Probabilistic method for wind speed prediction and statistics distribution inference based on SHM data-driven

For wind-sensitive structures, such as long-span bridges, high-rise buildings, transmission towers, etc., the prediction of wind speed and its statistical distribution are vital steps in the design and operation stages. Specifically, wind speed prediction is directly related to the value of wind loa...

Full description

Saved in:
Bibliographic Details
Published inProbabilistic engineering mechanics Vol. 73; p. 103475
Main Authors Ding, Yang, Ye, Xiao-Wei, Guo, Yong, Zhang, Ru, Ma, Zhi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2023
Subjects
Online AccessGet full text
ISSN0266-8920
DOI10.1016/j.probengmech.2023.103475

Cover

Abstract For wind-sensitive structures, such as long-span bridges, high-rise buildings, transmission towers, etc., the prediction of wind speed and its statistical distribution are vital steps in the design and operation stages. Specifically, wind speed prediction is directly related to the value of wind load in the next occurrence; the statistical distribution of wind speed has regular characteristics, which can represent the random characteristics of wind field. In this paper, a probabilistic prediction model of wind speed based on Bayes’ theorem is proposed and verified based on structural health monitoring (SHM) data. Firstly, the Gaussian process is derived and used as an a priori function in Bayes’ theorem. In addition, the influence of six covariance functions on the prediction performance are discussed, that is, squared exponential (SE), Matern-3/2 (MA-3/2), Matern-5/2 (MA-5/2), automatic relevance determination SE (ARDSE), ARDMA-3/2, and ARDMA-5/2. Secondly, the correlation between the next wind speed and the previous wind speed is discussed by using the moving window method. Finally, the parameters in the three wind speed probability distribution functions (PDF), that is, Gumbel distribution, Weibull distribution, Rayleigh distribution, are updated in real time by increasing the SHM data based on Bayes’ theorem.
AbstractList For wind-sensitive structures, such as long-span bridges, high-rise buildings, transmission towers, etc., the prediction of wind speed and its statistical distribution are vital steps in the design and operation stages. Specifically, wind speed prediction is directly related to the value of wind load in the next occurrence; the statistical distribution of wind speed has regular characteristics, which can represent the random characteristics of wind field. In this paper, a probabilistic prediction model of wind speed based on Bayes’ theorem is proposed and verified based on structural health monitoring (SHM) data. Firstly, the Gaussian process is derived and used as an a priori function in Bayes’ theorem. In addition, the influence of six covariance functions on the prediction performance are discussed, that is, squared exponential (SE), Matern-3/2 (MA-3/2), Matern-5/2 (MA-5/2), automatic relevance determination SE (ARDSE), ARDMA-3/2, and ARDMA-5/2. Secondly, the correlation between the next wind speed and the previous wind speed is discussed by using the moving window method. Finally, the parameters in the three wind speed probability distribution functions (PDF), that is, Gumbel distribution, Weibull distribution, Rayleigh distribution, are updated in real time by increasing the SHM data based on Bayes’ theorem.
ArticleNumber 103475
Author Zhang, Ru
Ma, Zhi
Ding, Yang
Ye, Xiao-Wei
Guo, Yong
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-1298-1710
  surname: Ding
  fullname: Ding, Yang
  email: ceyangding@zju.edu.cn
  organization: Zhejiang Engineering Research Center of Intelligent Urban Infrastructure, Hangzhou City University, Hangzhou, 310015, China
– sequence: 2
  givenname: Xiao-Wei
  surname: Ye
  fullname: Ye, Xiao-Wei
  email: cexwye@zju.edu.cn
  organization: Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
– sequence: 3
  givenname: Yong
  surname: Guo
  fullname: Guo, Yong
  email: 450437318@qq.com
  organization: Zhejiang Jiashao Bridge Investment and Development Co., Ltd., Shaoxing, 312366, China
– sequence: 4
  givenname: Ru
  surname: Zhang
  fullname: Zhang, Ru
  email: zhangru@hzcu.edu.cn
  organization: Zhejiang Engineering Research Center of Intelligent Urban Infrastructure, Hangzhou City University, Hangzhou, 310015, China
– sequence: 5
  givenname: Zhi
  surname: Ma
  fullname: Ma, Zhi
  email: mazhi@hzcu.edu.cn
  organization: Zhejiang Engineering Research Center of Intelligent Urban Infrastructure, Hangzhou City University, Hangzhou, 310015, China
BookMark eNqNkM1OwzAQhH0oEm3hHcwDpNhO4qQnhCqgSEUgAWfLPxvqqrUj2xTx9jgtB8Spp9XO7ow03wSNnHeA0BUlM0oov97M-uAVuI8d6PWMEVZmvayaeoTGhHFetHNGztEkxg0htKHVfIx2L9kild3amKzGO0hrb3DnA_6yzuDYAxjcBzBWJ-sdloOYZDq8R2zyDFZ9Hm7WdRDAacBKxmzL0uvyCRuZZGGC3YO7QGed3Ea4_J1T9H5_97ZYFqvnh8fF7arQJaOpoLphvCwll5q1NeekolybirNWdVSB0lRxLluoeV2TRuW9JozojhEou8awcormx1wdfIwBOtEHu5PhW1AiBlZiI_6wEgMrcWSVvTf_vNoOhb1LQdrtSQmLYwLkinsLQURtBy7GBtBJGG9PSPkB6oSUPQ
CitedBy_id crossref_primary_10_3390_su17020695
crossref_primary_10_1016_j_dibe_2024_100569
crossref_primary_10_1007_s13349_023_00714_4
crossref_primary_10_3390_app132312744
crossref_primary_10_1177_13694332241247923
crossref_primary_10_1016_j_istruc_2025_108650
crossref_primary_10_3390_electronics13183710
crossref_primary_10_3390_buildings14092718
crossref_primary_10_3390_fractalfract8110656
crossref_primary_10_1002_eng2_12781
crossref_primary_10_1002_eng2_12780
crossref_primary_10_1002_eng2_12782
crossref_primary_10_1080_13467581_2024_2345312
crossref_primary_10_3390_buildings14072054
crossref_primary_10_1088_1402_4896_ad398c
crossref_primary_10_1631_jzus_A2200573
crossref_primary_10_3390_app132413138
crossref_primary_10_1007_s13349_024_00810_z
crossref_primary_10_1088_2631_8695_ad5e34
crossref_primary_10_1016_j_probengmech_2023_103541
crossref_primary_10_1016_j_engstruct_2024_119523
crossref_primary_10_1016_j_heliyon_2024_e39383
crossref_primary_10_1016_j_probengmech_2023_103483
crossref_primary_10_1631_jzus_A2200599
crossref_primary_10_1002_eng2_12778
crossref_primary_10_1016_j_istruc_2023_104996
crossref_primary_10_3390_s24030866
crossref_primary_10_1038_s41598_025_90583_2
crossref_primary_10_1016_j_apenergy_2023_122015
crossref_primary_10_1007_s12205_024_0371_6
crossref_primary_10_1016_j_asoc_2024_112007
crossref_primary_10_3390_su16145843
crossref_primary_10_1016_j_dsp_2024_104838
crossref_primary_10_3390_ma16186341
crossref_primary_10_1080_13467581_2024_2378004
crossref_primary_10_1016_j_probengmech_2023_103502
crossref_primary_10_1088_2631_8695_ad45b6
crossref_primary_10_1088_2631_8695_ad681d
Cites_doi 10.1177/1475921711424520
10.1093/biomet/asx075
10.1111/sjos.12046
10.1007/s13349-022-00662-5
10.1016/j.apenergy.2013.08.025
10.1007/BF02829088
10.1002/stc.2650
10.1016/S0167-4730(01)00016-9
10.1016/j.oceaneng.2014.09.029
10.1002/nme.5305
10.1016/j.engstruct.2020.110520
10.1002/stc.2258
10.1155/2023/4950487
10.1016/j.ymssp.2021.108204
10.1023/A:1014463014150
10.1016/j.jweia.2017.07.021
10.1016/j.renene.2003.11.009
10.1007/s13349-020-00430-3
10.1177/0309524X21999964
10.1016/S0266-8920(02)00013-9
10.1093/bioinformatics/btv267
10.1016/j.ymssp.2022.109624
10.1016/j.neucom.2020.06.114
10.1016/j.renene.2004.07.007
10.1002/we.2613
10.1061/(ASCE)BE.1943-5592.0000941
10.1002/rnc.4095
10.1016/j.renene.2012.07.041
10.1016/j.istruc.2022.12.028
10.1016/j.neucom.2020.09.002
10.1061/(ASCE)CP.1943-5487.0000429
10.1016/j.rser.2014.10.028
10.1016/j.jweia.2007.07.001
10.1002/stc.2699
10.1061/(ASCE)ST.1943-541X.0002085
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.probengmech.2023.103475
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
ExternalDocumentID 10_1016_j_probengmech_2023_103475
S0266892023000644
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c321t-1c72633a6ac285660416cd4628bf1bebc1b66a8e565507bbc15020cf20e3f7d23
IEDL.DBID .~1
ISSN 0266-8920
IngestDate Thu Oct 09 00:32:47 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Tue Dec 03 03:45:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bayes’ theorem
Wind speed prediction
Gaussian process
Covariance functions
Structural health monitoring
Wind speed statistics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-1c72633a6ac285660416cd4628bf1bebc1b66a8e565507bbc15020cf20e3f7d23
ORCID 0000-0002-1298-1710
ParticipantIDs crossref_primary_10_1016_j_probengmech_2023_103475
crossref_citationtrail_10_1016_j_probengmech_2023_103475
elsevier_sciencedirect_doi_10_1016_j_probengmech_2023_103475
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Probabilistic engineering mechanics
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Ni, Zhang, Zhang (b16) 2021
Ye, Ding, Wan (b12) 2021; 28
Feng, Huang, Li (b28) 2020; 414
Xu, Forde, Ren, Huang (b15) 2021
Davis, Hans, Santner (b29) 2021
Ye, Ding, Wan (b5) 2019; 24
Song, Renson, Noel, Moaveni, Kerschen (b23) 2018; 25
An, Choi, Kim (b25) 2013; 11
Ye, Hong, Wang (b7) 2015; 29
Ni, Wang, Zhang (b26) 2020; 212
Liao, Liu, Deng (b9) 2021; 24
Macdonald, Larose (b3) 2008; 96
Penfold, Millar, Wild (b35) 2015; 31
Ryoo, Lee (b20) 2004; 8
Bolin (b34) 2014; 41
Ding, Ye, Guo (b45) 2023; 47
Ericok, Zbek, Cemgil, Erturk (b37) 2019
Wan, Ni (b31) 2018; 18
Ding, Ye, Guo (b43) 2023
Mohandes, Halawani, Rehman, Hussain (b11) 2004; 29
Ding, Ye, Guo (b44) 2023; 13
Jiang, Song, Kusiak (b17) 2013; 50
Phoon, Huang, Quek (b32) 2002; 17
Ni, Li, Han, Xu, Du (b14) 2023; 183
Simiu, Heckert, Filliben, Johnson (b38) 2001; 23
Toure (b39) 2005; 30
Kang, Reich, Staicu (b36) 2016; 105
Faghih-Roohi, Xie, Ng (b41) 2014; 91
Wan, Ni (b30) 2018; 144
Pishgar-Komleh, Keyhani, Sefeedpari (b40) 2015; 42
Cai, Peng (b22) 2002; 33
Ni, Han, Du, Cheng (b13) 2022; 164
Ye, Yuan, Xi, Liu (b1) 2018; 21
Garbunoinigo, Diazdelao, Zuev (b42) 2016; 6
Wan, Ren, Todd (b27) 2017; 109
Ye, Ding, Wan (b18) 2020; 10
Chen, Jie (b8) 2014; 113
Yu, Li, Xu (b24) 2017; 28
Xu, Ying, Li, Zhang (b2) 2016; 21
Kumar, Kumar (b19) 2021; 45
Chang, Yamada (b33) 2008; 134
Chen, Zhao, Jia, Li (b6) 2021
Castillo-Barnes, Martinez-Murcia, Ramírez, Górriz, Salas-Gonzalez (b21) 2020; 413
Ye, Xi, Su, Chen (b4) 2017; 63
Huang, He, He, Zhu (b10) 2017; 170
Xu (10.1016/j.probengmech.2023.103475_b15) 2021
Castillo-Barnes (10.1016/j.probengmech.2023.103475_b21) 2020; 413
Ding (10.1016/j.probengmech.2023.103475_b45) 2023; 47
Chen (10.1016/j.probengmech.2023.103475_b6) 2021
Ni (10.1016/j.probengmech.2023.103475_b26) 2020; 212
Wan (10.1016/j.probengmech.2023.103475_b27) 2017; 109
Xu (10.1016/j.probengmech.2023.103475_b2) 2016; 21
Wan (10.1016/j.probengmech.2023.103475_b31) 2018; 18
Penfold (10.1016/j.probengmech.2023.103475_b35) 2015; 31
Ericok (10.1016/j.probengmech.2023.103475_b37) 2019
Pishgar-Komleh (10.1016/j.probengmech.2023.103475_b40) 2015; 42
Ding (10.1016/j.probengmech.2023.103475_b43) 2023
Ni (10.1016/j.probengmech.2023.103475_b14) 2023; 183
An (10.1016/j.probengmech.2023.103475_b25) 2013; 11
Ye (10.1016/j.probengmech.2023.103475_b4) 2017; 63
Song (10.1016/j.probengmech.2023.103475_b23) 2018; 25
Chang (10.1016/j.probengmech.2023.103475_b33) 2008; 134
Macdonald (10.1016/j.probengmech.2023.103475_b3) 2008; 96
Ye (10.1016/j.probengmech.2023.103475_b5) 2019; 24
Ni (10.1016/j.probengmech.2023.103475_b13) 2022; 164
Davis (10.1016/j.probengmech.2023.103475_b29) 2021
Kumar (10.1016/j.probengmech.2023.103475_b19) 2021; 45
Phoon (10.1016/j.probengmech.2023.103475_b32) 2002; 17
Huang (10.1016/j.probengmech.2023.103475_b10) 2017; 170
Wan (10.1016/j.probengmech.2023.103475_b30) 2018; 144
Bolin (10.1016/j.probengmech.2023.103475_b34) 2014; 41
Wang (10.1016/j.probengmech.2023.103475_b16) 2021
Jiang (10.1016/j.probengmech.2023.103475_b17) 2013; 50
Simiu (10.1016/j.probengmech.2023.103475_b38) 2001; 23
Garbunoinigo (10.1016/j.probengmech.2023.103475_b42) 2016; 6
Ye (10.1016/j.probengmech.2023.103475_b12) 2021; 28
Toure (10.1016/j.probengmech.2023.103475_b39) 2005; 30
Cai (10.1016/j.probengmech.2023.103475_b22) 2002; 33
Ryoo (10.1016/j.probengmech.2023.103475_b20) 2004; 8
Faghih-Roohi (10.1016/j.probengmech.2023.103475_b41) 2014; 91
Feng (10.1016/j.probengmech.2023.103475_b28) 2020; 414
Liao (10.1016/j.probengmech.2023.103475_b9) 2021; 24
Ye (10.1016/j.probengmech.2023.103475_b18) 2020; 10
Mohandes (10.1016/j.probengmech.2023.103475_b11) 2004; 29
Yu (10.1016/j.probengmech.2023.103475_b24) 2017; 28
Ye (10.1016/j.probengmech.2023.103475_b7) 2015; 29
Chen (10.1016/j.probengmech.2023.103475_b8) 2014; 113
Ye (10.1016/j.probengmech.2023.103475_b1) 2018; 21
Kang (10.1016/j.probengmech.2023.103475_b36) 2016; 105
Ding (10.1016/j.probengmech.2023.103475_b44) 2023; 13
References_xml – volume: 144
  year: 2018
  ident: b30
  article-title: Bayesian modeling approach for forecast of structural stress response using structural health monitoring data
  publication-title: J. Struct. Eng.
– volume: 113
  start-page: 690
  year: 2014
  end-page: 705
  ident: b8
  article-title: Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
  publication-title: Appl. Energy
– volume: 33
  start-page: 61
  year: 2002
  end-page: 71
  ident: b22
  article-title: Cooperative coevolutionary adaptive genetic algorithm in path planning of cooperative multi-mobile robot systems
  publication-title: J. Intell. Robot. Syst.
– volume: 24
  start-page: 991
  year: 2021
  end-page: 1012
  ident: b9
  article-title: Short-term wind speed multistep combined forecasting model based on two-stage decomposition and lstm
  publication-title: Wind Energy
– volume: 6
  start-page: 341
  year: 2016
  end-page: 359
  ident: b42
  article-title: Slice sampling
  publication-title: Int. J. Uncertain. Quantif.
– start-page: 1
  year: 2021
  end-page: 14
  ident: b15
  article-title: A Bayesian approach for site-specific extreme load prediction of large scale bridges
  publication-title: Struct. Infrastr. Eng.
– volume: 21
  start-page: 591
  year: 2018
  end-page: 600
  ident: b1
  article-title: SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling
  publication-title: Smart Struct. Syst.
– volume: 11
  start-page: 293
  year: 2013
  end-page: 303
  ident: b25
  article-title: Identification of correlated damage parameters under noise and bias using Bayesian inference
  publication-title: Struct. Health Monit.
– volume: 31
  start-page: 97
  year: 2015
  end-page: 105
  ident: b35
  article-title: Inferring orthologous gene regulatory networks using interspecies data fusion
  publication-title: Bioinformatics
– volume: 63
  start-page: 809
  year: 2017
  end-page: 824
  ident: b4
  article-title: Analysis and probabilistic modeling of wind characteristics of an arch bridge using structural health monitoring data during typhoons
  publication-title: Struct. Eng. Mech.
– volume: 164
  year: 2022
  ident: b13
  article-title: Bayesian model updating of civil structures with likelihood-free inference approach and response reconstruction technique
  publication-title: Mech. Syst. Signal Process.
– volume: 25
  year: 2018
  ident: b23
  article-title: Bayesian model updating of nonlinear systems using nonlinear normal modes
  publication-title: Struct. Control Health Monit.
– volume: 96
  start-page: 308
  year: 2008
  end-page: 326
  ident: b3
  article-title: Two-degree-of-freedom inclined cable galloping-part 2: analysis and prevention for arbitrary frequency ratio
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 10
  start-page: 987
  year: 2020
  end-page: 1000
  ident: b18
  article-title: Statistical evaluation of wind properties based on long-term monitoring data
  publication-title: J. Civ. Struct. Health Monit.
– volume: 13
  start-page: 579
  year: 2023
  end-page: 589
  ident: b44
  article-title: Data set from wind, temperature, humidity and cable acceleration monitoring of the Jiashao bridge
  publication-title: J. Civ. Struct. Health Monit.
– year: 2023
  ident: b43
  article-title: A multistep direct and indirect atrategy for predicting wind direction based on the EMD-LSTM model
  publication-title: Struct. Control Health Monit.
– volume: 91
  start-page: 363
  year: 2014
  end-page: 370
  ident: b41
  article-title: Accident risk assessment in marine transportation via Markov modelling and Markov chain Monte Carlo simulation
  publication-title: Ocean Eng.
– volume: 8
  start-page: 129
  year: 2004
  end-page: 133
  ident: b20
  article-title: Genetic algorithm and simultaneous parameter estimation of the nested logit model
  publication-title: KSCE J. Civ. Eng.
– volume: 45
  start-page: 1544
  year: 2021
  end-page: 1556
  ident: b19
  article-title: Application of differential evolution for wind speed distribution parameters estimation
  publication-title: Wind Eng.
– volume: 413
  start-page: 210
  year: 2020
  end-page: 216
  ident: b21
  article-title: Expectation–maximization algorithm for finite mixture of
  publication-title: Neurocomputing
– volume: 30
  start-page: 511
  year: 2005
  end-page: 521
  ident: b39
  article-title: Investigations on the eigen-coordinates method for the 2-parameter weibull distribution of wind speed
  publication-title: Renew. Energy
– volume: 170
  start-page: 1
  year: 2017
  end-page: 17
  ident: b10
  article-title: Prediction of wind loads on high-rise building using a bp neural network combined with pod
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 29
  start-page: 939
  year: 2004
  end-page: 947
  ident: b11
  article-title: Support vector machines for wind speed prediction
  publication-title: Renew. Energy
– volume: 47
  start-page: 2074
  year: 2023
  end-page: 2080
  ident: b45
  article-title: Wind load assessment with the JPDF of wind speed and direction based on SHM data
  publication-title: Structures
– year: 2019
  ident: b37
  article-title: Gaussian process and design of experiments for surrogate modeling of optical properties of fractal aggregates
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 21
  year: 2016
  ident: b2
  article-title: Experimental explorations of the torsional vortex-induced vibrations of a bridge deck
  publication-title: J. Bridge Eng.
– volume: 41
  start-page: 557
  year: 2014
  end-page: 579
  ident: b34
  article-title: Spatial matern fields driven by non-gaussian noise
  publication-title: Scand. J. Statist.
– volume: 414
  start-page: 346
  year: 2020
  end-page: 355
  ident: b28
  article-title: Ultrasound image de-speckling by a hybrid deep network with transferred filtering and structural prior
  publication-title: Neurocomputing
– volume: 109
  start-page: 739
  year: 2017
  end-page: 760
  ident: b27
  article-title: An efficient metamodeling approach for uncertainty quantification of complex systems with arbitrary parameter probability distributions
  publication-title: Internat. J. Numer. Methods Engrg.
– start-page: 165
  year: 2021
  ident: b6
  article-title: Multi-step wind speed forecast based on sample clustering and an optimized hybrid system
  publication-title: Renew. Energy
– volume: 29
  year: 2015
  ident: b7
  article-title: Comparison of spatial interpolation methods for extreme wind speeds over Canada
  publication-title: J. Comput. Civ. Eng.
– start-page: 154
  year: 2021
  ident: b29
  article-title: Prediction of non-stationary response functions using a Bayesian composite Gaussian process
  publication-title: Comput. Statist. Data Anal.
– volume: 183
  year: 2023
  ident: b14
  article-title: Substructure approach for Bayesian probabilistic model updating using response reconstruction technique
  publication-title: Mech. Syst. Signal Process.
– volume: 134
  start-page: 1013
  year: 2008
  end-page: 1020
  ident: b33
  article-title: Bayesian learning using automatic relevance determination prior with an application to earthquake early warning
  publication-title: J. Eng. Mech.
– volume: 17
  start-page: 293
  year: 2002
  end-page: 303
  ident: b32
  article-title: Implementation of karhunen-loeve expansion for simulation using a wavelet-Galerkin scheme
  publication-title: Probab. Eng. Mech.
– volume: 18
  year: 2018
  ident: b31
  article-title: Bayesian multi-task learning methodology for reconstruction of structural health monitoring data
  publication-title: Struct. Health Monit.
– volume: 42
  start-page: 313
  year: 2015
  end-page: 322
  ident: b40
  article-title: Wind speed and power density analysis based on weibull and rayleigh distributions (a case study: firouzkooh county of iran)
  publication-title: Renew. Sustain. Energy Rev.
– volume: 28
  year: 2021
  ident: b12
  article-title: Probabilistic forecast of wind speed based on Bayesian emulator using monitoring data
  publication-title: Struct. Control Health Monit.
– volume: 23
  start-page: 221
  year: 2001
  end-page: 229
  ident: b38
  article-title: Extreme wind load estimates based on the gumbel distribution of dynamic pressures: an assessment
  publication-title: Struct. Saf.
– volume: 28
  start-page: 3475
  year: 2017
  end-page: 3500
  ident: b24
  article-title: Robust adaptive algorithm for nonlinear systems with unknown measurement noise and uncertain parameters by variational Bayesian inference
  publication-title: Internat. J. Robust Nonlinear Control
– year: 2021
  ident: b16
  article-title: Bayesian approaches for evaluating wind-resistant performance of long-span bridges using structural health monitoring data
  publication-title: Struct. Control Health Monit.
– volume: 50
  start-page: 637
  year: 2013
  end-page: 647
  ident: b17
  article-title: Very short-term wind speed forecasting with Bayesian structural break model
  publication-title: Renew. Energy
– volume: 212
  year: 2020
  ident: b26
  article-title: A Bayesian approach for condition assessment and damage alarm of bridge expansion joints using long-term structural health monitoring data
  publication-title: Eng. Struct.
– volume: 24
  start-page: 733
  year: 2019
  end-page: 744
  ident: b5
  article-title: Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study
  publication-title: Smart Struct. Syst.
– volume: 105
  start-page: 165
  year: 2016
  end-page: 184
  ident: b36
  article-title: Scalar-on-image regression via the soft-thresholded Gaussian process
  publication-title: Biometrika
– volume: 11
  start-page: 293
  issue: 3
  year: 2013
  ident: 10.1016/j.probengmech.2023.103475_b25
  article-title: Identification of correlated damage parameters under noise and bias using Bayesian inference
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921711424520
– volume: 105
  start-page: 165
  issue: 1
  year: 2016
  ident: 10.1016/j.probengmech.2023.103475_b36
  article-title: Scalar-on-image regression via the soft-thresholded Gaussian process
  publication-title: Biometrika
  doi: 10.1093/biomet/asx075
– volume: 41
  start-page: 557
  issue: 3
  year: 2014
  ident: 10.1016/j.probengmech.2023.103475_b34
  article-title: Spatial matern fields driven by non-gaussian noise
  publication-title: Scand. J. Statist.
  doi: 10.1111/sjos.12046
– volume: 13
  start-page: 579
  issue: 3
  year: 2023
  ident: 10.1016/j.probengmech.2023.103475_b44
  article-title: Data set from wind, temperature, humidity and cable acceleration monitoring of the Jiashao bridge
  publication-title: J. Civ. Struct. Health Monit.
  doi: 10.1007/s13349-022-00662-5
– volume: 113
  start-page: 690
  issue: 1
  year: 2014
  ident: 10.1016/j.probengmech.2023.103475_b8
  article-title: Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.08.025
– start-page: 1
  year: 2021
  ident: 10.1016/j.probengmech.2023.103475_b15
  article-title: A Bayesian approach for site-specific extreme load prediction of large scale bridges
  publication-title: Struct. Infrastr. Eng.
– volume: 8
  start-page: 129
  issue: 1
  year: 2004
  ident: 10.1016/j.probengmech.2023.103475_b20
  article-title: Genetic algorithm and simultaneous parameter estimation of the nested logit model
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/BF02829088
– volume: 28
  issue: 1
  year: 2021
  ident: 10.1016/j.probengmech.2023.103475_b12
  article-title: Probabilistic forecast of wind speed based on Bayesian emulator using monitoring data
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.2650
– volume: 18
  issue: 8
  year: 2018
  ident: 10.1016/j.probengmech.2023.103475_b31
  article-title: Bayesian multi-task learning methodology for reconstruction of structural health monitoring data
  publication-title: Struct. Health Monit.
– volume: 23
  start-page: 221
  issue: 3
  year: 2001
  ident: 10.1016/j.probengmech.2023.103475_b38
  article-title: Extreme wind load estimates based on the gumbel distribution of dynamic pressures: an assessment
  publication-title: Struct. Saf.
  doi: 10.1016/S0167-4730(01)00016-9
– volume: 91
  start-page: 363
  issue: 11
  year: 2014
  ident: 10.1016/j.probengmech.2023.103475_b41
  article-title: Accident risk assessment in marine transportation via Markov modelling and Markov chain Monte Carlo simulation
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2014.09.029
– volume: 134
  start-page: 1013
  issue: 12
  year: 2008
  ident: 10.1016/j.probengmech.2023.103475_b33
  article-title: Bayesian learning using automatic relevance determination prior with an application to earthquake early warning
  publication-title: J. Eng. Mech.
– volume: 63
  start-page: 809
  issue: 6
  year: 2017
  ident: 10.1016/j.probengmech.2023.103475_b4
  article-title: Analysis and probabilistic modeling of wind characteristics of an arch bridge using structural health monitoring data during typhoons
  publication-title: Struct. Eng. Mech.
– volume: 109
  start-page: 739
  issue: 5
  year: 2017
  ident: 10.1016/j.probengmech.2023.103475_b27
  article-title: An efficient metamodeling approach for uncertainty quantification of complex systems with arbitrary parameter probability distributions
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.5305
– volume: 212
  year: 2020
  ident: 10.1016/j.probengmech.2023.103475_b26
  article-title: A Bayesian approach for condition assessment and damage alarm of bridge expansion joints using long-term structural health monitoring data
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110520
– volume: 25
  issue: 12
  year: 2018
  ident: 10.1016/j.probengmech.2023.103475_b23
  article-title: Bayesian model updating of nonlinear systems using nonlinear normal modes
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.2258
– year: 2023
  ident: 10.1016/j.probengmech.2023.103475_b43
  article-title: A multistep direct and indirect atrategy for predicting wind direction based on the EMD-LSTM model
  publication-title: Struct. Control Health Monit.
  doi: 10.1155/2023/4950487
– volume: 164
  year: 2022
  ident: 10.1016/j.probengmech.2023.103475_b13
  article-title: Bayesian model updating of civil structures with likelihood-free inference approach and response reconstruction technique
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108204
– year: 2019
  ident: 10.1016/j.probengmech.2023.103475_b37
  article-title: Gaussian process and design of experiments for surrogate modeling of optical properties of fractal aggregates
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 21
  start-page: 591
  issue: 5
  year: 2018
  ident: 10.1016/j.probengmech.2023.103475_b1
  article-title: SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling
  publication-title: Smart Struct. Syst.
– volume: 33
  start-page: 61
  issue: 1
  year: 2002
  ident: 10.1016/j.probengmech.2023.103475_b22
  article-title: Cooperative coevolutionary adaptive genetic algorithm in path planning of cooperative multi-mobile robot systems
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1023/A:1014463014150
– volume: 170
  start-page: 1
  year: 2017
  ident: 10.1016/j.probengmech.2023.103475_b10
  article-title: Prediction of wind loads on high-rise building using a bp neural network combined with pod
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2017.07.021
– volume: 29
  start-page: 939
  issue: 6
  year: 2004
  ident: 10.1016/j.probengmech.2023.103475_b11
  article-title: Support vector machines for wind speed prediction
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2003.11.009
– volume: 10
  start-page: 987
  issue: 5
  year: 2020
  ident: 10.1016/j.probengmech.2023.103475_b18
  article-title: Statistical evaluation of wind properties based on long-term monitoring data
  publication-title: J. Civ. Struct. Health Monit.
  doi: 10.1007/s13349-020-00430-3
– volume: 45
  start-page: 1544
  issue: 6
  year: 2021
  ident: 10.1016/j.probengmech.2023.103475_b19
  article-title: Application of differential evolution for wind speed distribution parameters estimation
  publication-title: Wind Eng.
  doi: 10.1177/0309524X21999964
– volume: 17
  start-page: 293
  issue: 3
  year: 2002
  ident: 10.1016/j.probengmech.2023.103475_b32
  article-title: Implementation of karhunen-loeve expansion for simulation using a wavelet-Galerkin scheme
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/S0266-8920(02)00013-9
– volume: 31
  start-page: 97
  issue: 12
  year: 2015
  ident: 10.1016/j.probengmech.2023.103475_b35
  article-title: Inferring orthologous gene regulatory networks using interspecies data fusion
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv267
– volume: 6
  start-page: 341
  issue: 4
  year: 2016
  ident: 10.1016/j.probengmech.2023.103475_b42
  article-title: Slice sampling
  publication-title: Int. J. Uncertain. Quantif.
– volume: 183
  year: 2023
  ident: 10.1016/j.probengmech.2023.103475_b14
  article-title: Substructure approach for Bayesian probabilistic model updating using response reconstruction technique
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109624
– volume: 24
  start-page: 733
  issue: 6
  year: 2019
  ident: 10.1016/j.probengmech.2023.103475_b5
  article-title: Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study
  publication-title: Smart Struct. Syst.
– volume: 413
  start-page: 210
  issue: 9
  year: 2020
  ident: 10.1016/j.probengmech.2023.103475_b21
  article-title: Expectation–maximization algorithm for finite mixture of α-stable distributions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.114
– volume: 30
  start-page: 511
  issue: 4
  year: 2005
  ident: 10.1016/j.probengmech.2023.103475_b39
  article-title: Investigations on the eigen-coordinates method for the 2-parameter weibull distribution of wind speed
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2004.07.007
– volume: 24
  start-page: 991
  issue: 9
  year: 2021
  ident: 10.1016/j.probengmech.2023.103475_b9
  article-title: Short-term wind speed multistep combined forecasting model based on two-stage decomposition and lstm
  publication-title: Wind Energy
  doi: 10.1002/we.2613
– start-page: 154
  year: 2021
  ident: 10.1016/j.probengmech.2023.103475_b29
  article-title: Prediction of non-stationary response functions using a Bayesian composite Gaussian process
  publication-title: Comput. Statist. Data Anal.
– volume: 21
  issue: 12
  year: 2016
  ident: 10.1016/j.probengmech.2023.103475_b2
  article-title: Experimental explorations of the torsional vortex-induced vibrations of a bridge deck
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0000941
– volume: 28
  start-page: 3475
  issue: 10
  year: 2017
  ident: 10.1016/j.probengmech.2023.103475_b24
  article-title: Robust adaptive algorithm for nonlinear systems with unknown measurement noise and uncertain parameters by variational Bayesian inference
  publication-title: Internat. J. Robust Nonlinear Control
  doi: 10.1002/rnc.4095
– volume: 50
  start-page: 637
  issue: 12
  year: 2013
  ident: 10.1016/j.probengmech.2023.103475_b17
  article-title: Very short-term wind speed forecasting with Bayesian structural break model
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.07.041
– volume: 47
  start-page: 2074
  issue: 1
  year: 2023
  ident: 10.1016/j.probengmech.2023.103475_b45
  article-title: Wind load assessment with the JPDF of wind speed and direction based on SHM data
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.12.028
– volume: 414
  start-page: 346
  issue: 24
  year: 2020
  ident: 10.1016/j.probengmech.2023.103475_b28
  article-title: Ultrasound image de-speckling by a hybrid deep network with transferred filtering and structural prior
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.002
– start-page: 165
  year: 2021
  ident: 10.1016/j.probengmech.2023.103475_b6
  article-title: Multi-step wind speed forecast based on sample clustering and an optimized hybrid system
  publication-title: Renew. Energy
– volume: 29
  issue: 6
  year: 2015
  ident: 10.1016/j.probengmech.2023.103475_b7
  article-title: Comparison of spatial interpolation methods for extreme wind speeds over Canada
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000429
– volume: 42
  start-page: 313
  year: 2015
  ident: 10.1016/j.probengmech.2023.103475_b40
  article-title: Wind speed and power density analysis based on weibull and rayleigh distributions (a case study: firouzkooh county of iran)
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.10.028
– volume: 96
  start-page: 308
  issue: 3
  year: 2008
  ident: 10.1016/j.probengmech.2023.103475_b3
  article-title: Two-degree-of-freedom inclined cable galloping-part 2: analysis and prevention for arbitrary frequency ratio
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2007.07.001
– year: 2021
  ident: 10.1016/j.probengmech.2023.103475_b16
  article-title: Bayesian approaches for evaluating wind-resistant performance of long-span bridges using structural health monitoring data
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.2699
– volume: 144
  issue: 9
  year: 2018
  ident: 10.1016/j.probengmech.2023.103475_b30
  article-title: Bayesian modeling approach for forecast of structural stress response using structural health monitoring data
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0002085
SSID ssj0017149
Score 2.5566945
Snippet For wind-sensitive structures, such as long-span bridges, high-rise buildings, transmission towers, etc., the prediction of wind speed and its statistical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103475
SubjectTerms Bayes’ theorem
Covariance functions
Gaussian process
Structural health monitoring
Wind speed prediction
Wind speed statistics
Title Probabilistic method for wind speed prediction and statistics distribution inference based on SHM data-driven
URI https://dx.doi.org/10.1016/j.probengmech.2023.103475
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0266-8920
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017149
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  issn: 0266-8920
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017149
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0266-8920
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017149
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0266-8920
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017149
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0266-8920
  databaseCode: AKRWK
  dateStart: 19860301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017149
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5jgvjiXZyXEcHXuDVJsxR8GcMxHRviHO6tNGkqE1fLNvHN325Om-oEQcGnktBDy0l6zpeey4fQuZdIqWWsSKwSTjiPNQmosUAuagqZKE9HDIqTB0PRG_ObiT-poE5ZCwNplc72FzY9t9ZupuG02cim08bInh6EDID-O3es0BOU8xawGFy8f6Z5AL93UPxnEQTuXkdnXzleQNpi0seZyeMSlEEJOoeUw5981Irf6W6jTQcYcbt4px1UMeku2nLgEbtPc7GHZrf2KXm7XOi8jAtmaGwhKX6zx268yKybwtkc4jKwFjiCSYjD542acQwNdB33FZ6WVYAYnFyM7dSoN8CQTUriOdjHfTTuXt13esRxKRDNqLcknm5RwVgkIk2lhXBNC8R0DIWpKvGUUdpTQkTSWHxnEaKyY98CSZ3QpmFJK6bsAFXTl9QcImzXkPo0SgKdaA6FrypgwofDrg648lgNyVJ7oXaNxoHv4jksM8qewhXFh6D4sFB8DdFP0azotvEXoctyicJvWye0XuF38aP_iR-jDRgVGbwnqLqcv5pTi1OWqp5vxDpaa1_3e0O49u8e-h-gCeyC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_mBPXFb3F-RvC1bk3SrAVfZDimbkPYBnsrTZrKxNWxTXzzbzfXpnOCoOBj0x4tl_Tud8nd_QAu3cT3lR9LJ5YJdziPlRNQbYBcVBN-Il0VMSxO7nRFa8Dvh96wBI2iFgbTKq3tz216Zq3tSNVqszoZjao9Ez0IP0D678yx8hVY5R6tYwR29bHI80CC7yDfaBEOPr4GF19JXsjaotOnsc4OJijDGnSOOYc_Oaklx9Pchk2LGMlN_lE7UNLpLmxZ9Ejsvznbg_GjeUvWLxdbL5OcGpoYTEreTdxNZhPjp8hkigczOBkkwkE8iM86NZMYO-ha8isyKsoACXq5mJihXqtDMJ3UiadoIPdh0LztN1qOJVNwFKPu3HFVnQrGIhEp6hsMVzNITMVYmSoTV2qpXClE5GsD8AxElObaM0hSJbSmWVKPKTuAcvqa6kMgZhKpR6MkUIniWPkqAyY8jHZVwKXLKuAX2guV7TSOhBcvYZFS9hwuKT5ExYe54itAF6KTvN3GX4SuiykKv62d0LiF38WP_id-Duutfqcdtu-6D8ewgXfydN4TKM-nb_rUgJa5PMsW5Se9zOx0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+method+for+wind+speed+prediction+and+statistics+distribution+inference+based+on+SHM+data-driven&rft.jtitle=Probabilistic+engineering+mechanics&rft.au=Ding%2C+Yang&rft.au=Ye%2C+Xiao-Wei&rft.au=Guo%2C+Yong&rft.au=Zhang%2C+Ru&rft.date=2023-07-01&rft.pub=Elsevier+Ltd&rft.issn=0266-8920&rft.volume=73&rft_id=info:doi/10.1016%2Fj.probengmech.2023.103475&rft.externalDocID=S0266892023000644
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-8920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-8920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-8920&client=summon