Development of a Real-Time Emotion Recognition System Using Facial Expressions and EEG based on machine learning and deep neural network methods
Real-time emotion recognition has been an active field of research over the past several decades. This work aims to classify physically disabled people (deaf, dumb, and bedridden) and Autism children's emotional expressions based on facial landmarks and electroencephalograph (EEG) signals using...
Saved in:
Published in | Informatics in medicine unlocked Vol. 20; p. 100372 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2352-9148 2352-9148 |
DOI | 10.1016/j.imu.2020.100372 |
Cover
Abstract | Real-time emotion recognition has been an active field of research over the past several decades. This work aims to classify physically disabled people (deaf, dumb, and bedridden) and Autism children's emotional expressions based on facial landmarks and electroencephalograph (EEG) signals using a convolutional neural network (CNN) and long short-term memory (LSTM) classifiers by developing an algorithm for real-time emotion recognition using virtual markers through an optical flow algorithm that works effectively in uneven lightning and subject head rotation (up to 25°), different backgrounds, and various skin tones. Six facial emotions (happiness, sadness, anger, fear, disgust, and surprise) are collected using ten virtual markers. Fifty-five undergraduate students (35 male and 25 female) with a mean age of 22.9 years voluntarily participated in the experiment for facial emotion recognition. Nineteen undergraduate students volunteered to collect EEG signals. Initially, Haar-like features are used for facial and eye detection. Later, virtual markers are placed on defined locations on the subject's face based on a facial action coding system using the mathematical model approach, and the markers are tracked using the Lucas-Kande optical flow algorithm. The distance between the center of the subject's face and each marker position is used as a feature for facial expression classification. This distance feature is statistically validated using a one-way analysis of variance with a significance level of p < 0.01. Additionally, the fourteen signals collected from the EEG signal reader (EPOC+) channels are used as features for emotional classification using EEG signals. Finally, the features are cross-validated using fivefold cross-validation and given to the LSTM and CNN classifiers. We achieved a maximum recognition rate of 99.81% using CNN for emotion detection using facial landmarks. However, the maximum recognition rate achieved using the LSTM classifier is 87.25% for emotion detection using EEG signals.
•Classify emotional expressions based on facial landmarks and EEG signals.•The system allows real-time monitoring of physically disabled patients.•The system works effectively in uneven lighting and various skin tones. |
---|---|
AbstractList | Real-time emotion recognition has been an active field of research over the past several decades. This work aims to classify physically disabled people (deaf, dumb, and bedridden) and Autism children's emotional expressions based on facial landmarks and electroencephalograph (EEG) signals using a convolutional neural network (CNN) and long short-term memory (LSTM) classifiers by developing an algorithm for real-time emotion recognition using virtual markers through an optical flow algorithm that works effectively in uneven lightning and subject head rotation (up to 25°), different backgrounds, and various skin tones. Six facial emotions (happiness, sadness, anger, fear, disgust, and surprise) are collected using ten virtual markers. Fifty-five undergraduate students (35 male and 25 female) with a mean age of 22.9 years voluntarily participated in the experiment for facial emotion recognition. Nineteen undergraduate students volunteered to collect EEG signals. Initially, Haar-like features are used for facial and eye detection. Later, virtual markers are placed on defined locations on the subject's face based on a facial action coding system using the mathematical model approach, and the markers are tracked using the Lucas-Kande optical flow algorithm. The distance between the center of the subject's face and each marker position is used as a feature for facial expression classification. This distance feature is statistically validated using a one-way analysis of variance with a significance level of p < 0.01. Additionally, the fourteen signals collected from the EEG signal reader (EPOC+) channels are used as features for emotional classification using EEG signals. Finally, the features are cross-validated using fivefold cross-validation and given to the LSTM and CNN classifiers. We achieved a maximum recognition rate of 99.81% using CNN for emotion detection using facial landmarks. However, the maximum recognition rate achieved using the LSTM classifier is 87.25% for emotion detection using EEG signals.
•Classify emotional expressions based on facial landmarks and EEG signals.•The system allows real-time monitoring of physically disabled patients.•The system works effectively in uneven lighting and various skin tones. Real-time emotion recognition has been an active field of research over the past several decades. This work aims to classify physically disabled people (deaf, dumb, and bedridden) and Autism children's emotional expressions based on facial landmarks and electroencephalograph (EEG) signals using a convolutional neural network (CNN) and long short-term memory (LSTM) classifiers by developing an algorithm for real-time emotion recognition using virtual markers through an optical flow algorithm that works effectively in uneven lightning and subject head rotation (up to 25°), different backgrounds, and various skin tones. Six facial emotions (happiness, sadness, anger, fear, disgust, and surprise) are collected using ten virtual markers. Fifty-five undergraduate students (35 male and 25 female) with a mean age of 22.9 years voluntarily participated in the experiment for facial emotion recognition. Nineteen undergraduate students volunteered to collect EEG signals. Initially, Haar-like features are used for facial and eye detection. Later, virtual markers are placed on defined locations on the subject's face based on a facial action coding system using the mathematical model approach, and the markers are tracked using the Lucas-Kande optical flow algorithm. The distance between the center of the subject's face and each marker position is used as a feature for facial expression classification. This distance feature is statistically validated using a one-way analysis of variance with a significance level of p < 0.01. Additionally, the fourteen signals collected from the EEG signal reader (EPOC+) channels are used as features for emotional classification using EEG signals. Finally, the features are cross-validated using fivefold cross-validation and given to the LSTM and CNN classifiers. We achieved a maximum recognition rate of 99.81% using CNN for emotion detection using facial landmarks. However, the maximum recognition rate achieved using the LSTM classifier is 87.25% for emotion detection using EEG signals. |
ArticleNumber | 100372 |
Author | Mutawa, A.M. Murugappan, M. Hassouneh, Aya |
Author_xml | – sequence: 1 givenname: Aya surname: Hassouneh fullname: Hassouneh, Aya email: aia.hassouneh@gmail.com organization: Computer Engineering Department, College of Engineering and Petroleum, Kuwait University, Kuwait – sequence: 2 givenname: A.M. surname: Mutawa fullname: Mutawa, A.M. organization: Computer Engineering Department, College of Engineering and Petroleum, Kuwait University, Kuwait – sequence: 3 givenname: M. surname: Murugappan fullname: Murugappan, M. organization: Department of Electronics and Communication Engineering, Kuwait College of Science and Technology, Doha, Kuwait |
BookMark | eNp9kctu3CAUhlGVSk3TPEB3vICnYIzB6qpKnYsUKVKbrBGGw4SpDSMgafIWfeTiTFVVXWR1rt-vo_O_R0chBkDoIyUbSmj_abfxy8OmJe1aEybaN-i4ZbxtBtrJo3_yd-g05x0hhIqeccGP0a-v8Ahz3C8QCo4Oa_wN9Nzc-gXwuMTiY6gdE7fBv-Tfn3OBBd9lH7b4XBuvZzw-7RPkXMcZ62DxOF7gSWewuAKLNvc-AJ5Bp7BC64YF2OMAD6nSAcrPmH7gBcp9tPkDeuv0nOH0TzxBd-fj7dllc31zcXX25boxrKVtA3zqpslaJznnDLhgThA72N5yJulEBOOT7ZkjXHZUdgR6aaVrhbR6GNhk2Qm6OujaqHdqn_yi07OK2quXRkxbpVPxZgZlhADDJ2eJY52DThJjgPXgGO2NGXTVogctk2LOCdxfPUrU6pDaqeqQWh1SB4cqI_5jjC96_XFJ2s-vkp8PJNT3PHpIKhsPwYD1CUyp9_tX6N-h1q7e |
CitedBy_id | crossref_primary_10_28978_nesciences_1159248 crossref_primary_10_3390_a17070285 crossref_primary_10_1016_j_fraope_2024_100200 crossref_primary_10_3389_fpsyg_2023_1126994 crossref_primary_10_1007_s44196_024_00729_9 crossref_primary_10_1002_cav_2230 crossref_primary_10_1016_j_bspc_2024_106096 crossref_primary_10_1155_2022_8379202 crossref_primary_10_3390_s21051870 crossref_primary_10_36548_jiip_2024_1_003 crossref_primary_10_1007_s12145_024_01331_5 crossref_primary_10_1109_ACCESS_2023_3276244 crossref_primary_10_1016_j_ypmed_2023_107590 crossref_primary_10_1016_j_suscom_2022_100677 crossref_primary_10_1016_j_procs_2024_02_169 crossref_primary_10_1007_s42979_025_03783_y crossref_primary_10_1016_j_dscb_2024_100121 crossref_primary_10_2478_amns_2024_3430 crossref_primary_10_1007_s00500_023_09029_4 crossref_primary_10_1007_s11042_022_13149_8 crossref_primary_10_1007_s11334_022_00437_7 crossref_primary_10_1016_j_chaos_2021_110671 crossref_primary_10_1051_e3sconf_202235101033 crossref_primary_10_1109_JSEN_2022_3168572 crossref_primary_10_1016_j_cmpb_2022_106646 crossref_primary_10_1080_03772063_2024_2414834 crossref_primary_10_1007_s13278_023_01035_6 crossref_primary_10_1155_2020_8875426 crossref_primary_10_21105_joss_04045 crossref_primary_10_1007_s00034_024_02961_2 crossref_primary_10_1016_j_comcom_2022_07_031 crossref_primary_10_1002_cpe_7373 crossref_primary_10_3390_app14020534 crossref_primary_10_1109_JSEN_2023_3265688 crossref_primary_10_1007_s11042_024_20119_9 crossref_primary_10_1007_s42044_022_00103_y crossref_primary_10_3390_robotics12040099 crossref_primary_10_1063_5_0123238 crossref_primary_10_1007_s10462_023_10690_2 crossref_primary_10_2139_ssrn_4180761 crossref_primary_10_1109_TNSRE_2022_3225948 crossref_primary_10_1117_1_JEI_32_4_040901 crossref_primary_10_1016_j_imavis_2022_104572 crossref_primary_10_3390_app15052328 crossref_primary_10_3390_diagnostics13050977 crossref_primary_10_38124_ijisrt_IJISRT24MAR1662 crossref_primary_10_3389_fnsys_2021_729707 crossref_primary_10_1016_j_eswa_2023_123022 crossref_primary_10_53623_gisa_v3i1_229 crossref_primary_10_1142_S0219265921440059 crossref_primary_10_3390_app14178071 crossref_primary_10_3390_s22134939 crossref_primary_10_1038_s41598_023_43763_x crossref_primary_10_3389_fpsyg_2022_864047 crossref_primary_10_1007_s11277_024_11188_y crossref_primary_10_1166_jmihi_2022_3938 crossref_primary_10_1007_s11042_024_20428_z crossref_primary_10_1007_s11042_024_20572_6 crossref_primary_10_1371_journal_pone_0247131 crossref_primary_10_1007_s40593_023_00357_y crossref_primary_10_1080_03772063_2023_2220691 crossref_primary_10_1109_ACCESS_2024_3407885 crossref_primary_10_1007_s12597_024_00892_9 crossref_primary_10_35940_ijrte_E6762_0110522 crossref_primary_10_1007_s11135_025_02098_7 crossref_primary_10_1007_s40747_021_00295_z crossref_primary_10_17350_HJSE19030000277 crossref_primary_10_1016_j_bspc_2022_103877 crossref_primary_10_1007_s12369_021_00830_5 crossref_primary_10_3390_educsci13090914 crossref_primary_10_1080_10447318_2024_2432455 crossref_primary_10_1016_j_aej_2024_07_081 crossref_primary_10_1145_3476049 crossref_primary_10_1007_s00521_022_07292_4 crossref_primary_10_59400_cai_v2i1_1388 crossref_primary_10_1016_j_eswa_2023_121097 crossref_primary_10_1109_ACCESS_2023_3284457 crossref_primary_10_1145_3495002 crossref_primary_10_1109_ACCESS_2021_3060753 crossref_primary_10_1007_s00521_022_08161_w crossref_primary_10_1016_j_irbm_2024_100836 crossref_primary_10_1109_ACCESS_2021_3051083 crossref_primary_10_1016_j_engappai_2022_105486 crossref_primary_10_1007_s10462_023_10606_0 crossref_primary_10_21869_2223_1536_2024_14_2_72_80 crossref_primary_10_32604_cmc_2023_031924 crossref_primary_10_1109_ACCESS_2024_3427822 crossref_primary_10_46460_ijiea_904838 crossref_primary_10_1007_s42979_023_02519_0 crossref_primary_10_1080_21681163_2023_2299096 crossref_primary_10_3390_s23249619 crossref_primary_10_1007_s13278_023_01181_x crossref_primary_10_1016_j_heliyon_2024_e31485 |
Cites_doi | 10.3390/s18124270 10.1037/h0077722 10.1371/journal.pone.0148959 10.1007/978-3-319-09333-8_35 10.1016/j.heliyon.2019.e01802 10.1109/TPAMI.2015.2439281 10.1016/j.cviu.2015.09.015 10.1037/h0030377 10.1186/s13073-016-0388-7 10.1088/1742-6596/1187/3/032084 |
ContentType | Journal Article |
Copyright | 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.imu.2020.100372 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-9148 |
ExternalDocumentID | oai_doaj_org_article_c77ec5bfd0f34fe480cce36ef316cc9a 10_1016_j_imu_2020_100372 S235291482030201X |
GroupedDBID | 0R~ 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFTJW AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c3212-e5b4bbddf85553e573f70d9d6d5381b0735bd63f05841840e68d8f278da993bd3 |
IEDL.DBID | DOA |
ISSN | 2352-9148 |
IngestDate | Wed Aug 27 01:25:06 EDT 2025 Thu Apr 24 23:12:50 EDT 2025 Wed Oct 01 02:12:18 EDT 2025 Sun Apr 21 12:55:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | LSTM Face emotion recognition Virtual markers EEG emotion Detection |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3212-e5b4bbddf85553e573f70d9d6d5381b0735bd63f05841840e68d8f278da993bd3 |
OpenAccessLink | https://doaj.org/article/c77ec5bfd0f34fe480cce36ef316cc9a |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c77ec5bfd0f34fe480cce36ef316cc9a crossref_primary_10_1016_j_imu_2020_100372 crossref_citationtrail_10_1016_j_imu_2020_100372 elsevier_sciencedirect_doi_10_1016_j_imu_2020_100372 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020 2020-00-00 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationTitle | Informatics in medicine unlocked |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Ekman (bib11) 2006 Viola, Jones (bib23) 2001 Weber, Mandl, Kohane (bib5) 2014; 311 Bahreini, van der Vegt, Westera (bib37) 2019 Zhang, Yin, Cheng, Nichele (bib19) 2020 Ekman, Friesen, Ancoli (bib15) 1980; 39 Sally, Paul (bib24) 2007 bib31 Xie (bib2) 2019; 1187 Dada, Bassi, Chiroma, Abdulhamid, Adetunmbi, Ajibuwa (bib1) 2019; 5 Loconsole, Chiaradia, Bevilacqua, Frisoli (bib6) 2014 Krizhevsky, Sutskever, Hinton (bib28) 2012 Lang, Bradley, Cuthbert (bib29) 2008 Palestra, Pettinicchio, Del Coco, Carcagn, Leo, Distante (bib18) 2015 Ouyang, Wang, Zeng, Qiu, Luo, Tian, Li, Yang, Wang, Loy, Tang, Dong, Loy, He (bib26) 2015 Vassilis, Herrmann (bib9) 1997 Tang (bib27) 2016; 38 Ekman, Friesen (bib12) 1971; 17 Nguyen, Trinh, Phan, Nguyen (bib16) 2017 Das, Behera, Pradhan, Tripathy, Jena (bib22) 2015; vol. 2 Bhattacharya, Lindsen (bib30) 2016; 11 Ekman, Friesen, Ancoli (bib14) 1980; 39 Keltiner, Ekrman (bib10) 2000 Magdin, Prikler (bib36) 2017; 1 Sun, Chen, Wang, Tang (bib25) 2014 Huang, Kortelainen, Zhao, Li, Moilanen, Seppänen, Pietikäinen (bib7) 2016; 147 Raheel, Majid, Anwar (bib8) 2019 Lucey (bib38) 2010 Suk, Prabhakaran (bib34) 24–27 June 2014 Loconsole, Miranda, Augusto, Frisoli, Orvalho (bib17) 2014 Wilson, Fernandez (bib20) 2006; 4 Sangaiah, Arumugam, Bian (bib32) 2019 Beckmann, Lew (bib4) 2016; 8 Ekman (bib13) 2006 Jeong, Ko (bib35) 2018; 18 Hegazy, Soliman, Salam (bib3) 2014; 4 Michel, El Kaliouby (bib33) 2003 Zhao, Pietikäinen (bib21) 2007; vol. 4358 Dada (10.1016/j.imu.2020.100372_bib1) 2019; 5 Raheel (10.1016/j.imu.2020.100372_bib8) 2019 Loconsole (10.1016/j.imu.2020.100372_bib17) 2014 Xie (10.1016/j.imu.2020.100372_bib2) 2019; 1187 Nguyen (10.1016/j.imu.2020.100372_bib16) 2017 Das (10.1016/j.imu.2020.100372_bib22) 2015; vol. 2 Tang (10.1016/j.imu.2020.100372_bib27) 2016; 38 Weber (10.1016/j.imu.2020.100372_bib5) 2014; 311 Lang (10.1016/j.imu.2020.100372_bib29) 2008 Bahreini (10.1016/j.imu.2020.100372_bib37) 2019 Michel (10.1016/j.imu.2020.100372_bib33) 2003 Ekman (10.1016/j.imu.2020.100372_bib13) 2006 Suk (10.1016/j.imu.2020.100372_bib34) 2014 Zhang (10.1016/j.imu.2020.100372_bib19) 2020 Ouyang (10.1016/j.imu.2020.100372_bib26) 2015 Huang (10.1016/j.imu.2020.100372_bib7) 2016; 147 Ekman (10.1016/j.imu.2020.100372_bib14) 1980; 39 Beckmann (10.1016/j.imu.2020.100372_bib4) 2016; 8 Viola (10.1016/j.imu.2020.100372_bib23) 2001 Bhattacharya (10.1016/j.imu.2020.100372_bib30) 2016; 11 Krizhevsky (10.1016/j.imu.2020.100372_bib28) 2012 Keltiner (10.1016/j.imu.2020.100372_bib10) 2000 Wilson (10.1016/j.imu.2020.100372_bib20) 2006; 4 Sangaiah (10.1016/j.imu.2020.100372_bib32) 2019 Zhao (10.1016/j.imu.2020.100372_bib21) 2007; vol. 4358 Loconsole (10.1016/j.imu.2020.100372_bib6) 2014 Ekman (10.1016/j.imu.2020.100372_bib12) 1971; 17 Hegazy (10.1016/j.imu.2020.100372_bib3) 2014; 4 Jeong (10.1016/j.imu.2020.100372_bib35) 2018; 18 Palestra (10.1016/j.imu.2020.100372_bib18) 2015 Lucey (10.1016/j.imu.2020.100372_bib38) 2010 Sun (10.1016/j.imu.2020.100372_bib25) 2014 Magdin (10.1016/j.imu.2020.100372_bib36) 2017; 1 Sally (10.1016/j.imu.2020.100372_bib24) 2007 Vassilis (10.1016/j.imu.2020.100372_bib9) 1997 Ekman (10.1016/j.imu.2020.100372_bib11) 2006 Ekman (10.1016/j.imu.2020.100372_bib15) 1980; 39 |
References_xml | – volume: 8 start-page: 134 year: 2016 end-page: 139 ident: bib4 article-title: Reconciling evidence-based medicine and precision medicine in the era of big data: challenges and opportunities publication-title: Genome Med – volume: 147 start-page: 114 year: 2016 end-page: 124 ident: bib7 article-title: Multi-modal emotion analysis from facial expressions and electroencephalogram publication-title: Comput Vis Image Understand – volume: 17 start-page: 124 year: 1971 ident: bib12 article-title: Constants across cultures in the face and emotion publication-title: J Pers Soc Psychol – year: 2019 ident: bib32 article-title: An intelligent learning approach for improving ECG signal classification and arrhythmia analysis publication-title: Artif Intell Med – volume: 311 start-page: 2479 year: 2014 end-page: 2480 ident: bib5 article-title: Finding the missing link for big biomedical data publication-title: Jama – volume: 39 start-page: 1123 year: 1980 end-page: 1134 ident: bib15 article-title: Facial signs of emotional experience publication-title: J Pers Soc Psychol – volume: 18 start-page: 4270 year: 2018 ident: bib35 article-title: Driver's facial expression recognition in real-time for safe driving publication-title: Sensors – start-page: 2403 year: 2015 end-page: 2412 ident: bib26 article-title: Deepid-net: deformable deep convolutional neural networks for object detection publication-title: In proc. IEEE conf. Comput. Vis. Pattern recogn. – start-page: 258 year: 2003 end-page: 264 ident: bib33 article-title: Real time facial expression recognition in video using support vector machines publication-title: . 5th int. Conf. On multimodal interfaces – year: 2001 ident: bib23 article-title: Rapid object detection using a boosted cascade of simple features – volume: 1187 year: 2019 ident: bib2 article-title: Development of artificial intelligence and effects on financial system publication-title: J Phys Conf – year: 2007 ident: bib24 article-title: "Chapter 3: Pythagorean triples". Roots to research: a vertical development of mathematical problems – year: 1997 ident: bib9 article-title: Where do machine learning and human-computer interaction meet? – volume: vol. 4358 year: 2007 ident: bib21 article-title: Dynamic Texture Recognition Using Volume Local Binary Patterns publication-title: Dynamical Vision. WDV 2006, WDV 2005. Lecture Notes in Computer Science – year: 2008 ident: bib29 article-title: International affective picture system (IAPS): affective ratings of pictures and instruction manual – start-page: 1 year: 2019 end-page: 5 ident: bib8 article-title: Facial expression recognition based on electroencephalography publication-title: 2019 2nd international conference on computing, mathematics and engineering technologies (iCoMET), Sukkur, Pakistan – volume: vol. 2 start-page: 221 year: 2015 end-page: 234 ident: bib22 article-title: A modified real time A* algorithm and its performance analysis for improved path planning of mobile robot publication-title: Computational intelligence in data mining, springer India – start-page: 1097 year: 2012 end-page: 1105 ident: bib28 article-title: ImageNet classification with deep convolutional neural networks publication-title: in Proc. Adv. Neural Inf. Process. Syst. – start-page: 1973 year: 2006 ident: bib13 article-title: Darwin and facial expression: a century of research in review – start-page: 236 year: 2000 end-page: 249 ident: bib10 publication-title: Facial expression of emotion, hand book of emotions – start-page: 94 year: 2010 end-page: 101 ident: bib38 article-title: The Extended Cohn-Kanade Dataset (CK+): a complete dataset for action unit and emotion-specified expression publication-title: 2010 IEEE computer society conference on computer vision and pattern recognition – workshops – volume: 4 year: 2006 ident: bib20 article-title: Facial feature detection using Haar classifiers publication-title: J. Comput. Small Coll., ročník 21, č. – volume: 1 year: 2017 ident: bib36 article-title: Real time facial expression recognition using webcam and SDK affectiva publication-title: International Journal of Interactive Multimedia and Artificial Intelligence – volume: 11 year: 2016 ident: bib30 article-title: Music for a brighter world: brightness judgment bias by musical emotion publication-title: PloS One – start-page: 518 year: 2015 end-page: 528 ident: bib18 article-title: Improved performance in facial expression recognition using 32 geometric features publication-title: Proceedings of the 18th international conference on image analysis and processing – start-page: 320 year: 2014 end-page: 331 ident: bib6 article-title: Real-time emotion recognition: an improved hybrid approach for classification performance publication-title: Intelligent Computing Theory – start-page: 1973 year: 2006 ident: bib11 article-title: Darwin and facial expression: a century of research in review – volume: 38 start-page: 295 year: 2016 end-page: 307 ident: bib27 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans Pattern Anal Mach Intell – year: 2017 ident: bib16 article-title: An efficient real-time emotion detection using camera and facial landmarks publication-title: 2017 seventh international conference on information science and technology (ICIST) – ident: bib31 – start-page: 1 year: 2019 end-page: 24 ident: bib37 article-title: A fuzzy logic approach to reliable real-time recognition of facial emotions publication-title: Multimed Tool Appl – volume: 4 start-page: 16 year: 2014 end-page: 23 ident: bib3 article-title: A machine learning model for stock market prediction publication-title: Int J Comput Sci Telecommun – start-page: 1988 year: 2014 end-page: 1996 ident: bib25 article-title: Deep learning face representation by joint identification-verification publication-title: Proc. Adv. Neural inf. Process. Syst. – volume: 39 start-page: 1123 year: 1980 end-page: 1134 ident: bib14 article-title: Facial signs of emotional experience publication-title: J Pers Soc Psychol – year: 2020 ident: bib19 article-title: Emotion recognition using multi-modal data and machine learning techniques: a tutorial and review. Information fusion – volume: 5 year: 2019 ident: bib1 article-title: Machine learning for email spam filtering: review, approaches and open research problems publication-title: Heliyon – start-page: 132 year: 24–27 June 2014 end-page: 137 ident: bib34 article-title: Real-time mobile facial expression recognition system—a case study publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition workshops; columbus, OH, USA – start-page: 378 year: 2014 end-page: 385 ident: bib17 article-title: Real-time emotion recognition novel method for geometrical facial features extraction publication-title: Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP) – year: 2007 ident: 10.1016/j.imu.2020.100372_bib24 – volume: 18 start-page: 4270 year: 2018 ident: 10.1016/j.imu.2020.100372_bib35 article-title: Driver's facial expression recognition in real-time for safe driving publication-title: Sensors doi: 10.3390/s18124270 – volume: 39 start-page: 1123 year: 1980 ident: 10.1016/j.imu.2020.100372_bib15 article-title: Facial signs of emotional experience publication-title: J Pers Soc Psychol doi: 10.1037/h0077722 – volume: vol. 2 start-page: 221 year: 2015 ident: 10.1016/j.imu.2020.100372_bib22 article-title: A modified real time A* algorithm and its performance analysis for improved path planning of mobile robot – start-page: 236 year: 2000 ident: 10.1016/j.imu.2020.100372_bib10 – volume: 4 year: 2006 ident: 10.1016/j.imu.2020.100372_bib20 article-title: Facial feature detection using Haar classifiers publication-title: J. Comput. Small Coll., ročník 21, č. – start-page: 1097 year: 2012 ident: 10.1016/j.imu.2020.100372_bib28 article-title: ImageNet classification with deep convolutional neural networks publication-title: in Proc. Adv. Neural Inf. Process. Syst. – year: 2001 ident: 10.1016/j.imu.2020.100372_bib23 – start-page: 1973 year: 2006 ident: 10.1016/j.imu.2020.100372_bib11 – volume: 11 issue: 2 year: 2016 ident: 10.1016/j.imu.2020.100372_bib30 article-title: Music for a brighter world: brightness judgment bias by musical emotion publication-title: PloS One doi: 10.1371/journal.pone.0148959 – start-page: 320 year: 2014 ident: 10.1016/j.imu.2020.100372_bib6 article-title: Real-time emotion recognition: an improved hybrid approach for classification performance publication-title: Intelligent Computing Theory doi: 10.1007/978-3-319-09333-8_35 – volume: 5 issue: 6 year: 2019 ident: 10.1016/j.imu.2020.100372_bib1 article-title: Machine learning for email spam filtering: review, approaches and open research problems publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e01802 – start-page: 132 year: 2014 ident: 10.1016/j.imu.2020.100372_bib34 article-title: Real-time mobile facial expression recognition system—a case study – start-page: 2403 year: 2015 ident: 10.1016/j.imu.2020.100372_bib26 article-title: Deepid-net: deformable deep convolutional neural networks for object detection – start-page: 1973 year: 2006 ident: 10.1016/j.imu.2020.100372_bib13 – volume: vol. 4358 year: 2007 ident: 10.1016/j.imu.2020.100372_bib21 article-title: Dynamic Texture Recognition Using Volume Local Binary Patterns – volume: 38 start-page: 295 issue: 2 year: 2016 ident: 10.1016/j.imu.2020.100372_bib27 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2439281 – start-page: 1988 year: 2014 ident: 10.1016/j.imu.2020.100372_bib25 article-title: Deep learning face representation by joint identification-verification – volume: 147 start-page: 114 year: 2016 ident: 10.1016/j.imu.2020.100372_bib7 article-title: Multi-modal emotion analysis from facial expressions and electroencephalogram publication-title: Comput Vis Image Understand doi: 10.1016/j.cviu.2015.09.015 – start-page: 518 year: 2015 ident: 10.1016/j.imu.2020.100372_bib18 article-title: Improved performance in facial expression recognition using 32 geometric features – volume: 1 year: 2017 ident: 10.1016/j.imu.2020.100372_bib36 article-title: Real time facial expression recognition using webcam and SDK affectiva publication-title: International Journal of Interactive Multimedia and Artificial Intelligence – year: 2019 ident: 10.1016/j.imu.2020.100372_bib32 article-title: An intelligent learning approach for improving ECG signal classification and arrhythmia analysis publication-title: Artif Intell Med – start-page: 1 year: 2019 ident: 10.1016/j.imu.2020.100372_bib8 article-title: Facial expression recognition based on electroencephalography – volume: 17 start-page: 124 issue: 2 year: 1971 ident: 10.1016/j.imu.2020.100372_bib12 article-title: Constants across cultures in the face and emotion publication-title: J Pers Soc Psychol doi: 10.1037/h0030377 – volume: 39 start-page: 1123 year: 1980 ident: 10.1016/j.imu.2020.100372_bib14 article-title: Facial signs of emotional experience publication-title: J Pers Soc Psychol doi: 10.1037/h0077722 – start-page: 1 year: 2019 ident: 10.1016/j.imu.2020.100372_bib37 article-title: A fuzzy logic approach to reliable real-time recognition of facial emotions publication-title: Multimed Tool Appl – volume: 8 start-page: 134 issue: 1 year: 2016 ident: 10.1016/j.imu.2020.100372_bib4 article-title: Reconciling evidence-based medicine and precision medicine in the era of big data: challenges and opportunities publication-title: Genome Med doi: 10.1186/s13073-016-0388-7 – volume: 311 start-page: 2479 issue: 24 year: 2014 ident: 10.1016/j.imu.2020.100372_bib5 article-title: Finding the missing link for big biomedical data publication-title: Jama – start-page: 378 year: 2014 ident: 10.1016/j.imu.2020.100372_bib17 article-title: Real-time emotion recognition novel method for geometrical facial features extraction publication-title: Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP) – start-page: 258 year: 2003 ident: 10.1016/j.imu.2020.100372_bib33 article-title: Real time facial expression recognition in video using support vector machines – volume: 4 start-page: 16 issue: 12 year: 2014 ident: 10.1016/j.imu.2020.100372_bib3 article-title: A machine learning model for stock market prediction publication-title: Int J Comput Sci Telecommun – year: 1997 ident: 10.1016/j.imu.2020.100372_bib9 – year: 2008 ident: 10.1016/j.imu.2020.100372_bib29 – start-page: 94 year: 2010 ident: 10.1016/j.imu.2020.100372_bib38 article-title: The Extended Cohn-Kanade Dataset (CK+): a complete dataset for action unit and emotion-specified expression – year: 2017 ident: 10.1016/j.imu.2020.100372_bib16 article-title: An efficient real-time emotion detection using camera and facial landmarks – volume: 1187 year: 2019 ident: 10.1016/j.imu.2020.100372_bib2 article-title: Development of artificial intelligence and effects on financial system publication-title: J Phys Conf doi: 10.1088/1742-6596/1187/3/032084 – year: 2020 ident: 10.1016/j.imu.2020.100372_bib19 |
SSID | ssj0001763575 |
Score | 2.5559268 |
Snippet | Real-time emotion recognition has been an active field of research over the past several decades. This work aims to classify physically disabled people (deaf,... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100372 |
SubjectTerms | EEG emotion Detection Face emotion recognition LSTM Virtual markers |
Title | Development of a Real-Time Emotion Recognition System Using Facial Expressions and EEG based on machine learning and deep neural network methods |
URI | https://dx.doi.org/10.1016/j.imu.2020.100372 https://doaj.org/article/c77ec5bfd0f34fe480cce36ef316cc9a |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2352-9148 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001763575 issn: 2352-9148 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2352-9148 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001763575 issn: 2352-9148 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2352-9148 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001763575 issn: 2352-9148 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2352-9148 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001763575 issn: 2352-9148 databaseCode: AKRWK dateStart: 20150101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iFy-iqLi-mIMnodhtkqY9qnQVRQ-Li97KTh6iaBUf4M_wJztJ2qUe1Iu3UvIomUnmS_rlG8b2hkgxh2ZSgpJjIozIE1RaJWWmSn9jRZdBt-DiMj-diLMbedNL9eU5YVEeOA7cgVbKaonOpI4LZ0WRam15bh0f5lqXARpRGOttpsLpStBZkyGznMxoRoui-6UZyF13j--0N8wCSYCr7FtQCtr9vdjUizejZbbUAkU4jB-4wuZss8o-exwfeHIwhTEBvcTf44AqJuSBcUcJoueoRw6BFwCjqT8eh-qj5b42rzBtDFTVCfhYZoAqPAZupYU2mcRtKGGsfQYvfEm1m0gbh5h5-nWNTUbV1fFp0uZUSDSnKJVYiQLRGFdIKbmVijuVmtLkhla-IdKEl2hy7lICJn7zZ_PCFC5ThZkSkkHD19l889TYDQaKlkkUoiQM5ATarHClKjFHg4L2vTIbsLQb1Fq3guM-78VD3THL7muyQ-3tUEc7DNj-rMpzVNv4rfCRt9SsoBfKDi_IferWfeq_3GfARGfnusUcEUtQU3c_9735H31vsUXfZDzQ2Wbzby_vdocgzhvusoXD8_H1-W7w6i9MjPqt |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+Real-Time+Emotion+Recognition+System+Using+Facial+Expressions+and+EEG+based+on+machine+learning+and+deep+neural+network+methods&rft.jtitle=Informatics+in+medicine+unlocked&rft.au=Hassouneh%2C+Aya&rft.au=Mutawa%2C+A.M.&rft.au=Murugappan%2C+M.&rft.date=2020&rft.issn=2352-9148&rft.eissn=2352-9148&rft.volume=20&rft.spage=100372&rft_id=info:doi/10.1016%2Fj.imu.2020.100372&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imu_2020_100372 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-9148&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-9148&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-9148&client=summon |