kodaz, Özşen, Arslan, Güneş (b0310) 2009; 36 Chen, Guestrin (b0315) 2016 Pacheco-Torgal, Cabeza, Labrincha, De Magalhaes (b0130) 2014 I. Ullah K. Liu T. Yamamoto R.E. Al Mamlook A. Jamal A comparative performance of machine learning algorithm to predict electric vehicles energy consumption: A path towards sustainability Energy & Environment 2021 0958305X211044998. Liang, Bu, Tan, Pan, Yi, Kong, Fan (b0210) 2022; 163 Jalal, Xu, Iqbal, Jamhiri, Javed (b0190) 2021; 30 T.S. Abdennaji, N.B. Jamaa, I.K. Kammoun, M.M. Ismail, New Formulation Method for Concrete Sand made with Dune Sand and Fillers from Limestone and Marble Industry by Product in Northern Borders Region of Saudi Arabia. Khan, Sutanto, Khan, Iqbal, Napiah, Zoorob, Klemeš, Bokhari, Rafiq (b0350) 2022; 130840 Al Daoud (b0255) 2019; 13 Jalal, Mulk, Memon, Jamhiri, Naseem (b0110) 2021; 2021 Kardani, Bardhan, Samui, Nazem, Asteris, Zhou (b0165) 2022; 173 Yodsudjai, Nitichote (b0100) 2022; 14 Bardhan, Gokceoglu, Burman, Samui, Asteris (b0330) 2021; 291 Raja, Shukla (b0170) 2021; 28 Amin, Iqbal, Khan, Qadir, Shalabi, Jamal (b0340) 2022; 14 Newman, Choo (b0075) 2003 Lundberg, Lee (b0370) 2017; 30 de Brito (10.1016/j.conbuildmat.2022.128296_b0120) 2021 Kijjanon (10.1016/j.conbuildmat.2022.128296_b0090) 2022; 32 Kardani (10.1016/j.conbuildmat.2022.128296_b0145) 2021; 35 Imran (10.1016/j.conbuildmat.2022.128296_b0265) 2022; 325 Jeong (10.1016/j.conbuildmat.2022.128296_b0095) 2022; 22 Tran (10.1016/j.conbuildmat.2022.128296_b0205) 2022; 328 Hilloulin (10.1016/j.conbuildmat.2022.128296_b0005) 2022 Lundberg (10.1016/j.conbuildmat.2022.128296_b0370) 2017; 30 Ji (10.1016/j.conbuildmat.2022.128296_b0065) 2018 Iqbal (10.1016/j.conbuildmat.2022.128296_b0180) 2021; 232 Iqbal (10.1016/j.conbuildmat.2022.128296_b0345) 2021; 232 Asteris (10.1016/j.conbuildmat.2022.128296_b0160) 2021; 145 Poursaee (10.1016/j.conbuildmat.2022.128296_b0135) 2016 Amin (10.1016/j.conbuildmat.2022.128296_b0365) 2022; 14 Ekanayake (10.1016/j.conbuildmat.2022.128296_b0140) 2022 Newman (10.1016/j.conbuildmat.2022.128296_b0075) 2003 Nguyen (10.1016/j.conbuildmat.2022.128296_b0250) 2019; 67 Jalal (10.1016/j.conbuildmat.2022.128296_b0110) 2021; 2021 Kodaz (10.1016/j.conbuildmat.2022.128296_b0310) 2009; 36 Hua (10.1016/j.conbuildmat.2022.128296_b0080) 2022; 326 Pacheco-Torgal (10.1016/j.conbuildmat.2022.128296_b0130) 2014 Al-alaily (10.1016/j.conbuildmat.2022.128296_b0280) 2016; 114 Ramezanianpour (10.1016/j.conbuildmat.2022.128296_b0290) 2012; 30 Sun (10.1016/j.conbuildmat.2022.128296_b0295) 2019 de Brito (10.1016/j.conbuildmat.2022.128296_b0020) 2018 Ramezanianpour (10.1016/j.conbuildmat.2022.128296_b0035) 2011; 25 10.1016/j.conbuildmat.2022.128296_b0060 Rahla (10.1016/j.conbuildmat.2022.128296_b0125) 2019; 220 Fan (10.1016/j.conbuildmat.2022.128296_b0320) 2018; 164 Yuhan (10.1016/j.conbuildmat.2022.128296_b0235) 2020; 36 Chen (10.1016/j.conbuildmat.2022.128296_b0240) 2015; 1 Mousavinejad (10.1016/j.conbuildmat.2022.128296_b0045) 2021 Liang (10.1016/j.conbuildmat.2022.128296_b0300) 2020; 8 Amin (10.1016/j.conbuildmat.2022.128296_b0340) 2022; 14 Kardani (10.1016/j.conbuildmat.2022.128296_b0155) 2021 Chen (10.1016/j.conbuildmat.2022.128296_b0315) 2016 Iqbal (10.1016/j.conbuildmat.2022.128296_b0355) 2021; 54 Obla (10.1016/j.conbuildmat.2022.128296_b0025) 2017 M. shangchen (10.1016/j.conbuildmat.2022.128296_b0230) 2020 Jalal (10.1016/j.conbuildmat.2022.128296_b0195) 2021; 289 Park (10.1016/j.conbuildmat.2022.128296_b0185) 2019; 17 Jalal (10.1016/j.conbuildmat.2022.128296_b0115) 2020; 2020 Duan (10.1016/j.conbuildmat.2022.128296_b0260) 2021; 37 Nilsson (10.1016/j.conbuildmat.2022.128296_b0105) 1998 Gilan (10.1016/j.conbuildmat.2022.128296_b0285) 2012; 34 Zhang (10.1016/j.conbuildmat.2022.128296_b0225) 2021; 12 Raja (10.1016/j.conbuildmat.2022.128296_b0175) 2021; 49 Nguyen (10.1016/j.conbuildmat.2022.128296_b0270) 2022 Chen (10.1016/j.conbuildmat.2022.128296_b0050) 2022; 321 Feng (10.1016/j.conbuildmat.2022.128296_b0360) 2021; 147 10.1016/j.conbuildmat.2022.128296_b0070 Zeng (10.1016/j.conbuildmat.2022.128296_b0305) 2019; 2019 Hao (10.1016/j.conbuildmat.2022.128296_b0215) 2022; 220 Liu (10.1016/j.conbuildmat.2022.128296_b0245) 2022; 195 Kaloop (10.1016/j.conbuildmat.2022.128296_b0150) 2021; 148 Raja (10.1016/j.conbuildmat.2022.128296_b0170) 2021; 28 Kardani (10.1016/j.conbuildmat.2022.128296_b0165) 2022; 173 Al Daoud (10.1016/j.conbuildmat.2022.128296_b0255) 2019; 13 10.1016/j.conbuildmat.2022.128296_b0325 Bardhan (10.1016/j.conbuildmat.2022.128296_b0330) 2021; 291 Carmichael (10.1016/j.conbuildmat.2022.128296_b0030) 2019; 8 10.1016/j.conbuildmat.2022.128296_b0200 Adel (10.1016/j.conbuildmat.2022.128296_b0015) 2022 Ke (10.1016/j.conbuildmat.2022.128296_b0220) 2017; 30 Bardhan (10.1016/j.conbuildmat.2022.128296_b0335) 2021; 110 Khan (10.1016/j.conbuildmat.2022.128296_b0350) 2022; 130840 Liang (10.1016/j.conbuildmat.2022.128296_b0210) 2022; 163 Yodsudjai (10.1016/j.conbuildmat.2022.128296_b0100) 2022; 14 Safarzadegan Gilan (10.1016/j.conbuildmat.2022.128296_b0275) 2012; 34 Rossi (10.1016/j.conbuildmat.2022.128296_b0085) 2022; 319 Li (10.1016/j.conbuildmat.2022.128296_b0040) 2015; 63 Jalal (10.1016/j.conbuildmat.2022.128296_b0190) 2021; 30 A. (10.1016/j.conbuildmat.2022.128296_b0055) 1990 Pacheco-Torgal (10.1016/j.conbuildmat.2022.128296_b0010) 2014 |
References_xml | – volume: 147 start-page: 04021173 year: 2021 ident: b0360 article-title: Interpretable XGBoost-SHAP machine-learning model for shear strength prediction of squat RC walls publication-title: J. Struct. Eng. – volume: 12 start-page: 446 year: 2021 ident: b0225 article-title: Predicting metabolite-disease associations based on LightGBM model publication-title: Frontiers in Genetics – volume: 130840 year: 2022 ident: b0350 article-title: Effective use of recycled waste PET in cementitious grouts for developing sustainable semi-flexible pavement surfacing using artificial neural network publication-title: J. Clean. Prod. – volume: 114 start-page: 564 year: 2016 end-page: 579 ident: b0280 article-title: Refined statistical modeling for chloride permeability and strength of concrete containing metakaolin publication-title: Constr. Build. Mater. – start-page: 19 year: 2016 end-page: 33 ident: b0135 article-title: Corrosion of steel in concrete structures, Corrosion of steel in concrete structures publication-title: Elsevier – year: 2003 ident: b0075 article-title: Advanced concrete technology set – start-page: e01059 year: 2022 ident: b0140 article-title: A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP), Case Studies publication-title: Constr. Mater. – volume: 35 year: 2021 ident: b0145 article-title: Modelling the energy performance of residential buildings using advanced computational frameworks based on RVM GMDH, ANFIS-BBO and ANFIS-IPSO publication-title: J. Build. Eng. – volume: 110 year: 2021 ident: b0335 article-title: ELM-based adaptive neuro swarm intelligence techniques for predicting the California bearing ratio of soils in soaked conditions publication-title: Applied Soft Computing – volume: 163 start-page: 153 year: 2022 ident: b0210 article-title: Estimation of stellar atmospheric parameters with light gradient boosting machine algorithm and principal component analysis publication-title: The Astronomical Journal – reference: I. Ullah K. Liu T. Yamamoto R.E. Al Mamlook A. Jamal A comparative performance of machine learning algorithm to predict electric vehicles energy consumption: A path towards sustainability Energy & Environment 2021 0958305X211044998. – start-page: 1193 year: 1998 end-page: 1198 ident: b0105 article-title: High-performance repair materials for concrete structures in the port of Gothenburg publication-title: Second international conference on concrete under severe conditions: environment and loading – volume: 30 year: 2017 ident: b0220 article-title: Lightgbm: A highly efficient gradient boosting decision tree publication-title: Advances in neural information processing systems – volume: 291 year: 2021 ident: b0330 article-title: Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions publication-title: Engineering Geology – volume: 328 year: 2022 ident: b0205 article-title: Machine learning approach for investigating chloride diffusion coefficient of concrete containing supplementary cementitious materials publication-title: Constr. Build. Mater. – volume: 54 start-page: 1 year: 2021 end-page: 20 ident: b0355 article-title: Evaluation of tensile strength degradation of GFRP rebars in harsh alkaline conditions using non-linear genetic-based models publication-title: Materials and Structures – volume: 232 year: 2021 ident: b0345 article-title: Faisal Javed, Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment publication-title: Ocean Engineering – reference: T.S. Abdennaji, N.B. Jamaa, I.K. Kammoun, M.M. Ismail, New Formulation Method for Concrete Sand made with Dune Sand and Fillers from Limestone and Marble Industry by Product in Northern Borders Region of Saudi Arabia. – year: 2022 ident: b0270 article-title: Efficient estimating compressive strength of ultra-high performance concrete using XGBoost model publication-title: J. Build. Eng. – volume: 148 year: 2021 ident: b0150 article-title: Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power publication-title: Renew. Sustain. Energy Rev. – volume: 30 year: 2017 ident: b0370 article-title: A unified approach to interpreting model predictions publication-title: Adv. Neural Inform. Processing Systems – year: 2014 ident: b0010 article-title: Handbook of alkali-activated cements, mortars and concretes – start-page: 02019 year: 2020 ident: b0230 article-title: Predicting the SP500 index trend based on GBDT and LightGBM methods, E3S Web of Conferences publication-title: EDP Sciences – volume: 22 start-page: 35 year: 2022 end-page: 43 ident: b0095 article-title: Evaluation of chloride ion penetration resistance of high calcium silicate cement concrete publication-title: J. Korea Inst. Build. Constr. – volume: 28 start-page: 368 year: 2021 end-page: 390 ident: b0170 article-title: Multivariate adaptive regression splines model for reinforced soil foundations publication-title: Geosynthetics International – start-page: 179 year: 2022 end-page: 210 ident: b0015 article-title: Machine learning applications for developing sustainable construction materials, Artificial Intelligence and Data Science in Environmental Sensing publication-title: Elsevier – volume: 8 start-page: 765 year: 2020 ident: b0300 article-title: Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms publication-title: Mathematics – volume: 34 start-page: 321 year: 2012 end-page: 329 ident: b0285 article-title: Hybrid support vector regression–Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin publication-title: Constr. Build. Mater. – volume: 36 start-page: 756 year: 2020 ident: b0235 article-title: Product prediction technology and optimal operation correlation analysis for catalytic reforming unit based on lightgbM publication-title: Acta Petrolei Sinica (Petroleum Processing Section) – volume: 326 year: 2022 ident: b0080 article-title: Influence of CaO-based expansive agent on chloride penetration resistance of marine concrete publication-title: Constr. Build. Mater. – volume: 145 year: 2021 ident: b0160 article-title: Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models publication-title: Cement and Concrete Research – volume: 2020 start-page: 1510969 year: 2020 ident: b0115 article-title: On the recent trends in expansive soil stabilization using calcium-based stabilizer materials (CSMs): A comprehensive review publication-title: Adv. Mater. Sci. Eng. – volume: 14 start-page: 2768 year: 2022 ident: b0100 article-title: Chloride penetration behavior of concrete made from various types of recycled concrete aggregate publication-title: Sustainability – volume: 1 start-page: 1 year: 2015 end-page: 4 ident: b0240 publication-title: Xgboost: extreme gradient boosting, R package version 0.4-2 – volume: 36 start-page: 3086 year: 2009 end-page: 3092 ident: b0310 article-title: Medical application of information gain based artificial immune recognition system (AIRS): Diagnosis of thyroid disease publication-title: Expert Systems with Applications – year: 2022 ident: b0005 article-title: Using machine learning techniques for predicting autogenous shrinkage of concrete incorporating superabsorbent polymers and supplementary cementitious materials publication-title: J. Build. Eng. – volume: 164 start-page: 102 year: 2018 end-page: 111 ident: b0320 article-title: Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China publication-title: Energy Convers. Manag. – year: 2021 ident: b0120 article-title: Waste and byproducts in cement-based materials: innovative sustainable materials for a circular economy – volume: 25 start-page: 2472 year: 2011 end-page: 2479 ident: b0035 article-title: Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength publication-title: Constr. Build. Mater. – volume: 17 start-page: 1729 year: 2019 end-page: 1737 ident: b0185 article-title: Application of falling weight deflectometer (FWD) data and energy ratio (ER) approach for cracking performance evaluation of asphalt pavements publication-title: Int. J. Civil Eng. – reference: A.S.f. Testing, M.C.C.-o. Concrete, C. Aggregates, Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, ASTM International2012. – volume: 32 start-page: 87 year: 2022 end-page: 96 ident: b0090 article-title: Effect of recycled concrete aggregates from ready-mixed concrete plant on chloride penetration resistance and compressive strength of concrete publication-title: วารสาร วิชาการ พระจอมเกล้า พระนครเหนือ – start-page: 1 year: 2021 end-page: 20 ident: b0155 article-title: A novel technique based on the improved firefly algorithm coupled with extreme learning machine (ELM-IFF) for predicting the thermal conductivity of soil publication-title: Eng. Computers – volume: 232 year: 2021 ident: b0180 article-title: Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment publication-title: Ocean Eng. – volume: 2019 year: 2019 ident: b0305 article-title: A lightGBM-based EEG analysis method for driver mental states classification publication-title: Computational Intelligence and Neuroscience – volume: 8 year: 2019 ident: b0030 article-title: Rapid chloride permeability test on concrete with nano materials publication-title: Int. J. Eng. Adv. Tech. – volume: 2021 year: 2021 ident: b0110 article-title: Strength, hydraulic, and microstructural characteristics of expansive soils incorporating marble dust and rice husk ash publication-title: Adv. Civil Eng. – volume: 173 year: 2022 ident: b0165 article-title: Predicting the thermal conductivity of soils using integrated approach of ANN and PSO with adaptive and time-varying acceleration coefficients publication-title: Int. J. Therm. Sci. – year: 1990 ident: b0055 article-title: T277–86, Rapid determination of the chloride permeability of concrete publication-title: American Association of States Highway and Transportation Officials – year: 2014 ident: b0130 article-title: Eco-efficient construction and building materials: life cycle assessment (LCA), eco-labelling and case studies – start-page: 1 year: 2019 end-page: 13 ident: b0295 article-title: Applying a meta-heuristic algorithm to predict and optimize compressive strength of concrete samples publication-title: Engineering with Computers – year: 2017 ident: b0025 article-title: Evaluation of chloride limits for reinforced concrete phase A, national ready mixed concrete association – volume: 37 start-page: 3329 year: 2021 end-page: 3346 ident: b0260 article-title: A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model publication-title: Engineering with Computers – volume: 289 year: 2021 ident: b0195 article-title: Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP publication-title: J. Environ. Manag. – year: 2018 ident: b0020 article-title: New trends in eco-efficient and recycled concrete – volume: 321 year: 2022 ident: b0050 article-title: Chloride ion penetration resistance and microstructural modification of concrete with the addition of calcium stearate publication-title: Constr. Build. Mater. – volume: 220 year: 2022 ident: b0215 article-title: Prediction of f-CaO content in cement clinker: A novel prediction method based on LightGBM and Bayesian optimization publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 30 year: 2021 ident: b0190 article-title: Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms publication-title: Transportation Geotechnics – volume: 34 start-page: 321 year: 2012 end-page: 329 ident: b0275 article-title: Hybrid support vector regression – Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin publication-title: Constr. Build. Mater. – volume: 14 start-page: 1303 year: 2022 ident: b0340 article-title: Ensemble tree-based approach towards flexural strength prediction of FRP reinforced concrete beams publication-title: Polymers – volume: 30 start-page: 470 year: 2012 end-page: 479 ident: b0290 article-title: Influence of metakaolin as supplementary cementing material on strength and durability of concretes publication-title: Constr. Build. Mater. – volume: 49 start-page: 1280 year: 2021 end-page: 1293 ident: b0175 article-title: Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique publication-title: Geotextiles and Geomembranes – volume: 13 start-page: 6 year: 2019 end-page: 10 ident: b0255 article-title: Comparison between XGBoost, LightGBM and CatBoost using a home credit dataset publication-title: Int. J. Computer Inform. Eng. – start-page: 785 year: 2016 end-page: 794 ident: b0315 article-title: Xgboost: A scalable tree boosting system publication-title: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining – volume: 14 start-page: 2016 year: 2022 ident: b0365 article-title: GEP tree-based prediction model for interfacial bond strength of externally bonded FRP laminates on grooves with concrete prism publication-title: Polymers – start-page: 1420 year: 2021 end-page: 1427 ident: b0045 article-title: Strength and chloride ion penetration resistance of ultra-high-performance fiber reinforced geopolymer concrete – volume: 67 start-page: 477 year: 2019 end-page: 490 ident: b0250 article-title: Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study publication-title: Acta Geophysica – volume: 319 year: 2022 ident: b0085 article-title: Influence of self-healing induced by polylactic-acid and alkanoates-derivates precursors on transport properties and chloride penetration resistance of sound and cracked mortar specimens publication-title: Constr. Build. Mater. – volume: 325 year: 2022 ident: b0265 article-title: Latest concrete materials dataset and ensemble prediction model for concrete compressive strength containing RCA and GGBFS materials publication-title: Constr. Build. Mater. – year: 2018 ident: b0065 article-title: Carbon dioxide sequestration in cementitious construction materials – volume: 220 start-page: 445 year: 2019 end-page: 459 ident: b0125 article-title: Comparative sustainability assessment of binary blended concretes using Supplementary Cementitious Materials publication-title: J. Clean. Prod. – volume: 63 start-page: 113 year: 2015 end-page: 121 ident: b0040 article-title: Numerical simulation of chloride penetration in concrete in rapid chloride migration tests publication-title: Cement and Concrete Composites – reference: P.j. Chun, S. Izumi, T. Yamane, Automatic detection method of cracks from concrete surface imagery using two‐step light gradient boosting machine, Computer‐Aided Civil and Infrastructure Engineering 36(1) (2021) 61-72. – volume: 195 year: 2022 ident: b0245 article-title: A two-stage hybrid credit risk prediction model based on XGBoost and graph-based deep neural network publication-title: Expert Systems with Applications – start-page: e01059 year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0140 article-title: A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP), Case Studies publication-title: Constr. Mater. – volume: 37 start-page: 3329 issue: 4 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0260 article-title: A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model publication-title: Engineering with Computers doi: 10.1007/s00366-020-01003-0 – volume: 145 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0160 article-title: Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models publication-title: Cement and Concrete Research doi: 10.1016/j.cemconres.2021.106449 – volume: 54 start-page: 1 issue: 5 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0355 article-title: Evaluation of tensile strength degradation of GFRP rebars in harsh alkaline conditions using non-linear genetic-based models publication-title: Materials and Structures doi: 10.1617/s11527-021-01783-x – start-page: 179 year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0015 article-title: Machine learning applications for developing sustainable construction materials, Artificial Intelligence and Data Science in Environmental Sensing publication-title: Elsevier – year: 1990 ident: 10.1016/j.conbuildmat.2022.128296_b0055 article-title: T277–86, Rapid determination of the chloride permeability of concrete publication-title: American Association of States Highway and Transportation Officials – volume: 34 start-page: 321 year: 2012 ident: 10.1016/j.conbuildmat.2022.128296_b0275 article-title: Hybrid support vector regression – Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.02.038 – year: 2003 ident: 10.1016/j.conbuildmat.2022.128296_b0075 – volume: 49 start-page: 1280 issue: 5 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0175 article-title: Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique publication-title: Geotextiles and Geomembranes doi: 10.1016/j.geotexmem.2021.04.007 – volume: 114 start-page: 564 year: 2016 ident: 10.1016/j.conbuildmat.2022.128296_b0280 article-title: Refined statistical modeling for chloride permeability and strength of concrete containing metakaolin publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.03.187 – volume: 25 start-page: 2472 issue: 5 year: 2011 ident: 10.1016/j.conbuildmat.2022.128296_b0035 article-title: Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2010.11.069 – volume: 321 year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0050 article-title: Chloride ion penetration resistance and microstructural modification of concrete with the addition of calcium stearate publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.126188 – volume: 30 year: 2017 ident: 10.1016/j.conbuildmat.2022.128296_b0220 article-title: Lightgbm: A highly efficient gradient boosting decision tree publication-title: Advances in neural information processing systems – volume: 36 start-page: 756 issue: 4 year: 2020 ident: 10.1016/j.conbuildmat.2022.128296_b0235 article-title: Product prediction technology and optimal operation correlation analysis for catalytic reforming unit based on lightgbM publication-title: Acta Petrolei Sinica (Petroleum Processing Section) – year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0005 article-title: Using machine learning techniques for predicting autogenous shrinkage of concrete incorporating superabsorbent polymers and supplementary cementitious materials publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2022.104086 – volume: 326 year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0080 article-title: Influence of CaO-based expansive agent on chloride penetration resistance of marine concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.126872 – start-page: 1420 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0045 – volume: 8 start-page: 765 issue: 5 year: 2020 ident: 10.1016/j.conbuildmat.2022.128296_b0300 article-title: Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms publication-title: Mathematics doi: 10.3390/math8050765 – volume: 2020 start-page: 1510969 year: 2020 ident: 10.1016/j.conbuildmat.2022.128296_b0115 article-title: On the recent trends in expansive soil stabilization using calcium-based stabilizer materials (CSMs): A comprehensive review publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2020/1510969 – volume: 195 year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0245 article-title: A two-stage hybrid credit risk prediction model based on XGBoost and graph-based deep neural network publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.116624 – volume: 163 start-page: 153 issue: 4 year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0210 article-title: Estimation of stellar atmospheric parameters with light gradient boosting machine algorithm and principal component analysis publication-title: The Astronomical Journal doi: 10.3847/1538-3881/ac4d97 – year: 2018 ident: 10.1016/j.conbuildmat.2022.128296_b0020 – volume: 14 start-page: 2016 issue: 10 year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0365 article-title: GEP tree-based prediction model for interfacial bond strength of externally bonded FRP laminates on grooves with concrete prism publication-title: Polymers doi: 10.3390/polym14102016 – volume: 36 start-page: 3086 issue: 2 year: 2009 ident: 10.1016/j.conbuildmat.2022.128296_b0310 article-title: Medical application of information gain based artificial immune recognition system (AIRS): Diagnosis of thyroid disease publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.01.026 – year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0270 article-title: Efficient estimating compressive strength of ultra-high performance concrete using XGBoost model publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2022.104302 – volume: 147 start-page: 04021173 issue: 11 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0360 article-title: Interpretable XGBoost-SHAP machine-learning model for shear strength prediction of squat RC walls publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0003115 – volume: 30 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0190 article-title: Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms publication-title: Transportation Geotechnics doi: 10.1016/j.trgeo.2021.100608 – year: 2018 ident: 10.1016/j.conbuildmat.2022.128296_b0065 – volume: 13 start-page: 6 issue: 1 year: 2019 ident: 10.1016/j.conbuildmat.2022.128296_b0255 article-title: Comparison between XGBoost, LightGBM and CatBoost using a home credit dataset publication-title: Int. J. Computer Inform. Eng. – volume: 2019 year: 2019 ident: 10.1016/j.conbuildmat.2022.128296_b0305 article-title: A lightGBM-based EEG analysis method for driver mental states classification publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2019/3761203 – volume: 2021 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0110 article-title: Strength, hydraulic, and microstructural characteristics of expansive soils incorporating marble dust and rice husk ash publication-title: Adv. Civil Eng. doi: 10.1155/2021/9918757 – volume: 130840 year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0350 article-title: Effective use of recycled waste PET in cementitious grouts for developing sustainable semi-flexible pavement surfacing using artificial neural network publication-title: J. Clean. Prod. – year: 2014 ident: 10.1016/j.conbuildmat.2022.128296_b0130 – volume: 34 start-page: 321 year: 2012 ident: 10.1016/j.conbuildmat.2022.128296_b0285 article-title: Hybrid support vector regression–Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.02.038 – volume: 30 start-page: 470 year: 2012 ident: 10.1016/j.conbuildmat.2022.128296_b0290 article-title: Influence of metakaolin as supplementary cementing material on strength and durability of concretes publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2011.12.050 – volume: 232 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0345 article-title: Faisal Javed, Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2021.109134 – year: 2014 ident: 10.1016/j.conbuildmat.2022.128296_b0010 – volume: 164 start-page: 102 year: 2018 ident: 10.1016/j.conbuildmat.2022.128296_b0320 article-title: Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.02.087 – volume: 8 issue: 3 year: 2019 ident: 10.1016/j.conbuildmat.2022.128296_b0030 article-title: Rapid chloride permeability test on concrete with nano materials publication-title: Int. J. Eng. Adv. Tech. – start-page: 1193 year: 1998 ident: 10.1016/j.conbuildmat.2022.128296_b0105 article-title: High-performance repair materials for concrete structures in the port of Gothenburg publication-title: Second international conference on concrete under severe conditions: environment and loading – volume: 289 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0195 article-title: Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112420 – ident: 10.1016/j.conbuildmat.2022.128296_b0060 – volume: 328 year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0205 article-title: Machine learning approach for investigating chloride diffusion coefficient of concrete containing supplementary cementitious materials publication-title: Constr. Build. Mater. – volume: 14 start-page: 1303 issue: 7 year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0340 article-title: Ensemble tree-based approach towards flexural strength prediction of FRP reinforced concrete beams publication-title: Polymers doi: 10.3390/polym14071303 – volume: 173 year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0165 article-title: Predicting the thermal conductivity of soils using integrated approach of ANN and PSO with adaptive and time-varying acceleration coefficients publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2021.107427 – volume: 14 start-page: 2768 issue: 5 year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0100 article-title: Chloride penetration behavior of concrete made from various types of recycled concrete aggregate publication-title: Sustainability doi: 10.3390/su14052768 – volume: 220 year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0215 article-title: Prediction of f-CaO content in cement clinker: A novel prediction method based on LightGBM and Bayesian optimization publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2021.104461 – ident: 10.1016/j.conbuildmat.2022.128296_b0070 – volume: 22 start-page: 35 issue: 1 year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0095 article-title: Evaluation of chloride ion penetration resistance of high calcium silicate cement concrete publication-title: J. Korea Inst. Build. Constr. – ident: 10.1016/j.conbuildmat.2022.128296_b0325 doi: 10.1177/0958305X211044998 – start-page: 19 year: 2016 ident: 10.1016/j.conbuildmat.2022.128296_b0135 article-title: Corrosion of steel in concrete structures, Corrosion of steel in concrete structures publication-title: Elsevier – volume: 35 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0145 article-title: Modelling the energy performance of residential buildings using advanced computational frameworks based on RVM GMDH, ANFIS-BBO and ANFIS-IPSO publication-title: J. Build. Eng. – volume: 232 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0180 article-title: Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109134 – volume: 30 year: 2017 ident: 10.1016/j.conbuildmat.2022.128296_b0370 article-title: A unified approach to interpreting model predictions publication-title: Adv. Neural Inform. Processing Systems – volume: 319 year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0085 article-title: Influence of self-healing induced by polylactic-acid and alkanoates-derivates precursors on transport properties and chloride penetration resistance of sound and cracked mortar specimens publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.126081 – volume: 325 year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0265 article-title: Latest concrete materials dataset and ensemble prediction model for concrete compressive strength containing RCA and GGBFS materials publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.126525 – ident: 10.1016/j.conbuildmat.2022.128296_b0200 doi: 10.1111/mice.12564 – start-page: 785 year: 2016 ident: 10.1016/j.conbuildmat.2022.128296_b0315 article-title: Xgboost: A scalable tree boosting system – volume: 12 start-page: 446 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0225 article-title: Predicting metabolite-disease associations based on LightGBM model publication-title: Frontiers in Genetics – volume: 291 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0330 article-title: Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions publication-title: Engineering Geology doi: 10.1016/j.enggeo.2021.106239 – volume: 110 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0335 article-title: ELM-based adaptive neuro swarm intelligence techniques for predicting the California bearing ratio of soils in soaked conditions publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.107595 – volume: 67 start-page: 477 issue: 2 year: 2019 ident: 10.1016/j.conbuildmat.2022.128296_b0250 article-title: Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study publication-title: Acta Geophysica doi: 10.1007/s11600-019-00268-4 – volume: 32 start-page: 87 issue: 1 year: 2022 ident: 10.1016/j.conbuildmat.2022.128296_b0090 article-title: Effect of recycled concrete aggregates from ready-mixed concrete plant on chloride penetration resistance and compressive strength of concrete publication-title: วารสาร วิชาการ พระจอมเกล้า พระนครเหนือ – start-page: 02019 year: 2020 ident: 10.1016/j.conbuildmat.2022.128296_b0230 article-title: Predicting the SP500 index trend based on GBDT and LightGBM methods, E3S Web of Conferences publication-title: EDP Sciences – volume: 1 start-page: 1 issue: 4 year: 2015 ident: 10.1016/j.conbuildmat.2022.128296_b0240 publication-title: Xgboost: extreme gradient boosting, R package version 0.4-2 – start-page: 1 year: 2019 ident: 10.1016/j.conbuildmat.2022.128296_b0295 article-title: Applying a meta-heuristic algorithm to predict and optimize compressive strength of concrete samples publication-title: Engineering with Computers – year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0120 – volume: 220 start-page: 445 year: 2019 ident: 10.1016/j.conbuildmat.2022.128296_b0125 article-title: Comparative sustainability assessment of binary blended concretes using Supplementary Cementitious Materials publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.02.010 – volume: 28 start-page: 368 issue: 4 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0170 article-title: Multivariate adaptive regression splines model for reinforced soil foundations publication-title: Geosynthetics International doi: 10.1680/jgein.20.00049 – year: 2017 ident: 10.1016/j.conbuildmat.2022.128296_b0025 – volume: 63 start-page: 113 year: 2015 ident: 10.1016/j.conbuildmat.2022.128296_b0040 article-title: Numerical simulation of chloride penetration in concrete in rapid chloride migration tests publication-title: Cement and Concrete Composites doi: 10.1016/j.cemconcomp.2015.09.004 – start-page: 1 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0155 article-title: A novel technique based on the improved firefly algorithm coupled with extreme learning machine (ELM-IFF) for predicting the thermal conductivity of soil publication-title: Eng. Computers – volume: 148 year: 2021 ident: 10.1016/j.conbuildmat.2022.128296_b0150 article-title: Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111315 – volume: 17 start-page: 1729 issue: 11 year: 2019 ident: 10.1016/j.conbuildmat.2022.128296_b0185 article-title: Application of falling weight deflectometer (FWD) data and energy ratio (ER) approach for cracking performance evaluation of asphalt pavements publication-title: Int. J. Civil Eng. doi: 10.1007/s40999-019-00432-3 |
SSID | ssj0006262 |
Score | 2.687364 |
Snippet | •Light GBM and XGBoost prediction models for estimating RCPT of metakaolin-containing concrete.•Accuracy Analysis of the developed models using statistical... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 128296 |
SubjectTerms | LightGBM Machine learning Rapid Chloride Penetration test SHAP Analysis Water-binder ratio XGBoost |
Title | Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis |
URI | https://dx.doi.org/10.1016/j.conbuildmat.2022.128296 |
Volume | 345 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS9xAEB7sCVIfpLUtaq1Moa_xks0ml0BfzqPntYciWvHewv7UazV3nPHBl_4t_VOdueTsCUILfQpZdmCzs8x8k535BuBTIkLjCBYEykU5BSiqE-TWpAGToFqZhyoSXO98dJwOzuW3UTJagd6iFobTKhvbX9v0ubVuRtrNbran43H7jMABO2DycPOiN4rbVwV5-6wFq92vw8Hxo0EmzC5qyj3usRJla_DxT5oXRZ2aG1ATPqRoUYj9iO8W0-fd1JLr6b-CjQYzYrde1mtYceUmrC8xCb6B3yczvnHhXcaJx5maji2aK06vsw6nZNAaelyk8JohI30nT7xxlfqpuHEPsj-zyPTFyAUk5WV1hbRsQpWVQ06Pv8RrjuTx8OAIVWlxdHgwmdxWOG-mc4v6HpnpoSZG5tlng-4JTaxJT97Cef_L994gaJovBCYWURWIjo8jQldW-bBjEyZus6mKldHSpqk0ZBq0JXCkM-Gy3Os4zbWjMZ_GTmeJid9Bq5yUbgtQWJ3ksbcUm3iZS6cymQgT-iQ0UuY-3oZssdeFaZjJuUHGdbFIQftRLKmpYDUVtZq2QTyKTmt6jn8R-rxQaPHkrBXkRv4uvvN_4u_hJb_xf2khdqFVze7cBwI2ld6DF_u_or3m-PJzeHoxfAClZv5Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6hIJX2UNHSCvqgU6lXN_Z67dhSLwEB5pEICZBys_YJAepEwT303_SndiZ2IJWQqMR1d0da76xmvvHOfAPwLRGhcQQLAuWinAIU1Qtya9KASVCtzEMVCa53HgzT4kIejZLRCuwuamE4rbK1_Y1Nn1vrdqTbnmZ3Oh53zwgcsAMmDzcveqO4fVVyU-sOrPYPj4vhvUEmzC4ayj3usRJlL-DrQ5oXRZ2aG1ATPqRoUYjvEb8tpo-7qSXXs78Or1vMiP1mW29gxVVv4dUSk-AG_Dmd8YsLnzJOPM7UdGzRXHF6nXU4JYPW0uMihdcMGek7eeFPV6sbxY17kP2ZRaYvRi4gqS7rK6RtE6qsHXJ6_CXeciSPBzsDVJXF0cHOZHJX47yZzh3q38hMDw0xMq8-K_qntLAhPXkHF_t757tF0DZfCEwsojoQPR9HhK6s8mHPJkzcZlMVK6OlTVNpyDRoS-BIZ8JluddxmmtHYz6Nnc4SE7-HTjWp3CagsDrJY28pNvEyl05lMhEm9ElopMx9vAXZ4qxL0zKTc4OM23KRgnZdLqmpZDWVjZq2QNyLTht6jv8R-rFQaPnPXSvJjTwt_uF54l9grTgfnJQnh8Pjj_CSZ_gftRCfoFPPfrnPBHJqvd1e4r-uav6T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+rapid+chloride+penetration+resistance+of+metakaolin+based+high+strength+concrete+using+light+GBM+and+XGBoost+models+by+incorporating+SHAP+analysis&rft.jtitle=Construction+%26+building+materials&rft.au=Abdulalim+Alabdullah%2C+Anas&rft.au=Iqbal%2C+Mudassir&rft.au=Zahid%2C+Muhammad&rft.au=Khan%2C+Kaffayatullah&rft.date=2022-08-22&rft.issn=0950-0618&rft.volume=345&rft.spage=128296&rft_id=info:doi/10.1016%2Fj.conbuildmat.2022.128296&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conbuildmat_2022_128296 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon |