Ensemble U‐net‐based method for fully automated detection and segmentation of renal masses on computed tomography images

Purpose Detection and accurate localization of renal masses (RM) are important steps toward future potential classification of benign vs malignant RM. A fully automated algorithm for detection and localization of RM may eliminate the observer variability in the clinical workflow. Method In this pape...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 47; no. 9; pp. 4032 - 4044
Main Authors Fatemeh, Zabihollahy, Nicola, Schieda, Satheesh, Krishna, Eranga, Ukwatta
Format Journal Article
LanguageEnglish
Published United States 01.09.2020
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
2473-4209
DOI10.1002/mp.14193

Cover

Abstract Purpose Detection and accurate localization of renal masses (RM) are important steps toward future potential classification of benign vs malignant RM. A fully automated algorithm for detection and localization of RM may eliminate the observer variability in the clinical workflow. Method In this paper, we describe a fully automated methodology for accurate detection and segmentation of RM from contrast‐enhanced computed tomography (CECT) images. We first determine the boundaries of the kidneys on the CECT images utilizing a convolutional neural network‐based method to be used as a region of interest to search for RM. We then employ a homogenous U‐Net‐based ensemble learning model to identify and delineate RM. We used an institutional dataset comprised of CECT images in 315 patients to train and evaluate the proposed method. We compared results of our method to those of three‐dimensional (3D) U‐Net for RM localization and further evaluated our algorithm using the kidney tumor segmentation (KiTS19) challenge dataset. Results The developed algorithm reported a Dice similarity coefficient (DSC) of 95.79% ± 5.16% and 96.25 ± 3.37 (mean ± standard deviation) for segmentation accuracy of kidney boundary from 125 and 60 test images from institutional and KiTS19 datasets, respectively. Using our method, RM were detected in 125 and 52 test cases, which corresponds to 100% and 86.67% sensitivity at patient level in institutional and KiTS19 test images. Our ensemble method for RM localization yielded a mean DSC of 88.65% ± 7.31% and 87.91% ± 6.82% on the institutional and KiTS19 test datasets, respectively. The mean DSC for RM delineation from CECT institutional test images using 3D U‐Net was 85.95% ± 1.46%. Conclusion We describe a method for automated localization of RM using CECT images. Our results are important in terms of clinical perspective as fully automated detection of RM is a fundamental step for further diagnosis of cystic vs solid RM and eventually benign vs malignant solid RM, that has not been reported previously.
AbstractList Detection and accurate localization of renal masses (RM) are important steps toward future potential classification of benign vs malignant RM. A fully automated algorithm for detection and localization of RM may eliminate the observer variability in the clinical workflow. In this paper, we describe a fully automated methodology for accurate detection and segmentation of RM from contrast-enhanced computed tomography (CECT) images. We first determine the boundaries of the kidneys on the CECT images utilizing a convolutional neural network-based method to be used as a region of interest to search for RM. We then employ a homogenous U-Net-based ensemble learning model to identify and delineate RM. We used an institutional dataset comprised of CECT images in 315 patients to train and evaluate the proposed method. We compared results of our method to those of three-dimensional (3D) U-Net for RM localization and further evaluated our algorithm using the kidney tumor segmentation (KiTS19) challenge dataset. The developed algorithm reported a Dice similarity coefficient (DSC) of 95.79% ± 5.16% and 96.25 ± 3.37 (mean ± standard deviation) for segmentation accuracy of kidney boundary from 125 and 60 test images from institutional and KiTS19 datasets, respectively. Using our method, RM were detected in 125 and 52 test cases, which corresponds to 100% and 86.67% sensitivity at patient level in institutional and KiTS19 test images. Our ensemble method for RM localization yielded a mean DSC of 88.65% ± 7.31% and 87.91% ± 6.82% on the institutional and KiTS19 test datasets, respectively. The mean DSC for RM delineation from CECT institutional test images using 3D U-Net was 85.95% ± 1.46%. We describe a method for automated localization of RM using CECT images. Our results are important in terms of clinical perspective as fully automated detection of RM is a fundamental step for further diagnosis of cystic vs solid RM and eventually benign vs malignant solid RM, that has not been reported previously.
Detection and accurate localization of renal masses (RM) are important steps toward future potential classification of benign vs malignant RM. A fully automated algorithm for detection and localization of RM may eliminate the observer variability in the clinical workflow.PURPOSEDetection and accurate localization of renal masses (RM) are important steps toward future potential classification of benign vs malignant RM. A fully automated algorithm for detection and localization of RM may eliminate the observer variability in the clinical workflow.In this paper, we describe a fully automated methodology for accurate detection and segmentation of RM from contrast-enhanced computed tomography (CECT) images. We first determine the boundaries of the kidneys on the CECT images utilizing a convolutional neural network-based method to be used as a region of interest to search for RM. We then employ a homogenous U-Net-based ensemble learning model to identify and delineate RM. We used an institutional dataset comprised of CECT images in 315 patients to train and evaluate the proposed method. We compared results of our method to those of three-dimensional (3D) U-Net for RM localization and further evaluated our algorithm using the kidney tumor segmentation (KiTS19) challenge dataset.METHODIn this paper, we describe a fully automated methodology for accurate detection and segmentation of RM from contrast-enhanced computed tomography (CECT) images. We first determine the boundaries of the kidneys on the CECT images utilizing a convolutional neural network-based method to be used as a region of interest to search for RM. We then employ a homogenous U-Net-based ensemble learning model to identify and delineate RM. We used an institutional dataset comprised of CECT images in 315 patients to train and evaluate the proposed method. We compared results of our method to those of three-dimensional (3D) U-Net for RM localization and further evaluated our algorithm using the kidney tumor segmentation (KiTS19) challenge dataset.The developed algorithm reported a Dice similarity coefficient (DSC) of 95.79% ± 5.16% and 96.25 ± 3.37 (mean ± standard deviation) for segmentation accuracy of kidney boundary from 125 and 60 test images from institutional and KiTS19 datasets, respectively. Using our method, RM were detected in 125 and 52 test cases, which corresponds to 100% and 86.67% sensitivity at patient level in institutional and KiTS19 test images. Our ensemble method for RM localization yielded a mean DSC of 88.65% ± 7.31% and 87.91% ± 6.82% on the institutional and KiTS19 test datasets, respectively. The mean DSC for RM delineation from CECT institutional test images using 3D U-Net was 85.95% ± 1.46%.RESULTSThe developed algorithm reported a Dice similarity coefficient (DSC) of 95.79% ± 5.16% and 96.25 ± 3.37 (mean ± standard deviation) for segmentation accuracy of kidney boundary from 125 and 60 test images from institutional and KiTS19 datasets, respectively. Using our method, RM were detected in 125 and 52 test cases, which corresponds to 100% and 86.67% sensitivity at patient level in institutional and KiTS19 test images. Our ensemble method for RM localization yielded a mean DSC of 88.65% ± 7.31% and 87.91% ± 6.82% on the institutional and KiTS19 test datasets, respectively. The mean DSC for RM delineation from CECT institutional test images using 3D U-Net was 85.95% ± 1.46%.We describe a method for automated localization of RM using CECT images. Our results are important in terms of clinical perspective as fully automated detection of RM is a fundamental step for further diagnosis of cystic vs solid RM and eventually benign vs malignant solid RM, that has not been reported previously.CONCLUSIONWe describe a method for automated localization of RM using CECT images. Our results are important in terms of clinical perspective as fully automated detection of RM is a fundamental step for further diagnosis of cystic vs solid RM and eventually benign vs malignant solid RM, that has not been reported previously.
Purpose Detection and accurate localization of renal masses (RM) are important steps toward future potential classification of benign vs malignant RM. A fully automated algorithm for detection and localization of RM may eliminate the observer variability in the clinical workflow. Method In this paper, we describe a fully automated methodology for accurate detection and segmentation of RM from contrast‐enhanced computed tomography (CECT) images. We first determine the boundaries of the kidneys on the CECT images utilizing a convolutional neural network‐based method to be used as a region of interest to search for RM. We then employ a homogenous U‐Net‐based ensemble learning model to identify and delineate RM. We used an institutional dataset comprised of CECT images in 315 patients to train and evaluate the proposed method. We compared results of our method to those of three‐dimensional (3D) U‐Net for RM localization and further evaluated our algorithm using the kidney tumor segmentation (KiTS19) challenge dataset. Results The developed algorithm reported a Dice similarity coefficient (DSC) of 95.79% ± 5.16% and 96.25 ± 3.37 (mean ± standard deviation) for segmentation accuracy of kidney boundary from 125 and 60 test images from institutional and KiTS19 datasets, respectively. Using our method, RM were detected in 125 and 52 test cases, which corresponds to 100% and 86.67% sensitivity at patient level in institutional and KiTS19 test images. Our ensemble method for RM localization yielded a mean DSC of 88.65% ± 7.31% and 87.91% ± 6.82% on the institutional and KiTS19 test datasets, respectively. The mean DSC for RM delineation from CECT institutional test images using 3D U‐Net was 85.95% ± 1.46%. Conclusion We describe a method for automated localization of RM using CECT images. Our results are important in terms of clinical perspective as fully automated detection of RM is a fundamental step for further diagnosis of cystic vs solid RM and eventually benign vs malignant solid RM, that has not been reported previously.
Author Fatemeh, Zabihollahy
Eranga, Ukwatta
Satheesh, Krishna
Nicola, Schieda
Author_xml – sequence: 1
  givenname: Zabihollahy
  surname: Fatemeh
  fullname: Fatemeh, Zabihollahy
  email: fatemehzabihollahy@cmail.carleton.ca
  organization: Carleton University
– sequence: 2
  givenname: Schieda
  surname: Nicola
  fullname: Nicola, Schieda
  organization: University of Ottawa
– sequence: 3
  givenname: Krishna
  surname: Satheesh
  fullname: Satheesh, Krishna
  organization: University of Toronto
– sequence: 4
  givenname: Ukwatta
  surname: Eranga
  fullname: Eranga, Ukwatta
  organization: University of Guelph
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32329074$$D View this record in MEDLINE/PubMed
BookMark eNp1kctu1TAQhi1URE9bJJ4Aeckmh4nt1MkSVYUiFcGiXVuOPT4N8iXEjtCRWPQR-ow8SdOmhQ1sZqSZ75_rETmIKSIhb2rY1gDsfRi3tag7_oJsmJC8Egy6A7IB6ETFBDSH5Cjn7wBwyht4RQ4546wDKTbk13nMGHqP9Pr37V3EstheZ7Q0YLlJlro0UTd7v6d6LinosqQsFjRlSJHqaGnGXcBY9GMgOTph1J4GnTNmuoRMCuP8IFvkaTfp8WZPh6B3mE_IS6d9xtdP_phcfzy_OruoLr9--nz24bIynNW80gas7IVuLW-hc1IAb1jfC-lEI5zjTLCml73lrgXTnTautkwbC13rJEoj-DF5t9Ydp_RjxlxUGLJB73XENGfFeCfatmGyWdC3T-jcB7RqnJZRp716vtgCbFfATCnnCZ0yw7p7mfTgVQ3q4SUqjOrxJX-b_xE81_wHWq3oz8Hj_r-c-vJt5e8B7fec8w
CitedBy_id crossref_primary_10_1007_s11845_022_03113_8
crossref_primary_10_1117_1_JMI_9_3_036001
crossref_primary_10_3390_s22062084
crossref_primary_10_1186_s12880_023_01142_y
crossref_primary_10_1016_j_cmpb_2022_106616
crossref_primary_10_1007_s00330_020_06787_9
crossref_primary_10_1002_mp_15268
crossref_primary_10_1109_ACCESS_2022_3232561
crossref_primary_10_1016_j_bspc_2021_102544
crossref_primary_10_1089_end_2022_0722
crossref_primary_10_1177_15330338211016386
crossref_primary_10_3390_app10217512
crossref_primary_10_1007_s44230_024_00077_z
crossref_primary_10_1117_1_JMI_10_2_024501
crossref_primary_10_1007_s11633_021_1313_0
crossref_primary_10_3389_fonc_2023_1152622
crossref_primary_10_3390_diagnostics13091624
crossref_primary_10_1016_j_bbe_2021_10_006
crossref_primary_10_3390_electronics13101950
crossref_primary_10_3390_tomography11010003
crossref_primary_10_11834_jig_220375
crossref_primary_10_3390_jcdd9080268
crossref_primary_10_1038_s42003_024_06868_1
crossref_primary_10_1016_j_compmedimag_2021_102026
crossref_primary_10_1097_RLI_0000000000000842
Cites_doi 10.1117/12.2512146
10.1016/j.optcom.2012.10.033
10.1007/s00330-017-5118-z
10.1016/j.acra.2014.07.023
10.1002/mp.13550
10.1007/978-3-319-46723-8_49
10.1016/j.crad.2018.09.003
10.1038/s41598-019-40710-7
10.1016/j.cmpb.2018.01.014
10.2214/AJR.10.5920
10.2214/AJR.14.13966
10.1109/JBHI.2016.2580040
10.1038/s41598-017-01779-0
10.1148/radiol.2015142215
10.1016/j.eswa.2019.03.010
10.1038/nature14539
10.1016/j.jacr.2017.04.028
10.1117/12.2513034
10.1007/s00330-018-5698-2
10.2214/AJR.14.12502
10.1007/s00330-020-06787-9
10.2214/AJR.14.13279
10.1613/jair.614
10.1109/TMI.2018.2806309
10.1016/j.patrec.2005.10.010
10.1186/s12938-018-0456-x
10.1016/j.ejrad.2018.08.014
10.1109/ACCESS.2020.2964755
10.1148/radiol.11111595
10.1016/j.diii.2018.03.004
10.2214/AJR.07.3568
10.1002/mp.12828
10.1109/MCAS.2006.1688199
10.1007/s10462-009-9124-7
10.2214/AJR.17.18874
ContentType Journal Article
Copyright 2020 American Association of Physicists in Medicine
2020 American Association of Physicists in Medicine.
Copyright_xml – notice: 2020 American Association of Physicists in Medicine
– notice: 2020 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/mp.14193
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 4044
ExternalDocumentID 32329074
10_1002_mp_14193
MP14193
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC)
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3213-ac0d7b4a8d3809f740352bb47f454ff32425b7bd3f80c965f1d2acd098f7e7c43
ISSN 0094-2405
2473-4209
IngestDate Thu Sep 04 18:17:00 EDT 2025
Wed Feb 19 02:29:39 EST 2025
Thu Apr 24 22:56:59 EDT 2025
Wed Oct 01 04:33:04 EDT 2025
Wed Jan 22 16:33:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords ensemble learning system
renal mass
U-Net
contrast-enhanced computed tomography (CECT) images
Language English
License 2020 American Association of Physicists in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3213-ac0d7b4a8d3809f740352bb47f454ff32425b7bd3f80c965f1d2acd098f7e7c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32329074
PQID 2394885275
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2394885275
pubmed_primary_32329074
crossref_citationtrail_10_1002_mp_14193
crossref_primary_10_1002_mp_14193
wiley_primary_10_1002_mp_14193_MP14193
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
2020-Sep
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2020
References 2008; 191
2010; 33
2012; 262
2017; 7
2018; 28
2019; 9
2015; 204
2012
2019; 74
2015; 521
2018; 107
2017; 21
2019; 127
2006; 6
2004
2015; 205
2018; 45
2014; 21
2011; 197
2020; 8
2018; 210
2017; 96
2018; 17
2000
2020
2019; 46
2006; 27
2018; 157
2015; 276
2019
2014; 15
1999; 11
2019; 29
2016
2015
2018; 99
2013; 290
2018; 31
2014; 202
2018; 15
2018; 37
Meyer HJ (e_1_2_8_3_1) 2017; 96
e_1_2_8_28_1
Srivastava N (e_1_2_8_32_1) 2014; 15
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 191
  start-page: 1220
  year: 2008
  end-page: 1232
  article-title: Renal cell carcinoma: diagnosis, staging, and surveillance
  publication-title: Am J Roentgenol
– year: 2020
  article-title: Automated classification of solid renal masses on contrast‐enhanced computed tomography images using convolutional neural network with decision fusion
  publication-title: Eur Radiol
– volume: 46
  start-page: 3078
  year: 2019
  end-page: 3090
  article-title: Automated segmentation of prostate zonal anatomy on T2‐weighted (T2W) and apparent diffusion coefficient (ADC) map MR images using U‐Nets
  publication-title: Med Phys
– volume: 37
  start-page: 1822
  year: 2018
  end-page: 1834
  article-title: Automatic multi‐organ segmentation on abdominal CT with dense V‐networks
  publication-title: IEEE Trans Med Imaging
– volume: 197
  start-page: 139
  year: 2011
  end-page: 145
  article-title: Incidental finding of renal masses at unenhanced CT: prevalence and analysis of features for guiding management
  publication-title: Am J Roentgenol
– volume: 204
  start-page: 1013
  year: 2015
  end-page: 1023
  article-title: Diagnosis of sarcomatoid renal cell carcinoma with CT: evaluation by qualitative imaging features and texture analysis
  publication-title: Am J Roentgenol
– volume: 31
  year: 2018
– volume: 21
  start-page: 1079
  year: 2017
  end-page: 1094
  article-title: Automated approach for kidney segmentation in three‐dimensional ultrasound images
  publication-title: IEEE J Biomed Heal Inform
– volume: 28
  start-page: 1625
  year: 2018
  end-page: 1633
  article-title: Machine learning‐based quantitative texture analysis of CT images of small renal masses: differentiation of angiomyolipoma without visible fat from renal cell carcinoma
  publication-title: Eur Radiol
– year: 2000
– volume: 96
  year: 2017
  article-title: Renal incidental findings on computed tomography: frequency and distribution in a large non selected cohort
  publication-title: Med (United States)
– volume: 8
  start-page: 8595
  year: 2020
  end-page: 8602
  article-title: Path‐based CNN for differentiation of cyst from solid renal mass on contrast enhanced computed tomography image
  publication-title: IEEE Access
– volume: 205
  start-page: 999
  year: 2015
  end-page: 1007
  article-title: Small (< 4 cm) renal mass: differentiation of oncocytoma from renal cell carcinoma on biphasic contrast‐enhanced CT
  publication-title: AJR Am J Roentgenol
– volume: 21
  start-page: 1587
  year: 2014
  end-page: 1596
  article-title: CT texture analysis of renal masses: pilot study using random forest classification for prediction of pathology
  publication-title: Acad Radiol
– year: 2016
– volume: 210
  start-page: 1079
  year: 2018
  end-page: 1087
  article-title: Diagnostic accuracy of unenhanced CT analysis to differentiate low‐grade from high‐grade chromophobe renal cell carcinoma
  publication-title: Am J Roentgenol
– volume: 45
  start-page: 1550
  year: 2018
  end-page: 1561
  article-title: Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast‐enhanced CT images with texture image patches and hand‐crafted feature concatenation
  publication-title: Med Phys
– year: 2012
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 29
  start-page: 1153
  year: 2019
  end-page: 1163
  article-title: Clear cell renal cell carcinoma: machine learning‐based quantitative computed tomography texture analysis for prediction of fuhrman nuclear grade
  publication-title: Eur Radiol
– volume: 276
  start-page: 787
  year: 2015
  end-page: 796
  article-title: Can quantitative CT texture analysis be used to differentiate fat‐poor renal angiomyolipoma from renal cell carcinoma on unenhanced CT images?
  publication-title: Radiology
– volume: 290
  start-page: 55
  year: 2013
  end-page: 62
  article-title: Contextual information‐aided kidney segmentation in CT sequences
  publication-title: Opt Commun
– volume: 99
  start-page: 443
  year: 2018
  end-page: 455
  article-title: Characterization of small (<4cm) solid renal masses by computed tomography and magnetic resonance imaging: current evidence and further development
  publication-title: Diagn Interv Imaging
– volume: 7
  start-page: 2049
  year: 2017
  article-title: Automatic segmentation of kidneys using deep learning for total kidney volume quantification in autosomal dominant polycystic kidney disease
  publication-title: Sci Rep
– volume: 157
  start-page: 49
  year: 2018
  end-page: 67
  article-title: Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: a systematic review
  publication-title: Comput Methods Programs Biomed
– volume: 15
  start-page: 264
  year: 2018
  end-page: 273
  article-title: Management of the incidental renal mass on CT: a white paper of the acr incidental findings committee
  publication-title: J Am Coll Radiol
– volume: 262
  start-page: 781
  year: 2012
  end-page: 785
  article-title: The Bosniak renal cyst classification: 25 years later
  publication-title: Radiology
– year: 2004
– volume: 11
  start-page: 169
  year: 1999
  end-page: 198
  article-title: Popular ensemble methods: an empirical study
  publication-title: J Artif Intell Res
– volume: 202
  start-page: 1196
  year: 2014
  end-page: 1206
  article-title: Solid renal masses: what the numbers tell us
  publication-title: Am J Roentgenol
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– volume: 127
  start-page: 282
  year: 2019
  end-page: 294
  article-title: Segmentation of deformed kidneys and nephroblastoma using case‐based reasoning and convolutional neural network
  publication-title: Expert Syst Appl
– volume: 107
  start-page: 149
  year: 2018
  end-page: 157
  article-title: Textural differences between renal cell carcinoma subtypes: machine learning‐based quantitative computed tomography texture analysis with independent external validation
  publication-title: Eur J Radiol
– year: 2019
– volume: 9
  start-page: 4223
  year: 2019
  article-title: Measurement of glomerular filtration rate using quantitative SPECT/CT and deep‐learning‐based kidney segmentation
  publication-title: Sci Rep
– year: 2015
– volume: 33
  start-page: 1
  year: 2010
  end-page: 39
  article-title: Ensemble‐based classifiers
  publication-title: Artif Intell Rev
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit Lett
– volume: 17
  start-page: 26
  year: 2018
  article-title: 3D marker‐controlled watershed for kidney segmentation in clinical CT exams
  publication-title: Biomed Eng Online
– volume: 6
  start-page: 21
  year: 2006
  end-page: 45
  article-title: Ensemble based systems in decision making
  publication-title: IEEE Circuits Syst Mag
– volume: 74
  start-page: 83
  year: 2019
  end-page: 94
  article-title: Contemporary update on imaging of cystic renal masses with histopathological correlation and emphasis on patient management
  publication-title: Clin Radiol
– ident: e_1_2_8_21_1
  doi: 10.1117/12.2512146
– ident: e_1_2_8_31_1
– ident: e_1_2_8_42_1
  doi: 10.1016/j.optcom.2012.10.033
– ident: e_1_2_8_17_1
  doi: 10.1007/s00330-017-5118-z
– ident: e_1_2_8_14_1
  doi: 10.1016/j.acra.2014.07.023
– ident: e_1_2_8_20_1
  doi: 10.1002/mp.13550
– ident: e_1_2_8_34_1
  doi: 10.1007/978-3-319-46723-8_49
– volume: 96
  start-page: e7039
  year: 2017
  ident: e_1_2_8_3_1
  article-title: Renal incidental findings on computed tomography: frequency and distribution in a large non selected cohort
  publication-title: Med (United States)
– ident: e_1_2_8_33_1
– ident: e_1_2_8_6_1
  doi: 10.1016/j.crad.2018.09.003
– ident: e_1_2_8_44_1
  doi: 10.1038/s41598-019-40710-7
– ident: e_1_2_8_28_1
– ident: e_1_2_8_47_1
– ident: e_1_2_8_39_1
  doi: 10.1016/j.cmpb.2018.01.014
– ident: e_1_2_8_4_1
  doi: 10.2214/AJR.10.5920
– ident: e_1_2_8_13_1
  doi: 10.2214/AJR.14.13966
– ident: e_1_2_8_40_1
  doi: 10.1109/JBHI.2016.2580040
– ident: e_1_2_8_27_1
– ident: e_1_2_8_43_1
  doi: 10.1038/s41598-017-01779-0
– ident: e_1_2_8_10_1
  doi: 10.1148/radiol.2015142215
– ident: e_1_2_8_46_1
  doi: 10.1016/j.eswa.2019.03.010
– ident: e_1_2_8_29_1
  doi: 10.1038/nature14539
– ident: e_1_2_8_2_1
  doi: 10.1016/j.jacr.2017.04.028
– ident: e_1_2_8_22_1
  doi: 10.1117/12.2513034
– ident: e_1_2_8_15_1
  doi: 10.1007/s00330-018-5698-2
– volume: 15
  start-page: 1929
  year: 2014
  ident: e_1_2_8_32_1
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: e_1_2_8_19_1
– ident: e_1_2_8_9_1
  doi: 10.2214/AJR.14.12502
– ident: e_1_2_8_35_1
– ident: e_1_2_8_38_1
  doi: 10.1007/s00330-020-06787-9
– ident: e_1_2_8_11_1
  doi: 10.2214/AJR.14.13279
– ident: e_1_2_8_23_1
  doi: 10.1613/jair.614
– ident: e_1_2_8_45_1
  doi: 10.1109/TMI.2018.2806309
– ident: e_1_2_8_30_1
– ident: e_1_2_8_36_1
  doi: 10.1016/j.patrec.2005.10.010
– ident: e_1_2_8_41_1
  doi: 10.1186/s12938-018-0456-x
– ident: e_1_2_8_16_1
  doi: 10.1016/j.ejrad.2018.08.014
– ident: e_1_2_8_37_1
  doi: 10.1109/ACCESS.2020.2964755
– ident: e_1_2_8_8_1
  doi: 10.1148/radiol.11111595
– ident: e_1_2_8_7_1
  doi: 10.1016/j.diii.2018.03.004
– ident: e_1_2_8_5_1
  doi: 10.2214/AJR.07.3568
– ident: e_1_2_8_18_1
  doi: 10.1002/mp.12828
– ident: e_1_2_8_24_1
  doi: 10.1109/MCAS.2006.1688199
– ident: e_1_2_8_25_1
  doi: 10.1007/s10462-009-9124-7
– ident: e_1_2_8_12_1
  doi: 10.2214/AJR.17.18874
– ident: e_1_2_8_26_1
SSID ssj0006350
Score 2.469961
Snippet Purpose Detection and accurate localization of renal masses (RM) are important steps toward future potential classification of benign vs malignant RM. A fully...
Detection and accurate localization of renal masses (RM) are important steps toward future potential classification of benign vs malignant RM. A fully...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4032
SubjectTerms Algorithms
contrast‐enhanced computed tomography (CECT) images
ensemble learning system
Humans
Image Processing, Computer-Assisted
Kidney Neoplasms - diagnostic imaging
Neural Networks, Computer
renal mass
Tomography, X-Ray Computed
U‐Net
Title Ensemble U‐net‐based method for fully automated detection and segmentation of renal masses on computed tomography images
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.14193
https://www.ncbi.nlm.nih.gov/pubmed/32329074
https://www.proquest.com/docview/2394885275
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJ6a9IBgfK18yEoKHKSx1nDp5nKDThCia1FWaeIkcf9AJklZrqgF_An81Zzt2M22TgJe0slO36v1y97uz7w6h16UGMy3hSWOpBAellGmUccCyIEMtRlJnOTHZyJPPo-MZ_XiWnvV6vzunltZN-U78ujGv5H-kCmMgV5Ml-w-SDYvCALwH-cIVJAzXv5LxuF6pyqQ-zaJaNZGxSLLtCW2PD5rY-s99vm4WwEthSqpGta3BTbhcfa3azCPLGS-UYaYVN9vAZg9BuIYPEuhp1Ra23j-vQP-suozW7_S4EImN4Zq8au46foQwwxH8gErZGM4XXp7PDfzmIZxv8Whp7FTMgRQHWzE1BFWt5l4fzeswNQYr66LCs2-XvGl4N4AB3qo_oQX2xyo6QlkSURLnXa3s6nC26Ms7KpbGLiB6Tfe7WrLVEpT_0HVd7EBgWVkMJIBMEw7YWL9wJtFP3UFbBCxE3Edbhx8mn6bBrgM1i3354pgc-C_aQdv-o1e5zTWH5ar_YwnM6X10r_U88KGD0QPUU_Uu2p60Zyt20d0TJ8GH6IfHFe7gCjtcYcAVtrjCAVc44AoDrnAXV3ihscUVdrjCMORxhTe4wg5Xj9DsaHz6_jhqO3REIiHDJOIilqykPJNJFueaUVNdtywp0zSlWhuynpaslInOYpGPUj2UhAsZ55lmigmaPEb9elGrPYSFBNcAXL2EJUDRU1VSoWM-lCw3Pj2RA_TW_7eFaMvXmy4q3wtXeJsU1bKwAhmgV-HOpSvZctM9XjwF6FOzScZrtVivCpLkYNNSwtIBeuLkFlbxch6gN1aQty5fTE7s69Nbl3iGdjbPwnPUby7W6gXQ26Z82eLuDwR5qTU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+U-net-based+method+for+fully+automated+detection+and+segmentation+of+renal+masses+on+computed+tomography+images&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Fatemeh%2C+Zabihollahy&rft.au=Nicola%2C+Schieda&rft.au=Satheesh%2C+Krishna&rft.au=Eranga%2C+Ukwatta&rft.date=2020-09-01&rft.eissn=2473-4209&rft.volume=47&rft.issue=9&rft.spage=4032&rft_id=info:doi/10.1002%2Fmp.14193&rft_id=info%3Apmid%2F32329074&rft.externalDocID=32329074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon