Deep learning algorithms for brain disease detection with magnetic induction tomography

Purpose In order to improve the reconstruction accuracy of magnetic induction tomography (MIT) and achieve fast imaging especially in the detection of cerebral hemorrhage, artificial intelligence algorithms are proposed to improve the accuracy of MIT inverse problem. Methods According to the standar...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 48; no. 2; pp. 745 - 759
Main Authors Chen, Ruijuan, Huang, Juan, Song, Yixiang, Li, Bingnan, Wang, Jinhai, Wang, Huiquan
Format Journal Article
LanguageEnglish
Published United States 01.02.2021
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
2473-4209
DOI10.1002/mp.14558

Cover

Abstract Purpose In order to improve the reconstruction accuracy of magnetic induction tomography (MIT) and achieve fast imaging especially in the detection of cerebral hemorrhage, artificial intelligence algorithms are proposed to improve the accuracy of MIT inverse problem. Methods According to the standard geometric data of human head, a three‐dimensional (3D) head model containing four layer tissues is established for brain image reconstruction of MIT. Four deep learning (DL) networks, including restricted Boltzmann machine (RBM), deep belief network (DBN), stacked autoencoder (SAE), and denoising autoencoder (DAE), are used to solve the nonlinear reconstruction problem of MIT, and the reconstruction results of DL networks and back‐projection algorithm are compared. Finally, in order to verify the practical value of DL algorithms, the phantom experiment is carried out with MIT detection system. Results Using the nonlinear data learning ability of DL algorithms, the rapid and high‐precision imaging of cerebral hemorrhage can be realized. Compared with the back‐projection algorithm, the DL improves the artifact and the accuracy of the reconstruction image. The location and volume of bleeding can be reconstructed and the prediction time reaches 20 ms. Moreover, the anti‐noise performance of the networks can reach 20 dB. Conclusions The DL can effectively improve the reconstruction accuracy and prediction speed of the image when it is applied to the reconstruction of cerebral hemorrhage in MIT. This feasibility study MIT to be a potential technology for brain diseases to fully meet the needs of accurate, rapid, and low‐cost clinical diagnosis and continuous monitoring.
AbstractList Purpose In order to improve the reconstruction accuracy of magnetic induction tomography (MIT) and achieve fast imaging especially in the detection of cerebral hemorrhage, artificial intelligence algorithms are proposed to improve the accuracy of MIT inverse problem. Methods According to the standard geometric data of human head, a three‐dimensional (3D) head model containing four layer tissues is established for brain image reconstruction of MIT. Four deep learning (DL) networks, including restricted Boltzmann machine (RBM), deep belief network (DBN), stacked autoencoder (SAE), and denoising autoencoder (DAE), are used to solve the nonlinear reconstruction problem of MIT, and the reconstruction results of DL networks and back‐projection algorithm are compared. Finally, in order to verify the practical value of DL algorithms, the phantom experiment is carried out with MIT detection system. Results Using the nonlinear data learning ability of DL algorithms, the rapid and high‐precision imaging of cerebral hemorrhage can be realized. Compared with the back‐projection algorithm, the DL improves the artifact and the accuracy of the reconstruction image. The location and volume of bleeding can be reconstructed and the prediction time reaches 20 ms. Moreover, the anti‐noise performance of the networks can reach 20 dB. Conclusions The DL can effectively improve the reconstruction accuracy and prediction speed of the image when it is applied to the reconstruction of cerebral hemorrhage in MIT. This feasibility study MIT to be a potential technology for brain diseases to fully meet the needs of accurate, rapid, and low‐cost clinical diagnosis and continuous monitoring.
In order to improve the reconstruction accuracy of magnetic induction tomography (MIT) and achieve fast imaging especially in the detection of cerebral hemorrhage, artificial intelligence algorithms are proposed to improve the accuracy of MIT inverse problem.PURPOSEIn order to improve the reconstruction accuracy of magnetic induction tomography (MIT) and achieve fast imaging especially in the detection of cerebral hemorrhage, artificial intelligence algorithms are proposed to improve the accuracy of MIT inverse problem.According to the standard geometric data of human head, a three-dimensional (3D) head model containing four layer tissues is established for brain image reconstruction of MIT. Four deep learning (DL) networks, including restricted Boltzmann machine (RBM), deep belief network (DBN), stacked autoencoder (SAE), and denoising autoencoder (DAE), are used to solve the nonlinear reconstruction problem of MIT, and the reconstruction results of DL networks and back-projection algorithm are compared. Finally, in order to verify the practical value of DL algorithms, the phantom experiment is carried out with MIT detection system.METHODSAccording to the standard geometric data of human head, a three-dimensional (3D) head model containing four layer tissues is established for brain image reconstruction of MIT. Four deep learning (DL) networks, including restricted Boltzmann machine (RBM), deep belief network (DBN), stacked autoencoder (SAE), and denoising autoencoder (DAE), are used to solve the nonlinear reconstruction problem of MIT, and the reconstruction results of DL networks and back-projection algorithm are compared. Finally, in order to verify the practical value of DL algorithms, the phantom experiment is carried out with MIT detection system.Using the nonlinear data learning ability of DL algorithms, the rapid and high-precision imaging of cerebral hemorrhage can be realized. Compared with the back-projection algorithm, the DL improves the artifact and the accuracy of the reconstruction image. The location and volume of bleeding can be reconstructed and the prediction time reaches 20 ms. Moreover, the anti-noise performance of the networks can reach 20 dB.RESULTSUsing the nonlinear data learning ability of DL algorithms, the rapid and high-precision imaging of cerebral hemorrhage can be realized. Compared with the back-projection algorithm, the DL improves the artifact and the accuracy of the reconstruction image. The location and volume of bleeding can be reconstructed and the prediction time reaches 20 ms. Moreover, the anti-noise performance of the networks can reach 20 dB.The DL can effectively improve the reconstruction accuracy and prediction speed of the image when it is applied to the reconstruction of cerebral hemorrhage in MIT. This feasibility study MIT to be a potential technology for brain diseases to fully meet the needs of accurate, rapid, and low-cost clinical diagnosis and continuous monitoring.CONCLUSIONSThe DL can effectively improve the reconstruction accuracy and prediction speed of the image when it is applied to the reconstruction of cerebral hemorrhage in MIT. This feasibility study MIT to be a potential technology for brain diseases to fully meet the needs of accurate, rapid, and low-cost clinical diagnosis and continuous monitoring.
In order to improve the reconstruction accuracy of magnetic induction tomography (MIT) and achieve fast imaging especially in the detection of cerebral hemorrhage, artificial intelligence algorithms are proposed to improve the accuracy of MIT inverse problem. According to the standard geometric data of human head, a three-dimensional (3D) head model containing four layer tissues is established for brain image reconstruction of MIT. Four deep learning (DL) networks, including restricted Boltzmann machine (RBM), deep belief network (DBN), stacked autoencoder (SAE), and denoising autoencoder (DAE), are used to solve the nonlinear reconstruction problem of MIT, and the reconstruction results of DL networks and back-projection algorithm are compared. Finally, in order to verify the practical value of DL algorithms, the phantom experiment is carried out with MIT detection system. Using the nonlinear data learning ability of DL algorithms, the rapid and high-precision imaging of cerebral hemorrhage can be realized. Compared with the back-projection algorithm, the DL improves the artifact and the accuracy of the reconstruction image. The location and volume of bleeding can be reconstructed and the prediction time reaches 20 ms. Moreover, the anti-noise performance of the networks can reach 20 dB. The DL can effectively improve the reconstruction accuracy and prediction speed of the image when it is applied to the reconstruction of cerebral hemorrhage in MIT. This feasibility study MIT to be a potential technology for brain diseases to fully meet the needs of accurate, rapid, and low-cost clinical diagnosis and continuous monitoring.
Author Li, Bingnan
Wang, Jinhai
Wang, Huiquan
Chen, Ruijuan
Huang, Juan
Song, Yixiang
Author_xml – sequence: 1
  givenname: Ruijuan
  surname: Chen
  fullname: Chen, Ruijuan
  organization: Tianjin Polytechnic University
– sequence: 2
  givenname: Juan
  surname: Huang
  fullname: Huang, Juan
  organization: Tianjin Polytechnic University
– sequence: 3
  givenname: Yixiang
  surname: Song
  fullname: Song, Yixiang
  organization: Tianjin Polytechnic University
– sequence: 4
  givenname: Bingnan
  surname: Li
  fullname: Li, Bingnan
  organization: Tianjin Polytechnic University
– sequence: 5
  givenname: Jinhai
  surname: Wang
  fullname: Wang, Jinhai
  organization: Tianjin Key Laboratory of Optoelectronic Detection Technology and System
– sequence: 6
  givenname: Huiquan
  surname: Wang
  fullname: Wang, Huiquan
  email: huiquan85@126.com
  organization: Tianjin Key Laboratory of Optoelectronic Detection Technology and System
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33119126$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtLAzEUhYNU7EPBXyBZupma10wnS6lPqOhCcTmkyZ02MpOMyZTSf-_UVgXR1YXDdw6Xb4h6zjtA6JSSMSWEXdTNmIo0zQ_QgIkJTwQjsocGhEiRMEHSPhrG-EYIyXhKjlCfc0olZdkAvV4BNLgCFZx1C6yqhQ-2XdYRlz7geVDWYWMjqAjYQAu6td7hdYfgWi0ctFZj68xql7e-9ougmuXmGB2Wqopwsr8j9HJz_Ty9S2aPt_fTy1miOaN5wkGqlExyRsscDMszRXORstSUkho-pzKl3atzwyRoUJQooaXIspwbNdFaEj5C57vdJvj3FcS2qG3UUFXKgV_Fgm21iIxQ2qFne3Q1r8EUTbC1CpviS8bPlg4-xgDlN0JJsfVc1E3x6blDx79QbVu1ddB2yqq_CsmusLYVbP4dLh6edvwHP0GM2g
CitedBy_id crossref_primary_10_3390_s21113869
crossref_primary_10_3390_electronics11152460
crossref_primary_10_1063_5_0050171
crossref_primary_10_1155_2022_2017223
crossref_primary_10_1155_2022_9430097
crossref_primary_10_1063_5_0041423
crossref_primary_10_1109_TIM_2021_3130287
crossref_primary_10_3390_app14083182
crossref_primary_10_1063_5_0107788
crossref_primary_10_3390_s23114993
crossref_primary_10_1109_JSEN_2023_3282198
crossref_primary_10_48084_etasr_8728
crossref_primary_10_1109_TIM_2022_3180406
crossref_primary_10_3233_JAE_210231
Cites_doi 10.1088/0967-3334/26/2/023
10.1080/17415977.2018.1518444
10.1016/j.neucom.2015.11.044
10.1137/080725891
10.1109/ICASSP.2015.7178320
10.1016/j.neucom.2013.03.047
10.1088/0967-3334/29/6/S38
10.1002/mrm.21799
10.1038/srep23962
10.1038/s41598-017-15979-1
10.1126/science.1127647
10.1126/sciadv.1700791
10.1109/TIM.2007.895598
10.1126/science.aag2302
10.1016/j.bios.2013.09.019
10.1088/0957-0233/12/8/319
10.1126/science.361.6408.1177
10.1109/20.996266
10.1109/TIP.2015.2487860
10.1038/s41598-018-25507-4
10.1088/0957-0233/24/7/074004
10.1166/jmihi.2014.1340
10.1007/s10916-013-9934-7
10.1088/0967-3334/25/1/038
10.1002/ima.22090
10.1016/j.media.2016.01.005
10.1166/jmihi.2017.2077
10.1088/0031-9155/54/9/005
ContentType Journal Article
Copyright 2020 American Association of Physicists in Medicine
2020 American Association of Physicists in Medicine.
Copyright_xml – notice: 2020 American Association of Physicists in Medicine
– notice: 2020 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/mp.14558
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 759
ExternalDocumentID 33119126
10_1002_mp_14558
MP14558
Genre article
Journal Article
GrantInformation_xml – fundername: Tianjin Science and Technology
  funderid: 18ZXRHSY00200
– fundername: Tianjin Municipal Education Commission Scientific Research Project
  funderid: 2019KJ023
– fundername: National Natural Science Foundation of China (NSFC)
  funderid: 81901789
– fundername: Natural Science Foundation of Tianjin City (Tianjin Natural Science Foundation)
  funderid: 19JCQNJC13000
– fundername: Tianjin Municipal Education Commission Scientific Research Project
  grantid: 2019KJ023
– fundername: Tianjin Science and Technology
  grantid: 18ZXRHSY00200
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 81901789
– fundername: Natural Science Foundation of Tianjin City (Tianjin Natural Science Foundation)
  grantid: 19JCQNJC13000
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3218-3e9a507821f8ed286a184525df91d3b1951311bd29ecea10a4c946683da7cc903
ISSN 0094-2405
2473-4209
IngestDate Fri Sep 05 10:55:14 EDT 2025
Thu Apr 03 07:09:33 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
Wed Oct 01 04:33:05 EDT 2025
Wed Jan 22 16:30:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords reconstruction images
cerebral hemorrhage
DL algorithms
magnetic induction tomography
Language English
License 2020 American Association of Physicists in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3218-3e9a507821f8ed286a184525df91d3b1951311bd29ecea10a4c946683da7cc903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33119126
PQID 2455846011
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2455846011
pubmed_primary_33119126
crossref_primary_10_1002_mp_14558
crossref_citationtrail_10_1002_mp_14558
wiley_primary_10_1002_mp_14558_MP14558
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
2021-Feb
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2021
References 2002; 38
2018; 362
2018; 361
2017; 7
2013; 24
2009; 61
2019; 54
2004; 25
2016; 30
2014; 24
2005; 26
2006; 313
2017; 355
2013; 5
2007; 56
2018; 27
2014; 137
2016; 185
2015; 24
2016; 6
2013; 37
2014; 4
2018; 4
2018; 1
2008; 29
2015
2017; 286
2014; 52
2001; 12
2009; 2
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
Daifeng W (e_1_2_8_26_1) 2018; 362
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
Zakaria Z (e_1_2_8_23_1) 2013; 5
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Yasaka K (e_1_2_8_17_1) 2017; 286
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 2
  start-page: 323
  year: 2009
  end-page: 343
  article-title: The split Bregman method for L1‐regularized problems
  publication-title: SIAM J Imaging Sci
– volume: 29
  start-page: S455
  year: 2008
  end-page: S464
  article-title: Calculation of the forward problem for absolute image reconstruction in MIT
  publication-title: Physiol. Meas
– volume: 286
  start-page: 170706
  year: 2017
  article-title: Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast‐enhanced CT: a preliminary study
  publication-title: Radiology
– volume: 12
  start-page: 1126
  year: 2001
  article-title: Magnetic induction tomography
  publication-title: Meas Sci Technol
– volume: 355
  start-page: 602
  year: 2017
  end-page: 606
  article-title: Solving the quantum many‐body problem with artificial neural networks
  publication-title: Science
– volume: 1
  start-page: 7025
  year: 2018
  article-title: Magnetic induction spectroscopy for permeability imaging
  publication-title: Sci Rep
– volume: 25
  start-page: 347
  year: 2004
  end-page: 354
  article-title: Detection of brain oedema using magnetic induction tomography: a feasibility study of the likely sensitivity and detectability
  publication-title: Physiol Meas
– volume: 361
  start-page: 1177
  year: 2018
  article-title: Brain scientists dive into deep neural networks
  publication-title: Science (New York, N.Y.)
– volume: 362
  year: 2018
  article-title: Comprehensive functional genomic resource and integrative model for the human brain
  publication-title: Science (New York, N.Y.)
– volume: 38
  start-page: 1037
  year: 2002
  end-page: 1040
  article-title: Use of intelligent‐particle swarm optimization in electromagnetics
  publication-title: IEEE Trans Magn
– volume: 27
  start-page: 987
  year: 2018
  end-page: 1005
  article-title: Deep learning for photoacoustic tomography from sparse data
  publication-title: Inverse Problems Sci Eng
– volume: 26
  start-page: S241
  year: 2005
  article-title: Solution of the inverse problem of magnetic induction tomography (MIT)
  publication-title: Physiol Meas
– volume: 6
  start-page: 1
  year: 2016
  end-page: 8
  article-title: Optical magnetic induction tomography of the heart
  publication-title: Sci Rep
– volume: 4
  year: 2018
  article-title: Optimal structure and parameter learning of Ising models
  publication-title: Sci Adv
– volume: 137
  start-page: 47
  year: 2014
  end-page: 56
  article-title: Time series forecasting using a deep belief network with restricted Boltzmann machines
  publication-title: Neurocomputing
– volume: 54
  start-page: 2667
  year: 2019
  end-page: 2682
  article-title: Solving the forward problem of magnetoacoustic tomography with magnetic induction by means of the finite element method
  publication-title: Phys Med Biol
– volume: 7
  start-page: 775
  year: 2017
  end-page: 779
  article-title: The application of intelligent algorithm and pulse coupled neural network in medical image process
  publication-title: J Med Imaging Health Inform
– volume: 185
  start-page: 1
  year: 2016
  end-page: 10
  article-title: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging
  publication-title: Neurocomputing
– volume: 30
  start-page: 108
  year: 2016
  end-page: 119
  article-title: A combined deep‐learning and deformable‐model approach to fully automatic segmentation of the left ventricle in cardiac MRI
  publication-title: Med Image Anal
– volume: 52
  start-page: 374
  year: 2014
  end-page: 378
  article-title: A new method for detecting cerebral hemorrhage in rabbits by magnetic inductive phase shift
  publication-title: Biosens Bioelectron
– volume: 61
  start-page: 145
  year: 2009
  end-page: 152
  article-title: Regularized sensitivity encoding (SENSE) reconstruction using bregman iterations
  publication-title: Magn Reson Med
– volume: 5
  start-page: 78
  year: 2013
  end-page: 82
  article-title: Magnetic induction tomography: a review on the potential application in agricultural industry of Malaysia
  publication-title: J Agric Sci
– volume: 4
  start-page: 907
  year: 2014
  end-page: 911
  article-title: Automatic MRI brain tissue extraction algorithm based on three‐dimensional gray‐scale transformation model
  publication-title: J Med Imaging Health Inform
– volume: 7
  start-page: 1
  year: 2017
  end-page: 11
  article-title: Metal solidification imaging process by magnetic induction tomography
  publication-title: Sci Rep
– volume: 37
  start-page: 9934
  year: 2013
  article-title: Intelligent medical disease diagnosis using improved hybrid genetic algorithm ‐ multilayer perceptron network
  publication-title: J Med Syst
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 24
  start-page: 161
  year: 2014
  end-page: 166
  article-title: Imaging of hemorrhagic stroke in magnetic induction tomography: an in vitro study
  publication-title: Int J Imaging Syst Technol
– volume: 24
  start-page: 5659
  year: 2015
  end-page: 5670
  article-title: Multimodal deep autoencoder for human pose recovery
  publication-title: IEEE Trans Image Process
– volume: 56
  start-page: 2024
  year: 2007
  end-page: 2032
  article-title: Image reconstruction for high‐contrast conductivity imaging in mutual induction tomography for industrial applications
  publication-title: IEEE Trans Instrum Meas
– volume: 24
  year: 2013
  article-title: Numerical approach for the sensitivity of a high‐frequency magnetic induction tomography system based on boundary elements and perturbation method
  publication-title: Meas Sci Technol
– year: 2015
– volume: 286
  start-page: 170706
  year: 2017
  ident: e_1_2_8_17_1
  article-title: Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast‐enhanced CT: a preliminary study
  publication-title: Radiology
– ident: e_1_2_8_13_1
  doi: 10.1088/0967-3334/26/2/023
– ident: e_1_2_8_19_1
  doi: 10.1080/17415977.2018.1518444
– ident: e_1_2_8_30_1
  doi: 10.1016/j.neucom.2015.11.044
– ident: e_1_2_8_12_1
  doi: 10.1137/080725891
– ident: e_1_2_8_31_1
  doi: 10.1109/ICASSP.2015.7178320
– ident: e_1_2_8_29_1
  doi: 10.1016/j.neucom.2013.03.047
– ident: e_1_2_8_11_1
  doi: 10.1088/0967-3334/29/6/S38
– ident: e_1_2_8_21_1
  doi: 10.1002/mrm.21799
– ident: e_1_2_8_2_1
  doi: 10.1038/srep23962
– ident: e_1_2_8_3_1
  doi: 10.1038/s41598-017-15979-1
– ident: e_1_2_8_27_1
  doi: 10.1126/science.1127647
– ident: e_1_2_8_28_1
  doi: 10.1126/sciadv.1700791
– ident: e_1_2_8_7_1
  doi: 10.1109/TIM.2007.895598
– ident: e_1_2_8_22_1
  doi: 10.1126/science.aag2302
– ident: e_1_2_8_5_1
  doi: 10.1016/j.bios.2013.09.019
– ident: e_1_2_8_8_1
  doi: 10.1088/0957-0233/12/8/319
– ident: e_1_2_8_20_1
  doi: 10.1126/science.361.6408.1177
– ident: e_1_2_8_16_1
  doi: 10.1109/20.996266
– ident: e_1_2_8_32_1
  doi: 10.1109/TIP.2015.2487860
– ident: e_1_2_8_4_1
  doi: 10.1038/s41598-018-25507-4
– ident: e_1_2_8_10_1
  doi: 10.1088/0957-0233/24/7/074004
– ident: e_1_2_8_24_1
  doi: 10.1166/jmihi.2014.1340
– ident: e_1_2_8_14_1
  doi: 10.1007/s10916-013-9934-7
– volume: 362
  start-page: eaat8486
  year: 2018
  ident: e_1_2_8_26_1
  article-title: Comprehensive functional genomic resource and integrative model for the human brain
  publication-title: Science (New York, N.Y.)
– ident: e_1_2_8_6_1
  doi: 10.1088/0967-3334/25/1/038
– ident: e_1_2_8_25_1
  doi: 10.1002/ima.22090
– ident: e_1_2_8_18_1
  doi: 10.1016/j.media.2016.01.005
– volume: 5
  start-page: 78
  year: 2013
  ident: e_1_2_8_23_1
  article-title: Magnetic induction tomography: a review on the potential application in agricultural industry of Malaysia
  publication-title: J Agric Sci
– ident: e_1_2_8_15_1
  doi: 10.1166/jmihi.2017.2077
– ident: e_1_2_8_9_1
  doi: 10.1088/0031-9155/54/9/005
SSID ssj0006350
Score 2.4334302
Snippet Purpose In order to improve the reconstruction accuracy of magnetic induction tomography (MIT) and achieve fast imaging especially in the detection of cerebral...
In order to improve the reconstruction accuracy of magnetic induction tomography (MIT) and achieve fast imaging especially in the detection of cerebral...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 745
SubjectTerms Algorithms
Artificial Intelligence
Brain - diagnostic imaging
Brain Diseases
cerebral hemorrhage
Deep Learning
DL algorithms
Humans
Image Processing, Computer-Assisted
magnetic induction tomography
Magnetic Phenomena
Phantoms, Imaging
reconstruction images
Tomography
Title Deep learning algorithms for brain disease detection with magnetic induction tomography
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.14558
https://www.ncbi.nlm.nih.gov/pubmed/33119126
https://www.proquest.com/docview/2455846011
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE9NeEIxbuclICB6qbI7jpMnj2EDVtKKJbWI8RY7tlKEljbZGQvx6jm9JxjYJeEkrx3WVfJ_sc459voPQ25STVAhRBoWUImBySoK05EIXEZDgjwglTG3A-edkdsL2T-PTPvfEZJesii3x68a8kv9BFdoAV50l-w_IdoNCA3wHfOEKCMP1rzDeU6rxdR8WE36-WIKr_91KLEwKXfzBb8BMpFopWxXcRF4rvqh1-uIEXHKrHwtGaDWUr_ZVntxGjo2AmBCtTpvmtqBHF0XYdUkeX9qzH21PuFnrwtH7g8Yjdwr429lP4ObCNx-YcwUf4Elq19cFI2jozy_rtcRMWpRNo4BRkg1nWJYOmEQH0-XUSklem8atLGzVbGkZ9XTYBQBoKgNnFGltOvqHjrZdmd2tu2iNwmRPRmhtZ29-cNQt0WBlEa9ETOi2_6MNtO5_etVMueZ7XHVljC1y_ADdd04E3rGMeIjuqHoTrc_dMYlNdO_QovUIfdUUwZ4iuKcIBopgQxHsKII7imBNEewpgjuK4J4ij9HJp4_Hu7PA1dIIRARWXBCpjMfaHAzLVEmaJhxc-5jGssxCGRUhGNrw5IWkmRKKh4QzoSsPpJHkUyEyEj1Bo3pZq2cIx2DzkFiqkgnOsiLJwCcVScw5jEUUU2P03r-6XDiheV3v5Dy3Etk0r5rcvO8xetP1bKy4yk19_NvPYebT21m8Vsv2Mqf6NktggRqjpxaWbhQP4xi9MzjdOnw-PzSfz28d4gXa6Jn-Eo1WF616BYboqnjtaPUbGRSJ9w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+algorithms+for+brain+disease+detection+with+magnetic+induction+tomography&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Chen%2C+Ruijuan&rft.au=Huang%2C+Juan&rft.au=Song%2C+Yixiang&rft.au=Li%2C+Bingnan&rft.date=2021-02-01&rft.eissn=2473-4209&rft.volume=48&rft.issue=2&rft.spage=745&rft_id=info:doi/10.1002%2Fmp.14558&rft_id=info%3Apmid%2F33119126&rft.externalDocID=33119126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon