An Explainable Statistical Method for Seizure Prediction Using Brain Functional Connectivity from EEG
Background. Epilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can reduce the burdens of this disorder. Now, existing studies use brain network features to classify patients’ preictal or interictal states, enablin...
Saved in:
| Published in | Computational intelligence and neuroscience Vol. 2022; pp. 1 - 8 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Hindawi
08.12.2022
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-5265 1687-5273 1687-5273 |
| DOI | 10.1155/2022/2183562 |
Cover
| Abstract | Background. Epilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can reduce the burdens of this disorder. Now, existing studies use brain network features to classify patients’ preictal or interictal states, enabling seizure prediction. However, most predicting methods are based on deep learning techniques, which have weak interpretability and high computational complexity. To address these issues, in this study, we proposed a novel two-stage statistical method that is interpretable and easy to compute. Methods. We used two datasets to evaluate the performance of the proposed method, including the well-known public dataset CHB-MIT. In the first stage, we estimated the dynamic brain functional connectivity network for each epoch. Then, in the second stage, we used the derived network predictor for seizure prediction. Results. We illustrated the results of our method in seizure prediction in two datasets separately. For the FH-PKU dataset, our approach achieved an AUC value of 0.963, a prediction sensitivity of 93.1%, and a false discovery rate of 7.7%. For the CHB-MIT dataset, our approach achieved an AUC value of 0.940, a prediction sensitivity of 93.0%, and a false discovery rate of 11.1%, outperforming existing state-of-the-art methods. Significance. This study proposed an explainable statistical method, which can estimate the brain network using the scalp EEG method and use the net-work predictor to predict epileptic seizures. Availability and Implementation. R Source code is available at https://github.com/HaoChen1994/Seizure-Prediction. |
|---|---|
| AbstractList | Background. Epilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can reduce the burdens of this disorder. Now, existing studies use brain network features to classify patients’ preictal or interictal states, enabling seizure prediction. However, most predicting methods are based on deep learning techniques, which have weak interpretability and high computational complexity. To address these issues, in this study, we proposed a novel two-stage statistical method that is interpretable and easy to compute. Methods. We used two datasets to evaluate the performance of the proposed method, including the well-known public dataset CHB-MIT. In the first stage, we estimated the dynamic brain functional connectivity network for each epoch. Then, in the second stage, we used the derived network predictor for seizure prediction. Results. We illustrated the results of our method in seizure prediction in two datasets separately. For the FH-PKU dataset, our approach achieved an AUC value of 0.963, a prediction sensitivity of 93.1%, and a false discovery rate of 7.7%. For the CHB-MIT dataset, our approach achieved an AUC value of 0.940, a prediction sensitivity of 93.0%, and a false discovery rate of 11.1%, outperforming existing state-of-the-art methods. Significance. This study proposed an explainable statistical method, which can estimate the brain network using the scalp EEG method and use the net-work predictor to predict epileptic seizures. Availability and Implementation. R Source code is available at https://github.com/HaoChen1994/Seizure-Prediction. Epilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can reduce the burdens of this disorder. Now, existing studies use brain network features to classify patients' preictal or interictal states, enabling seizure prediction. However, most predicting methods are based on deep learning techniques, which have weak interpretability and high computational complexity. To address these issues, in this study, we proposed a novel two-stage statistical method that is interpretable and easy to compute. We used two datasets to evaluate the performance of the proposed method, including the well-known public dataset CHB-MIT. In the first stage, we estimated the dynamic brain functional connectivity network for each epoch. Then, in the second stage, we used the derived network predictor for seizure prediction. We illustrated the results of our method in seizure prediction in two datasets separately. For the FH-PKU dataset, our approach achieved an AUC value of 0.963, a prediction sensitivity of 93.1%, and a false discovery rate of 7.7%. For the CHB-MIT dataset, our approach achieved an AUC value of 0.940, a prediction sensitivity of 93.0%, and a false discovery rate of 11.1%, outperforming existing state-of-the-art methods. . This study proposed an explainable statistical method, which can estimate the brain network using the scalp EEG method and use the net-work predictor to predict epileptic seizures. . R Source code is available at https://github.com/HaoChen1994/Seizure-Prediction. Epilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can reduce the burdens of this disorder. Now, existing studies use brain network features to classify patients' preictal or interictal states, enabling seizure prediction. However, most predicting methods are based on deep learning techniques, which have weak interpretability and high computational complexity. To address these issues, in this study, we proposed a novel two-stage statistical method that is interpretable and easy to compute.BackgroundEpilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can reduce the burdens of this disorder. Now, existing studies use brain network features to classify patients' preictal or interictal states, enabling seizure prediction. However, most predicting methods are based on deep learning techniques, which have weak interpretability and high computational complexity. To address these issues, in this study, we proposed a novel two-stage statistical method that is interpretable and easy to compute.We used two datasets to evaluate the performance of the proposed method, including the well-known public dataset CHB-MIT. In the first stage, we estimated the dynamic brain functional connectivity network for each epoch. Then, in the second stage, we used the derived network predictor for seizure prediction.MethodsWe used two datasets to evaluate the performance of the proposed method, including the well-known public dataset CHB-MIT. In the first stage, we estimated the dynamic brain functional connectivity network for each epoch. Then, in the second stage, we used the derived network predictor for seizure prediction.We illustrated the results of our method in seizure prediction in two datasets separately. For the FH-PKU dataset, our approach achieved an AUC value of 0.963, a prediction sensitivity of 93.1%, and a false discovery rate of 7.7%. For the CHB-MIT dataset, our approach achieved an AUC value of 0.940, a prediction sensitivity of 93.0%, and a false discovery rate of 11.1%, outperforming existing state-of-the-art methods. Significance. This study proposed an explainable statistical method, which can estimate the brain network using the scalp EEG method and use the net-work predictor to predict epileptic seizures. Availability and Implementation. R Source code is available at https://github.com/HaoChen1994/Seizure-Prediction.ResultsWe illustrated the results of our method in seizure prediction in two datasets separately. For the FH-PKU dataset, our approach achieved an AUC value of 0.963, a prediction sensitivity of 93.1%, and a false discovery rate of 7.7%. For the CHB-MIT dataset, our approach achieved an AUC value of 0.940, a prediction sensitivity of 93.0%, and a false discovery rate of 11.1%, outperforming existing state-of-the-art methods. Significance. This study proposed an explainable statistical method, which can estimate the brain network using the scalp EEG method and use the net-work predictor to predict epileptic seizures. Availability and Implementation. R Source code is available at https://github.com/HaoChen1994/Seizure-Prediction. |
| Audience | Academic |
| Author | Liu, Xiaoxin Yu, Guojing Zhou, Xiao-Hua Jiang, Yuwu Zhan, Xiang Wang, Wen Ji, Taoyun Chen, Hao |
| AuthorAffiliation | 2 Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China 3 Department of Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100083, China 4 Pazhou Lab, Guangzhou 510330, Guangdong, China 1 Beijing International Center for Mathematical Research, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China |
| AuthorAffiliation_xml | – name: 2 Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China – name: 3 Department of Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100083, China – name: 4 Pazhou Lab, Guangzhou 510330, Guangdong, China – name: 1 Beijing International Center for Mathematical Research, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China |
| Author_xml | – sequence: 1 givenname: Hao orcidid: 0000-0002-8739-289X surname: Chen fullname: Chen, Hao organization: Beijing International Center for Mathematical ResearchPeking UniversityNo. 5 Yiheyuan RoadHaidian DistrictBeijing 100871Chinapku.edu.cn – sequence: 2 givenname: Taoyun orcidid: 0000-0003-0098-3257 surname: Ji fullname: Ji, Taoyun organization: Department of Pediatrics and Pediatric Epilepsy CenterPeking University First HospitalNo. 1 Xi’an Men StreetWest DistrictBeijing 100034Chinapkufh.com – sequence: 3 givenname: Xiang orcidid: 0000-0001-9650-143X surname: Zhan fullname: Zhan, Xiang organization: Beijing International Center for Mathematical ResearchPeking UniversityNo. 5 Yiheyuan RoadHaidian DistrictBeijing 100871Chinapku.edu.cn – sequence: 4 givenname: Xiaoxin orcidid: 0000-0001-8297-6485 surname: Liu fullname: Liu, Xiaoxin organization: Department of BiostatisticsSchool of Public HealthPeking UniversityNo. 38 Xueyuan RoadHaidian DistrictBeijing 100083Chinapku.edu.cn – sequence: 5 givenname: Guojing orcidid: 0000-0002-5255-7279 surname: Yu fullname: Yu, Guojing organization: Department of Pediatrics and Pediatric Epilepsy CenterPeking University First HospitalNo. 1 Xi’an Men StreetWest DistrictBeijing 100034Chinapkufh.com – sequence: 6 givenname: Wen orcidid: 0000-0001-7724-1011 surname: Wang fullname: Wang, Wen organization: Department of Pediatrics and Pediatric Epilepsy CenterPeking University First HospitalNo. 1 Xi’an Men StreetWest DistrictBeijing 100034Chinapkufh.com – sequence: 7 givenname: Yuwu orcidid: 0000-0002-5179-9807 surname: Jiang fullname: Jiang, Yuwu organization: Department of Pediatrics and Pediatric Epilepsy CenterPeking University First HospitalNo. 1 Xi’an Men StreetWest DistrictBeijing 100034Chinapkufh.com – sequence: 8 givenname: Xiao-Hua orcidid: 0000-0001-7935-1222 surname: Zhou fullname: Zhou, Xiao-Hua organization: Beijing International Center for Mathematical ResearchPeking UniversityNo. 5 Yiheyuan RoadHaidian DistrictBeijing 100871Chinapku.edu.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36531925$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtv1DAUhS1URB-wY40ssUEqoX7EcbJBGkbTglQEUunacpybGVcee2onLdNfT0KGFioBK7--c-71uYdozwcPCL2k5B2lQpwwwtgJoyUXBXuCDmhRykwwyffu94XYR4cpXREipCDsGdrnheC0YuIAwczjxfeN09br2gG-6HRnU2eNdvgzdKvQ4DZEfAH2ro-Av0ZorOls8PgyWb_EH-KgxKe9_3k5iObBexgON7bb4jaGNV4szp6jp612CV7s1iN0ebr4Nv-YnX85-zSfnWeGM8oy0eRtXRFTMaNZCa3UhtSUGGraupGVbkFwzXVpGlaWQGXdcChqogspK8jrkh-hbPLt_UZvb7VzahPtWsetokSNcakxLrWLa-DfT_ymr9fQGPBd1A-aoK3688XblVqGG1VJkZe5HAze7AxiuO4hdWptkwHntIfQJ8WkECXJeT729voRehX6OEQ2UQNSEf5ALbUDZX0bhrpmNFUzyYnIOSej16vf-75v-NdcB4BNgIkhpQitMnacbBi_Yd3f0nj7SPSf8I4nfGV9o2_tv-kfTK3PZA |
| CitedBy_id | crossref_primary_10_4108_eetpht_10_5569 crossref_primary_10_1007_s11571_024_10109_w |
| Cites_doi | 10.1093/biostatistics/kxab007 10.1016/j.compbiomed.2018.05.019 10.1111/epi.13133 10.1007/s11571-019-09551-y 10.1016/j.neunet.2018.04.018 10.1103/physrevlett.91.198104 10.1016/s0013-4694(98)00017-0 10.1016/j.neuroimage.2006.11.004 10.1016/j.neuroimage.2006.09.042 10.1093/biostatistics/kxm045 10.1093/biostatistics/kxs023 10.1056/nejmra022308 10.3389/fneur.2013.00055 10.1136/bmjopen-2017-017188 10.1007/s11571-018-09517-6 10.1002/hbm.20468 10.3389/fneur.2021.645594 10.1016/j.yebeh.2012.07.007 10.1016/j.neuroimage.2012.03.090 10.1016/s0079-6123(09)17711-7 10.1016/j.clinph.2005.04.001 10.1016/j.pneurobio.2014.06.004 10.1016/j.neuroimage.2020.117021 10.1016/s0140-6736(11)60176-1 10.1016/j.neuroscience.2021.11.017 10.1198/jasa.2011.tm10155 10.1016/j.clinph.2011.11.007 10.1111/epi.16804 10.1111/j.1749-6632.2010.05888.x |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Hao Chen et al. COPYRIGHT 2022 John Wiley & Sons, Inc. Copyright © 2022 Hao Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 Hao Chen et al. 2022 |
| Copyright_xml | – notice: Copyright © 2022 Hao Chen et al. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: Copyright © 2022 Hao Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2022 Hao Chen et al. 2022 |
| DBID | RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2022/2183562 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection (Proquest) Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database (Proquest) Engineering Database (Proquest) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Statistics |
| EISSN | 1687-5273 |
| Editor | Ullah, Inam |
| Editor_xml | – sequence: 1 givenname: Inam surname: Ullah fullname: Ullah, Inam |
| EndPage | 8 |
| ExternalDocumentID | 10.1155/2022/2183562 PMC9754847 A730543308 36531925 10_1155_2022_2183562 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2021M700249 – fundername: National Natural Science Foundation of China grantid: 12026606 |
| GroupedDBID | --- 188 29F 2WC 3V. 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAJEY AAKPC ABDBF ABIVO ABJCF ABUWG ACGFO ACIWK ACM ACPRK ADBBV ADRAZ AENEX AFKRA AHMBA AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO ICD INH INR IPY ITC K6V K7- KQ8 L6V LK8 M0N M1P M48 M7P M7S MK~ O5R O5S OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO PSYQQ PTHSS Q2X RHU RHW RHX RNS RPM SV3 TR2 TUS UKHRP XH6 ~8M 0R~ 24P AAMMB AAYXX ACCMX ACUHS AEFGJ AGXDD AIDQK AIDYY CITATION H13 IHR OVT PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO 2UF C1A CGR CNMHZ CUY CVCKV CVF ECM EIF EJD IL9 NPM UZ4 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3212-5d4fb90c92ca28ef7ac0b10c1cfbd79afe53a3a8cd288e17bd3e6b0a6779e4b83 |
| IEDL.DBID | M48 |
| ISSN | 1687-5265 1687-5273 |
| IngestDate | Sun Oct 26 03:33:18 EDT 2025 Tue Sep 30 17:17:53 EDT 2025 Sun Sep 28 09:48:07 EDT 2025 Tue Oct 07 06:13:55 EDT 2025 Mon Oct 20 22:49:14 EDT 2025 Wed Feb 19 02:26:03 EST 2025 Wed Oct 01 02:22:31 EDT 2025 Thu Apr 24 22:51:24 EDT 2025 Sun Jun 02 18:52:13 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 Hao Chen et al. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3212-5d4fb90c92ca28ef7ac0b10c1cfbd79afe53a3a8cd288e17bd3e6b0a6779e4b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Inam Ullah |
| ORCID | 0000-0002-5255-7279 0000-0002-5179-9807 0000-0002-8739-289X 0000-0001-8297-6485 0000-0001-7935-1222 0000-0003-0098-3257 0000-0001-9650-143X 0000-0001-7724-1011 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2022/2183562 |
| PMID | 36531925 |
| PQID | 2755348903 |
| PQPubID | 237303 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1155_2022_2183562 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9754847 proquest_miscellaneous_2755804348 proquest_journals_2755348903 gale_infotracmisc_A730543308 pubmed_primary_36531925 crossref_citationtrail_10_1155_2022_2183562 crossref_primary_10_1155_2022_2183562 hindawi_primary_10_1155_2022_2183562 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20221208 |
| PublicationDateYYYYMMDD | 2022-12-08 |
| PublicationDate_xml | – month: 12 year: 2022 text: 20221208 day: 8 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | Computational intelligence and neuroscience |
| PublicationTitleAlternate | Comput Intell Neurosci |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | 22 23 24 25 26 27 28 29 30 31 10 11 Y. Li (18) 2021; 1 12 13 14 15 16 17 19 1 2 3 4 5 6 7 8 9 20 21 |
| References_xml | – ident: 19 doi: 10.1093/biostatistics/kxab007 – ident: 27 doi: 10.1016/j.compbiomed.2018.05.019 – ident: 14 doi: 10.1111/epi.13133 – ident: 3 doi: 10.1007/s11571-019-09551-y – ident: 28 doi: 10.1016/j.neunet.2018.04.018 – ident: 20 doi: 10.1103/physrevlett.91.198104 – ident: 10 doi: 10.1016/s0013-4694(98)00017-0 – volume: 1 start-page: 1 year: 2021 ident: 18 article-title: Spatio-temporal-spectral hierarchical graph convolutional network with semisupervised active learning for patient-specific seizure prediction publication-title: IEEE Transactions on Cybernetics – ident: 22 doi: 10.1016/j.neuroimage.2006.11.004 – ident: 31 doi: 10.1016/j.neuroimage.2006.09.042 – ident: 24 doi: 10.1093/biostatistics/kxm045 – ident: 21 doi: 10.1093/biostatistics/kxs023 – ident: 1 doi: 10.1056/nejmra022308 – ident: 29 doi: 10.3389/fneur.2013.00055 – ident: 2 doi: 10.1136/bmjopen-2017-017188 – ident: 15 doi: 10.1007/s11571-018-09517-6 – ident: 7 doi: 10.1002/hbm.20468 – ident: 11 doi: 10.3389/fneur.2021.645594 – ident: 16 doi: 10.1016/j.yebeh.2012.07.007 – ident: 17 doi: 10.1016/j.neuroimage.2012.03.090 – ident: 4 doi: 10.1016/s0079-6123(09)17711-7 – ident: 6 doi: 10.1016/j.clinph.2005.04.001 – ident: 12 doi: 10.1016/j.pneurobio.2014.06.004 – ident: 26 doi: 10.1016/j.neuroimage.2020.117021 – ident: 5 doi: 10.1016/s0140-6736(11)60176-1 – ident: 8 doi: 10.1016/j.neuroscience.2021.11.017 – ident: 25 doi: 10.1198/jasa.2011.tm10155 – ident: 30 doi: 10.1016/j.clinph.2011.11.007 – ident: 9 doi: 10.1111/epi.16804 – ident: 13 doi: 10.1111/j.1749-6632.2010.05888.x – ident: 23 |
| SSID | ssj0057502 |
| Score | 2.2839112 |
| Snippet | Background. Epilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can... Epilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can reduce the... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Alzheimer's disease Analysis Availability Brain Brain research Computational neuroscience Convulsions & seizures Datasets Deep learning EEG Electrodes Electroencephalography Electroencephalography - methods Epilepsy Humans Medical research Medicine, Experimental Methods Nervous system diseases Neural networks Neurological diseases Patients Predictions Scalp Seizures Seizures (Medicine) Seizures - diagnosis Sensitivity Source code Statistical analysis Statistical methods Statistical prediction Statistics |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6CSQheEDAugYGMNPaCKpz4_lhQS4U0hIBJfYtsx9EqlWzqVk3br5-P40aUcXtrlROnzfG52Z-_A7Cvgg64PTUqGylH3MZPDk-BiGCRCTUWYy0u6B9-lrMj_mku5pkk6ezmFn6MdlieV-8wkgv0tbe1ROTW19l843BjwtFDC2W0F2R73-Dbf7l3K_Jk_3vnGCvfi8Xv8subMMm76-7UXl7Y5fKnGDR9APdz8kjGvbYfwq3QPYLdcRcL5x-X5IAkOGdaJ9-FMO4IAuzy6SiCWWUiZY4DHKa20STmq-RbWFytV4F8WeGODWqJJBQBeY-9I8g0hr1-tZAkSIzvm00QPJVCJpOPj-FoOvn-YTbKPRVGnlXY9qDhrTPUm8rbSodWWU9dSX3pW9coY9sgmGVW-6bSOpTKNSxIR61UygTuNHsCO91JF54BoaEpacsDVbHIpMgxLCtvTON8a00ofQFvN--79plwHPteLOtUeAhRo3bqrJ0C3gzSpz3Rxh_k9lB1NdpfHM1Ha_D1OPopwRmjuoD9rNJ_jbLRd52N9qyulBCMa0NZAa-Hy_gABKJ14WTdy2jKo1gBT_vpMTyISXRolShAbU2cQQCpvLevdIvjROltVKwcuSrgYJhif_39z__vb76Ae_g1wW_0Huycr9bhZUyizt2rZELXUL8Rvw priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3_a9QwFH_MG-J-Ed3U1U2JMPeLlKVJ06Q_iNzkziHsGOpgv5U0TdnB2budO8b865eXptVDnb8V8khL35e8l3zyeQAH0iqLx1NxUmVZnGr3VOItEGE1MqG6YqzGDf3TSXZynn6-EBcbMOnuwiCssouJPlBXc4N75EdMCsFTlVP-YXEVY9coPF3tWmjo0Fqheu8pxh7AJkNmrAFsHo8mZ1-62OxykxaFmDnXQmL4DgovBO4CsCNMGETG1hapEKofXmKRfDP9Wyr6J6Ly0apZ6NsbPZv9tlyNn8DjkGeSYWsYT2HDNtuwM2xcjf39lhwSj_z0W-rbsIUZZ0vYvAN22BAE5oVbVaQfc7Od-nbTxOW55Kud_lwtLTlb4kkPapd49AE5xp4TZOyWy3aXkXgojWmbVBC8zUJGo0_P4Hw8-vbxJA69GGLDGbZLqNK6zKnJmdFM2VpqQ8uEmsTUZSVzXVvBNdfKVEwpm8iy4jYrqc6kzG1aKv4cBs28sbtAqK0SWqeWSlecUuQmzpjJ86o0tc5tYiJ41_38wgSicuyXMSt8wSJEgaoqgqoieNtLL1qCjn_I7aMeC_RbN5txXmSKoYtvIuWcqggOgn7_N0un_CI4-4_il2lG8KYfxhcggK2x81Uro2jqxCJ40dpK_yKeYSBkIgK5ZkW9AFKAr48000tPBZ5LV3GmMoLD3t7u_f6X93__HmyhtIfrqH0YXC9X9pVLuq7L18GT7gCE3Cbd priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED-6lLF92at7eOuGBl2_jKSyZVk2--SNZGXQUtgCHQyMXqZhmRPSmNL-9dPJjy17s28yOiRbOunu5J9-B7AnbGrx99QwNEkyjKUrKbwFwq1EJlQXjJV4oH90nBxO43en_HQLXnV3YQxSxC-kOR-dYUx6MfO7dTuu5wfaRYsuXI8O0LI70z1amvIabCfcOeID2J4en-QfMcRK3NJB4vdvZcE62DvnG01sGKR2W77edv4rt_Nn9OSNulrKyws5n39nmia34VP3UQ0i5fOoXquRvvqB7_E_v_oO3GpdVpI3OnYXtmx1D3byyoXrXy7JPvEgUn86vwM2rwjC-to7WQR9WU8F7Ro48smqifOSyXs7u6pXlpys8D8R6gbx2AXyGjNWkIkzts0ZJfFAHN2kuCB4F4aMx2_vw3Qy_vDmcNhmchhqFmGyBROXKqM6i7SMUlsKqakKqQ51qYzIZGk5k0ym2kRpakOhDLOJojIRIrOxStkDGFSLyj4CQq0JaRlbKlxoS5HZOIl0lhmlS5nZUAfwspvOQrc055htY174cIfzAkeyaEcygBe99LKh9_iN3C5qRoGr3rWm3RrURe52Rx4zRtMA9tqJ-1srnToV3eQWkeCcxWlGWQDP-2rsAOFvlV3UjUxKYycWwMNG-_qOWILbaMQDEBt62QsggfhmTTU780TimXDxaiwC2O81-I_v__hfBZ_ATXz0sJ90FwbrVW2fOudtrZ61i_Qr7ys9wA priority: 102 providerName: Unpaywall |
| Title | An Explainable Statistical Method for Seizure Prediction Using Brain Functional Connectivity from EEG |
| URI | https://dx.doi.org/10.1155/2022/2183562 https://www.ncbi.nlm.nih.gov/pubmed/36531925 https://www.proquest.com/docview/2755348903 https://www.proquest.com/docview/2755804348 https://pubmed.ncbi.nlm.nih.gov/PMC9754847 https://downloads.hindawi.com/journals/cin/2022/2183562.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2022 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070625 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-5273 dateEnd: 20230628 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: ABDBF dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 7X7 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1687-5273 dateEnd: 20250430 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: M48 dateStart: 20070101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library : Open Access journals [open access] customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTQheEDA-AqMy0tgLKjgfjp0HhDrUDyG1qgaVylPkOI5Wqcu2smqUv54750MUBki8RIl8saPcne_OPt8P4FBaZWl7quvncdyNNN5ldApEWE2VUDEYK2hBfzyJR7Po41zMd6BBG61_4NcbQzvCk5qtlm--XW7eo8K_cwovBMXvwVsy9YIm4z20UQmBOIyjdj8BfZIq-zBGlaKC8E0K_C9vbxmneoq-fUrB8fXiJhf090zKO-vyQm-u9XL5k5ka3Id7tX_JepVAPIAdWz6E_V6JsfXZhh0xl_HpltL3wfZKRjl49QEqRo6nq9uMHYwdsjRDl5Z9sovv65Vl0xVt6hAjmUs0YMcEL8EGaBmrBUXmsmZMhUfB6OAK6_eHj2A26H_-MOrWsAtdEwaEjJBHRZZwkwRGB8oWUhue-dz4pshymejCilCHWpk8UMr6MstDG2dcx1ImNspU-Bh2y_PSPgXGbe7zIrJcYhzKqQxxHJgkyTNT6MT6xoPXzf9OTV2TnKAxlqmLTYRIiTtpzR0PXrXUF1Utjj_QHRDrUhIa7M2gwpi0h1OZiMKQKw8Oa5b-q5eG32kjlmkghQgjlfDQg5dtMw1AuWqlPV9XNIpHSObBk0o82oHCmOa8QHggtwSnJaBq39st5eLUVf1OJAaXkfTgqBWxv37_s_8e4jncpY5c0o46gN2r1dq-QNfrKuvALTmXeFWDYQf2jvuT6Qk-Ded-x-kbXk9Gc2yZTaa9Lz8AFm4whQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4andD2MmDjEhhgpK0vKJvjxHHywEPZ2nVsnZDYxN6C4zhaRZeWrlXV_Sj-Cn8Jn9ygXMbTHnir5FMncs7V_vwdgC2hA43HU7aT-L7tSfMrxlsgXEtkQjXFWIob-r0Tv3vmvTvn50vwtboLg7DKyifmjjoZKtwj32WCc9cLQlp1qj7S85mpz67eHO6bj7nNWKd9ute1yxYCtnIZsvwnXhqHVIVMSRboVEhFY4cqR6VxIkKZau5KVwYqYUGgHREnrvZjKn0hQu3FgWvmbY6-2NilCk9zy5Ydd2DZ6LnDGrC893H_oFv5fpP7FChH35guEs9XUHvOcZeB7WJCwn22EATLUHD3AovwWf9Pqe7viM2VaTaS85kcDH4Kh5178K1ayAIF83lnOol31PUvHJP_z0rfh7UyMyetwpQewJLO1mGjlcnJ8HJOmiTHyuaHEOuwijl6QXG9AbqVEYQylvfQSD1mZuvlDbqJqQzIB92_no41eT_GszG0B5LjNchb7NJBOibBKPZlSQ4-UkVbD4L3f0i7ffAQzm5lQR5BIxtm-gkQqhOHpp6mwpTzFNmcfabCMIlVKkPtKAteV-oUqZLaHTuMDKK8xOM8QuWLSuWzYLuWHhWUJn-R20TNjNDTmdmU8TsqapmIwD3XpYEFW6XG_muWSsui0j1eRT9UzIJX9TA-ACF_mR5OC5mAekbMgseF9tcPcn0MHYxbIBbsohZA0vTFkax_kZOnh8LU6J6woFlb0I3v__Tm938JK93T3nF0fHhy9AxW8Z852CnYhMZkPNXPTco6iV-UfoLAp9u2oe9V_aQ8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4am4C9cNm4BAYYadsL6uo4sZ08IFTWdh1j0ySY2FtwHEerKGnpWlXdT-Ov8GfwyQ3KZTztgbdIPnXS5Fztz98B2JQmMLg91XATIRq-slcxngLhRiETqi3GUlzQPzwSvRP_zSk_XYKv1VkYhFVWPjF31MlQ4xp5k0nOPT8IqddMS1jEcbv7avSlgR2kcKe1aqdRqMiBmc9s-Xb-cr9tv_UWY93O-91eo-ww0NAewyYAiZ_GIdUh04oFJpVK09il2tVpnMhQpYZ7ylOBTlgQGFfGiWdETJWQMjR-HHh23muwEggprFNY2f3Q3utVccDmQQXiUVgzRhL6CnbPOa44sCYmJ1ywhYBYhoXrZ1iQz_p_Snt_R2_enGYjNZ-pweCn0Ni9Dd-ql1ogYj7tTCfxjr74hW_y_3zrd-BWmbGTVmFid2HJZGuw3srUZPh5TrZJjqHNNyfWYBVz94L6eh1MKyMIcSzPp5F6zM52mDfuJrZiIO9M_2I6NuR4jHtmaCckx3GQ19i9g3Rt4lGs15IclKSLdh8EzwWRTmfvHpxcyb-_D8vZMDMPgVCTuDT1DZW2zKfI8iyYDsMk1qkKjasdeFGpVqRLynfsPDKI8tKP8wgVMSoV0YGtWnpUUJ38RW4DtTRCD2hn09Yf6ahlIwX3PY8GDmyW2vuvWSqNi0q3eR79UDcHntfDeAOEAmZmOC1kAupbMQceFJZQ38gTGFIYd0Au2EgtgGTqiyNZ_ywnVQ-lrd196cB2bU2XPv-jy5__GdywhhK93T86eAyr-MMcAxVswPJkPDVPbCY7iZ-WLoPAx6u2l-9_K60E |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED-6lLF92at7eOuGBl2_jKSyZVk2--SNZGXQUtgCHQyMXqZhmRPSmNL-9dPJjy17s28yOiRbOunu5J9-B7AnbGrx99QwNEkyjKUrKbwFwq1EJlQXjJV4oH90nBxO43en_HQLXnV3YQxSxC-kOR-dYUx6MfO7dTuu5wfaRYsuXI8O0LI70z1amvIabCfcOeID2J4en-QfMcRK3NJB4vdvZcE62DvnG01sGKR2W77edv4rt_Nn9OSNulrKyws5n39nmia34VP3UQ0i5fOoXquRvvqB7_E_v_oO3GpdVpI3OnYXtmx1D3byyoXrXy7JPvEgUn86vwM2rwjC-to7WQR9WU8F7Ro48smqifOSyXs7u6pXlpys8D8R6gbx2AXyGjNWkIkzts0ZJfFAHN2kuCB4F4aMx2_vw3Qy_vDmcNhmchhqFmGyBROXKqM6i7SMUlsKqakKqQ51qYzIZGk5k0ym2kRpakOhDLOJojIRIrOxStkDGFSLyj4CQq0JaRlbKlxoS5HZOIl0lhmlS5nZUAfwspvOQrc055htY174cIfzAkeyaEcygBe99LKh9_iN3C5qRoGr3rWm3RrURe52Rx4zRtMA9tqJ-1srnToV3eQWkeCcxWlGWQDP-2rsAOFvlV3UjUxKYycWwMNG-_qOWILbaMQDEBt62QsggfhmTTU780TimXDxaiwC2O81-I_v__hfBZ_ATXz0sJ90FwbrVW2fOudtrZ61i_Qr7ys9wA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Explainable+Statistical+Method+for+Seizure+Prediction+Using+Brain+Functional+Connectivity+from+EEG&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Chen%2C+Hao&rft.au=Ji%2C+Taoyun&rft.au=Zhan%2C+Xiang&rft.au=Liu%2C+Xiaoxin&rft.date=2022-12-08&rft.pub=Hindawi&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F2183562&rft.externalDocID=PMC9754847 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |