Machine learning-based approach: global trends, research directions, and regulatory standpoints
The field of machine learning (ML) is sufficiently young that it is still expanding at an accelerating pace, lying at the crossroads of computer science and statistics, and at the core of artificial intelligence (AI) and data science. Recent progress in ML has been driven both by the development of...
Saved in:
Published in | Data science and management Vol. 4; pp. 19 - 29 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2021
KeAi Communications Co. Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2666-7649 2666-7649 |
DOI | 10.1016/j.dsm.2021.12.002 |
Cover
Abstract | The field of machine learning (ML) is sufficiently young that it is still expanding at an accelerating pace, lying at the crossroads of computer science and statistics, and at the core of artificial intelligence (AI) and data science. Recent progress in ML has been driven both by the development of new learning algorithms theory, and by the ongoing explosion in the availability of vast amount of data (often referred to as "big data") and low-cost computation. The adoption of ML-based approaches can be found throughout science, technology and industry, leading to more evidence-based decision-making across many walks of life, including healthcare, biomedicine, manufacturing, education, financial modeling, data governance, policing, and marketing. Although the past decade has witnessed the increasing interest in these fields, we are just beginning to tap the potential of these ML algorithms for studying systems that improve with experience. In this paper, we present a comprehensive view on geo worldwide trends (taking into account China, the USA, Israel, Italy, the UK, and the Middle East) of ML-based approaches highlighting the rapid growth in the last 5 years attributable to the introduction of related national policies. Furthermore, based on the literature review, we also discuss the potential research directions in this field, summarizing some popular application areas of machine learning technology, such as healthcare, cyber-security systems, sustainable agriculture, data governance, and nanotechnology, and suggest that the "dissemination of research" in the ML scientific community has undergone the exceptional growth in the time range of 2018–2020, reaching a value of 16,339 publications. Finally, we report the challenges and the regulatory standpoints for managing ML technology. Overall, we hope that this work will help to explain the geo trends of ML approaches and their applicability in various real-world domains, as well as serve as a reference point for both academia and industry professionals, particularly from a technical, ethical and regulatory point of view. |
---|---|
AbstractList | The field of machine learning (ML) is sufficiently young that it is still expanding at an accelerating pace, lying at the crossroads of computer science and statistics, and at the core of artificial intelligence (AI) and data science. Recent progress in ML has been driven both by the development of new learning algorithms theory, and by the ongoing explosion in the availability of vast amount of data (often referred to as ''big data'') and low-cost computation. The adoption of ML-based approaches can be found throughout science, technology and industry, leading to more evidence-based decision-making across many walks of life, including healthcare, biomedicine, manufacturing, education, financial modeling, data governance, policing, and marketing. Although the past decade has witnessed the increasing interest in these fields, we are just beginning to tap the potential of these ML algorithms for studying systems that improve with experience. In this paper, we present a comprehensive view on geo worldwide trends (taking into account China, the USA, Israel, Italy, the UK, and the Middle East) of ML-based approaches highlighting the rapid growth in the last 5 years attributable to the introduction of related national policies. Furthermore, based on the literature review, we also discuss the potential research directions in this field, summarizing some popular application areas of machine learning technology, such as healthcare, cyber-security systems, sustainable agriculture, data governance, and nanotechnology, and suggest that the ''dissemination of research'' in the ML scientific community has undergone the exceptional growth in the time range of 2018–2020, reaching a value of 16,339 publications. Finally, we report the challenges and the regulatory standpoints for managing ML technology. Overall, we hope that this work will help to explain the geo trends of ML approaches and their applicability in various real-world domains, as well as serve as a reference point for both academia and industry professionals, particularly from a technical, ethical and regulatory point of view. |
Author | Pugliese, Raffaele Marini, Riccardo Regondi, Stefano |
Author_xml | – sequence: 1 givenname: Raffaele orcidid: 0000-0001-7669-4457 surname: Pugliese fullname: Pugliese, Raffaele email: raffaele.pugliese@nemolab.it organization: NeMO Lab, ASST Niguarda Cà Granda Hospital, Milan, 20162, Italy – sequence: 2 givenname: Stefano surname: Regondi fullname: Regondi, Stefano organization: NeMO Lab, ASST Niguarda Cà Granda Hospital, Milan, 20162, Italy – sequence: 3 givenname: Riccardo surname: Marini fullname: Marini, Riccardo organization: CBA Lex, Corso Europa, 20122, Milan, Italy |
BookMark | eNp9kM1KAzEURoMoWGsfwN08gDMmmWlmoisp_hQqbnQd7iR32pRpUpJR6NubWhFx0VXCd-_5uJwLcuq8Q0KuGC0YZeJmXZi4KTjlrGC8oJSfkBEXQuS1qOTpn_85mcS4pmmjYYxPxYioF9Ar6zDrEYKzbpm3ENFksN0Gn0a32bL3LfTZENCZeJ0FjGlTrzJjA-rBepdCcCYNlh89DD7ssjikYOutG-IlOeugjzj5ecfk_fHhbfacL16f5rP7Ra5LzngusK1AtxIbQGOMphQk1q1gbVdOK1YhAOMoSym5gEZ2lPFSMt2ikE3JO1OOyfzQazys1TbYDYSd8mDVd-DDUkEYrO5RTRtacaqrNpVUXVPJ2jQwrUukBmvB69TFDl06-BgDdr99jKq9cLVWSbjaC1eMq6QzMfU_RtsB9nqGALY_St4dSEx6Pi0GFbVFp_EgON1vj9BfB4-dfg |
CitedBy_id | crossref_primary_10_1016_j_jafr_2024_101350 crossref_primary_10_3390_fluids8070212 crossref_primary_10_3390_jimaging11020059 crossref_primary_10_1109_ACCESS_2023_3310808 crossref_primary_10_1007_s10661_023_12001_2 crossref_primary_10_1007_s00214_024_03140_x crossref_primary_10_1016_j_jnca_2025_104108 crossref_primary_10_1021_acs_energyfuels_4c04924 crossref_primary_10_1108_IJOA_07_2024_4652 crossref_primary_10_17694_bajece_1312764 crossref_primary_10_1016_j_jenvman_2023_118913 crossref_primary_10_1016_j_procir_2024_01_121 crossref_primary_10_1016_j_jii_2022_100410 crossref_primary_10_1016_j_ipha_2024_11_002 crossref_primary_10_1016_j_fraope_2023_100053 crossref_primary_10_1109_ACCESS_2023_3313229 crossref_primary_10_3390_nano14131153 crossref_primary_10_4236_ojbm_2025_132037 crossref_primary_10_1371_journal_pone_0284293 crossref_primary_10_1002_wcms_1653 crossref_primary_10_3390_info14020076 crossref_primary_10_52273_sduhfd__1581436 crossref_primary_10_1061__ASCE_IS_1943_555X_0000691 crossref_primary_10_1002_dac_5878 crossref_primary_10_1016_j_procs_2023_12_029 crossref_primary_10_1080_0144929X_2024_2380095 crossref_primary_10_3390_s24206658 crossref_primary_10_1007_s10462_024_10845_9 crossref_primary_10_1007_s44217_024_00119_5 crossref_primary_10_3389_fnins_2023_1256351 crossref_primary_10_1016_j_jjimei_2024_100284 crossref_primary_10_1016_j_ngib_2024_09_005 crossref_primary_10_3390_systems12090373 crossref_primary_10_1016_j_comcom_2024_02_005 crossref_primary_10_1007_s10898_022_01193_5 crossref_primary_10_1016_j_compfluid_2024_106396 crossref_primary_10_3390_jcm12216706 crossref_primary_10_1016_j_jobe_2024_110500 crossref_primary_10_1016_j_measen_2024_101192 crossref_primary_10_47836_pjst_32_S5_06 crossref_primary_10_1016_j_fuel_2024_133018 crossref_primary_10_3390_electricity4020012 crossref_primary_10_1177_25726668241301876 crossref_primary_10_1007_s40996_024_01438_1 crossref_primary_10_3390_su16010207 crossref_primary_10_1016_j_dsm_2022_08_002 crossref_primary_10_5194_hess_28_945_2024 crossref_primary_10_22495_rgcv15i1p3 crossref_primary_10_3390_risks12020025 crossref_primary_10_1016_j_afres_2024_100532 crossref_primary_10_1111_sum_13127 crossref_primary_10_3390_ma16237396 crossref_primary_10_1016_j_cscm_2024_e03382 crossref_primary_10_3390_en16135099 crossref_primary_10_3390_en16196767 crossref_primary_10_1016_j_future_2025_107741 crossref_primary_10_1007_s00202_024_02361_4 crossref_primary_10_3390_asi5060121 crossref_primary_10_1016_j_cobme_2025_100579 crossref_primary_10_1371_journal_pone_0282084 crossref_primary_10_55529_ijrise_46_1_12 crossref_primary_10_1515_dema_2022_0255 crossref_primary_10_1016_j_softx_2022_101134 crossref_primary_10_3390_bdcc8040042 crossref_primary_10_3390_met14010084 crossref_primary_10_1021_acs_jpcc_4c02459 crossref_primary_10_1109_ACCESS_2023_3323526 crossref_primary_10_1093_jcde_qwaf024 crossref_primary_10_1016_j_inffus_2023_102141 crossref_primary_10_1016_j_electacta_2024_145454 crossref_primary_10_3390_su16219239 crossref_primary_10_3390_electronics13050939 crossref_primary_10_1016_j_trpro_2025_03_069 crossref_primary_10_21015_vtse_v12i4_1918 crossref_primary_10_3390_w16091286 crossref_primary_10_1016_j_lisr_2024_101330 crossref_primary_10_4018_IJDWM_364846 crossref_primary_10_1080_00913367_2023_2255250 crossref_primary_10_15232_aas_2022_02345 crossref_primary_10_3390_su16177724 crossref_primary_10_1371_journal_pone_0287755 crossref_primary_10_53623_gisa_v2i2_95 crossref_primary_10_1016_j_swevo_2023_101325 crossref_primary_10_1080_15435075_2025_2450468 crossref_primary_10_1038_s41598_023_48905_9 crossref_primary_10_3390_app142412037 crossref_primary_10_1371_journal_pone_0294289 crossref_primary_10_1016_j_cscee_2024_100822 crossref_primary_10_1016_j_ijhydene_2023_08_148 crossref_primary_10_31743_recl_13616 crossref_primary_10_1089_omi_2022_0155 crossref_primary_10_3390_mi14030508 crossref_primary_10_1007_s44217_024_00197_5 crossref_primary_10_1371_journal_pone_0289691 crossref_primary_10_3389_fpsyg_2022_966996 crossref_primary_10_1016_j_aquaculture_2022_739155 crossref_primary_10_3390_diagnostics14121290 crossref_primary_10_1080_1097198X_2023_2297636 crossref_primary_10_1088_2632_2153_acd6d8 crossref_primary_10_1142_S0218348X23401084 crossref_primary_10_26634_jfet_19_4_20913 crossref_primary_10_3390_jtaer19040141 crossref_primary_10_35784_acs_2023_08 crossref_primary_10_1007_s00146_024_02002_1 crossref_primary_10_1007_s43069_024_00291_2 crossref_primary_10_1016_j_spinee_2024_09_010 crossref_primary_10_1080_23744235_2024_2425712 crossref_primary_10_2196_45815 crossref_primary_10_1016_j_dsm_2022_07_001 crossref_primary_10_3390_polym14142794 crossref_primary_10_1021_acsbiomaterials_3c01368 crossref_primary_10_2139_ssrn_4883957 crossref_primary_10_3390_diagnostics12123034 crossref_primary_10_1016_j_aej_2025_03_022 crossref_primary_10_1002_psp4_13003 crossref_primary_10_1016_j_rineng_2024_101868 crossref_primary_10_1016_j_comnet_2024_110294 crossref_primary_10_1007_s11036_024_02435_4 crossref_primary_10_3390_electronics12081756 crossref_primary_10_3390_electronics12092080 crossref_primary_10_1016_j_jii_2025_100789 crossref_primary_10_3390_make7010013 crossref_primary_10_1007_s44290_024_00052_4 crossref_primary_10_1007_s10853_024_09994_7 |
Cites_doi | 10.1016/j.chaos.2020.110059 10.1016/j.rmed.2021.106528 10.1016/j.ymeth.2018.07.007 10.3390/jpm11010032 10.1038/nrg3920 10.1016/j.yebeh.2011.08.031 10.3389/fgene.2020.603808 10.3390/s21062140 10.1103/PhysRevLett.127.018003 10.1038/538020a 10.3390/pr8020224 10.1038/d41586-019-01357-6 10.1016/j.compbiomed.2021.104648 10.3390/s18113744 10.3390/s20226419 10.1186/s12885-019-6003-8 10.1371/journal.pone.0117396 10.2174/0929867328666210208111821 10.1016/j.heliyon.2021.e07416 10.1038/s41585-019-0193-3 10.1016/S0022-2836(05)80333-X 10.1016/j.cjtee.2021.06.003 10.1126/science.aaa8415 10.3390/s18082674 10.1038/d41586-020-03348-4 10.1177/0306312717741687 10.1021/acsnano.1c03992 10.1016/j.compbiolchem.2004.11.001 10.1007/s42979-021-00592-x 10.1007/s10796-014-9492-7 10.1016/j.patter.2021.100289 10.1038/s41746-020-00372-6 10.1109/72.80204 10.3390/machines6030038 10.1162/NECO_a_00557 10.1259/bjr.20180416 10.1007/s00521-020-05250-6 10.1016/j.dsm.2021.06.001 10.1016/j.asoc.2021.107683 10.1109/TITS.2021.3069497 10.1016/j.asoc.2019.105748 10.3389/frai.2020.00065 10.1007/s42979-021-00765-8 10.1038/s41586-019-1923-7 10.3390/sym12050754 10.1016/j.neunet.2014.08.005 10.1093/erae/jbz033 10.2174/1567205014666171120143800 10.1371/journal.pcbi.1008954 10.1093/ejcts/ezab324 10.3390/s21113758 10.23736/S0393-2249.19.03613-0 |
ContentType | Journal Article |
Copyright | 2021 Xi’an Jiaotong University |
Copyright_xml | – notice: 2021 Xi’an Jiaotong University |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.dsm.2021.12.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2666-7649 |
EndPage | 29 |
ExternalDocumentID | oai_doaj_org_article_580420c4b0124f8497d8a573e0de7627 10_1016_j_dsm_2021_12_002 S2666764921000485 |
GroupedDBID | 0R~ 6I. AAEDW AAFTH AAXUO ADVLN AEXQZ AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ OK1 ROL AALRI AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c3212-6eb4acb9e8aedddc00a9e7b61bf35414eaa12e939926a89f012391cbe69832fd3 |
IEDL.DBID | DOA |
ISSN | 2666-7649 |
IngestDate | Wed Aug 27 01:33:28 EDT 2025 Thu Apr 24 23:01:47 EDT 2025 Tue Jul 01 01:06:46 EDT 2025 Sun Apr 06 06:54:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Machine learning Healthcare Cybersecurity Data governance Research trends Artificial intelligence Nanotechnology |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3212-6eb4acb9e8aedddc00a9e7b61bf35414eaa12e939926a89f012391cbe69832fd3 |
ORCID | 0000-0001-7669-4457 |
OpenAccessLink | https://doaj.org/article/580420c4b0124f8497d8a573e0de7627 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_580420c4b0124f8497d8a573e0de7627 crossref_primary_10_1016_j_dsm_2021_12_002 crossref_citationtrail_10_1016_j_dsm_2021_12_002 elsevier_sciencedirect_doi_10_1016_j_dsm_2021_12_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationTitle | Data science and management |
PublicationYear | 2021 |
Publisher | Elsevier B.V KeAi Communications Co. Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co. Ltd |
References | Castelvecchi (bib9) 2016; 538 (bib33) 2017 Das, Dey, Pal, Roy (bib13) 2015; 115 Chan, Siegel (bib10) 2019; 92 Benos (bib4) 2021; 21 Rafi Omar Al-Nima, Han, Chen (bib58) 2019 Wu, Xu (bib86) 2021; 17 Schaeffer, Sanchez (bib67) 2020; 52 Handa, Sharma, Shukla (bib28) 2019; 9 Tan, Gilbert (bib79) 2003; 2 Dong, Tang, Ji (bib19) 2021; 111 Cummins, Baird, Schuller (bib12) 2018; 151 Libbrecht, Noble (bib49) 2015; 16 Dixit, Silakari (bib18) 2021; 39 Lopez-de-Ipina, Martinez-De-Lizarduy, Ca Lvo (bib51) 2018; 15 Balducci (bib2) 2018; 6 Jordan, Mitchell (bib36) 2015; 349 Ledesma, Symes, Richards (bib46) 2021; 28 Meng (bib54) 2019 Wang, Tetko, Hall (bib82) 2005; 29 Zoabi, Deri-Rozov, Shomron (bib92) 2021; 4 Scherer (bib69) 2016; 29 Sader, Husti, Daróczi (bib60) 2020; 8 Liakos, Patrizia, Dimitrios (bib48) 2018; 18 Hirschprung, Hajaj (bib30) 2021; 7 Konečný, Mcmahan, Ramage (bib41) 2016 Lalmuanawma, Hussain (bib44) 2020; 139 Berkel, Papachristos, Giachanou (bib55) 2020 Duda, Hart, Stork (bib20) 2001 King, Sternberg (bib40) 1990; 216 Kosko (bib42) 1990; 1 Engstrom, Ho, Sharkey (bib21) 2020 Gu, Lyu, Sun (bib27) 2019; 2019 Sarker (bib63) 2021; 2 Liu (bib50) 2021; 71 Yeong, Velasco-Hernandez, Barry (bib88) 2021; 21 Mahendran, Durai, Srinivasan (bib52) 2020; 11 McCarthy (bib53) 2007 Tunthanathip, Oearsakul (bib80) 2021; 24 Holzinger, Mak, Kieseberg (bib31) 2016; 112 Zhou, Belkin (bib91) 2014 (bib22) 2020 Le Glaz, Haralambous, Chhakchhuak (bib45) 2021; 23 Graham, Paplanus, Bartels (bib26) 1990; 94 Sun, Zhang, Fang (bib76) 2021; 2 Zhao (bib90) 2021; 33 Goldenberg, Nir, Salcudean (bib25) 2019; 16 Sarker (bib64) 2021; 2 Nikolaou, Massaro, Garn (bib56) 2021; 186 Kairouz, McMahan, Avent (bib57) 2021 Hegde, Shetty, Rai (bib29) 2019; 33 Davoudi, Ahmadi, Sharifi (bib15) 2021; 2021 Wan, Weinberg, Liu (bib81) 2019; 19 RamosCampos (bib59) 2021 Whitelam, Tamblyn (bib85) 2021; 127 Keshavarzi Arshadi, Webb, Salem (bib37) 2020 John, Ponnusamy, Chandrasekaran (bib35) 2021 Suryotrisongko, Musashi (bib77) 2019 Yang, Liu, Chen (bib87) 2019 Hutson (bib34) 2019 Wanzirah, Tusting, Emmanuel (bib83) 2015; 10 Shahamiri (bib71) 2021 AbuZekry (bib1) 2019; 2 Buşoniu, Babuka, Schutter (bib6) 2010 Zhan, Humbert-Droz, Mukherjee (bib89) 2021; 2 Diao, Ding, Tarokh (bib17) 2020 Callaway (bib7) 2020; 588 Sainath, Kingsbury, Saon (bib61) 2015; 64 Bishop (bib5) 2006 Sajjad, Khan, Khan (bib62) 2020; 20 Checcucci, Autorino, Cacciamani (bib11) 2020; 72 Storm, Baylis, Heckelei (bib75) 2020; 47 Cao (bib8) 2021 Stilgoe (bib74) 2018; 48 Bang (bib3) 2018; 18 Li, Li, Zhao (bib47) 2015; 17 Shuhaiber, Conte (bib72) 2021 Holzinger (bib32) 2018 White Paper on Artificial Intelligence: A European Approach to Excellence and Trust 2020. European Commission. Gao, Alsarraf, Moayedi (bib24) 2019; 84 Koteluk, Wartecki, Mazurek (bib43) 2021; 11 Fischer (bib23) 2014 Kharbouch, Shoeb, Guttag (bib38) 2011; 22 Smole, Unkovi, Piulin (bib73) 2021; 135 Kieseberg, Weippl, Holzinger (bib39) 2016 Schafer, Jin (bib68) 2014; 26 Dey (bib16) 2016 Sarker (bib66) 2021; 7 Sarker, Abushark, Alsolami (bib65) 2020; 12 Senior, Evans, Jumper (bib70) 2020; 577 Talebian, Rodrigues, Neves (bib78) 2021; 15 Koteluk (10.1016/j.dsm.2021.12.002_bib43) 2021; 11 Konečný (10.1016/j.dsm.2021.12.002_bib41) 2016 Meng (10.1016/j.dsm.2021.12.002_bib54) 2019 Shuhaiber (10.1016/j.dsm.2021.12.002_bib72) 2021 Jordan (10.1016/j.dsm.2021.12.002_bib36) 2015; 349 Wu (10.1016/j.dsm.2021.12.002_bib86) 2021; 17 Liakos (10.1016/j.dsm.2021.12.002_bib48) 2018; 18 Lopez-de-Ipina (10.1016/j.dsm.2021.12.002_bib51) 2018; 15 Talebian (10.1016/j.dsm.2021.12.002_bib78) 2021; 15 Chan (10.1016/j.dsm.2021.12.002_bib10) 2019; 92 Zhou (10.1016/j.dsm.2021.12.002_bib91) 2014 Holzinger (10.1016/j.dsm.2021.12.002_bib32) 2018 Tan (10.1016/j.dsm.2021.12.002_bib79) 2003; 2 10.1016/j.dsm.2021.12.002_bib84 Sainath (10.1016/j.dsm.2021.12.002_bib61) 2015; 64 Wang (10.1016/j.dsm.2021.12.002_bib82) 2005; 29 (10.1016/j.dsm.2021.12.002_bib22) 2020 Liu (10.1016/j.dsm.2021.12.002_bib50) 2021; 71 Engstrom (10.1016/j.dsm.2021.12.002_bib21) 2020 Sajjad (10.1016/j.dsm.2021.12.002_bib62) 2020; 20 Bang (10.1016/j.dsm.2021.12.002_bib3) 2018; 18 Sarker (10.1016/j.dsm.2021.12.002_bib64) 2021; 2 Keshavarzi Arshadi (10.1016/j.dsm.2021.12.002_bib37) 2020 Kairouz (10.1016/j.dsm.2021.12.002_bib57) 2021 Wanzirah (10.1016/j.dsm.2021.12.002_bib83) 2015; 10 Hirschprung (10.1016/j.dsm.2021.12.002_bib30) 2021; 7 Stilgoe (10.1016/j.dsm.2021.12.002_bib74) 2018; 48 Das (10.1016/j.dsm.2021.12.002_bib13) 2015; 115 Berkel (10.1016/j.dsm.2021.12.002_bib55) 2020 Whitelam (10.1016/j.dsm.2021.12.002_bib85) 2021; 127 Checcucci (10.1016/j.dsm.2021.12.002_bib11) 2020; 72 Fischer (10.1016/j.dsm.2021.12.002_bib23) 2014 Smole (10.1016/j.dsm.2021.12.002_bib73) 2021; 135 King (10.1016/j.dsm.2021.12.002_bib40) 1990; 216 Dixit (10.1016/j.dsm.2021.12.002_bib18) 2021; 39 Duda (10.1016/j.dsm.2021.12.002_bib20) 2001 Schafer (10.1016/j.dsm.2021.12.002_bib68) 2014; 26 Zoabi (10.1016/j.dsm.2021.12.002_bib92) 2021; 4 AbuZekry (10.1016/j.dsm.2021.12.002_bib1) 2019; 2 Gao (10.1016/j.dsm.2021.12.002_bib24) 2019; 84 Sarker (10.1016/j.dsm.2021.12.002_bib65) 2020; 12 Cummins (10.1016/j.dsm.2021.12.002_bib12) 2018; 151 Senior (10.1016/j.dsm.2021.12.002_bib70) 2020; 577 John (10.1016/j.dsm.2021.12.002_bib35) 2021 Shahamiri (10.1016/j.dsm.2021.12.002_bib71) 2021 Diao (10.1016/j.dsm.2021.12.002_bib17) 2020 Hegde (10.1016/j.dsm.2021.12.002_bib29) 2019; 33 Cao (10.1016/j.dsm.2021.12.002_bib8) 2021 Holzinger (10.1016/j.dsm.2021.12.002_bib31) 2016; 112 Zhao (10.1016/j.dsm.2021.12.002_bib90) 2021; 33 RamosCampos (10.1016/j.dsm.2021.12.002_bib59) 2021 Storm (10.1016/j.dsm.2021.12.002_bib75) 2020; 47 (10.1016/j.dsm.2021.12.002_bib33) 2017 Sun (10.1016/j.dsm.2021.12.002_bib76) 2021; 2 Graham (10.1016/j.dsm.2021.12.002_bib26) 1990; 94 Davoudi (10.1016/j.dsm.2021.12.002_bib15) 2021; 2021 Mahendran (10.1016/j.dsm.2021.12.002_bib52) 2020; 11 Balducci (10.1016/j.dsm.2021.12.002_bib2) 2018; 6 Lalmuanawma (10.1016/j.dsm.2021.12.002_bib44) 2020; 139 Rafi Omar Al-Nima (10.1016/j.dsm.2021.12.002_bib58) 2019 Castelvecchi (10.1016/j.dsm.2021.12.002_bib9) 2016; 538 Callaway (10.1016/j.dsm.2021.12.002_bib7) 2020; 588 Nikolaou (10.1016/j.dsm.2021.12.002_bib56) 2021; 186 Sader (10.1016/j.dsm.2021.12.002_bib60) 2020; 8 Sarker (10.1016/j.dsm.2021.12.002_bib66) 2021; 7 Gu (10.1016/j.dsm.2021.12.002_bib27) 2019; 2019 Hutson (10.1016/j.dsm.2021.12.002_bib34) 2019 Sarker (10.1016/j.dsm.2021.12.002_bib63) 2021; 2 Dong (10.1016/j.dsm.2021.12.002_bib19) 2021; 111 Tunthanathip (10.1016/j.dsm.2021.12.002_bib80) 2021; 24 Libbrecht (10.1016/j.dsm.2021.12.002_bib49) 2015; 16 Dey (10.1016/j.dsm.2021.12.002_bib16) 2016 Yang (10.1016/j.dsm.2021.12.002_bib87) 2019 Le Glaz (10.1016/j.dsm.2021.12.002_bib45) 2021; 23 Buşoniu (10.1016/j.dsm.2021.12.002_bib6) 2010 Handa (10.1016/j.dsm.2021.12.002_bib28) 2019; 9 Yeong (10.1016/j.dsm.2021.12.002_bib88) 2021; 21 Bishop (10.1016/j.dsm.2021.12.002_bib5) 2006 Benos (10.1016/j.dsm.2021.12.002_bib4) 2021; 21 Kosko (10.1016/j.dsm.2021.12.002_bib42) 1990; 1 Suryotrisongko (10.1016/j.dsm.2021.12.002_bib77) 2019 Li (10.1016/j.dsm.2021.12.002_bib47) 2015; 17 Kieseberg (10.1016/j.dsm.2021.12.002_bib39) 2016 Kharbouch (10.1016/j.dsm.2021.12.002_bib38) 2011; 22 Goldenberg (10.1016/j.dsm.2021.12.002_bib25) 2019; 16 Schaeffer (10.1016/j.dsm.2021.12.002_bib67) 2020; 52 Ledesma (10.1016/j.dsm.2021.12.002_bib46) 2021; 28 Zhan (10.1016/j.dsm.2021.12.002_bib89) 2021; 2 McCarthy (10.1016/j.dsm.2021.12.002_bib53) 2007 Scherer (10.1016/j.dsm.2021.12.002_bib69) 2016; 29 Wan (10.1016/j.dsm.2021.12.002_bib81) 2019; 19 |
References_xml | – volume: 52 start-page: 101918.1 year: 2020 end-page: 101918.9 ident: bib67 article-title: Forecasting client retention — a machine-learning approach publication-title: J. Retailing Consum. Serv. – year: 2014 ident: bib23 article-title: Cybersecurity Issues and Challenges: in Brief – year: 2021 ident: bib72 article-title: Machine learning in heart valve surgery publication-title: Eur. J. Cardio. Thorac. Surg – volume: 94 start-page: S15 year: 1990 end-page: S18 ident: bib26 article-title: A diagnostic expert system for colonic lesions publication-title: Am. J. Clin. Pathol. – year: 2017 ident: bib33 article-title: How government are preparing for artificial intelligence – year: 2018 ident: bib32 article-title: Current Advances, Trends and Challenges of Machine Learning and Knowledge Extraction: from Machine Learning to Explainable AI publication-title: International Cross-Domain Conference for Machine Learning and Knowledge Extraction – volume: 18 start-page: 2674 year: 2018 ident: bib48 article-title: Machine learning in agriculture: a review publication-title: Sensors – start-page: 162 year: 2019 end-page: 167 ident: bib77 publication-title: Review of cybersecurity research topics, taxonomy and challenges: interdisciplinary perspective – volume: 538 start-page: 20 year: 2016 end-page: 23 ident: bib9 article-title: Can we open the black box of AI? publication-title: Nature – year: 2021 ident: bib59 article-title: Commercial nanoproducts available in world market and its economic viability publication-title: Adv. Nano-Fert. Nano-Pestic. Agric. – year: 2016 ident: bib41 article-title: Federated Optimization: Distributed Machine Learning for On-Device Intelligence – year: 2006 ident: bib5 article-title: Pattern Recognition and Machine Learning – volume: 21 start-page: 2104 year: 2021 ident: bib88 article-title: Sensor and sensor fusion technology in autonomous vehicles: a review publication-title: Sensors. – year: 2020 ident: bib37 article-title: Artificial intelligence for COVID-19 drug discovery and vaccine development publication-title: Front. Artif. Intell. – volume: 2 start-page: 60 year: 2019 end-page: 71 ident: bib1 article-title: Comparative study of NeuroEvolution algorithms in reinforcement learning for self-driving cars publication-title: Eur. J. Eng. Sci. Technol. – volume: 9 year: 2019 ident: bib28 article-title: Machine learning in cybersecurity: a review publication-title: Data Min. Knowl. Discov. – start-page: 852 year: 2021 end-page: 861 ident: bib71 article-title: Speech vision: an end-to-end deep learning-based dysarthric automatic speech recognition system publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 111 start-page: 107683 year: 2021 ident: bib19 article-title: Transmission trend of the COVID-19 pandemic predicted by dendritic neural regression publication-title: Appl. Soft Comput. – volume: 2 start-page: S75 year: 2003 end-page: S83 ident: bib79 article-title: Ensemble machine learning on gene expression data for cancer classification publication-title: Appl. Bioinf. – volume: 186 start-page: 106528 year: 2021 ident: bib56 article-title: The cardiovascular phenotype of Chronic Obstructive Pulmonary Disease (COPD): applying machine learning to the prediction of cardiovascular comorbidities publication-title: Respir. Med. – reference: White Paper on Artificial Intelligence: A European Approach to Excellence and Trust 2020. European Commission. – year: 2021 ident: bib8 article-title: Confidence-aware reinforcement learning for self-driving cars publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 577 start-page: 706 year: 2020 end-page: 710 ident: bib70 article-title: Improved protein structure prediction using potentials from deep learning publication-title: Nature – volume: 48 start-page: 25 year: 2018 end-page: 56 ident: bib74 article-title: Machine learning, social learning and the governance of self-driving cars publication-title: Soc. Stud. Sci. – start-page: 106 year: 2019 end-page: 116 ident: bib58 publication-title: Road Tracking using Deep Reinforcement Learning for Self-driving Car Applications – volume: 2021 start-page: 9995073 year: 2021 ident: bib15 article-title: Studying the effect of taking statins before infection in the severity reduction of COVID-19 with machine learning publication-title: BioMed Res. Int. – year: 2016 ident: bib16 article-title: Machine learning algorithms: a review publication-title: Int. J. Comput. Sci. Inf. Technol. – start-page: 1239 year: 2014 end-page: 1269 ident: bib91 publication-title: Semi-Supervised Learning – volume: 588 start-page: 203 year: 2020 end-page: 204 ident: bib7 article-title: ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures publication-title: Nature – volume: 71 start-page: 718 year: 2021 end-page: 731 ident: bib50 article-title: Intelligent analysis platform of agricultural sustainable development based on the Internet of Things and machine learning publication-title: Acta Agric. Scand. – volume: 11 start-page: 32 year: 2021 ident: bib43 article-title: How do machines learn? Artificial intelligence as a new era in medicine publication-title: J. Personalized Med. – volume: 28 start-page: 6512 year: 2021 end-page: 6531 ident: bib46 article-title: Advancements within modern machine learning methodology: impacts and prospects for biomarker discovery publication-title: Curr. Med. Chem. – volume: 24 start-page: 350 year: 2021 end-page: 355 ident: bib80 article-title: Application of machine learning to predict the outcome of pediatric traumatic brain injury publication-title: Chin. J. Traumatol. – volume: 115 start-page: 31 year: 2015 end-page: 41 ident: bib13 article-title: Applications of artificial intelligence in machine learning: review and prospect publication-title: Int. J. Comput. Appl. – year: 2021 ident: bib35 article-title: A survey on mathematical, machine learning and deep learning models for COVID-19 transmission and diagnosis publication-title: IEEE Rev. Biomed. Eng. – volume: 8 start-page: 224 year: 2020 ident: bib60 article-title: Enhancing failure mode and effects analysis using auto machine learning: a case study of the agricultural machinery industry publication-title: Processes – start-page: 183 year: 2010 end-page: 221 ident: bib6 publication-title: Multi-agent Reinforcement Learning: An Overview – year: 2020 ident: bib22 article-title: Proposal for a Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts – volume: 22 start-page: S29 year: 2011 end-page: S35 ident: bib38 article-title: An algorithm for seizure onset detection using intracranial EEG publication-title: Epilepsy Behav. – volume: 84 start-page: 105748 year: 2019 ident: bib24 article-title: Comprehensive preference learning and feature validity for designing energy-efficient residential buildings using machine learning paradigms publication-title: Appl. Soft Comput. – year: 2019 ident: bib34 article-title: AI protein-folding algorithms solve structures faster than ever publication-title: Nature – volume: 16 start-page: 391 year: 2019 end-page: 403 ident: bib25 article-title: A new era: artificial intelligence and machine learning in prostate cancer publication-title: Nat. Rev. Urol. – year: 2020 ident: bib55 article-title: A systematic assessment of national artificial intelligence policies: perspectives from the Nordics and beyond – year: 2020 ident: bib17 article-title: HeteroFL: computation and communication efficient federated learning for heterogeneous clients – volume: 15 start-page: 15940 year: 2021 end-page: 15952 ident: bib78 article-title: Facts and figures on materials science and nanotechnology progress and investment publication-title: ACS Nano – year: 2001 ident: bib20 publication-title: Pattern Classification – volume: 15 start-page: 139 year: 2018 end-page: 148 ident: bib51 article-title: Advances on automatic speech analysis for early detection of alzheimer disease: a non-linear multi-task approach publication-title: Curr. Alzheimer Res. – volume: 2 start-page: 41 year: 2021 end-page: 44 ident: bib76 article-title: Data security governance in the era of big data: status, challenges,and prospects publication-title: Data Sci. Manag. – volume: 17 year: 2021 ident: bib86 article-title: Deep template-based protein structure prediction publication-title: PLoS Comput. Biol. – volume: 21 start-page: 3758 year: 2021 ident: bib4 article-title: Machine learning in agriculture: a comprehensive updated review publication-title: Sensors – volume: 92 start-page: 20180416 year: 2019 ident: bib10 article-title: Will machine learning end the viability of radiology as a thriving medical specialty? publication-title: Br. J. Radiol. – volume: 2 start-page: 160 year: 2021 ident: bib64 article-title: Machine learning: algorithms, real-world applications and research directions publication-title: SN Comput. Sci. – volume: 23 year: 2021 ident: bib45 article-title: Machine learning and natural language processing in mental health: systematic review publication-title: J. Med. Internet Res. – volume: 127 year: 2021 ident: bib85 article-title: Neuroevolutionary learning of particles and protocols for self-assembly publication-title: Phys. Rev. Lett. – year: 2016 ident: bib39 article-title: Trust for the doctor-in-the-loop publication-title: ERCIM News. – volume: 7 start-page: 1 year: 2021 end-page: 29 ident: bib66 article-title: Cybersecurity data science: an overview from machine learning perspective publication-title: J. Big Data – volume: 2 start-page: 377 year: 2021 ident: bib63 article-title: Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective publication-title: SN Comput. Sci. – volume: 6 start-page: 38 year: 2018 ident: bib2 article-title: Machine learning applications on agricultural datasets for smart farm enhancement publication-title: Machines – volume: 139 start-page: 110059 year: 2020 ident: bib44 article-title: Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: a review publication-title: Chaos Solit. Fractals. – volume: 16 start-page: 321 year: 2015 end-page: 332 ident: bib49 article-title: Machine learning applications in genetics and genomics publication-title: Nat. Rev. Genet. – year: 2007 ident: bib53 article-title: What is Artificial Intelligence? – volume: 135 start-page: 104648 year: 2021 ident: bib73 article-title: A machine learning-based risk stratification model for ventricular tachycardia and heart failure in hypertrophic cardiomyopathy publication-title: Comput. Biol. Med. – year: 2019 ident: bib87 article-title: Federated Machine Learning: Concept and Applications – volume: 29 start-page: 354 year: 2016 end-page: 400 ident: bib69 article-title: Regulating artificial intelligence systems: risks, challenges, competencies, and strategies publication-title: Harv. J. Law Technol. – volume: 17 start-page: 243 year: 2015 end-page: 259 ident: bib47 article-title: The internet of things: a survey publication-title: Inf. Syst. Front – volume: 26 start-page: 523 year: 2014 end-page: 556 ident: bib68 article-title: Noise-robust speech recognition through auditory feature detection and spike sequence decoding publication-title: Neural Comput. – year: 2019 ident: bib54 article-title: Data Science: an Articial Ecosystem – volume: 2 start-page: 100289 year: 2021 ident: bib89 article-title: Structuring clinical text with AI: old versus new natural language processing techniques evaluated on eight common cardiovascular diseases publication-title: Patterns (N Y) – volume: 112 year: 2016 ident: bib31 article-title: Can we trust machine learning results? Artificial intelligence in safety-critical decision support publication-title: ERCIM News. – volume: 72 start-page: 49 year: 2020 end-page: 57 ident: bib11 article-title: Artificial intelligence and neural networks in urology: current clinical applications publication-title: Minerva Urol. Nefrol. – volume: 29 start-page: 37 year: 2005 end-page: 46 ident: bib82 article-title: Gene selection from microarray data for cancer classification--a machine learning approach publication-title: Comput. Biol. Chem. – volume: 64 start-page: 39 year: 2015 end-page: 48 ident: bib61 article-title: Deep convolutional neural networks for large-scale speech tasks publication-title: Neural Network. – volume: 12 start-page: 754 year: 2020 ident: bib65 article-title: IntruDTree: a machine learning based cyber security intrusion detection model publication-title: Symmetry – volume: 47 start-page: 849 year: 2020 end-page: 892 ident: bib75 article-title: Machine learning in agricultural and applied economics publication-title: Eur. Rev. Agric. Econ. – year: 2021 ident: bib57 article-title: Advances and open problems in federated learning – volume: 10 year: 2015 ident: bib83 article-title: Mind the gap: house structure and the risk of malaria in Uganda publication-title: PLoS One – volume: 7 year: 2021 ident: bib30 article-title: Prediction model for the spread of the COVID-19 outbreak in the global environment publication-title: Heliyon. – volume: 216 start-page: 441 year: 1990 end-page: 457 ident: bib40 article-title: Machine learning approach for the prediction of protein secondary structure publication-title: J. Mol. Biol. – volume: 18 start-page: 3744 year: 2018 ident: bib3 article-title: Adaptive data boosting technique for robust personalized speech emotion in emotionally-imbalanced small-sample environments publication-title: Sensors – volume: 33 start-page: 947 e11 year: 2019 end-page: 947 e33 ident: bib29 article-title: A survey on machine learning approaches for automatic detection of voice disorders publication-title: J. Voice. – volume: 19 start-page: 832 year: 2019 ident: bib81 article-title: Machine learning enables detection of early-stage colorectal cancer by whole-genome sequencing of plasma cell-free DNA publication-title: BMC Cancer – volume: 4 start-page: 3 year: 2021 ident: bib92 article-title: Machine learning-based prediction of COVID-19 diagnosis based on symptoms publication-title: NPJ Digit. Med. – volume: 39 year: 2021 ident: bib18 article-title: Deep learning algorithms for cybersecurity applications: a technological and status review publication-title: Comput. Sci. Rev. – year: 2020 ident: bib21 article-title: Government by Algorithm: Artificial Intelligence in Federal Administrative Agencies – volume: 20 start-page: 6419 year: 2020 ident: bib62 article-title: Towards efficient building designing: heating and cooling load prediction via multi-output model publication-title: Sensors. – volume: 33 start-page: 837 year: 2021 end-page: 850 ident: bib90 article-title: Futures price prediction of agricultural products based on machine learning publication-title: Neural Comput. Appl. – volume: 1 start-page: 44 year: 1990 end-page: 57 ident: bib42 article-title: Unsupervised learning in noise publication-title: IEEE Trans. Neural Network. – volume: 11 start-page: 1468 year: 2020 ident: bib52 article-title: Machine learning based computational gene selection models: a survey, performance evaluation, open issues, and future research directions publication-title: Front. Genet. – volume: 151 start-page: 41 year: 2018 end-page: 54 ident: bib12 article-title: Speech analysis for health: current state-of-the-art and the increasing impact of deep learning publication-title: Methods – volume: 349 start-page: 255 year: 2015 end-page: 260 ident: bib36 article-title: Machine learning: trends, perspectives, and prospects publication-title: Science – volume: 2019 start-page: 157 year: 2019 end-page: 166 ident: bib27 article-title: Mutual correlation attentive factors in dyadic fusion networks for speech emotion recognition publication-title: Proc. ACM Int. Conf. Multimed. – volume: 139 start-page: 110059 issue: C year: 2020 ident: 10.1016/j.dsm.2021.12.002_bib44 article-title: Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: a review publication-title: Chaos Solit. Fractals. doi: 10.1016/j.chaos.2020.110059 – volume: 186 start-page: 106528 issue: Sep. year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib56 article-title: The cardiovascular phenotype of Chronic Obstructive Pulmonary Disease (COPD): applying machine learning to the prediction of cardiovascular comorbidities publication-title: Respir. Med. doi: 10.1016/j.rmed.2021.106528 – volume: 151 start-page: 41 issue: Dec. year: 2018 ident: 10.1016/j.dsm.2021.12.002_bib12 article-title: Speech analysis for health: current state-of-the-art and the increasing impact of deep learning publication-title: Methods doi: 10.1016/j.ymeth.2018.07.007 – volume: 11 start-page: 32 issue: 1 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib43 article-title: How do machines learn? Artificial intelligence as a new era in medicine publication-title: J. Personalized Med. doi: 10.3390/jpm11010032 – volume: 16 start-page: 321 issue: 6 year: 2015 ident: 10.1016/j.dsm.2021.12.002_bib49 article-title: Machine learning applications in genetics and genomics publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3920 – volume: 22 start-page: S29 issue: Suppl. 1 year: 2011 ident: 10.1016/j.dsm.2021.12.002_bib38 article-title: An algorithm for seizure onset detection using intracranial EEG publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2011.08.031 – volume: 29 start-page: 354 issue: 2 year: 2016 ident: 10.1016/j.dsm.2021.12.002_bib69 article-title: Regulating artificial intelligence systems: risks, challenges, competencies, and strategies publication-title: Harv. J. Law Technol. – volume: 11 start-page: 1468 year: 2020 ident: 10.1016/j.dsm.2021.12.002_bib52 article-title: Machine learning based computational gene selection models: a survey, performance evaluation, open issues, and future research directions publication-title: Front. Genet. doi: 10.3389/fgene.2020.603808 – volume: 21 start-page: 2104 issue: 6 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib88 article-title: Sensor and sensor fusion technology in autonomous vehicles: a review publication-title: Sensors. doi: 10.3390/s21062140 – year: 2007 ident: 10.1016/j.dsm.2021.12.002_bib53 – volume: 127 issue: 1 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib85 article-title: Neuroevolutionary learning of particles and protocols for self-assembly publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.018003 – volume: 538 start-page: 20 issue: 7623 year: 2016 ident: 10.1016/j.dsm.2021.12.002_bib9 article-title: Can we open the black box of AI? publication-title: Nature doi: 10.1038/538020a – volume: 8 start-page: 224 issue: 2 year: 2020 ident: 10.1016/j.dsm.2021.12.002_bib60 article-title: Enhancing failure mode and effects analysis using auto machine learning: a case study of the agricultural machinery industry publication-title: Processes doi: 10.3390/pr8020224 – year: 2019 ident: 10.1016/j.dsm.2021.12.002_bib34 article-title: AI protein-folding algorithms solve structures faster than ever publication-title: Nature doi: 10.1038/d41586-019-01357-6 – volume: 135 start-page: 104648 issue: Aug. year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib73 article-title: A machine learning-based risk stratification model for ventricular tachycardia and heart failure in hypertrophic cardiomyopathy publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104648 – volume: 18 start-page: 3744 issue: 11 year: 2018 ident: 10.1016/j.dsm.2021.12.002_bib3 article-title: Adaptive data boosting technique for robust personalized speech emotion in emotionally-imbalanced small-sample environments publication-title: Sensors doi: 10.3390/s18113744 – volume: 20 start-page: 6419 issue: 22 year: 2020 ident: 10.1016/j.dsm.2021.12.002_bib62 article-title: Towards efficient building designing: heating and cooling load prediction via multi-output model publication-title: Sensors. doi: 10.3390/s20226419 – year: 2001 ident: 10.1016/j.dsm.2021.12.002_bib20 – volume: 19 start-page: 832 issue: 1 year: 2019 ident: 10.1016/j.dsm.2021.12.002_bib81 article-title: Machine learning enables detection of early-stage colorectal cancer by whole-genome sequencing of plasma cell-free DNA publication-title: BMC Cancer doi: 10.1186/s12885-019-6003-8 – volume: 33 start-page: 947 e11 issue: 6 year: 2019 ident: 10.1016/j.dsm.2021.12.002_bib29 article-title: A survey on machine learning approaches for automatic detection of voice disorders publication-title: J. Voice. – volume: 10 issue: 1 year: 2015 ident: 10.1016/j.dsm.2021.12.002_bib83 article-title: Mind the gap: house structure and the risk of malaria in Uganda publication-title: PLoS One doi: 10.1371/journal.pone.0117396 – volume: 115 start-page: 31 issue: 9 year: 2015 ident: 10.1016/j.dsm.2021.12.002_bib13 article-title: Applications of artificial intelligence in machine learning: review and prospect publication-title: Int. J. Comput. Appl. – year: 2016 ident: 10.1016/j.dsm.2021.12.002_bib39 article-title: Trust for the doctor-in-the-loop publication-title: ERCIM News. – year: 2020 ident: 10.1016/j.dsm.2021.12.002_bib17 – volume: 28 start-page: 6512 issue: 32 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib46 article-title: Advancements within modern machine learning methodology: impacts and prospects for biomarker discovery publication-title: Curr. Med. Chem. doi: 10.2174/0929867328666210208111821 – volume: 39 issue: 4 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib18 article-title: Deep learning algorithms for cybersecurity applications: a technological and status review publication-title: Comput. Sci. Rev. – start-page: 183 year: 2010 ident: 10.1016/j.dsm.2021.12.002_bib6 – volume: 2021 start-page: 9995073 issue: 1 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib15 article-title: Studying the effect of taking statins before infection in the severity reduction of COVID-19 with machine learning publication-title: BioMed Res. Int. – year: 2020 ident: 10.1016/j.dsm.2021.12.002_bib55 – volume: 7 issue: 7 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib30 article-title: Prediction model for the spread of the COVID-19 outbreak in the global environment publication-title: Heliyon. doi: 10.1016/j.heliyon.2021.e07416 – volume: 16 start-page: 391 issue: 7 year: 2019 ident: 10.1016/j.dsm.2021.12.002_bib25 article-title: A new era: artificial intelligence and machine learning in prostate cancer publication-title: Nat. Rev. Urol. doi: 10.1038/s41585-019-0193-3 – volume: 216 start-page: 441 issue: 2 year: 1990 ident: 10.1016/j.dsm.2021.12.002_bib40 article-title: Machine learning approach for the prediction of protein secondary structure publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(05)80333-X – volume: 24 start-page: 350 issue: 6 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib80 article-title: Application of machine learning to predict the outcome of pediatric traumatic brain injury publication-title: Chin. J. Traumatol. doi: 10.1016/j.cjtee.2021.06.003 – year: 2020 ident: 10.1016/j.dsm.2021.12.002_bib22 – volume: 349 start-page: 255 issue: 6245 year: 2015 ident: 10.1016/j.dsm.2021.12.002_bib36 article-title: Machine learning: trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – volume: 18 start-page: 2674 issue: 8 year: 2018 ident: 10.1016/j.dsm.2021.12.002_bib48 article-title: Machine learning in agriculture: a review publication-title: Sensors doi: 10.3390/s18082674 – volume: 588 start-page: 203 issue: 7837 year: 2020 ident: 10.1016/j.dsm.2021.12.002_bib7 article-title: ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures publication-title: Nature doi: 10.1038/d41586-020-03348-4 – year: 2019 ident: 10.1016/j.dsm.2021.12.002_bib87 – volume: 48 start-page: 25 issue: 1 year: 2018 ident: 10.1016/j.dsm.2021.12.002_bib74 article-title: Machine learning, social learning and the governance of self-driving cars publication-title: Soc. Stud. Sci. doi: 10.1177/0306312717741687 – volume: 15 start-page: 15940 issue: 10 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib78 article-title: Facts and figures on materials science and nanotechnology progress and investment publication-title: ACS Nano doi: 10.1021/acsnano.1c03992 – volume: 112 year: 2016 ident: 10.1016/j.dsm.2021.12.002_bib31 article-title: Can we trust machine learning results? Artificial intelligence in safety-critical decision support publication-title: ERCIM News. – volume: 29 start-page: 37 issue: 1 year: 2005 ident: 10.1016/j.dsm.2021.12.002_bib82 article-title: Gene selection from microarray data for cancer classification--a machine learning approach publication-title: Comput. Biol. Chem. doi: 10.1016/j.compbiolchem.2004.11.001 – volume: 2 start-page: 160 issue: 3 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib64 article-title: Machine learning: algorithms, real-world applications and research directions publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00592-x – volume: 17 start-page: 243 issue: 2 year: 2015 ident: 10.1016/j.dsm.2021.12.002_bib47 article-title: The internet of things: a survey publication-title: Inf. Syst. Front doi: 10.1007/s10796-014-9492-7 – year: 2019 ident: 10.1016/j.dsm.2021.12.002_bib54 – volume: 2019 start-page: 157 issue: Oct. year: 2019 ident: 10.1016/j.dsm.2021.12.002_bib27 article-title: Mutual correlation attentive factors in dyadic fusion networks for speech emotion recognition publication-title: Proc. ACM Int. Conf. Multimed. – volume: 2 start-page: 100289 issue: 7 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib89 article-title: Structuring clinical text with AI: old versus new natural language processing techniques evaluated on eight common cardiovascular diseases publication-title: Patterns (N Y) doi: 10.1016/j.patter.2021.100289 – volume: 4 start-page: 3 issue: 1 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib92 article-title: Machine learning-based prediction of COVID-19 diagnosis based on symptoms publication-title: NPJ Digit. Med. doi: 10.1038/s41746-020-00372-6 – start-page: 1239 year: 2014 ident: 10.1016/j.dsm.2021.12.002_bib91 – volume: 1 start-page: 44 issue: 1 year: 1990 ident: 10.1016/j.dsm.2021.12.002_bib42 article-title: Unsupervised learning in noise publication-title: IEEE Trans. Neural Network. doi: 10.1109/72.80204 – year: 2020 ident: 10.1016/j.dsm.2021.12.002_bib21 – year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib59 article-title: Commercial nanoproducts available in world market and its economic viability publication-title: Adv. Nano-Fert. Nano-Pestic. Agric. – ident: 10.1016/j.dsm.2021.12.002_bib84 – volume: 6 start-page: 38 issue: 3 year: 2018 ident: 10.1016/j.dsm.2021.12.002_bib2 article-title: Machine learning applications on agricultural datasets for smart farm enhancement publication-title: Machines doi: 10.3390/machines6030038 – volume: 26 start-page: 523 issue: 3 year: 2014 ident: 10.1016/j.dsm.2021.12.002_bib68 article-title: Noise-robust speech recognition through auditory feature detection and spike sequence decoding publication-title: Neural Comput. doi: 10.1162/NECO_a_00557 – start-page: 106 year: 2019 ident: 10.1016/j.dsm.2021.12.002_bib58 – volume: 92 start-page: 20180416 issue: 1094 year: 2019 ident: 10.1016/j.dsm.2021.12.002_bib10 article-title: Will machine learning end the viability of radiology as a thriving medical specialty? publication-title: Br. J. Radiol. doi: 10.1259/bjr.20180416 – volume: 94 start-page: S15 issue: 4 Suppl. 1 year: 1990 ident: 10.1016/j.dsm.2021.12.002_bib26 article-title: A diagnostic expert system for colonic lesions publication-title: Am. J. Clin. Pathol. – volume: 71 start-page: 718 issue: 8 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib50 article-title: Intelligent analysis platform of agricultural sustainable development based on the Internet of Things and machine learning publication-title: Acta Agric. Scand. – volume: 2 start-page: S75 issue: 3 Suppl. l year: 2003 ident: 10.1016/j.dsm.2021.12.002_bib79 article-title: Ensemble machine learning on gene expression data for cancer classification publication-title: Appl. Bioinf. – start-page: 852 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib71 article-title: Speech vision: an end-to-end deep learning-based dysarthric automatic speech recognition system – start-page: 162 year: 2019 ident: 10.1016/j.dsm.2021.12.002_bib77 – volume: 33 start-page: 837 issue: 7 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib90 article-title: Futures price prediction of agricultural products based on machine learning publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05250-6 – volume: 2 start-page: 41 issue: Jun. year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib76 article-title: Data security governance in the era of big data: status, challenges,and prospects publication-title: Data Sci. Manag. doi: 10.1016/j.dsm.2021.06.001 – volume: 23 issue: 5 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib45 article-title: Machine learning and natural language processing in mental health: systematic review publication-title: J. Med. Internet Res. – volume: 2 start-page: 60 issue: 4 year: 2019 ident: 10.1016/j.dsm.2021.12.002_bib1 article-title: Comparative study of NeuroEvolution algorithms in reinforcement learning for self-driving cars publication-title: Eur. J. Eng. Sci. Technol. – volume: 111 start-page: 107683 issue: 14 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib19 article-title: Transmission trend of the COVID-19 pandemic predicted by dendritic neural regression publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107683 – year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib8 article-title: Confidence-aware reinforcement learning for self-driving cars publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2021.3069497 – year: 2006 ident: 10.1016/j.dsm.2021.12.002_bib5 – volume: 84 start-page: 105748 issue: Nov. year: 2019 ident: 10.1016/j.dsm.2021.12.002_bib24 article-title: Comprehensive preference learning and feature validity for designing energy-efficient residential buildings using machine learning paradigms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105748 – year: 2020 ident: 10.1016/j.dsm.2021.12.002_bib37 article-title: Artificial intelligence for COVID-19 drug discovery and vaccine development publication-title: Front. Artif. Intell. doi: 10.3389/frai.2020.00065 – volume: 2 start-page: 377 issue: 5 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib63 article-title: Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00765-8 – year: 2018 ident: 10.1016/j.dsm.2021.12.002_bib32 article-title: Current Advances, Trends and Challenges of Machine Learning and Knowledge Extraction: from Machine Learning to Explainable AI – year: 2014 ident: 10.1016/j.dsm.2021.12.002_bib23 – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.dsm.2021.12.002_bib28 article-title: Machine learning in cybersecurity: a review publication-title: Data Min. Knowl. Discov. – year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib35 article-title: A survey on mathematical, machine learning and deep learning models for COVID-19 transmission and diagnosis publication-title: IEEE Rev. Biomed. Eng. – volume: 52 start-page: 101918.1 issue: Jan. year: 2020 ident: 10.1016/j.dsm.2021.12.002_bib67 article-title: Forecasting client retention — a machine-learning approach publication-title: J. Retailing Consum. Serv. – year: 2017 ident: 10.1016/j.dsm.2021.12.002_bib33 – year: 2016 ident: 10.1016/j.dsm.2021.12.002_bib16 article-title: Machine learning algorithms: a review publication-title: Int. J. Comput. Sci. Inf. Technol. – volume: 577 start-page: 706 issue: 7792 year: 2020 ident: 10.1016/j.dsm.2021.12.002_bib70 article-title: Improved protein structure prediction using potentials from deep learning publication-title: Nature doi: 10.1038/s41586-019-1923-7 – volume: 7 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib66 article-title: Cybersecurity data science: an overview from machine learning perspective publication-title: J. Big Data – volume: 12 start-page: 754 issue: 5 year: 2020 ident: 10.1016/j.dsm.2021.12.002_bib65 article-title: IntruDTree: a machine learning based cyber security intrusion detection model publication-title: Symmetry doi: 10.3390/sym12050754 – volume: 64 start-page: 39 issue: Apr. year: 2015 ident: 10.1016/j.dsm.2021.12.002_bib61 article-title: Deep convolutional neural networks for large-scale speech tasks publication-title: Neural Network. doi: 10.1016/j.neunet.2014.08.005 – year: 2016 ident: 10.1016/j.dsm.2021.12.002_bib41 – volume: 47 start-page: 849 issue: 3 year: 2020 ident: 10.1016/j.dsm.2021.12.002_bib75 article-title: Machine learning in agricultural and applied economics publication-title: Eur. Rev. Agric. Econ. doi: 10.1093/erae/jbz033 – volume: 15 start-page: 139 issue: 2 year: 2018 ident: 10.1016/j.dsm.2021.12.002_bib51 article-title: Advances on automatic speech analysis for early detection of alzheimer disease: a non-linear multi-task approach publication-title: Curr. Alzheimer Res. doi: 10.2174/1567205014666171120143800 – volume: 17 issue: 5 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib86 article-title: Deep template-based protein structure prediction publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008954 – year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib72 article-title: Machine learning in heart valve surgery publication-title: Eur. J. Cardio. Thorac. Surg doi: 10.1093/ejcts/ezab324 – volume: 21 start-page: 3758 issue: 11 year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib4 article-title: Machine learning in agriculture: a comprehensive updated review publication-title: Sensors doi: 10.3390/s21113758 – year: 2021 ident: 10.1016/j.dsm.2021.12.002_bib57 – volume: 72 start-page: 49 issue: 1 year: 2020 ident: 10.1016/j.dsm.2021.12.002_bib11 article-title: Artificial intelligence and neural networks in urology: current clinical applications publication-title: Minerva Urol. Nefrol. doi: 10.23736/S0393-2249.19.03613-0 |
SSID | ssj0002811256 |
Score | 2.35431 |
Snippet | The field of machine learning (ML) is sufficiently young that it is still expanding at an accelerating pace, lying at the crossroads of computer science and... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 19 |
SubjectTerms | Artificial intelligence Cybersecurity Data governance Healthcare Machine learning Nanotechnology Research trends |
Title | Machine learning-based approach: global trends, research directions, and regulatory standpoints |
URI | https://dx.doi.org/10.1016/j.dsm.2021.12.002 https://doaj.org/article/580420c4b0124f8497d8a573e0de7627 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCEauEkjh2zAaKqkMpEpW6WX4FWKK3aMvDv8SsoC7CwJo4dnc_5Lufz9wFwhVmtaWlKhKmUiJhSIZkphfyWnOQskyTIvY2f6WhCnqbltCP15WvCIj1wNNxNWTm3wpoo9yUldUU4M5UsWWGxsW4hh3PkmOPOz9Q8pIxcHBGkWx0AUcQo4e2WZijuMmt_Cj3PQiowpVRaUArc_R1s6uDNcA_spkAR3sUX3AdbtjkAOx36wEMgxqES0sIk_fCKPCYZ2PKE38JI9wE3ofB1ABOzzxuMQOY9bgBlY9yNoEi_WH3CkFtYLmbNZn0EJsPHl4cRSoIJSBcOghC1ikituK2kNcZojCW3TNFM1YWX-7ZSZrnlnouWyorXPp7imVaWcrewa1Mcg16zaOwJgEWOFbFK5rmbLqypqnJWq4Jqjk1lCtYHuLWY0IlN3ItavIu2bGwunJGFN7LIcuGM3AfX348sI5XGb43v_TR8N_Qs2OGC8w2RfEP85Rt9QNpJFCmgiPZ1Xc1-Hvv0P8Y-A9u-y1j5cg56m9WHvXDxy0ZdBlf9AqeW6ho |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+approach%3A+global+trends%2C+research+directions%2C+and+regulatory+standpoints&rft.jtitle=Data+science+and+management&rft.au=Pugliese%2C+Raffaele&rft.au=Regondi%2C+Stefano&rft.au=Marini%2C+Riccardo&rft.date=2021-12-01&rft.issn=2666-7649&rft.eissn=2666-7649&rft.volume=4&rft.spage=19&rft.epage=29&rft_id=info:doi/10.1016%2Fj.dsm.2021.12.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dsm_2021_12_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-7649&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-7649&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-7649&client=summon |