Deep learning algorithms for brain disease detection with magnetic induction tomography
Purpose In order to improve the reconstruction accuracy of magnetic induction tomography (MIT) and achieve fast imaging especially in the detection of cerebral hemorrhage, artificial intelligence algorithms are proposed to improve the accuracy of MIT inverse problem. Methods According to the standar...
Saved in:
| Published in | Medical physics (Lancaster) Vol. 48; no. 2; pp. 745 - 759 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
01.02.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0094-2405 2473-4209 2473-4209 |
| DOI | 10.1002/mp.14558 |
Cover
| Abstract | Purpose
In order to improve the reconstruction accuracy of magnetic induction tomography (MIT) and achieve fast imaging especially in the detection of cerebral hemorrhage, artificial intelligence algorithms are proposed to improve the accuracy of MIT inverse problem.
Methods
According to the standard geometric data of human head, a three‐dimensional (3D) head model containing four layer tissues is established for brain image reconstruction of MIT. Four deep learning (DL) networks, including restricted Boltzmann machine (RBM), deep belief network (DBN), stacked autoencoder (SAE), and denoising autoencoder (DAE), are used to solve the nonlinear reconstruction problem of MIT, and the reconstruction results of DL networks and back‐projection algorithm are compared. Finally, in order to verify the practical value of DL algorithms, the phantom experiment is carried out with MIT detection system.
Results
Using the nonlinear data learning ability of DL algorithms, the rapid and high‐precision imaging of cerebral hemorrhage can be realized. Compared with the back‐projection algorithm, the DL improves the artifact and the accuracy of the reconstruction image. The location and volume of bleeding can be reconstructed and the prediction time reaches 20 ms. Moreover, the anti‐noise performance of the networks can reach 20 dB.
Conclusions
The DL can effectively improve the reconstruction accuracy and prediction speed of the image when it is applied to the reconstruction of cerebral hemorrhage in MIT. This feasibility study MIT to be a potential technology for brain diseases to fully meet the needs of accurate, rapid, and low‐cost clinical diagnosis and continuous monitoring. |
|---|---|
| AbstractList | Purpose
In order to improve the reconstruction accuracy of magnetic induction tomography (MIT) and achieve fast imaging especially in the detection of cerebral hemorrhage, artificial intelligence algorithms are proposed to improve the accuracy of MIT inverse problem.
Methods
According to the standard geometric data of human head, a three‐dimensional (3D) head model containing four layer tissues is established for brain image reconstruction of MIT. Four deep learning (DL) networks, including restricted Boltzmann machine (RBM), deep belief network (DBN), stacked autoencoder (SAE), and denoising autoencoder (DAE), are used to solve the nonlinear reconstruction problem of MIT, and the reconstruction results of DL networks and back‐projection algorithm are compared. Finally, in order to verify the practical value of DL algorithms, the phantom experiment is carried out with MIT detection system.
Results
Using the nonlinear data learning ability of DL algorithms, the rapid and high‐precision imaging of cerebral hemorrhage can be realized. Compared with the back‐projection algorithm, the DL improves the artifact and the accuracy of the reconstruction image. The location and volume of bleeding can be reconstructed and the prediction time reaches 20 ms. Moreover, the anti‐noise performance of the networks can reach 20 dB.
Conclusions
The DL can effectively improve the reconstruction accuracy and prediction speed of the image when it is applied to the reconstruction of cerebral hemorrhage in MIT. This feasibility study MIT to be a potential technology for brain diseases to fully meet the needs of accurate, rapid, and low‐cost clinical diagnosis and continuous monitoring. In order to improve the reconstruction accuracy of magnetic induction tomography (MIT) and achieve fast imaging especially in the detection of cerebral hemorrhage, artificial intelligence algorithms are proposed to improve the accuracy of MIT inverse problem.PURPOSEIn order to improve the reconstruction accuracy of magnetic induction tomography (MIT) and achieve fast imaging especially in the detection of cerebral hemorrhage, artificial intelligence algorithms are proposed to improve the accuracy of MIT inverse problem.According to the standard geometric data of human head, a three-dimensional (3D) head model containing four layer tissues is established for brain image reconstruction of MIT. Four deep learning (DL) networks, including restricted Boltzmann machine (RBM), deep belief network (DBN), stacked autoencoder (SAE), and denoising autoencoder (DAE), are used to solve the nonlinear reconstruction problem of MIT, and the reconstruction results of DL networks and back-projection algorithm are compared. Finally, in order to verify the practical value of DL algorithms, the phantom experiment is carried out with MIT detection system.METHODSAccording to the standard geometric data of human head, a three-dimensional (3D) head model containing four layer tissues is established for brain image reconstruction of MIT. Four deep learning (DL) networks, including restricted Boltzmann machine (RBM), deep belief network (DBN), stacked autoencoder (SAE), and denoising autoencoder (DAE), are used to solve the nonlinear reconstruction problem of MIT, and the reconstruction results of DL networks and back-projection algorithm are compared. Finally, in order to verify the practical value of DL algorithms, the phantom experiment is carried out with MIT detection system.Using the nonlinear data learning ability of DL algorithms, the rapid and high-precision imaging of cerebral hemorrhage can be realized. Compared with the back-projection algorithm, the DL improves the artifact and the accuracy of the reconstruction image. The location and volume of bleeding can be reconstructed and the prediction time reaches 20 ms. Moreover, the anti-noise performance of the networks can reach 20 dB.RESULTSUsing the nonlinear data learning ability of DL algorithms, the rapid and high-precision imaging of cerebral hemorrhage can be realized. Compared with the back-projection algorithm, the DL improves the artifact and the accuracy of the reconstruction image. The location and volume of bleeding can be reconstructed and the prediction time reaches 20 ms. Moreover, the anti-noise performance of the networks can reach 20 dB.The DL can effectively improve the reconstruction accuracy and prediction speed of the image when it is applied to the reconstruction of cerebral hemorrhage in MIT. This feasibility study MIT to be a potential technology for brain diseases to fully meet the needs of accurate, rapid, and low-cost clinical diagnosis and continuous monitoring.CONCLUSIONSThe DL can effectively improve the reconstruction accuracy and prediction speed of the image when it is applied to the reconstruction of cerebral hemorrhage in MIT. This feasibility study MIT to be a potential technology for brain diseases to fully meet the needs of accurate, rapid, and low-cost clinical diagnosis and continuous monitoring. In order to improve the reconstruction accuracy of magnetic induction tomography (MIT) and achieve fast imaging especially in the detection of cerebral hemorrhage, artificial intelligence algorithms are proposed to improve the accuracy of MIT inverse problem. According to the standard geometric data of human head, a three-dimensional (3D) head model containing four layer tissues is established for brain image reconstruction of MIT. Four deep learning (DL) networks, including restricted Boltzmann machine (RBM), deep belief network (DBN), stacked autoencoder (SAE), and denoising autoencoder (DAE), are used to solve the nonlinear reconstruction problem of MIT, and the reconstruction results of DL networks and back-projection algorithm are compared. Finally, in order to verify the practical value of DL algorithms, the phantom experiment is carried out with MIT detection system. Using the nonlinear data learning ability of DL algorithms, the rapid and high-precision imaging of cerebral hemorrhage can be realized. Compared with the back-projection algorithm, the DL improves the artifact and the accuracy of the reconstruction image. The location and volume of bleeding can be reconstructed and the prediction time reaches 20 ms. Moreover, the anti-noise performance of the networks can reach 20 dB. The DL can effectively improve the reconstruction accuracy and prediction speed of the image when it is applied to the reconstruction of cerebral hemorrhage in MIT. This feasibility study MIT to be a potential technology for brain diseases to fully meet the needs of accurate, rapid, and low-cost clinical diagnosis and continuous monitoring. |
| Author | Li, Bingnan Wang, Jinhai Wang, Huiquan Chen, Ruijuan Huang, Juan Song, Yixiang |
| Author_xml | – sequence: 1 givenname: Ruijuan surname: Chen fullname: Chen, Ruijuan organization: Tianjin Polytechnic University – sequence: 2 givenname: Juan surname: Huang fullname: Huang, Juan organization: Tianjin Polytechnic University – sequence: 3 givenname: Yixiang surname: Song fullname: Song, Yixiang organization: Tianjin Polytechnic University – sequence: 4 givenname: Bingnan surname: Li fullname: Li, Bingnan organization: Tianjin Polytechnic University – sequence: 5 givenname: Jinhai surname: Wang fullname: Wang, Jinhai organization: Tianjin Key Laboratory of Optoelectronic Detection Technology and System – sequence: 6 givenname: Huiquan surname: Wang fullname: Wang, Huiquan email: huiquan85@126.com organization: Tianjin Key Laboratory of Optoelectronic Detection Technology and System |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33119126$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kEtLAzEUhYNU7EPBXyBZupma10wnS6lPqOhCcTmkyZ02MpOMyZTSf-_UVgXR1YXDdw6Xb4h6zjtA6JSSMSWEXdTNmIo0zQ_QgIkJTwQjsocGhEiRMEHSPhrG-EYIyXhKjlCfc0olZdkAvV4BNLgCFZx1C6yqhQ-2XdYRlz7geVDWYWMjqAjYQAu6td7hdYfgWi0ctFZj68xql7e-9ougmuXmGB2Wqopwsr8j9HJz_Ty9S2aPt_fTy1miOaN5wkGqlExyRsscDMszRXORstSUkho-pzKl3atzwyRoUJQooaXIspwbNdFaEj5C57vdJvj3FcS2qG3UUFXKgV_Fgm21iIxQ2qFne3Q1r8EUTbC1CpviS8bPlg4-xgDlN0JJsfVc1E3x6blDx79QbVu1ddB2yqq_CsmusLYVbP4dLh6edvwHP0GM2g |
| CitedBy_id | crossref_primary_10_3390_s21113869 crossref_primary_10_3390_electronics11152460 crossref_primary_10_1063_5_0050171 crossref_primary_10_1155_2022_2017223 crossref_primary_10_1155_2022_9430097 crossref_primary_10_1063_5_0041423 crossref_primary_10_1109_TIM_2021_3130287 crossref_primary_10_3390_app14083182 crossref_primary_10_1063_5_0107788 crossref_primary_10_3390_s23114993 crossref_primary_10_1109_JSEN_2023_3282198 crossref_primary_10_48084_etasr_8728 crossref_primary_10_1109_TIM_2022_3180406 crossref_primary_10_3233_JAE_210231 |
| Cites_doi | 10.1088/0967-3334/26/2/023 10.1080/17415977.2018.1518444 10.1016/j.neucom.2015.11.044 10.1137/080725891 10.1109/ICASSP.2015.7178320 10.1016/j.neucom.2013.03.047 10.1088/0967-3334/29/6/S38 10.1002/mrm.21799 10.1038/srep23962 10.1038/s41598-017-15979-1 10.1126/science.1127647 10.1126/sciadv.1700791 10.1109/TIM.2007.895598 10.1126/science.aag2302 10.1016/j.bios.2013.09.019 10.1088/0957-0233/12/8/319 10.1126/science.361.6408.1177 10.1109/20.996266 10.1109/TIP.2015.2487860 10.1038/s41598-018-25507-4 10.1088/0957-0233/24/7/074004 10.1166/jmihi.2014.1340 10.1007/s10916-013-9934-7 10.1088/0967-3334/25/1/038 10.1002/ima.22090 10.1016/j.media.2016.01.005 10.1166/jmihi.2017.2077 10.1088/0031-9155/54/9/005 |
| ContentType | Journal Article |
| Copyright | 2020 American Association of Physicists in Medicine 2020 American Association of Physicists in Medicine. |
| Copyright_xml | – notice: 2020 American Association of Physicists in Medicine – notice: 2020 American Association of Physicists in Medicine. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1002/mp.14558 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 2473-4209 |
| EndPage | 759 |
| ExternalDocumentID | 33119126 10_1002_mp_14558 MP14558 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Tianjin Science and Technology funderid: 18ZXRHSY00200 – fundername: Tianjin Municipal Education Commission Scientific Research Project funderid: 2019KJ023 – fundername: National Natural Science Foundation of China (NSFC) funderid: 81901789 – fundername: Natural Science Foundation of Tianjin City (Tianjin Natural Science Foundation) funderid: 19JCQNJC13000 – fundername: Tianjin Municipal Education Commission Scientific Research Project grantid: 2019KJ023 – fundername: Tianjin Science and Technology grantid: 18ZXRHSY00200 – fundername: National Natural Science Foundation of China (NSFC) grantid: 81901789 – fundername: Natural Science Foundation of Tianjin City (Tianjin Natural Science Foundation) grantid: 19JCQNJC13000 |
| GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 53G 5GY 5RE 5VS AAHHS AAHQN AAIPD AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AIQQE CITATION LH4 CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c3218-3e9a507821f8ed286a184525df91d3b1951311bd29ecea10a4c946683da7cc903 |
| ISSN | 0094-2405 2473-4209 |
| IngestDate | Fri Sep 05 10:55:14 EDT 2025 Thu Apr 03 07:09:33 EDT 2025 Thu Apr 24 22:55:34 EDT 2025 Wed Oct 01 04:33:05 EDT 2025 Wed Jan 22 16:30:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | reconstruction images cerebral hemorrhage DL algorithms magnetic induction tomography |
| Language | English |
| License | 2020 American Association of Physicists in Medicine. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c3218-3e9a507821f8ed286a184525df91d3b1951311bd29ecea10a4c946683da7cc903 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 33119126 |
| PQID | 2455846011 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2455846011 pubmed_primary_33119126 crossref_primary_10_1002_mp_14558 crossref_citationtrail_10_1002_mp_14558 wiley_primary_10_1002_mp_14558_MP14558 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2021 2021-02-00 2021-Feb 20210201 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Medical physics (Lancaster) |
| PublicationTitleAlternate | Med Phys |
| PublicationYear | 2021 |
| References | 2002; 38 2018; 362 2018; 361 2017; 7 2013; 24 2009; 61 2019; 54 2004; 25 2016; 30 2014; 24 2005; 26 2006; 313 2017; 355 2013; 5 2007; 56 2018; 27 2014; 137 2016; 185 2015; 24 2016; 6 2013; 37 2014; 4 2018; 4 2018; 1 2008; 29 2015 2017; 286 2014; 52 2001; 12 2009; 2 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 Daifeng W (e_1_2_8_26_1) 2018; 362 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 Zakaria Z (e_1_2_8_23_1) 2013; 5 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Yasaka K (e_1_2_8_17_1) 2017; 286 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_30_1 |
| References_xml | – volume: 2 start-page: 323 year: 2009 end-page: 343 article-title: The split Bregman method for L1‐regularized problems publication-title: SIAM J Imaging Sci – volume: 29 start-page: S455 year: 2008 end-page: S464 article-title: Calculation of the forward problem for absolute image reconstruction in MIT publication-title: Physiol. Meas – volume: 286 start-page: 170706 year: 2017 article-title: Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast‐enhanced CT: a preliminary study publication-title: Radiology – volume: 12 start-page: 1126 year: 2001 article-title: Magnetic induction tomography publication-title: Meas Sci Technol – volume: 355 start-page: 602 year: 2017 end-page: 606 article-title: Solving the quantum many‐body problem with artificial neural networks publication-title: Science – volume: 1 start-page: 7025 year: 2018 article-title: Magnetic induction spectroscopy for permeability imaging publication-title: Sci Rep – volume: 25 start-page: 347 year: 2004 end-page: 354 article-title: Detection of brain oedema using magnetic induction tomography: a feasibility study of the likely sensitivity and detectability publication-title: Physiol Meas – volume: 361 start-page: 1177 year: 2018 article-title: Brain scientists dive into deep neural networks publication-title: Science (New York, N.Y.) – volume: 362 year: 2018 article-title: Comprehensive functional genomic resource and integrative model for the human brain publication-title: Science (New York, N.Y.) – volume: 38 start-page: 1037 year: 2002 end-page: 1040 article-title: Use of intelligent‐particle swarm optimization in electromagnetics publication-title: IEEE Trans Magn – volume: 27 start-page: 987 year: 2018 end-page: 1005 article-title: Deep learning for photoacoustic tomography from sparse data publication-title: Inverse Problems Sci Eng – volume: 26 start-page: S241 year: 2005 article-title: Solution of the inverse problem of magnetic induction tomography (MIT) publication-title: Physiol Meas – volume: 6 start-page: 1 year: 2016 end-page: 8 article-title: Optical magnetic induction tomography of the heart publication-title: Sci Rep – volume: 4 year: 2018 article-title: Optimal structure and parameter learning of Ising models publication-title: Sci Adv – volume: 137 start-page: 47 year: 2014 end-page: 56 article-title: Time series forecasting using a deep belief network with restricted Boltzmann machines publication-title: Neurocomputing – volume: 54 start-page: 2667 year: 2019 end-page: 2682 article-title: Solving the forward problem of magnetoacoustic tomography with magnetic induction by means of the finite element method publication-title: Phys Med Biol – volume: 7 start-page: 775 year: 2017 end-page: 779 article-title: The application of intelligent algorithm and pulse coupled neural network in medical image process publication-title: J Med Imaging Health Inform – volume: 185 start-page: 1 year: 2016 end-page: 10 article-title: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging publication-title: Neurocomputing – volume: 30 start-page: 108 year: 2016 end-page: 119 article-title: A combined deep‐learning and deformable‐model approach to fully automatic segmentation of the left ventricle in cardiac MRI publication-title: Med Image Anal – volume: 52 start-page: 374 year: 2014 end-page: 378 article-title: A new method for detecting cerebral hemorrhage in rabbits by magnetic inductive phase shift publication-title: Biosens Bioelectron – volume: 61 start-page: 145 year: 2009 end-page: 152 article-title: Regularized sensitivity encoding (SENSE) reconstruction using bregman iterations publication-title: Magn Reson Med – volume: 5 start-page: 78 year: 2013 end-page: 82 article-title: Magnetic induction tomography: a review on the potential application in agricultural industry of Malaysia publication-title: J Agric Sci – volume: 4 start-page: 907 year: 2014 end-page: 911 article-title: Automatic MRI brain tissue extraction algorithm based on three‐dimensional gray‐scale transformation model publication-title: J Med Imaging Health Inform – volume: 7 start-page: 1 year: 2017 end-page: 11 article-title: Metal solidification imaging process by magnetic induction tomography publication-title: Sci Rep – volume: 37 start-page: 9934 year: 2013 article-title: Intelligent medical disease diagnosis using improved hybrid genetic algorithm ‐ multilayer perceptron network publication-title: J Med Syst – volume: 313 start-page: 504 year: 2006 end-page: 507 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 24 start-page: 161 year: 2014 end-page: 166 article-title: Imaging of hemorrhagic stroke in magnetic induction tomography: an in vitro study publication-title: Int J Imaging Syst Technol – volume: 24 start-page: 5659 year: 2015 end-page: 5670 article-title: Multimodal deep autoencoder for human pose recovery publication-title: IEEE Trans Image Process – volume: 56 start-page: 2024 year: 2007 end-page: 2032 article-title: Image reconstruction for high‐contrast conductivity imaging in mutual induction tomography for industrial applications publication-title: IEEE Trans Instrum Meas – volume: 24 year: 2013 article-title: Numerical approach for the sensitivity of a high‐frequency magnetic induction tomography system based on boundary elements and perturbation method publication-title: Meas Sci Technol – year: 2015 – volume: 286 start-page: 170706 year: 2017 ident: e_1_2_8_17_1 article-title: Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast‐enhanced CT: a preliminary study publication-title: Radiology – ident: e_1_2_8_13_1 doi: 10.1088/0967-3334/26/2/023 – ident: e_1_2_8_19_1 doi: 10.1080/17415977.2018.1518444 – ident: e_1_2_8_30_1 doi: 10.1016/j.neucom.2015.11.044 – ident: e_1_2_8_12_1 doi: 10.1137/080725891 – ident: e_1_2_8_31_1 doi: 10.1109/ICASSP.2015.7178320 – ident: e_1_2_8_29_1 doi: 10.1016/j.neucom.2013.03.047 – ident: e_1_2_8_11_1 doi: 10.1088/0967-3334/29/6/S38 – ident: e_1_2_8_21_1 doi: 10.1002/mrm.21799 – ident: e_1_2_8_2_1 doi: 10.1038/srep23962 – ident: e_1_2_8_3_1 doi: 10.1038/s41598-017-15979-1 – ident: e_1_2_8_27_1 doi: 10.1126/science.1127647 – ident: e_1_2_8_28_1 doi: 10.1126/sciadv.1700791 – ident: e_1_2_8_7_1 doi: 10.1109/TIM.2007.895598 – ident: e_1_2_8_22_1 doi: 10.1126/science.aag2302 – ident: e_1_2_8_5_1 doi: 10.1016/j.bios.2013.09.019 – ident: e_1_2_8_8_1 doi: 10.1088/0957-0233/12/8/319 – ident: e_1_2_8_20_1 doi: 10.1126/science.361.6408.1177 – ident: e_1_2_8_16_1 doi: 10.1109/20.996266 – ident: e_1_2_8_32_1 doi: 10.1109/TIP.2015.2487860 – ident: e_1_2_8_4_1 doi: 10.1038/s41598-018-25507-4 – ident: e_1_2_8_10_1 doi: 10.1088/0957-0233/24/7/074004 – ident: e_1_2_8_24_1 doi: 10.1166/jmihi.2014.1340 – ident: e_1_2_8_14_1 doi: 10.1007/s10916-013-9934-7 – volume: 362 start-page: eaat8486 year: 2018 ident: e_1_2_8_26_1 article-title: Comprehensive functional genomic resource and integrative model for the human brain publication-title: Science (New York, N.Y.) – ident: e_1_2_8_6_1 doi: 10.1088/0967-3334/25/1/038 – ident: e_1_2_8_25_1 doi: 10.1002/ima.22090 – ident: e_1_2_8_18_1 doi: 10.1016/j.media.2016.01.005 – volume: 5 start-page: 78 year: 2013 ident: e_1_2_8_23_1 article-title: Magnetic induction tomography: a review on the potential application in agricultural industry of Malaysia publication-title: J Agric Sci – ident: e_1_2_8_15_1 doi: 10.1166/jmihi.2017.2077 – ident: e_1_2_8_9_1 doi: 10.1088/0031-9155/54/9/005 |
| SSID | ssj0006350 |
| Score | 2.4334302 |
| Snippet | Purpose
In order to improve the reconstruction accuracy of magnetic induction tomography (MIT) and achieve fast imaging especially in the detection of cerebral... In order to improve the reconstruction accuracy of magnetic induction tomography (MIT) and achieve fast imaging especially in the detection of cerebral... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 745 |
| SubjectTerms | Algorithms Artificial Intelligence Brain - diagnostic imaging Brain Diseases cerebral hemorrhage Deep Learning DL algorithms Humans Image Processing, Computer-Assisted magnetic induction tomography Magnetic Phenomena Phantoms, Imaging reconstruction images Tomography |
| Title | Deep learning algorithms for brain disease detection with magnetic induction tomography |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.14558 https://www.ncbi.nlm.nih.gov/pubmed/33119126 https://www.proquest.com/docview/2455846011 |
| Volume | 48 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2473-4209 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0006350 issn: 0094-2405 databaseCode: ADMLS dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE9NeEIxbuclICB6qbI7jpMnj2EDVtKKJbWI8RY7tlKEljbZGQvx6jm9JxjYJeEkrx3WVfJ_sc459voPQ25STVAhRBoWUImBySoK05EIXEZDgjwglTG3A-edkdsL2T-PTPvfEZJesii3x68a8kv9BFdoAV50l-w_IdoNCA3wHfOEKCMP1rzDeU6rxdR8WE36-WIKr_91KLEwKXfzBb8BMpFopWxXcRF4rvqh1-uIEXHKrHwtGaDWUr_ZVntxGjo2AmBCtTpvmtqBHF0XYdUkeX9qzH21PuFnrwtH7g8Yjdwr429lP4ObCNx-YcwUf4Elq19cFI2jozy_rtcRMWpRNo4BRkg1nWJYOmEQH0-XUSklem8atLGzVbGkZ9XTYBQBoKgNnFGltOvqHjrZdmd2tu2iNwmRPRmhtZ29-cNQt0WBlEa9ETOi2_6MNtO5_etVMueZ7XHVljC1y_ADdd04E3rGMeIjuqHoTrc_dMYlNdO_QovUIfdUUwZ4iuKcIBopgQxHsKII7imBNEewpgjuK4J4ij9HJp4_Hu7PA1dIIRARWXBCpjMfaHAzLVEmaJhxc-5jGssxCGRUhGNrw5IWkmRKKh4QzoSsPpJHkUyEyEj1Bo3pZq2cIx2DzkFiqkgnOsiLJwCcVScw5jEUUU2P03r-6XDiheV3v5Dy3Etk0r5rcvO8xetP1bKy4yk19_NvPYebT21m8Vsv2Mqf6NktggRqjpxaWbhQP4xi9MzjdOnw-PzSfz28d4gXa6Jn-Eo1WF616BYboqnjtaPUbGRSJ9w |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+algorithms+for+brain+disease+detection+with+magnetic+induction+tomography&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Chen%2C+Ruijuan&rft.au=Huang%2C+Juan&rft.au=Song%2C+Yixiang&rft.au=Li%2C+Bingnan&rft.date=2021-02-01&rft.eissn=2473-4209&rft.volume=48&rft.issue=2&rft.spage=745&rft_id=info:doi/10.1002%2Fmp.14558&rft_id=info%3Apmid%2F33119126&rft.externalDocID=33119126 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |