Milk-derived extracellular vesicles alleviate ulcerative colitis by regulating the gut immunity and reshaping the gut microbiota

Bovine milk constitutes an essential part of human diet, especially for children, due to its enrichment of various nutrients. We recently developed an effective protocol for the isolation of extracellular vesicles from milk (mEVs) and discovered that mEVs contained large amounts of immune-active pro...

Full description

Saved in:
Bibliographic Details
Published inTheranostics Vol. 11; no. 17; pp. 8570 - 8586
Main Authors Tong, Lingjun, Hao, Haining, Zhang, Zhe, Lv, Youyou, Liang, Xi, Liu, Qiqi, Liu, Tongjie, Gong, Pimin, Zhang, Lanwei, Cao, Fangfang, Pastorin, Giorgia, Lee, Chuen Neng, Chen, Xiaoyuan, Wang, Jiong-Wei, Yi, Huaxi
Format Journal Article
LanguageEnglish
Published Australia Ivyspring International Publisher Pty Ltd 2021
Ivyspring International Publisher
Subjects
Online AccessGet full text
ISSN1838-7640
1838-7640
DOI10.7150/thno.62046

Cover

Abstract Bovine milk constitutes an essential part of human diet, especially for children, due to its enrichment of various nutrients. We recently developed an effective protocol for the isolation of extracellular vesicles from milk (mEVs) and discovered that mEVs contained large amounts of immune-active proteins and modulated the gut immunity and microbiota in healthy mice. Here, we aimed to explore the therapeutic effects of mEVs on inflammatory bowel disease. MicroRNAs and protein content in mEVs were analyzed by RNA sequencing and proteomics, respectively, followed by functional annotation. Ulcerative colitis (UC) was induced by feeding mice with dextran sulfate sodium. Intestinal immune cell populations were phenotyped by flow cytometry, and the gut microbiota was analyzed 16S rRNA sequencing. We showed that abundant proteins and microRNAs in mEVs were involved in the regulation of immune and inflammatory pathways and that oral administration of mEVs prevented colon shortening, reduced intestinal epithelium disruption, inhibited infiltration of inflammatory cells and tissue fibrosis in a mouse UC model. Mechanistically, mEVs attenuated inflammatory response inhibiting TLR4-NF-κB signaling pathway and NLRP3 inflammasome activation. Furthermore, mEVs were able to correct cytokine production disorder and restore the balance between T helper type 17 (Th17) cells and interleukin-10 Foxp3 regulatory T (Treg) cells in the inflamed colon. The disturbed gut microbiota in UC was also partially recovered upon treatment with mEVs. The correlation between the gut microbiota and cytokines suggests that mEVs may modulate intestinal immunity influencing the gut microbiota. These findings reveal that mEVs alleviate colitis by regulating intestinal immune homeostasis inhibiting TLR4-NF-κB and NLRP3 signaling pathways, restoring Treg/Th17 cell balance, and reshaping the gut microbiota.
AbstractList Bovine milk constitutes an essential part of human diet, especially for children, due to its enrichment of various nutrients. We recently developed an effective protocol for the isolation of extracellular vesicles from milk (mEVs) and discovered that mEVs contained large amounts of immune-active proteins and modulated the gut immunity and microbiota in healthy mice. Here, we aimed to explore the therapeutic effects of mEVs on inflammatory bowel disease. MicroRNAs and protein content in mEVs were analyzed by RNA sequencing and proteomics, respectively, followed by functional annotation. Ulcerative colitis (UC) was induced by feeding mice with dextran sulfate sodium. Intestinal immune cell populations were phenotyped by flow cytometry, and the gut microbiota was analyzed 16S rRNA sequencing. We showed that abundant proteins and microRNAs in mEVs were involved in the regulation of immune and inflammatory pathways and that oral administration of mEVs prevented colon shortening, reduced intestinal epithelium disruption, inhibited infiltration of inflammatory cells and tissue fibrosis in a mouse UC model. Mechanistically, mEVs attenuated inflammatory response inhibiting TLR4-NF-κB signaling pathway and NLRP3 inflammasome activation. Furthermore, mEVs were able to correct cytokine production disorder and restore the balance between T helper type 17 (Th17) cells and interleukin-10 Foxp3 regulatory T (Treg) cells in the inflamed colon. The disturbed gut microbiota in UC was also partially recovered upon treatment with mEVs. The correlation between the gut microbiota and cytokines suggests that mEVs may modulate intestinal immunity influencing the gut microbiota. These findings reveal that mEVs alleviate colitis by regulating intestinal immune homeostasis inhibiting TLR4-NF-κB and NLRP3 signaling pathways, restoring Treg/Th17 cell balance, and reshaping the gut microbiota.
Rationale: Bovine milk constitutes an essential part of human diet, especially for children, due to its enrichment of various nutrients. We recently developed an effective protocol for the isolation of extracellular vesicles from milk (mEVs) and discovered that mEVs contained large amounts of immune-active proteins and modulated the gut immunity and microbiota in healthy mice. Here, we aimed to explore the therapeutic effects of mEVs on inflammatory bowel disease. Methods: MicroRNAs and protein content in mEVs were analyzed by RNA sequencing and proteomics, respectively, followed by functional annotation. Ulcerative colitis (UC) was induced by feeding mice with dextran sulfate sodium. Intestinal immune cell populations were phenotyped by flow cytometry, and the gut microbiota was analyzed via 16S rRNA sequencing. Results: We showed that abundant proteins and microRNAs in mEVs were involved in the regulation of immune and inflammatory pathways and that oral administration of mEVs prevented colon shortening, reduced intestinal epithelium disruption, inhibited infiltration of inflammatory cells and tissue fibrosis in a mouse UC model. Mechanistically, mEVs attenuated inflammatory response via inhibiting TLR4-NF-κB signaling pathway and NLRP3 inflammasome activation. Furthermore, mEVs were able to correct cytokine production disorder and restore the balance between T helper type 17 (Th17) cells and interleukin-10 + Foxp3 + regulatory T (Treg) cells in the inflamed colon. The disturbed gut microbiota in UC was also partially recovered upon treatment with mEVs. The correlation between the gut microbiota and cytokines suggests that mEVs may modulate intestinal immunity via influencing the gut microbiota. Conclusions: These findings reveal that mEVs alleviate colitis by regulating intestinal immune homeostasis via inhibiting TLR4-NF-κB and NLRP3 signaling pathways, restoring Treg/Th17 cell balance, and reshaping the gut microbiota.
Rationale: Bovine milk constitutes an essential part of human diet, especially for children, due to its enrichment of various nutrients. We recently developed an effective protocol for the isolation of extracellular vesicles from milk (mEVs) and discovered that mEVs contained large amounts of immune-active proteins and modulated the gut immunity and microbiota in healthy mice. Here, we aimed to explore the therapeutic effects of mEVs on inflammatory bowel disease. Methods: MicroRNAs and protein content in mEVs were analyzed by RNA sequencing and proteomics, respectively, followed by functional annotation. Ulcerative colitis (UC) was induced by feeding mice with dextran sulfate sodium. Intestinal immune cell populations were phenotyped by flow cytometry, and the gut microbiota was analyzed via 16S rRNA sequencing. Results: We showed that abundant proteins and microRNAs in mEVs were involved in the regulation of immune and inflammatory pathways and that oral administration of mEVs prevented colon shortening, reduced intestinal epithelium disruption, inhibited infiltration of inflammatory cells and tissue fibrosis in a mouse UC model. Mechanistically, mEVs attenuated inflammatory response via inhibiting TLR4-NF-κB signaling pathway and NLRP3 inflammasome activation. Furthermore, mEVs were able to correct cytokine production disorder and restore the balance between T helper type 17 (Th17) cells and interleukin-10+Foxp3+ regulatory T (Treg) cells in the inflamed colon. The disturbed gut microbiota in UC was also partially recovered upon treatment with mEVs. The correlation between the gut microbiota and cytokines suggests that mEVs may modulate intestinal immunity via influencing the gut microbiota. Conclusions: These findings reveal that mEVs alleviate colitis by regulating intestinal immune homeostasis via inhibiting TLR4-NF-κB and NLRP3 signaling pathways, restoring Treg/Th17 cell balance, and reshaping the gut microbiota.Rationale: Bovine milk constitutes an essential part of human diet, especially for children, due to its enrichment of various nutrients. We recently developed an effective protocol for the isolation of extracellular vesicles from milk (mEVs) and discovered that mEVs contained large amounts of immune-active proteins and modulated the gut immunity and microbiota in healthy mice. Here, we aimed to explore the therapeutic effects of mEVs on inflammatory bowel disease. Methods: MicroRNAs and protein content in mEVs were analyzed by RNA sequencing and proteomics, respectively, followed by functional annotation. Ulcerative colitis (UC) was induced by feeding mice with dextran sulfate sodium. Intestinal immune cell populations were phenotyped by flow cytometry, and the gut microbiota was analyzed via 16S rRNA sequencing. Results: We showed that abundant proteins and microRNAs in mEVs were involved in the regulation of immune and inflammatory pathways and that oral administration of mEVs prevented colon shortening, reduced intestinal epithelium disruption, inhibited infiltration of inflammatory cells and tissue fibrosis in a mouse UC model. Mechanistically, mEVs attenuated inflammatory response via inhibiting TLR4-NF-κB signaling pathway and NLRP3 inflammasome activation. Furthermore, mEVs were able to correct cytokine production disorder and restore the balance between T helper type 17 (Th17) cells and interleukin-10+Foxp3+ regulatory T (Treg) cells in the inflamed colon. The disturbed gut microbiota in UC was also partially recovered upon treatment with mEVs. The correlation between the gut microbiota and cytokines suggests that mEVs may modulate intestinal immunity via influencing the gut microbiota. Conclusions: These findings reveal that mEVs alleviate colitis by regulating intestinal immune homeostasis via inhibiting TLR4-NF-κB and NLRP3 signaling pathways, restoring Treg/Th17 cell balance, and reshaping the gut microbiota.
Rationale: Bovine milk constitutes an essential part of human diet, especially for children, due to its enrichment of various nutrients. We recently developed an effective protocol for the isolation of extracellular vesicles from milk (mEVs) and discovered that mEVs contained large amounts of immune-active proteins and modulated the gut immunity and microbiota in healthy mice. Here, we aimed to explore the therapeutic effects of mEVs on inflammatory bowel disease. Methods: MicroRNAs and protein content in mEVs were analyzed by RNA sequencing and proteomics, respectively, followed by functional annotation. Ulcerative colitis (UC) was induced by feeding mice with dextran sulfate sodium. Intestinal immune cell populations were phenotyped by flow cytometry, and the gut microbiota was analyzed via 16S rRNA sequencing. Results: We showed that abundant proteins and microRNAs in mEVs were involved in the regulation of immune and inflammatory pathways and that oral administration of mEVs prevented colon shortening, reduced intestinal epithelium disruption, inhibited infiltration of inflammatory cells and tissue fibrosis in a mouse UC model. Mechanistically, mEVs attenuated inflammatory response via inhibiting TLR4-NF-κB signaling pathway and NLRP3 inflammasome activation. Furthermore, mEVs were able to correct cytokine production disorder and restore the balance between T helper type 17 (Th17) cells and interleukin-10+Foxp3+ regulatory T (Treg) cells in the inflamed colon. The disturbed gut microbiota in UC was also partially recovered upon treatment with mEVs. The correlation between the gut microbiota and cytokines suggests that mEVs may modulate intestinal immunity via influencing the gut microbiota. Conclusions: These findings reveal that mEVs alleviate colitis by regulating intestinal immune homeostasis via inhibiting TLR4-NF-κB and NLRP3 signaling pathways, restoring Treg/Th17 cell balance, and reshaping the gut microbiota.
Author Lee, Chuen Neng
Yi, Huaxi
Tong, Lingjun
Gong, Pimin
Zhang, Zhe
Wang, Jiong-Wei
Liu, Tongjie
Zhang, Lanwei
Chen, Xiaoyuan
Lv, Youyou
Liu, Qiqi
Hao, Haining
Cao, Fangfang
Liang, Xi
Pastorin, Giorgia
AuthorAffiliation 6 Department of Chemical and Biomolecular Engineering, and Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117575, Singapore
2 Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
3 Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
4 Departments of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
10 Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
5 Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
9 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 11
AuthorAffiliation_xml – name: 2 Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
– name: 9 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593, Singapore
– name: 7 Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
– name: 3 Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
– name: 8 Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), 14 Medical Drive, Singapore 117599, Singapore
– name: 6 Department of Chemical and Biomolecular Engineering, and Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117575, Singapore
– name: 10 Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
– name: 4 Departments of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
– name: 1 College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, P. R. China
– name: 5 Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
Author_xml – sequence: 1
  givenname: Lingjun
  surname: Tong
  fullname: Tong, Lingjun
– sequence: 2
  givenname: Haining
  surname: Hao
  fullname: Hao, Haining
– sequence: 3
  givenname: Zhe
  surname: Zhang
  fullname: Zhang, Zhe
– sequence: 4
  givenname: Youyou
  surname: Lv
  fullname: Lv, Youyou
– sequence: 5
  givenname: Xi
  surname: Liang
  fullname: Liang, Xi
– sequence: 6
  givenname: Qiqi
  surname: Liu
  fullname: Liu, Qiqi
– sequence: 7
  givenname: Tongjie
  surname: Liu
  fullname: Liu, Tongjie
– sequence: 8
  givenname: Pimin
  surname: Gong
  fullname: Gong, Pimin
– sequence: 9
  givenname: Lanwei
  surname: Zhang
  fullname: Zhang, Lanwei
– sequence: 10
  givenname: Fangfang
  surname: Cao
  fullname: Cao, Fangfang
– sequence: 11
  givenname: Giorgia
  surname: Pastorin
  fullname: Pastorin, Giorgia
– sequence: 12
  givenname: Chuen Neng
  surname: Lee
  fullname: Lee, Chuen Neng
– sequence: 13
  givenname: Xiaoyuan
  surname: Chen
  fullname: Chen, Xiaoyuan
– sequence: 14
  givenname: Jiong-Wei
  surname: Wang
  fullname: Wang, Jiong-Wei
– sequence: 15
  givenname: Huaxi
  surname: Yi
  fullname: Yi, Huaxi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34373759$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhi1UREvohR-ALHFBSCn2-mN3L0hVxZdUxAXO1qwzm7h47WB7I3Ljp-PQFoUKX8bSPDN65515Sk5CDEjIc84uWq7Ym7IJ8UI3TOpH5Ix3olu2WrKTo_8pOc_5htUnWdPz_gk5FVK0olX9Gfn12fnvyxUmt8MVxZ8lgUXvZw-J7jA76zFT8B53DgrS2VtMUCpMbfSuuEyHPU24rgXFhTUtG6TruVA3TXNwZU8hrGo-b2B7nJ6cTXFwscAz8ngEn_H8Li7It_fvvl59XF5_-fDp6vJ6aUXD9VL3slFq1Bz4OKgWoAPeC8vqkKiltA3rm6HTyPXY6bYfFLSdaiwfQY4SRiUW5O1t3-08TLiyGOqo3myTmyDtTQRn_s0EtzHruDOdkJJVMxfk1V2DFH_MmIuZXD54BQHjnE2jNGOqFVpU9OUD9CbOKdTxKtV3vON1dZV6cazor5T75VSA3QLVq5wTjsa6Um2OB4HOG87M4QTM4QTMnxOoJa8flNx3_Q_8GxiBtPQ
CitedBy_id crossref_primary_10_1002_jev2_12334
crossref_primary_10_1021_acs_jafc_3c07095
crossref_primary_10_1080_10408398_2025_2473623
crossref_primary_10_1007_s12265_021_10174_0
crossref_primary_10_1007_s12274_024_6961_2
crossref_primary_10_1002_smtd_202401996
crossref_primary_10_1016_j_lfs_2023_121830
crossref_primary_10_3390_ijms252413519
crossref_primary_10_3390_ijms25105543
crossref_primary_10_1002_btm2_10756
crossref_primary_10_3389_fnut_2022_1062961
crossref_primary_10_1038_s44222_023_00050_8
crossref_primary_10_3168_jds_2024_25171
crossref_primary_10_1021_acs_jafc_3c07899
crossref_primary_10_3390_biomedicines12081764
crossref_primary_10_3390_biomedicines10040869
crossref_primary_10_1186_s13071_023_05753_w
crossref_primary_10_1021_acsinfecdis_3c00014
crossref_primary_10_1016_j_ijbiomac_2023_128035
crossref_primary_10_1039_D2FO03975C
crossref_primary_10_1080_1061186X_2022_2162059
crossref_primary_10_26599_FSHW_2024_9250040
crossref_primary_10_1002_jev2_12466
crossref_primary_10_3390_pharmaceutics15030716
crossref_primary_10_1016_j_lwt_2023_114866
crossref_primary_10_1038_s41598_023_39012_w
crossref_primary_10_1002_jsfa_12457
crossref_primary_10_3390_nu16010160
crossref_primary_10_1016_j_bioactmat_2024_10_017
crossref_primary_10_1021_acsbiomaterials_3c01824
crossref_primary_10_1021_acs_jafc_4c03155
crossref_primary_10_3389_fmicb_2025_1542522
crossref_primary_10_1016_j_colsurfb_2024_114325
crossref_primary_10_1080_08916934_2023_2220988
crossref_primary_10_1146_annurev_food_072023_034354
crossref_primary_10_1016_j_biomaterials_2021_121126
crossref_primary_10_1016_j_bioactmat_2024_11_004
crossref_primary_10_1002_jsfa_14123
crossref_primary_10_3390_nu15194102
crossref_primary_10_1002_jev2_12462
crossref_primary_10_1186_s12876_025_03603_w
crossref_primary_10_1002_imt2_270
crossref_primary_10_1021_acs_jafc_4c07248
crossref_primary_10_3389_fbioe_2024_1478517
crossref_primary_10_1126_sciadv_ade5041
crossref_primary_10_1021_acs_jafc_4c01387
crossref_primary_10_1021_acs_jafc_3c06861
crossref_primary_10_1371_journal_pone_0309144
crossref_primary_10_1016_j_ijbiomac_2024_130044
crossref_primary_10_1021_acs_jafc_3c09856
crossref_primary_10_1039_D4SM00301B
crossref_primary_10_1007_s00203_023_03636_3
crossref_primary_10_1016_j_jaut_2023_103001
crossref_primary_10_1016_j_phymed_2024_156172
crossref_primary_10_17235_reed_2024_10653_2024
crossref_primary_10_1002_adhm_202401370
crossref_primary_10_1002_adhm_202300069
crossref_primary_10_1016_j_vesic_2024_100057
crossref_primary_10_3390_nu15245103
crossref_primary_10_3390_nu15030747
crossref_primary_10_1186_s12951_023_02176_8
crossref_primary_10_1186_s12951_024_02344_4
crossref_primary_10_1016_j_biomaterials_2022_121658
crossref_primary_10_1021_acs_jmedchem_2c01856
crossref_primary_10_3389_fimmu_2023_1127785
crossref_primary_10_1007_s12672_024_00954_w
crossref_primary_10_1016_j_biopha_2023_114354
crossref_primary_10_1021_acs_jafc_4c03212
crossref_primary_10_3389_fimmu_2023_1293737
crossref_primary_10_3389_fnut_2022_976886
crossref_primary_10_3390_cells12151953
crossref_primary_10_3389_fimmu_2022_835005
crossref_primary_10_1016_j_critrevonc_2023_104121
crossref_primary_10_1016_j_bbrc_2022_09_115
crossref_primary_10_1038_s41538_025_00375_1
crossref_primary_10_26599_FSAP_2024_9240078
crossref_primary_10_1016_j_addr_2023_114774
crossref_primary_10_1007_s12274_022_4913_2
crossref_primary_10_1016_j_jff_2023_105997
crossref_primary_10_3390_ijms25073880
crossref_primary_10_3748_wjg_v29_i45_5988
crossref_primary_10_3748_wjg_v29_i6_1026
crossref_primary_10_1016_j_crmicr_2024_100301
crossref_primary_10_1080_10408398_2023_2242947
crossref_primary_10_1007_s11626_024_00910_6
crossref_primary_10_1039_D4FO00263F
crossref_primary_10_1002_adma_202308728
crossref_primary_10_1016_j_cofs_2021_12_001
crossref_primary_10_1016_j_micpath_2024_107227
crossref_primary_10_3390_ijms25031629
crossref_primary_10_1016_j_ijbiomac_2024_130822
crossref_primary_10_1016_j_jep_2024_118941
crossref_primary_10_4240_wjgs_v16_i4_1149
crossref_primary_10_1016_j_intimp_2024_111871
crossref_primary_10_1016_j_phymed_2025_156540
crossref_primary_10_3389_fimmu_2021_777147
crossref_primary_10_3390_nu15051265
crossref_primary_10_2174_0113862073292384240209095838
crossref_primary_10_3390_ani12233231
crossref_primary_10_1080_10408398_2022_2139220
crossref_primary_10_26599_FSHW_2024_9250086
crossref_primary_10_1021_acs_jafc_2c05177
crossref_primary_10_3390_antiox12061311
crossref_primary_10_1038_s41538_025_00400_3
crossref_primary_10_3390_ijms24032233
crossref_primary_10_3389_fbioe_2022_1032318
crossref_primary_10_1016_j_omtm_2024_101207
crossref_primary_10_1039_D3FO00137G
crossref_primary_10_3389_fgene_2024_1296570
crossref_primary_10_3390_cells13010090
crossref_primary_10_1093_ibd_izac122
crossref_primary_10_1016_j_arr_2022_101638
crossref_primary_10_2147_IJN_S413149
crossref_primary_10_2147_IJN_S502591
crossref_primary_10_1016_j_carbpol_2024_123206
crossref_primary_10_3390_nu13103319
crossref_primary_10_1021_acs_jafc_2c06894
crossref_primary_10_2147_IJN_S370784
crossref_primary_10_1186_s12929_023_00983_7
crossref_primary_10_3390_nu17050923
crossref_primary_10_3389_fmicb_2024_1295822
crossref_primary_10_1016_j_biomaterials_2025_123163
crossref_primary_10_1038_s41419_024_06711_9
crossref_primary_10_3390_nu14071442
crossref_primary_10_1021_acs_molpharmaceut_3c00816
crossref_primary_10_1016_j_fbio_2024_104641
crossref_primary_10_3390_ijms252111499
crossref_primary_10_3390_nu15153437
crossref_primary_10_1620_tjem_2022_J073
crossref_primary_10_1016_j_ijbiomac_2024_131698
crossref_primary_10_1155_jimr_5006201
crossref_primary_10_3390_molecules29245835
crossref_primary_10_1016_j_csbj_2023_03_017
crossref_primary_10_1186_s12934_023_02243_7
crossref_primary_10_3390_nu15224722
crossref_primary_10_3389_fphar_2023_1218477
crossref_primary_10_3389_fphar_2023_1260134
crossref_primary_10_3390_metabo13010096
crossref_primary_10_5851_kosfa_2022_e8
crossref_primary_10_1177_09731296231217599
crossref_primary_10_1016_j_intimp_2024_111608
crossref_primary_10_1016_j_jnutbio_2023_109359
crossref_primary_10_3390_ijms241813873
crossref_primary_10_1155_2022_8272371
crossref_primary_10_1016_j_phrs_2024_107277
crossref_primary_10_3389_fimmu_2022_1104943
crossref_primary_10_1016_j_cej_2024_149898
crossref_primary_10_1016_j_heliyon_2024_e36890
crossref_primary_10_1186_s10020_024_01014_3
crossref_primary_10_3390_pharmaceutics15051418
crossref_primary_10_1016_j_crfs_2025_101039
crossref_primary_10_1002_smll_202310712
crossref_primary_10_1021_acsnano_4c05013
crossref_primary_10_1016_j_ijbiomac_2023_128818
crossref_primary_10_3390_ijms25010485
crossref_primary_10_3390_vaccines12111282
crossref_primary_10_1002_imo2_49
crossref_primary_10_1016_j_tice_2022_101860
crossref_primary_10_1039_D1FO04219J
crossref_primary_10_1166_jbt_2023_3095
crossref_primary_10_3389_fphar_2023_1197144
crossref_primary_10_1002_jev2_12283
crossref_primary_10_1038_s41577_022_00763_8
crossref_primary_10_3390_ani12192716
crossref_primary_10_1016_j_biomaterials_2024_122976
crossref_primary_10_1016_j_drudis_2023_103507
ContentType Journal Article
Copyright The author(s).
2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The author(s) 2021
Copyright_xml – notice: The author(s).
– notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The author(s) 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.7150/thno.62046
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection (ProQuest)
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1838-7640
EndPage 8586
ExternalDocumentID PMC8344018
34373759
10_7150_thno_62046
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
United States--US
Japan
GeographicLocations_xml – name: China
– name: United States--US
– name: Japan
GroupedDBID ---
53G
5VS
7X7
8FI
8FJ
AAYXX
ABUWG
ADBBV
ADRAZ
AENEX
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HMCUK
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c3216-694255f61a1fb57aa8a193c0838e644c2092b86e16f8679b5a7852c1fa4f4af53
IEDL.DBID M48
ISSN 1838-7640
IngestDate Thu Aug 21 14:13:30 EDT 2025
Thu Sep 04 23:56:18 EDT 2025
Mon Jun 30 19:23:43 EDT 2025
Mon Jul 21 05:25:15 EDT 2025
Tue Jul 01 04:04:07 EDT 2025
Thu Apr 24 23:11:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Extracellular vesicles
ulcerative colitis
gut microbiome
intestinal immunity
Treg/Th17 cell balance
Language English
License The author(s).
This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3216-694255f61a1fb57aa8a193c0838e644c2092b86e16f8679b5a7852c1fa4f4af53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interest exists.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.7150/thno.62046
PMID 34373759
PQID 2598181715
PQPubID 5263173
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8344018
proquest_miscellaneous_2560057363
proquest_journals_2598181715
pubmed_primary_34373759
crossref_citationtrail_10_7150_thno_62046
crossref_primary_10_7150_thno_62046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Australia
PublicationPlace_xml – name: Australia
– name: Wyoming
– name: Sydney
PublicationTitle Theranostics
PublicationTitleAlternate Theranostics
PublicationYear 2021
Publisher Ivyspring International Publisher Pty Ltd
Ivyspring International Publisher
Publisher_xml – name: Ivyspring International Publisher Pty Ltd
– name: Ivyspring International Publisher
SSID ssj0000402919
Score 2.5475824
Snippet Bovine milk constitutes an essential part of human diet, especially for children, due to its enrichment of various nutrients. We recently developed an...
Rationale: Bovine milk constitutes an essential part of human diet, especially for children, due to its enrichment of various nutrients. We recently developed...
Rationale: Bovine milk constitutes an essential part of human diet, especially for children, due to its enrichment of various nutrients. We recently developed...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 8570
SubjectTerms Acids
Animals
Biotechnology
China
Colitis - drug therapy
Colitis, Ulcerative - drug therapy
Colitis, Ulcerative - metabolism
Colon - drug effects
Cytokines
Cytokines - metabolism
Digestive system
Disease Models, Animal
Extracellular vesicles
Extracellular Vesicles - genetics
Extracellular Vesicles - metabolism
Extracellular Vesicles - physiology
Gastrointestinal Microbiome - drug effects
Gut microbiota
Inflammatory bowel disease
Inflammatory Bowel Diseases - drug therapy
Inflammatory diseases
Intestinal Mucosa - metabolism
Intestines - metabolism
Laboratory animals
Male
Mice
Mice, Inbred C57BL
Microbiota
MicroRNAs
Milk
Milk - metabolism
NF-kappa B - metabolism
Proteins
RAW 264.7 Cells
Research Paper
RNA, Ribosomal, 16S - genetics
Signal Transduction
T-Lymphocytes, Regulatory - metabolism
Th17 Cells - metabolism
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9RADLVKe4EDgkJLoKBBcOGQNpNkJpkTQoiqQionKu0tciYTdsWSXTbZlXrjp2NPsmEXKo6RnQ-N7fGL4zwDvI0d57nchJx9wlQ6CimT2hAZHuTKk55xt8UXfXWTfp6oyVBwa4e2yu2e6DfqamG5Rn5BMJ1yi8yker_8GfLUKP66OozQuAdHkqAKe3U2ycYaCzlobKTpWUnpzOiimzaLc6Zg1_t56B9w-XeP5E7SuXwEDwe0KD705n0MB645hgc7HIJP4Nf1bP49rOho4ypBW-0KuRjP3aVi41rf9SZ4YMqGjODEem5dT_YtrG99a0V5K1b9RHq6oCBAKL6tOzHzP450twKbiuTtFJe74h-znsGpw6dwc_np68ercBirENokljrUhuJU1VqirEuVIeZIKM4SFssdoSMbRyYuc-2krpmNr1SY5Sq2ssa0TrFWyQkcNovGPQNBS64r4ypTRZQNY4mqVqqK0CToSisxgHfbRS7swDnOoy_mBb17sEEKNkjhDRLAm1F32TNt3Kl1trVVMURbW_zxjQBej2KKE15vbNxizTrakz_qJIDT3rTjbRLmd8qUCSDbM_qowBzc-5JmNvVc3DymJJL58_8_1gu4H3MvjC_dnMFht1q7lwRmuvKV99jf7r74yQ
  priority: 102
  providerName: ProQuest
Title Milk-derived extracellular vesicles alleviate ulcerative colitis by regulating the gut immunity and reshaping the gut microbiota
URI https://www.ncbi.nlm.nih.gov/pubmed/34373759
https://www.proquest.com/docview/2598181715
https://www.proquest.com/docview/2560057363
https://pubmed.ncbi.nlm.nih.gov/PMC8344018
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1La9tAEB7ygJIcQvqM0sRsaC89yPVK2pX2VJKQEAIJpdTgm1itVrWpKye2bOJbf3pnVpJxHj2KGa1gZ2bnm2X0DcDnwFKeS5RP2cePuMWQUpHxNcGDRDjSM-q2uJVX_eh6IAYb0M7vbDZw9mJpR_Ok-tNx9-F--Q0DHvFrN0Y887UalpMu8arLTdjGjBSQd980MN-dyFgkKa5qdtInr-zAq5DofWJiK11PTc_w5tO2ybU8dLkPew2AZKe1xV_Dhi3fwO4areBb-HszGv_2c3xa2Jzh6TvVdD9PDadsYWeuEY7RDJUF2sWy-djYmv-bGdcNN2PZkk3rIfW4IEOMyH7NKzZy_5JUS6bLHOWzob5bF_8Z1aROlX4H_cuLn-dXfjNpwTdhwKUvFYauKCTXvMhErHWiEdgZhGeJRcBkgp4KskRaLgsi6MuEjhMRGF7oqIh0IcL3sFVOSnsADOGWzJXNVd7DBBlwLQoh8p5WobaZ4dqDL-0mp6ahIadpGOMUyxGyTUq2SZ1tPPi00r2ryTde1DpqbZW2_pNiVYdQhKOqBycrMYYO7bcu7WROOtLxQcrQgw-1aVefaX3Cg_iR0VcKRMv9WFKOho6emyaX9Hhy-N81P8JOQJ0x7iLnCLaq6dweI7Spsg5sxoO4A9tnF7fff3ScF_8Do279aA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9gAcEG8CBYyAA4fQ2Fk78aFCPFptabtCqJV6C47j7K5Ysssmu2hv_DJ-GzPOg11A3HqMbCmWZ8bz2R5_HyHPucU8Fysfs4_fYxZCSvWMrxEexMKRnmG1xUD2z3sfLsTFFvnZvoXBssp2TXQLdTY1eEa-BzAdcguLmHg9--ajahTerrYSGrqRVsj2HcVY87Dj2K6-wxau3D96D_Z-wfnhwdm7vt-oDPgm5Ez6UoHbilwyzfJURFrHGkCNAWgSWwALhgeKp7G0TOZITpcKHcWCG5brXt7TOapGQArYAdgRQlTtvD0YfPzUnfJAiHDFVM2LCmMP9qpRMX2FJPByMxP-BW__rNJcS3uHN8j1Bq_SN7WD3SRbtrhFrq2xGN4mP07Hky9-Bl9Lm1FY7OcarwOwvpUubenq7ihKtizBDSxdTIyt6capccV3JU1XdG6HTkisGFKApHS4qOjYPV2pVlQXGbSXIz1bb_46rjmkKn2HnF_KlN8l28W0sPcJBXQnM2UzlQWQjznTIhciC7QKtU0N0x552U5yYhrWcxTfmCSw-0GDJGiQxBnEI8-6vrOa6-OfvXZbWyVNvJfJb-_0yNOuGSIV51sXdrrAPtLRT8rQI_dq03a_CZFhKhLKI9GG0bsOyAK-2VKMR44NHIVSAhY_-P-wnpAr_bPTk-TkaHD8kFzlWJnjDpJ2yXY1X9hHAK2q9HHjv5R8vuyQ-QWhaDqU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWi4TggHhvYAEj4MAhNHZiJz4ghFiqXRZWHFipt-A4TltR0tKkRb3xu_h1zDgPWkDc9hiNpVjz8Hy2x98Q8pRbzHOJ8jH7-BGzEFIqMr5GeJAIR3qG1RZn8vg8ejcSoz3ys3sLg2WV3ZroFup8bvCMfAAwHXILi5kYFG1ZxMej4avFNx87SOFNa9dOo3GRU7v5Dtu36uXJEdj6GefDt5_eHPtthwHfhJxJXypwWVFIplmRiVjrRAOgMQBLEgtAwfBA8SyRlskCiekyoeNEcMMKHRWRLrBjBCz_l-IQ0jrEUjyK-_MdCA6umGoYUWHWwaCelPMXSP8ud3PgX8D2z_rMrYQ3vE6utUiVvm5c6wbZs-VNcnWLv_AW-fFhOvvi5_C1tjkFXS01XgRgZStd28pV3FFs1rIGB7B0NTO2IRqnxpXdVTTb0KUduxZi5ZgCGKXjVU2n7tFKvaG6zEFeTfRiW_x12rBH1fo2Ob8Qhd8h--W8tAeEAq6TubK5ygPIxJxpUQiRB1qF2maGaY8875ScmpbvHNtuzFLY96BBUjRI6gzikSf92EXD8vHPUYedrdI20qv0t1965HEvhhhFfevSzlc4RjriSRl65G5j2v43IXJLxUJ5JN4xej8A-b93JeV04njAsUVKwJJ7_5_WI3IZAiV9f3J2ep9c4ViS406QDsl-vVzZB4Cp6uyhc15KPl90tPwCI9o4MA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Milk-derived+extracellular+vesicles+alleviate+ulcerative+colitis+by+regulating+the+gut+immunity+and+reshaping+the+gut+microbiota&rft.jtitle=Theranostics&rft.au=Tong%2C+Lingjun&rft.au=Hao%2C+Haining&rft.au=Zhang%2C+Zhe&rft.au=Lv%2C+Youyou&rft.date=2021&rft.eissn=1838-7640&rft.volume=11&rft.issue=17&rft.spage=8570&rft_id=info:doi/10.7150%2Fthno.62046&rft_id=info%3Apmid%2F34373759&rft.externalDocID=34373759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1838-7640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1838-7640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1838-7640&client=summon