Modeling of anisotropic dual scale flow in RTM using the finite elements method

In Liquid Composite Molding (LCM) processes, a fabric reinforcement is placed in a closed cavity and resin is injected into the mold. Almost all reinforcements are dual scale containing fiber tows, which fill at a different rate than the region in between the fiber tows. Simulation of LCM processes...

Full description

Saved in:
Bibliographic Details
Published inComposites. Part B, Engineering Vol. 214; p. 108735
Main Authors Facciotto, Silvio, Simacek, Pavel, Advani, Suresh G., Middendorf, Peter
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2021
Subjects
Online AccessGet full text
ISSN1359-8368
1879-1069
DOI10.1016/j.compositesb.2021.108735

Cover

Abstract In Liquid Composite Molding (LCM) processes, a fabric reinforcement is placed in a closed cavity and resin is injected into the mold. Almost all reinforcements are dual scale containing fiber tows, which fill at a different rate than the region in between the fiber tows. Simulation of LCM processes can help identify regions that fail to fill. However, the presence of dual scale flow is usually neglected. Here this phenomenon is modeled using Liquid Injection Molding Simulation (LIMS) software in which a complex network of one-dimensional elements is created. This allowed us to simulate transverse and longitudinal flow through the fiber tows taking into consideration the orientation and architecture of the reinforcement and, additionally, adding capillary effects to the model. A sensitivity study has been performed to investigate the effects of properties in non-dimensional form, allowing for comparison with experiments that were conducted to validate the model by visualization of the flow front position and dual scale area dimensions. [Display omitted] •Dual scale flow simulation through complex one-dimensional elements network.•Simulation of anisotropic flow inside fiber tows with low computational effort.•Validation through experiments visualizing flow front and dual scale area.•Parametric study with non-dimensional properties showing model capability.•Study of tow compaction variability using experimental data.
AbstractList In Liquid Composite Molding (LCM) processes, a fabric reinforcement is placed in a closed cavity and resin is injected into the mold. Almost all reinforcements are dual scale containing fiber tows, which fill at a different rate than the region in between the fiber tows. Simulation of LCM processes can help identify regions that fail to fill. However, the presence of dual scale flow is usually neglected. Here this phenomenon is modeled using Liquid Injection Molding Simulation (LIMS) software in which a complex network of one-dimensional elements is created. This allowed us to simulate transverse and longitudinal flow through the fiber tows taking into consideration the orientation and architecture of the reinforcement and, additionally, adding capillary effects to the model. A sensitivity study has been performed to investigate the effects of properties in non-dimensional form, allowing for comparison with experiments that were conducted to validate the model by visualization of the flow front position and dual scale area dimensions. [Display omitted] •Dual scale flow simulation through complex one-dimensional elements network.•Simulation of anisotropic flow inside fiber tows with low computational effort.•Validation through experiments visualizing flow front and dual scale area.•Parametric study with non-dimensional properties showing model capability.•Study of tow compaction variability using experimental data.
ArticleNumber 108735
Author Middendorf, Peter
Advani, Suresh G.
Simacek, Pavel
Facciotto, Silvio
Author_xml – sequence: 1
  givenname: Silvio
  orcidid: 0000-0002-9983-9257
  surname: Facciotto
  fullname: Facciotto, Silvio
  email: facciotto@ifb.uni-stuttgart.de
  organization: Institute of Aircraft Design, University of Stuttgart, Stuttgart, 70569, Germany
– sequence: 2
  givenname: Pavel
  surname: Simacek
  fullname: Simacek, Pavel
  organization: Department of Mechanical Engineering and Center for Composite Materials, University of Delaware, Newark, DE 19711, USA
– sequence: 3
  givenname: Suresh G.
  surname: Advani
  fullname: Advani, Suresh G.
  organization: Department of Mechanical Engineering and Center for Composite Materials, University of Delaware, Newark, DE 19711, USA
– sequence: 4
  givenname: Peter
  surname: Middendorf
  fullname: Middendorf, Peter
  organization: Institute of Aircraft Design, University of Stuttgart, Stuttgart, 70569, Germany
BookMark eNqNkNtKAzEQhoNUsK2-Q3yArTls9nAlUjxBS0HqdcgmE5uyTUqSKr69W-qFeNWrGX5mvmG-CRr54AGhW0pmlNDqbjvTYbcPyWVI3YwRRoe8qbm4QGPa1G1BSdWOhp6Ltmh41VyhSUpbQkgpOBuj1TIY6J3_wMFi5V0KOYa909gcVI-TVj1g24cv7Dx-Wy_xIR1n82ZInR-OYuhhBz4nvIO8CeYaXVrVJ7j5rVP0_vS4nr8Ui9Xz6_xhUWjOaC6YUKQTprWaNawWHFhFSqNLooztmLCcc0FJx-uSEWVLyxveVW07JCAqLjifovsTV8eQUgQrtcsqu-BzVK6XlMijH7mVf_zIox958jMQ2n-EfXQ7Fb_P2p2fdmF48dNBlEk78BqMi6CzNMGdQfkBMcmKGg
CitedBy_id crossref_primary_10_1016_j_compositesa_2021_106560
crossref_primary_10_1016_j_compositesa_2024_108578
crossref_primary_10_1016_j_compositesa_2023_107675
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104721
crossref_primary_10_3390_jcs6110351
crossref_primary_10_3390_jcs6110330
crossref_primary_10_3389_fmats_2022_809226
crossref_primary_10_1016_j_compositesa_2022_107319
crossref_primary_10_1016_j_tws_2024_112362
crossref_primary_10_3390_jcs8040153
crossref_primary_10_1007_s12221_023_00449_5
crossref_primary_10_1016_j_cma_2024_116912
crossref_primary_10_1002_pc_29448
Cites_doi 10.1016/0301-9322(95)00026-T
10.1016/j.compscitech.2014.12.013
10.1002/pc.10077
10.1016/j.compositesa.2015.05.031
10.1002/pc.10594
10.1177/0731684411411338
10.1177/0021998317747954
10.1016/j.compositesa.2007.08.005
10.1016/j.compositesa.2019.03.006
10.1016/j.compscitech.2005.06.013
10.1177/0021998318772152
10.1016/j.compositesa.2005.12.005
10.1177/0021998317697481
10.3144/expresspolymlett.2016.80
10.1177/002199839202601006
10.1016/S0266-3538(03)00155-6
10.1002/pen.760351006
10.1016/j.compositesa.2009.05.012
10.1016/S0143-8166(00)00110-X
10.1177/002199839202600802
10.1016/S1359-835X(99)00058-5
10.1002/pc.750120303
10.1016/j.compositesa.2011.04.021
10.1016/j.compositesa.2005.12.017
10.1007/s12289-012-1111-x
10.1177/0731684419899475
10.1002/pc.10474
10.1016/0263-8223(94)90044-2
10.1016/j.compositesa.2014.02.010
10.1016/j.compositesa.2015.05.019
10.1002/fld.1650190704
10.1016/j.compositesa.2013.03.016
10.1016/j.compositesa.2009.04.013
10.1016/j.enganabound.2017.11.014
10.1016/j.compositesa.2008.09.008
10.1002/pc.10507
10.1002/pc.10595
10.1016/j.ijmultiphaseflow.2011.05.003
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compositesb.2021.108735
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1069
ExternalDocumentID 10_1016_j_compositesb_2021_108735
S135983682100127X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
ZMT
~02
~G-
29F
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGQPQ
AI.
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
HZ~
R2-
SEW
VH1
~HD
ID FETCH-LOGICAL-c321t-25a0b5d9fc282753e2604dc40adfb25f333510b37420af4f383b6990b3e563533
IEDL.DBID .~1
ISSN 1359-8368
IngestDate Wed Oct 29 21:47:27 EDT 2025
Thu Apr 24 23:11:56 EDT 2025
Fri Feb 23 02:48:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Resin transfer molding (RTM)
Capillary action
Liquid composite molding (LCM)
Dual scale flow modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-25a0b5d9fc282753e2604dc40adfb25f333510b37420af4f383b6990b3e563533
ORCID 0000-0002-9983-9257
ParticipantIDs crossref_citationtrail_10_1016_j_compositesb_2021_108735
crossref_primary_10_1016_j_compositesb_2021_108735
elsevier_sciencedirect_doi_10_1016_j_compositesb_2021_108735
PublicationCentury 2000
PublicationDate 2021-06-01
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Composites. Part B, Engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Matsuzaki, Naito, Seto, Todoroki, Mizutani (b29) 2016; 10
Ruiz, Achim, Soukane, Trochu, Bréard (b9) 2006; 66
Simacek, Advani (b8) 2003; 63
DeValve, Pitchumani (b26) 2013; 51
Lawrence, Neacsu, Advani (b34) 2009; 40
LeBel, Fanaei, Ruiz, Trochu (b42) 2014; 7
Arbter, Beraud, Binetruy, Bizet, Bréard, Comas-Cardona, Demaria, Endruweit, Ermanni, Gommer, Hasanovic, Henrat, Klunker, Laine, Lavanchy, Lomov, Long, Michaud, Morren, Ruiz, Sol, Trochu, Verleye, Wietgrefe, Wu, Ziegmann (b40) 2011; 42
Aaboud, Bizet, Saouab, Nawab (b7) 2020; 39
PARNAS, PHELAN (b11) 1991; 22
Bowles, Frimpong (b4) 1992; 26
Dunkers, Lenhart, Kueh, van Zanten, Advani, Parnas (b10) 2001; 35
Park, Woo (b1) 2011; 30
Greszczuk (b2) 1973
May, Aktas, Advani, Berg, Endruweit, Fauster, Lomov, Long, Mitschang, Abaimov, Abliz, Akhatov, Ali, Allen, Bickerton, Bodaghi, Caglar, Caglar, Chiminelli, Correia, Cosson, Danzi, Dittmann, Ermanni, Francucci, George, Grishaev, Hancioglu, Kabachi, Kind, Deléglise-Lagardère, Laspalas, Lebedev, Lizaranzu, Liotier, Middendorf, Morán, Park, Pipes, Pucci, Raynal, Rodriguez, Schledjewski, Schubnel, Sharp, Sims, Sozer, Sousa, Thomas, Umer, Wijaya, Willenbacher, Yong, Zaremba, Ziegmann (b41) 2019; 121
Kuentzer, Simacek, Advani, Walsh (b13) 2006; 37
Patel, Rohatgi, Lee (b18) 1995; 35
Patel, Lee (b20) 1996; 17
Matsuzaki, Seto, Naito, Todoroki, Mizutani (b28) 2015; 107
Kamei Y, Ohgaki H, Ueno I. Impregnation process of viscous fluid in woven fibre bundles driven by pressure difference. In: FPCM 14, 2018. (30 May-1 June).
Lystrup, George, Zobell, Boster, Childs, Girod, Fullwood (b22) 2020
Leclerc, Ruiz (b5) 2008; 39
Patiño Arcila, Power, Nieto Londoño, Flórez Escobar (b31) 2018; 87
Nedanov, Advani (b33) 2002; 23
Schell, Deleglise, Binetruy, Krawczak, Ermanni (b36) 2007; 38
Patel, Lee (b19) 1996; 17
Mehdikhani, Gorbatikh, Verpoest, Lomov (b23) 2019; 53
Weitzenböck, Shenoi, Wilson (b39) 2002; 23
Gommer, Endruweit, Long (b16) 2018; 52
Gourichon, Binetruy, Krawczak (b35) 2006; 37
Sadiq, Advani, PARNAS (b12) 1995; 21
Aaboud, Saouab, Nawab (b6) 2017; 51
Moon Koo Kang, Woo Il Lee, Thomas Hahn (b32) 2000; 60
Lundström, Stenberg, Bergström, Partanen, Birkeland (b37) 2000; 31
Staffan Lundström, Frishfelds, Jakovics (b25) 2010; 41
Gascón, García, LeBel, Ruiz, Trochu (b27) 2015; 77
Bruschke, Advani (b15) 1994; 19
Ahn, Seferis, Berg (b44) 1991; 12
de Almeida, Sérgio Frascino Müller, Neto, Zabulon dos Santos Nogueira (b3) 1994; 28
Pillai, Advani (b24) 1998; 19
Liu, Moulin, Bruchon, Liotier, Drapier (b30) 2016; 344
Vernet, Ruiz, Advani, Alms, Aubert, Barburski, Barari, Beraud, Berg, Correia, Danzi, Delavière, Dickert, Di Fratta, Endruweit, Ermanni, Francucci, Garcia, George, Hahn, Klunker, Lomov, Long, Louis, Maldonado, Meier, Michaud, Perrin, Pillai, Rodriguez, Trochu, Verheyden, Wietgrefe, Xiong, Zaremba, Ziegmann (b38) 2014; 61
Pucci, Liotier, Drapier (b43) 2015; 77
Gebart (b14) 1992; 26
Yazdchi, Srivastava, Luding (b17) 2011; 37
Leclerc (10.1016/j.compositesb.2021.108735_b5) 2008; 39
May (10.1016/j.compositesb.2021.108735_b41) 2019; 121
Bruschke (10.1016/j.compositesb.2021.108735_b15) 1994; 19
Weitzenböck (10.1016/j.compositesb.2021.108735_b39) 2002; 23
Greszczuk (10.1016/j.compositesb.2021.108735_b2) 1973
Simacek (10.1016/j.compositesb.2021.108735_b8) 2003; 63
Lawrence (10.1016/j.compositesb.2021.108735_b34) 2009; 40
Schell (10.1016/j.compositesb.2021.108735_b36) 2007; 38
Yazdchi (10.1016/j.compositesb.2021.108735_b17) 2011; 37
Kuentzer (10.1016/j.compositesb.2021.108735_b13) 2006; 37
10.1016/j.compositesb.2021.108735_b21
Lystrup (10.1016/j.compositesb.2021.108735_b22) 2020
Matsuzaki (10.1016/j.compositesb.2021.108735_b28) 2015; 107
Vernet (10.1016/j.compositesb.2021.108735_b38) 2014; 61
Sadiq (10.1016/j.compositesb.2021.108735_b12) 1995; 21
Bowles (10.1016/j.compositesb.2021.108735_b4) 1992; 26
PARNAS (10.1016/j.compositesb.2021.108735_b11) 1991; 22
Ahn (10.1016/j.compositesb.2021.108735_b44) 1991; 12
Aaboud (10.1016/j.compositesb.2021.108735_b7) 2020; 39
Gebart (10.1016/j.compositesb.2021.108735_b14) 1992; 26
de Almeida (10.1016/j.compositesb.2021.108735_b3) 1994; 28
Arbter (10.1016/j.compositesb.2021.108735_b40) 2011; 42
Pillai (10.1016/j.compositesb.2021.108735_b24) 1998; 19
Patiño Arcila (10.1016/j.compositesb.2021.108735_b31) 2018; 87
Moon Koo Kang (10.1016/j.compositesb.2021.108735_b32) 2000; 60
Gommer (10.1016/j.compositesb.2021.108735_b16) 2018; 52
Park (10.1016/j.compositesb.2021.108735_b1) 2011; 30
Patel (10.1016/j.compositesb.2021.108735_b18) 1995; 35
Liu (10.1016/j.compositesb.2021.108735_b30) 2016; 344
Gourichon (10.1016/j.compositesb.2021.108735_b35) 2006; 37
Staffan Lundström (10.1016/j.compositesb.2021.108735_b25) 2010; 41
Nedanov (10.1016/j.compositesb.2021.108735_b33) 2002; 23
Ruiz (10.1016/j.compositesb.2021.108735_b9) 2006; 66
Gascón (10.1016/j.compositesb.2021.108735_b27) 2015; 77
Aaboud (10.1016/j.compositesb.2021.108735_b6) 2017; 51
Lundström (10.1016/j.compositesb.2021.108735_b37) 2000; 31
Dunkers (10.1016/j.compositesb.2021.108735_b10) 2001; 35
Patel (10.1016/j.compositesb.2021.108735_b19) 1996; 17
Pucci (10.1016/j.compositesb.2021.108735_b43) 2015; 77
DeValve (10.1016/j.compositesb.2021.108735_b26) 2013; 51
Patel (10.1016/j.compositesb.2021.108735_b20) 1996; 17
Mehdikhani (10.1016/j.compositesb.2021.108735_b23) 2019; 53
Matsuzaki (10.1016/j.compositesb.2021.108735_b29) 2016; 10
LeBel (10.1016/j.compositesb.2021.108735_b42) 2014; 7
References_xml – volume: 77
  start-page: 133
  year: 2015
  end-page: 141
  ident: b43
  article-title: Capillary wicking in a fibrous reinforcement – Orthotropic issues to determine the capillary pressure components
  publication-title: Composites A
– volume: 51
  start-page: 22
  year: 2013
  end-page: 32
  ident: b26
  article-title: Simulation of void formation in liquid composite molding processes
  publication-title: Composites A
– volume: 37
  start-page: 2057
  year: 2006
  end-page: 2068
  ident: b13
  article-title: Permeability characterization of dual scale fibrous porous media
  publication-title: Composites A
– year: 2020
  ident: b22
  article-title: Optical measurement of voids in situ during infusion of carbon reinforcements
  publication-title: J Compos Mater
– volume: 26
  start-page: 1100
  year: 1992
  end-page: 1133
  ident: b14
  article-title: Permeability of unidirectional reinforcements for RTM
  publication-title: J Compos Mater
– volume: 17
  start-page: 104
  year: 1996
  end-page: 114
  ident: b20
  article-title: Modeling of void formation and removal in liquid composite molding. Part II: Model development and implementation
  publication-title: Polym Compos
– volume: 23
  start-page: 1132
  year: 2002
  end-page: 1150
  ident: b39
  article-title: A unified approach to determine principal permeability of fibrous porous media
  publication-title: Polym Compos
– volume: 42
  start-page: 1157
  year: 2011
  end-page: 1168
  ident: b40
  article-title: Experimental determination of the permeability of textiles: A benchmark exercise
  publication-title: Composites A
– volume: 121
  start-page: 100
  year: 2019
  end-page: 114
  ident: b41
  article-title: In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise
  publication-title: Composites A
– volume: 51
  start-page: 4115
  year: 2017
  end-page: 4127
  ident: b6
  article-title: Simulation of air bubble’s creation, compression, and transport phenomena in resin transfer moulding
  publication-title: J Compos Mater
– volume: 35
  start-page: 91
  year: 2001
  end-page: 104
  ident: b10
  article-title: Fiber optic flow and cure sensing for liquid composite molding
  publication-title: Opt Lasers Eng
– volume: 31
  start-page: 29
  year: 2000
  end-page: 43
  ident: b37
  article-title: In-plane permeability measurements: A nordic round-robin study
  publication-title: Composites A
– start-page: 192
  year: 1973
  end-page: 192–26
  ident: b2
  article-title: Compressive strength and failure modes of unidirectional composites
  publication-title: Analysis of the Test Methods for High Modulus Fibers and Composites
– volume: 10
  start-page: 860
  year: 2016
  end-page: 872
  ident: b29
  article-title: Analytical prediction of void distribution and a minimum-void angle in anisotropic fabrics for radial injection resin transfer molding
  publication-title: Express Polym Lett
– volume: 22
  year: 1991
  ident: b11
  article-title: The effect of heterogeneous porous media on mold filling in resin transfer molding
  publication-title: SAMPE Q
– volume: 19
  start-page: 575
  year: 1994
  end-page: 603
  ident: b15
  article-title: A numerical approach to model non-isothermal viscous flow through fibrous media with free surfaces
  publication-title: Internat J Numer Methods Fluids
– volume: 61
  start-page: 172
  year: 2014
  end-page: 184
  ident: b38
  article-title: Experimental determination of the permeability of engineering textiles: Benchmark II
  publication-title: Composites A
– volume: 35
  start-page: 837
  year: 1995
  end-page: 851
  ident: b18
  article-title: Micro scale flow behavior and void formation mechanism during impregnation through a unidirectional stitched fiberglass mat
  publication-title: Polym Eng Sci
– volume: 37
  start-page: 1961
  year: 2006
  end-page: 1969
  ident: b35
  article-title: A new numerical procedure to predict dynamic void content in liquid composite molding
  publication-title: Composites A
– volume: 37
  start-page: 956
  year: 2011
  end-page: 966
  ident: b17
  article-title: Microstructural effects on the permeability of periodic fibrous porous media
  publication-title: Int J Multiph Flow
– volume: 107
  start-page: 154
  year: 2015
  end-page: 161
  ident: b28
  article-title: Analytical prediction of void formation in geometrically anisotropic woven fabrics during resin transfer molding
  publication-title: Compos Sci Technol
– volume: 87
  start-page: 133
  year: 2018
  end-page: 152
  ident: b31
  article-title: Boundary element method for the dynamic evolution of intra-tow voids in dual-scale fibrous reinforcements using a Stokes–Darcy formulation
  publication-title: Eng Anal Bound Elem
– volume: 63
  start-page: 1725
  year: 2003
  end-page: 1736
  ident: b8
  article-title: A numerical model to predict fiber tow saturation during liquid composite molding
  publication-title: Compos Sci Technol
– volume: 19
  start-page: 71
  year: 1998
  end-page: 80
  ident: b24
  article-title: Numerical simulation of unsaturated flow in woven fiber preforms during the resin transfer molding process
  publication-title: Polym Compos
– volume: 21
  start-page: 755
  year: 1995
  end-page: 774
  ident: b12
  article-title: Experimental investigation of transverse flow through aligned cylinders
  publication-title: Int J Multiph Flow
– volume: 52
  start-page: 2463
  year: 2018
  end-page: 2475
  ident: b16
  article-title: Influence of the micro-structure on saturated transverse flow in fibre arrays
  publication-title: J Compos Mater
– volume: 77
  start-page: 275
  year: 2015
  end-page: 284
  ident: b27
  article-title: Numerical prediction of saturation in dual scale fibrous reinforcements during liquid composite molding
  publication-title: Composites A
– volume: 23
  start-page: 758
  year: 2002
  end-page: 770
  ident: b33
  article-title: Numerical computation of the fiber preform permeability tensor by the homogenization method
  publication-title: Polym Compos
– volume: 39
  start-page: 285
  year: 2020
  end-page: 298
  ident: b7
  article-title: Effect of the spatial variation of permeability on air bubble creation and compression
  publication-title: J Reinf Plast Compos
– volume: 38
  start-page: 2460
  year: 2007
  end-page: 2470
  ident: b36
  article-title: Numerical prediction and experimental characterisation of meso-scale-voids in liquid composite moulding
  publication-title: Composites A
– volume: 12
  start-page: 146
  year: 1991
  end-page: 152
  ident: b44
  article-title: Simultaneous measurements of permeability and capillary pressure of thermosetting matrices in woven fabric reinforcements
  publication-title: Polym Compos
– volume: 30
  start-page: 957
  year: 2011
  end-page: 977
  ident: b1
  article-title: Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review
  publication-title: J Reinf Plast Compos
– volume: 60
  start-page: 2427
  year: 2000
  end-page: 2434
  ident: b32
  article-title: Formation of microvoids during resin-transfer molding process
  publication-title: Compos Sci Technol
– volume: 28
  start-page: 139
  year: 1994
  end-page: 148
  ident: b3
  article-title: Effect of void content on the strength of composite laminates
  publication-title: Compos Struct
– volume: 39
  start-page: 1859
  year: 2008
  end-page: 1868
  ident: b5
  article-title: Porosity reduction using optimized flow velocity in resin transfer molding
  publication-title: Composites A
– volume: 53
  start-page: 1579
  year: 2019
  end-page: 1669
  ident: b23
  article-title: Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance
  publication-title: J Compos Mater
– volume: 40
  start-page: 1053
  year: 2009
  end-page: 1064
  ident: b34
  article-title: Modeling the impact of capillary pressure and air entrapment on fiber tow saturation during resin infusion in LCM
  publication-title: Composites A
– volume: 7
  start-page: 93
  year: 2014
  end-page: 116
  ident: b42
  article-title: Prediction of optimal flow front velocity to minimize void formation in dual scale fibrous reinforcements
  publication-title: Int J Mater Form
– volume: 26
  start-page: 1487
  year: 1992
  end-page: 1509
  ident: b4
  article-title: Void effects on the interlaminar shear strength of unidirectional graphite-fiber-reinforced composites
  publication-title: J Compos Mater
– volume: 66
  start-page: 475
  year: 2006
  end-page: 486
  ident: b9
  article-title: Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites
  publication-title: Compos Sci Technol
– volume: 17
  start-page: 96
  year: 1996
  end-page: 103
  ident: b19
  article-title: Modeling of void formation and removal in liquid composite molding. Part I: Wettability analysis
  publication-title: Polym Compos
– reference: Kamei Y, Ohgaki H, Ueno I. Impregnation process of viscous fluid in woven fibre bundles driven by pressure difference. In: FPCM 14, 2018. (30 May-1 June).
– volume: 41
  start-page: 83
  year: 2010
  end-page: 92
  ident: b25
  article-title: Bubble formation and motion in non-crimp fabrics with perturbed bundle geometry
  publication-title: Composites A
– volume: 344
  start-page: 236
  year: 2016
  end-page: 250
  ident: b30
  article-title: Towards void formation and permeability predictions in LCM processes: A computational bifluid–solid mechanics framework dealing with capillarity and wetting issues
  publication-title: C R Acad Sci, Paris
– volume: 21
  start-page: 755
  issue: 5
  year: 1995
  ident: 10.1016/j.compositesb.2021.108735_b12
  article-title: Experimental investigation of transverse flow through aligned cylinders
  publication-title: Int J Multiph Flow
  doi: 10.1016/0301-9322(95)00026-T
– volume: 107
  start-page: 154
  year: 2015
  ident: 10.1016/j.compositesb.2021.108735_b28
  article-title: Analytical prediction of void formation in geometrically anisotropic woven fabrics during resin transfer molding
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2014.12.013
– volume: 19
  start-page: 71
  issue: 1
  year: 1998
  ident: 10.1016/j.compositesb.2021.108735_b24
  article-title: Numerical simulation of unsaturated flow in woven fiber preforms during the resin transfer molding process
  publication-title: Polym Compos
  doi: 10.1002/pc.10077
– volume: 77
  start-page: 133
  year: 2015
  ident: 10.1016/j.compositesb.2021.108735_b43
  article-title: Capillary wicking in a fibrous reinforcement – Orthotropic issues to determine the capillary pressure components
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2015.05.031
– volume: 60
  start-page: 2427
  issue: 12
  year: 2000
  ident: 10.1016/j.compositesb.2021.108735_b32
  article-title: Formation of microvoids during resin-transfer molding process
  publication-title: Compos Sci Technol
– volume: 17
  start-page: 96
  issue: 1
  year: 1996
  ident: 10.1016/j.compositesb.2021.108735_b19
  article-title: Modeling of void formation and removal in liquid composite molding. Part I: Wettability analysis
  publication-title: Polym Compos
  doi: 10.1002/pc.10594
– volume: 30
  start-page: 957
  issue: 11
  year: 2011
  ident: 10.1016/j.compositesb.2021.108735_b1
  article-title: Modeling void formation and unsaturated flow in liquid composite molding processes: a survey and review
  publication-title: J Reinf Plast Compos
  doi: 10.1177/0731684411411338
– volume: 52
  start-page: 2463
  issue: 18
  year: 2018
  ident: 10.1016/j.compositesb.2021.108735_b16
  article-title: Influence of the micro-structure on saturated transverse flow in fibre arrays
  publication-title: J Compos Mater
  doi: 10.1177/0021998317747954
– volume: 38
  start-page: 2460
  issue: 12
  year: 2007
  ident: 10.1016/j.compositesb.2021.108735_b36
  article-title: Numerical prediction and experimental characterisation of meso-scale-voids in liquid composite moulding
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2007.08.005
– volume: 121
  start-page: 100
  year: 2019
  ident: 10.1016/j.compositesb.2021.108735_b41
  article-title: In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2019.03.006
– volume: 66
  start-page: 475
  issue: 3
  year: 2006
  ident: 10.1016/j.compositesb.2021.108735_b9
  article-title: Optimization of injection flow rate to minimize micro/macro-voids formation in resin transfer molded composites
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2005.06.013
– volume: 53
  start-page: 1579
  issue: 12
  year: 2019
  ident: 10.1016/j.compositesb.2021.108735_b23
  article-title: Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance
  publication-title: J Compos Mater
  doi: 10.1177/0021998318772152
– volume: 37
  start-page: 2057
  issue: 11
  year: 2006
  ident: 10.1016/j.compositesb.2021.108735_b13
  article-title: Permeability characterization of dual scale fibrous porous media
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2005.12.005
– volume: 51
  start-page: 4115
  issue: 29
  year: 2017
  ident: 10.1016/j.compositesb.2021.108735_b6
  article-title: Simulation of air bubble’s creation, compression, and transport phenomena in resin transfer moulding
  publication-title: J Compos Mater
  doi: 10.1177/0021998317697481
– volume: 10
  start-page: 860
  issue: 10
  year: 2016
  ident: 10.1016/j.compositesb.2021.108735_b29
  article-title: Analytical prediction of void distribution and a minimum-void angle in anisotropic fabrics for radial injection resin transfer molding
  publication-title: Express Polym Lett
  doi: 10.3144/expresspolymlett.2016.80
– volume: 26
  start-page: 1487
  issue: 10
  year: 1992
  ident: 10.1016/j.compositesb.2021.108735_b4
  article-title: Void effects on the interlaminar shear strength of unidirectional graphite-fiber-reinforced composites
  publication-title: J Compos Mater
  doi: 10.1177/002199839202601006
– volume: 63
  start-page: 1725
  issue: 12
  year: 2003
  ident: 10.1016/j.compositesb.2021.108735_b8
  article-title: A numerical model to predict fiber tow saturation during liquid composite molding
  publication-title: Compos Sci Technol
  doi: 10.1016/S0266-3538(03)00155-6
– volume: 35
  start-page: 837
  issue: 10
  year: 1995
  ident: 10.1016/j.compositesb.2021.108735_b18
  article-title: Micro scale flow behavior and void formation mechanism during impregnation through a unidirectional stitched fiberglass mat
  publication-title: Polym Eng Sci
  doi: 10.1002/pen.760351006
– volume: 41
  start-page: 83
  issue: 1
  year: 2010
  ident: 10.1016/j.compositesb.2021.108735_b25
  article-title: Bubble formation and motion in non-crimp fabrics with perturbed bundle geometry
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2009.05.012
– volume: 35
  start-page: 91
  issue: 2
  year: 2001
  ident: 10.1016/j.compositesb.2021.108735_b10
  article-title: Fiber optic flow and cure sensing for liquid composite molding
  publication-title: Opt Lasers Eng
  doi: 10.1016/S0143-8166(00)00110-X
– volume: 26
  start-page: 1100
  issue: 8
  year: 1992
  ident: 10.1016/j.compositesb.2021.108735_b14
  article-title: Permeability of unidirectional reinforcements for RTM
  publication-title: J Compos Mater
  doi: 10.1177/002199839202600802
– volume: 31
  start-page: 29
  issue: 1
  year: 2000
  ident: 10.1016/j.compositesb.2021.108735_b37
  article-title: In-plane permeability measurements: A nordic round-robin study
  publication-title: Composites A
  doi: 10.1016/S1359-835X(99)00058-5
– volume: 12
  start-page: 146
  issue: 3
  year: 1991
  ident: 10.1016/j.compositesb.2021.108735_b44
  article-title: Simultaneous measurements of permeability and capillary pressure of thermosetting matrices in woven fabric reinforcements
  publication-title: Polym Compos
  doi: 10.1002/pc.750120303
– volume: 42
  start-page: 1157
  issue: 9
  year: 2011
  ident: 10.1016/j.compositesb.2021.108735_b40
  article-title: Experimental determination of the permeability of textiles: A benchmark exercise
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2011.04.021
– volume: 37
  start-page: 1961
  issue: 11
  year: 2006
  ident: 10.1016/j.compositesb.2021.108735_b35
  article-title: A new numerical procedure to predict dynamic void content in liquid composite molding
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2005.12.017
– volume: 344
  start-page: 236
  issue: 4–5
  year: 2016
  ident: 10.1016/j.compositesb.2021.108735_b30
  article-title: Towards void formation and permeability predictions in LCM processes: A computational bifluid–solid mechanics framework dealing with capillarity and wetting issues
  publication-title: C R Acad Sci, Paris
– start-page: 192
  year: 1973
  ident: 10.1016/j.compositesb.2021.108735_b2
  article-title: Compressive strength and failure modes of unidirectional composites
– volume: 7
  start-page: 93
  issue: 1
  year: 2014
  ident: 10.1016/j.compositesb.2021.108735_b42
  article-title: Prediction of optimal flow front velocity to minimize void formation in dual scale fibrous reinforcements
  publication-title: Int J Mater Form
  doi: 10.1007/s12289-012-1111-x
– volume: 22
  issue: 2
  year: 1991
  ident: 10.1016/j.compositesb.2021.108735_b11
  article-title: The effect of heterogeneous porous media on mold filling in resin transfer molding
  publication-title: SAMPE Q
– ident: 10.1016/j.compositesb.2021.108735_b21
– year: 2020
  ident: 10.1016/j.compositesb.2021.108735_b22
  article-title: Optical measurement of voids in situ during infusion of carbon reinforcements
  publication-title: J Compos Mater
– volume: 39
  start-page: 285
  issue: 7–8
  year: 2020
  ident: 10.1016/j.compositesb.2021.108735_b7
  article-title: Effect of the spatial variation of permeability on air bubble creation and compression
  publication-title: J Reinf Plast Compos
  doi: 10.1177/0731684419899475
– volume: 23
  start-page: 758
  issue: 5
  year: 2002
  ident: 10.1016/j.compositesb.2021.108735_b33
  article-title: Numerical computation of the fiber preform permeability tensor by the homogenization method
  publication-title: Polym Compos
  doi: 10.1002/pc.10474
– volume: 28
  start-page: 139
  issue: 2
  year: 1994
  ident: 10.1016/j.compositesb.2021.108735_b3
  article-title: Effect of void content on the strength of composite laminates
  publication-title: Compos Struct
  doi: 10.1016/0263-8223(94)90044-2
– volume: 61
  start-page: 172
  year: 2014
  ident: 10.1016/j.compositesb.2021.108735_b38
  article-title: Experimental determination of the permeability of engineering textiles: Benchmark II
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2014.02.010
– volume: 77
  start-page: 275
  year: 2015
  ident: 10.1016/j.compositesb.2021.108735_b27
  article-title: Numerical prediction of saturation in dual scale fibrous reinforcements during liquid composite molding
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2015.05.019
– volume: 19
  start-page: 575
  issue: 7
  year: 1994
  ident: 10.1016/j.compositesb.2021.108735_b15
  article-title: A numerical approach to model non-isothermal viscous flow through fibrous media with free surfaces
  publication-title: Internat J Numer Methods Fluids
  doi: 10.1002/fld.1650190704
– volume: 51
  start-page: 22
  year: 2013
  ident: 10.1016/j.compositesb.2021.108735_b26
  article-title: Simulation of void formation in liquid composite molding processes
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2013.03.016
– volume: 40
  start-page: 1053
  issue: 8
  year: 2009
  ident: 10.1016/j.compositesb.2021.108735_b34
  article-title: Modeling the impact of capillary pressure and air entrapment on fiber tow saturation during resin infusion in LCM
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2009.04.013
– volume: 87
  start-page: 133
  year: 2018
  ident: 10.1016/j.compositesb.2021.108735_b31
  article-title: Boundary element method for the dynamic evolution of intra-tow voids in dual-scale fibrous reinforcements using a Stokes–Darcy formulation
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2017.11.014
– volume: 39
  start-page: 1859
  issue: 12
  year: 2008
  ident: 10.1016/j.compositesb.2021.108735_b5
  article-title: Porosity reduction using optimized flow velocity in resin transfer molding
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2008.09.008
– volume: 23
  start-page: 1132
  issue: 6
  year: 2002
  ident: 10.1016/j.compositesb.2021.108735_b39
  article-title: A unified approach to determine principal permeability of fibrous porous media
  publication-title: Polym Compos
  doi: 10.1002/pc.10507
– volume: 17
  start-page: 104
  issue: 1
  year: 1996
  ident: 10.1016/j.compositesb.2021.108735_b20
  article-title: Modeling of void formation and removal in liquid composite molding. Part II: Model development and implementation
  publication-title: Polym Compos
  doi: 10.1002/pc.10595
– volume: 37
  start-page: 956
  issue: 8
  year: 2011
  ident: 10.1016/j.compositesb.2021.108735_b17
  article-title: Microstructural effects on the permeability of periodic fibrous porous media
  publication-title: Int J Multiph Flow
  doi: 10.1016/j.ijmultiphaseflow.2011.05.003
SSID ssj0004532
Score 2.408393
Snippet In Liquid Composite Molding (LCM) processes, a fabric reinforcement is placed in a closed cavity and resin is injected into the mold. Almost all reinforcements...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108735
SubjectTerms Capillary action
Dual scale flow modeling
Liquid composite molding (LCM)
Resin transfer molding (RTM)
Title Modeling of anisotropic dual scale flow in RTM using the finite elements method
URI https://dx.doi.org/10.1016/j.compositesb.2021.108735
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004532
  issn: 1359-8368
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-1069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004532
  issn: 1359-8368
  databaseCode: AIKHN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-1069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004532
  issn: 1359-8368
  databaseCode: .~1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-1069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004532
  issn: 1359-8368
  databaseCode: ACRLP
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB5KBdGDuGJdyghexyaZyQZeSrFUpRW0hd5CZpNISUoT8eZvd14WrSAoeEyYF8KbyVvI974PoUtpe0JRR5NQUYsw5sckZLYi0ndUwETgUwnzzuOJN5qxu7k7b6FBMwsDsMo69lcxvYzW9Z1e7c3eMkl6TzaQz1EvcOzy_-kcJtiZDyoGV-_2GmN4KVIGiwms3kQXXxgvgG0DNkrl3LSKjg2IO79UfvshR63lneEu2qkLRtyv3mkPtVS6j7bXaAQP0AMImsFYOc40jtMkz4pVtkwEhjkrnJtdUFgvsjecpPhxOsaAdX_GpvLDOoGSE6sKQ57jSk_6EM2GN9PBiNRCCURQxy6I48YWd2WohWmgTP-hTJPCpGBWLDV3XE0pNZ8ep6YNtmLNtOlKuWfSEKfKNQUHpUeonWapOkbYjWnsBRJozxiTiocBF35gHk9N7WBR1kFB45pI1CziIGaxiBq42Eu05tUIvBpVXu0g59N0WVFp_MXouvF_9O1cRCbk_25-8j_zU7QFVxU07Ay1i9WrOjdFSMG75Snroo3-7f1o8gEq9Nzu
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qBR8H8Yn1uYLX2GR38wIvUixV2wpaobeQTXYlUpLSRrz5293JQysICl6TnRBmNzPzkW_mAziPLSeSjCrDl8w0OHdDw-eWNGKXSo9Hnsti7HceDJ3eE78d2-MGdOpeGKRVVrG_jOlFtK6utCtvtqdJ0n60cPgcczxqFf9Px0uwzG3qIgK7eLcWRoYXKmW42sDlK3D2RfJC3jaSo-RcaKxILaTcuYX02w9JaiHxdDdho6oYyVX5UlvQkOk2rC_MEdyBe1Q0w75ykikSpsk8y2fZNIkINlqRud4GSdQkeyNJSh5GA4Jk92eiSz-iEqw5iSxJ5HNSCkrvwlP3etTpGZVSghExauUGtUNT2LGvIo2gNACRGqXwOOJmGCtBbcUY09-eYBoHm6HiSsNS4eg8JJi0dcXB2B400yyV-0DskIWOF-PcM85jKXxPRK6nH8908WAy3gKvdk0QVWPEUc1iEtR8sZdgwasBejUovdoC-mk6LWdp_MXosvZ_8O1gBDrm_25-8D_zU1jtjQb9oH8zvDuENbxT8sSOoJnPXuWxrkhycVKcuA9lkt6D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+of+anisotropic+dual+scale+flow+in+RTM+using+the+finite+elements+method&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Facciotto%2C+Silvio&rft.au=Simacek%2C+Pavel&rft.au=Advani%2C+Suresh+G.&rft.au=Middendorf%2C+Peter&rft.date=2021-06-01&rft.issn=1359-8368&rft.volume=214&rft.spage=108735&rft_id=info:doi/10.1016%2Fj.compositesb.2021.108735&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compositesb_2021_108735
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon