Percentile and Percentile-t Bootstrap Confidence Intervals: A Practical Comparison

This paper employs a Monte Carlo study to compare the performance of equal-tailed bootstrap percentile- , symmetric bootstrap percentile- , bootstrap percentile, and standard asymptotic confidence intervals in two distinct heteroscedastic regression models. Bootstrap confidence intervals are constru...

Full description

Saved in:
Bibliographic Details
Published inJournal of econometric methods Vol. 4; no. 1; pp. 153 - 161
Main Author Elias, Christopher J.
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.01.2015
de Gruyter
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN2194-6345
2156-6674
DOI10.1515/jem-2013-0015

Cover

Abstract This paper employs a Monte Carlo study to compare the performance of equal-tailed bootstrap percentile- , symmetric bootstrap percentile- , bootstrap percentile, and standard asymptotic confidence intervals in two distinct heteroscedastic regression models. Bootstrap confidence intervals are constructed with both the XY and wild bootstrap algorithm. Theory implies that the percentile- methods will outperform the other methods, where performance is based on the convergence rate of empirical coverage to the nominal level. Results are consistent across models, in that in the case of the XY bootstrap algorithm the symmetric percentile- method outperforms the other methods, but in the case of the wild bootstrap algorithm the two percentile- methods perform similarly and outperform the other methods. The implication is that practitioners that employ the XY algorithm should utilize the symmetric percentile- interval, while those who opt for the wild algorithm should use either of the percentile- methods.
AbstractList This paper employs a Monte Carlo study to compare the performance of equal-tailed bootstrap percentile- t , symmetric bootstrap percentile- t , bootstrap percentile, and standard asymptotic confidence intervals in two distinct heteroscedastic regression models. Bootstrap confidence intervals are constructed with both the XY and wild bootstrap algorithm. Theory implies that the percentile- t methods will outperform the other methods, where performance is based on the convergence rate of empirical coverage to the nominal level. Results are consistent across models, in that in the case of the XY bootstrap algorithm the symmetric percentile- t method outperforms the other methods, but in the case of the wild bootstrap algorithm the two percentile- t methods perform similarly and outperform the other methods. The implication is that practitioners that employ the XY algorithm should utilize the symmetric percentile- t interval, while those who opt for the wild algorithm should use either of the percentile- t methods.
This paper employs a Monte Carlo study to compare the performance of equal-tailed bootstrap percentile- t , symmetric bootstrap percentile- t , bootstrap percentile, and standard asymptotic confidence intervals in two distinct heteroscedastic regression models. Bootstrap confidence intervals are constructed with both the XY and wild bootstrap algorithm. Theory implies that the percentile- t methods will outperform the other methods, where performance is based on the convergence rate of empirical coverage to the nominal level. Results are consistent across models, in that in the case of the XY bootstrap algorithm the symmetric percentile- t method outperforms the other methods, but in the case of the wild bootstrap algorithm the two percentile- t methods perform similarly and outperform the other methods. The implication is that practitioners that employ the XY algorithm should utilize the symmetric percentile- t interval, while those who opt for the wild algorithm should use either of the percentile- t methods.
This paper employs a Monte Carlo study to compare the performance of equal-tailed bootstrap percentile- , symmetric bootstrap percentile- , bootstrap percentile, and standard asymptotic confidence intervals in two distinct heteroscedastic regression models. Bootstrap confidence intervals are constructed with both the XY and wild bootstrap algorithm. Theory implies that the percentile- methods will outperform the other methods, where performance is based on the convergence rate of empirical coverage to the nominal level. Results are consistent across models, in that in the case of the XY bootstrap algorithm the symmetric percentile- method outperforms the other methods, but in the case of the wild bootstrap algorithm the two percentile- methods perform similarly and outperform the other methods. The implication is that practitioners that employ the XY algorithm should utilize the symmetric percentile- interval, while those who opt for the wild algorithm should use either of the percentile- methods.
Author Elias, Christopher J.
Author_xml – sequence: 1
  givenname: Christopher J.
  surname: Elias
  fullname: Elias, Christopher J.
  email: cjelias@gmail.com
  organization: Department of Economics, 703 Pray-Harrold, Eastern Michigan University, Ypsilanti, MI, 48197, USA
BackLink http://www.econis.eu/PPNSET?PPN=1025291727$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
BookMark eNptkE1LAzEQhoMo-Hn0vuB5NZPs7Ha9afGjICii5xCTWUnZJjVJFf-9KRUUMZdMyPNOJs8-2_bBE2PHwE8BAc_mtKgFB1lzDrjF9gRgW7dt12yv676pW9ngLjtKac7LwmYiRLvHHh8oGvLZjVRpb6ufY52ryxByylEvq2nwg7PkDVUznym-6zGdVxfVQ9QmO6PHQiyWOroU_CHbGco1HX3vB-z5-uppelvf3d_Mphd3tZGizIkWJrrjgwbZd4MVQAD0YkEMBqyZNGgFgml7wQkQyU6stD0NBPJF4yBQHrCTTd9lDG8rSlnNwyr68qSCjiNiJ0RTqGpDkQneJbWMbqHjpwIuUPTQia4gcoOYGFKKNCjjss4u-PJ3NxZUrRWrolitFau14pKq_6R-Wv_Pn2_4Dz0Wg5Ze4-qzFL-m_i_XQMnKL3nBkQQ
CitedBy_id crossref_primary_10_1055_a_1363_1680
ContentType Journal Article
Copyright Copyright Walter de Gruyter GmbH 2015
Copyright_xml – notice: Copyright Walter de Gruyter GmbH 2015
DBID AAYXX
CITATION
OQ6
3V.
7WY
7WZ
7XB
87Z
8FK
8FL
ABUWG
AFKRA
BENPR
BEZIV
CCPQU
DWQXO
FRNLG
F~G
K60
K6~
L.-
M0C
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1515/jem-2013-0015
DatabaseName CrossRef
ECONIS
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
Business Premium Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ProQuest ABI/INFORM Global
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 2156-6674
EndPage 161
ExternalDocumentID 3783319581
1025291727
10_1515_jem_2013_0015
10_1515_jem_2013_001541153
GroupedDBID 0R~
1WD
4.4
7WY
8FL
AAAVF
AACIX
AADCM
AADUK
AAFPC
AAGVJ
AAILP
AAJHH
AALGR
AAPJK
AAQCX
AASQH
AAWFC
AAWFX
AAXKO
AAZIW
ABAQN
ABFKT
ABJNI
ABLYR
ABOQI
ABPLS
ABRQL
ABUWG
ABUYE
ABVVF
ABVXM
ABWLS
ACDDV
ACDEB
ACEFL
ACGFS
ACHNZ
ACMKP
ACONX
ACPDI
ACPMA
ACTBC
ACXLN
ACZBO
ADALX
ADEQT
ADGQD
ADGYE
ADGYZ
ADLJJ
ADNPR
ADNWJ
ADOZN
ADVKO
AEDGQ
AEGVQ
AEHSO
AEJQW
AEKEB
AELUW
AEMOE
AEQDQ
AEQLX
AEQVF
AERMM
AEZWT
AFBAA
AFBDD
AFBQV
AFCXV
AFKRA
AFYRI
AGABS
AGAWI
AGBEV
AGQYU
AHCWZ
AHXRH
AIKXB
AIWOI
AKVCP
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALOFT
ALUKF
ALWYM
AMAVY
ANIJB
ANIUB
ASYPN
AUUYC
AYQWV
BENPR
BEZIV
BPHCQ
CCPQU
CGZZE
CKPZI
CPBVD
DASCH
DWQXO
EBS
EJD
FRNLG
FSTRU
HZ~
IY9
K.~
K60
K6~
KDIRW
KGHVJ
KKOJQ
KWZGS
LG7
M0C
O9-
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
QD8
SA.
T2Y
UK5
WTRAM
AAYXX
CITATION
PUEGO
9-L
AEXIE
AHQJS
OQ6
SLJYH
3V.
7XB
8FK
L.-
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c3213-5d18a70fa1397fd21e11ebd12fc1dc845d251c6920e155ed8d3d9efe13ba5f253
IEDL.DBID BENPR
ISSN 2194-6345
IngestDate Fri Jul 25 23:59:58 EDT 2025
Wed Aug 20 03:27:42 EDT 2025
Thu Apr 24 23:07:59 EDT 2025
Wed Oct 01 03:46:50 EDT 2025
Tue Oct 21 12:50:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3213-5d18a70fa1397fd21e11ebd12fc1dc845d251c6920e155ed8d3d9efe13ba5f253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1705557224
PQPubID 2031332
PageCount 9
ParticipantIDs proquest_journals_1705557224
econis_primary_1025291727
crossref_citationtrail_10_1515_jem_2013_0015
crossref_primary_10_1515_jem_2013_0015
walterdegruyter_journals_10_1515_jem_2013_001541153
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-1-1
2015
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-1-1
  day: 01
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of econometric methods
PublicationYear 2015
Publisher De Gruyter
de Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: de Gruyter
– name: Walter de Gruyter GmbH
SSID ssj0000548226
Score 1.9211643
Snippet This paper employs a Monte Carlo study to compare the performance of equal-tailed bootstrap percentile- , symmetric bootstrap percentile- , bootstrap...
This paper employs a Monte Carlo study to compare the performance of equal-tailed bootstrap percentile- t , symmetric bootstrap percentile- t , bootstrap...
This paper employs a Monte Carlo study to compare the performance of equal-tailed bootstrap percentile- t , symmetric bootstrap percentile- t , bootstrap...
SourceID proquest
econis
crossref
walterdegruyter
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 153
SubjectTerms Algorithms
Analysis
bootstrap
Bootstrap method
C01
C12
C15
C20
C23
confidence interval
Confidence intervals
Econometrics
Estimates
Hypotheses
Hypothesis testing
Methods
Monte Carlo
Monte Carlo simulation
Regression analysis
Sample size
Studies
Title Percentile and Percentile-t Bootstrap Confidence Intervals: A Practical Comparison
URI https://www.degruyter.com/doi/10.1515/jem-2013-0015
http://www.econis.eu/PPNSET?PPN=1025291727
https://www.proquest.com/docview/1705557224
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2156-6674
  dateEnd: 20250503
  omitProxy: true
  ssIdentifier: ssj0000548226
  issn: 2194-6345
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS8NAEB60Cvoinhgv9kF8MrR7pYkg0ooigkU8oG8hyW5EqW1tU8R_70yOWkV9DAw5ZiY738zuzAdwyAmxGcld6VFLjoq0G2AgdSMuueWikcQpNTjfdLyrR3Xd1d056FS9MHSssloT84XaDBKqkdfzsS-6iRHnbPjmEmsU7a5WFBpRSa1gTvMRY_OwIGgyVg0W2hed27tp1QUBCkbEnHEOs3fXk0qXgzcxrtdf7Ct6DdEdNIgmdyZQLVJ2-jz-BkNX3vMNbWOfRpOPrNpAzePS5SqslICStQoPWIM521-HparfeLwB97d0dgXfumdZ1Dfs69JlGWsPBhlVO4aMev8KhlGWlwnRBccnrMWKiUZoSnY-5SzchMfLi4fzK7ekUnATKfCDtOF-1GykEQG-1Ai0A7ex4SJNuEl8pQ3inMQLRMOiAq3xjTSBTS2XcaRToeUW1PqDvt0GJpQOtFK4SMaxivwk8PxYaoOJruelOhAOHFd6C5NyzjjRXfRCyjdQzSGqOSQ103k67cDRVHxYDNj4S9ApjDAjJrQICIE5sFfZJSz_wXH45TEOyB-2mpH67VkKcbLc-f-mu7CM8roox-xBLRtN7D4ClCw-KL3uEynk4KQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9xADLYQVKIXBC1V0_KYQ8uJETuvkEFaVTy1FFihFiRuaZKZoFZ0d0uCVvw5flvtPJZtRXvjGMl5yHbGnz1jfwAfBCE2pwRXIbXk6MRwi4GUJ0IJL2QnS3NqcD7rh71L_fnKXM3AQ9sLQ8cq2zWxWqjdMKMa-VY19sVsY8T5NPrFiTWKdldbCo2koVZw3WrEWNPYceLvx5jCFd3jA7T3RymPDi_2e7xhGeCZkkJx40SUbHfyhLBQ7iR-ovCpEzLPhMsibRxCgCy0suPx2d5FTjnrcy9UmphcEmsEhoA5rbTF5G9u77B__mVS5UFAhBG4YrgTVvNQadMM-kQcsfXD_0QvJXqFDtHyTgXGF5QNfy_-gL0L42oD3fnr27v7st2wreLg0SIsNACW7dYetwQzfvAK5tv-5uI1fD2nszKopRvPkoFjj5eclWxvOCypujJi1GtYM5qyqiyJLl_ssF1WT1BC12H7E47EZbh8FqW-gdnBcODfApPaWKM1LsppqpMos2GUKuMwsQ7D3FgZwGartzhr5poTvcZNTPkNqjlGNcekZjq_ZwLYmIiP6oEe_xIMaiNMiUkjLSG-AFZau8TNP1_Ejx4agPrLVlNST71LIy5X7_7_0HWY712cncanx_2T9_AS7zV1KWgFZsvbO7-K4KhM1xoPZPDtuZ3-N-5VHec
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Percentile+and+percentile-t+bootstrap+confidence+intervals&rft.jtitle=Journal+of+econometric+methods&rft.au=Elias%2C+Christopher+J&rft.date=2015&rft.pub=de+Gruyter&rft.issn=2194-6345&rft.volume=4&rft.issue=1&rft.spage=153&rft.epage=161&rft_id=info:doi/10.1515%2Fjem-2013-0015&rft.externalDocID=1025291727
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-6345&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-6345&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-6345&client=summon