An Explainable Statistical Method for Seizure Prediction Using Brain Functional Connectivity from EEG

Background. Epilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can reduce the burdens of this disorder. Now, existing studies use brain network features to classify patients’ preictal or interictal states, enablin...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2022; pp. 1 - 8
Main Authors Chen, Hao, Ji, Taoyun, Zhan, Xiang, Liu, Xiaoxin, Yu, Guojing, Wang, Wen, Jiang, Yuwu, Zhou, Xiao-Hua
Format Journal Article
LanguageEnglish
Published United States Hindawi 08.12.2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2022/2183562

Cover

Abstract Background. Epilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can reduce the burdens of this disorder. Now, existing studies use brain network features to classify patients’ preictal or interictal states, enabling seizure prediction. However, most predicting methods are based on deep learning techniques, which have weak interpretability and high computational complexity. To address these issues, in this study, we proposed a novel two-stage statistical method that is interpretable and easy to compute. Methods. We used two datasets to evaluate the performance of the proposed method, including the well-known public dataset CHB-MIT. In the first stage, we estimated the dynamic brain functional connectivity network for each epoch. Then, in the second stage, we used the derived network predictor for seizure prediction. Results. We illustrated the results of our method in seizure prediction in two datasets separately. For the FH-PKU dataset, our approach achieved an AUC value of 0.963, a prediction sensitivity of 93.1%, and a false discovery rate of 7.7%. For the CHB-MIT dataset, our approach achieved an AUC value of 0.940, a prediction sensitivity of 93.0%, and a false discovery rate of 11.1%, outperforming existing state-of-the-art methods. Significance. This study proposed an explainable statistical method, which can estimate the brain network using the scalp EEG method and use the net-work predictor to predict epileptic seizures. Availability and Implementation. R Source code is available at https://github.com/HaoChen1994/Seizure-Prediction.
AbstractList Background. Epilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can reduce the burdens of this disorder. Now, existing studies use brain network features to classify patients’ preictal or interictal states, enabling seizure prediction. However, most predicting methods are based on deep learning techniques, which have weak interpretability and high computational complexity. To address these issues, in this study, we proposed a novel two-stage statistical method that is interpretable and easy to compute. Methods. We used two datasets to evaluate the performance of the proposed method, including the well-known public dataset CHB-MIT. In the first stage, we estimated the dynamic brain functional connectivity network for each epoch. Then, in the second stage, we used the derived network predictor for seizure prediction. Results. We illustrated the results of our method in seizure prediction in two datasets separately. For the FH-PKU dataset, our approach achieved an AUC value of 0.963, a prediction sensitivity of 93.1%, and a false discovery rate of 7.7%. For the CHB-MIT dataset, our approach achieved an AUC value of 0.940, a prediction sensitivity of 93.0%, and a false discovery rate of 11.1%, outperforming existing state-of-the-art methods. Significance. This study proposed an explainable statistical method, which can estimate the brain network using the scalp EEG method and use the net-work predictor to predict epileptic seizures. Availability and Implementation. R Source code is available at https://github.com/HaoChen1994/Seizure-Prediction.
Epilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can reduce the burdens of this disorder. Now, existing studies use brain network features to classify patients' preictal or interictal states, enabling seizure prediction. However, most predicting methods are based on deep learning techniques, which have weak interpretability and high computational complexity. To address these issues, in this study, we proposed a novel two-stage statistical method that is interpretable and easy to compute. We used two datasets to evaluate the performance of the proposed method, including the well-known public dataset CHB-MIT. In the first stage, we estimated the dynamic brain functional connectivity network for each epoch. Then, in the second stage, we used the derived network predictor for seizure prediction. We illustrated the results of our method in seizure prediction in two datasets separately. For the FH-PKU dataset, our approach achieved an AUC value of 0.963, a prediction sensitivity of 93.1%, and a false discovery rate of 7.7%. For the CHB-MIT dataset, our approach achieved an AUC value of 0.940, a prediction sensitivity of 93.0%, and a false discovery rate of 11.1%, outperforming existing state-of-the-art methods. . This study proposed an explainable statistical method, which can estimate the brain network using the scalp EEG method and use the net-work predictor to predict epileptic seizures. . R Source code is available at https://github.com/HaoChen1994/Seizure-Prediction.
Epilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can reduce the burdens of this disorder. Now, existing studies use brain network features to classify patients' preictal or interictal states, enabling seizure prediction. However, most predicting methods are based on deep learning techniques, which have weak interpretability and high computational complexity. To address these issues, in this study, we proposed a novel two-stage statistical method that is interpretable and easy to compute.BackgroundEpilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can reduce the burdens of this disorder. Now, existing studies use brain network features to classify patients' preictal or interictal states, enabling seizure prediction. However, most predicting methods are based on deep learning techniques, which have weak interpretability and high computational complexity. To address these issues, in this study, we proposed a novel two-stage statistical method that is interpretable and easy to compute.We used two datasets to evaluate the performance of the proposed method, including the well-known public dataset CHB-MIT. In the first stage, we estimated the dynamic brain functional connectivity network for each epoch. Then, in the second stage, we used the derived network predictor for seizure prediction.MethodsWe used two datasets to evaluate the performance of the proposed method, including the well-known public dataset CHB-MIT. In the first stage, we estimated the dynamic brain functional connectivity network for each epoch. Then, in the second stage, we used the derived network predictor for seizure prediction.We illustrated the results of our method in seizure prediction in two datasets separately. For the FH-PKU dataset, our approach achieved an AUC value of 0.963, a prediction sensitivity of 93.1%, and a false discovery rate of 7.7%. For the CHB-MIT dataset, our approach achieved an AUC value of 0.940, a prediction sensitivity of 93.0%, and a false discovery rate of 11.1%, outperforming existing state-of-the-art methods. Significance. This study proposed an explainable statistical method, which can estimate the brain network using the scalp EEG method and use the net-work predictor to predict epileptic seizures. Availability and Implementation. R Source code is available at https://github.com/HaoChen1994/Seizure-Prediction.ResultsWe illustrated the results of our method in seizure prediction in two datasets separately. For the FH-PKU dataset, our approach achieved an AUC value of 0.963, a prediction sensitivity of 93.1%, and a false discovery rate of 7.7%. For the CHB-MIT dataset, our approach achieved an AUC value of 0.940, a prediction sensitivity of 93.0%, and a false discovery rate of 11.1%, outperforming existing state-of-the-art methods. Significance. This study proposed an explainable statistical method, which can estimate the brain network using the scalp EEG method and use the net-work predictor to predict epileptic seizures. Availability and Implementation. R Source code is available at https://github.com/HaoChen1994/Seizure-Prediction.
Audience Academic
Author Liu, Xiaoxin
Yu, Guojing
Zhou, Xiao-Hua
Jiang, Yuwu
Zhan, Xiang
Wang, Wen
Ji, Taoyun
Chen, Hao
AuthorAffiliation 2 Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
3 Department of Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100083, China
4 Pazhou Lab, Guangzhou 510330, Guangdong, China
1 Beijing International Center for Mathematical Research, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
AuthorAffiliation_xml – name: 2 Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China
– name: 3 Department of Biostatistics, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100083, China
– name: 4 Pazhou Lab, Guangzhou 510330, Guangdong, China
– name: 1 Beijing International Center for Mathematical Research, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0002-8739-289X
  surname: Chen
  fullname: Chen, Hao
  organization: Beijing International Center for Mathematical ResearchPeking UniversityNo. 5 Yiheyuan RoadHaidian DistrictBeijing 100871Chinapku.edu.cn
– sequence: 2
  givenname: Taoyun
  orcidid: 0000-0003-0098-3257
  surname: Ji
  fullname: Ji, Taoyun
  organization: Department of Pediatrics and Pediatric Epilepsy CenterPeking University First HospitalNo. 1 Xi’an Men StreetWest DistrictBeijing 100034Chinapkufh.com
– sequence: 3
  givenname: Xiang
  orcidid: 0000-0001-9650-143X
  surname: Zhan
  fullname: Zhan, Xiang
  organization: Beijing International Center for Mathematical ResearchPeking UniversityNo. 5 Yiheyuan RoadHaidian DistrictBeijing 100871Chinapku.edu.cn
– sequence: 4
  givenname: Xiaoxin
  orcidid: 0000-0001-8297-6485
  surname: Liu
  fullname: Liu, Xiaoxin
  organization: Department of BiostatisticsSchool of Public HealthPeking UniversityNo. 38 Xueyuan RoadHaidian DistrictBeijing 100083Chinapku.edu.cn
– sequence: 5
  givenname: Guojing
  orcidid: 0000-0002-5255-7279
  surname: Yu
  fullname: Yu, Guojing
  organization: Department of Pediatrics and Pediatric Epilepsy CenterPeking University First HospitalNo. 1 Xi’an Men StreetWest DistrictBeijing 100034Chinapkufh.com
– sequence: 6
  givenname: Wen
  orcidid: 0000-0001-7724-1011
  surname: Wang
  fullname: Wang, Wen
  organization: Department of Pediatrics and Pediatric Epilepsy CenterPeking University First HospitalNo. 1 Xi’an Men StreetWest DistrictBeijing 100034Chinapkufh.com
– sequence: 7
  givenname: Yuwu
  orcidid: 0000-0002-5179-9807
  surname: Jiang
  fullname: Jiang, Yuwu
  organization: Department of Pediatrics and Pediatric Epilepsy CenterPeking University First HospitalNo. 1 Xi’an Men StreetWest DistrictBeijing 100034Chinapkufh.com
– sequence: 8
  givenname: Xiao-Hua
  orcidid: 0000-0001-7935-1222
  surname: Zhou
  fullname: Zhou, Xiao-Hua
  organization: Beijing International Center for Mathematical ResearchPeking UniversityNo. 5 Yiheyuan RoadHaidian DistrictBeijing 100871Chinapku.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36531925$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB-wY40ssUEqoX7EcbJBGkbTglQEUunacpybGVcee2onLdNfT0KGFioBK7--c-71uYdozwcPCL2k5B2lQpwwwtgJoyUXBXuCDmhRykwwyffu94XYR4cpXREipCDsGdrnheC0YuIAwczjxfeN09br2gG-6HRnU2eNdvgzdKvQ4DZEfAH2ro-Av0ZorOls8PgyWb_EH-KgxKe9_3k5iObBexgON7bb4jaGNV4szp6jp612CV7s1iN0ebr4Nv-YnX85-zSfnWeGM8oy0eRtXRFTMaNZCa3UhtSUGGraupGVbkFwzXVpGlaWQGXdcChqogspK8jrkh-hbPLt_UZvb7VzahPtWsetokSNcakxLrWLa-DfT_ymr9fQGPBd1A-aoK3688XblVqGG1VJkZe5HAze7AxiuO4hdWptkwHntIfQJ8WkECXJeT729voRehX6OEQ2UQNSEf5ALbUDZX0bhrpmNFUzyYnIOSej16vf-75v-NdcB4BNgIkhpQitMnacbBi_Yd3f0nj7SPSf8I4nfGV9o2_tv-kfTK3PZA
CitedBy_id crossref_primary_10_4108_eetpht_10_5569
crossref_primary_10_1007_s11571_024_10109_w
Cites_doi 10.1093/biostatistics/kxab007
10.1016/j.compbiomed.2018.05.019
10.1111/epi.13133
10.1007/s11571-019-09551-y
10.1016/j.neunet.2018.04.018
10.1103/physrevlett.91.198104
10.1016/s0013-4694(98)00017-0
10.1016/j.neuroimage.2006.11.004
10.1016/j.neuroimage.2006.09.042
10.1093/biostatistics/kxm045
10.1093/biostatistics/kxs023
10.1056/nejmra022308
10.3389/fneur.2013.00055
10.1136/bmjopen-2017-017188
10.1007/s11571-018-09517-6
10.1002/hbm.20468
10.3389/fneur.2021.645594
10.1016/j.yebeh.2012.07.007
10.1016/j.neuroimage.2012.03.090
10.1016/s0079-6123(09)17711-7
10.1016/j.clinph.2005.04.001
10.1016/j.pneurobio.2014.06.004
10.1016/j.neuroimage.2020.117021
10.1016/s0140-6736(11)60176-1
10.1016/j.neuroscience.2021.11.017
10.1198/jasa.2011.tm10155
10.1016/j.clinph.2011.11.007
10.1111/epi.16804
10.1111/j.1749-6632.2010.05888.x
ContentType Journal Article
Copyright Copyright © 2022 Hao Chen et al.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Hao Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Hao Chen et al. 2022
Copyright_xml – notice: Copyright © 2022 Hao Chen et al.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Hao Chen et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2022 Hao Chen et al. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2022/2183562
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection (Proquest)
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database (Proquest)
Engineering Database (Proquest)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Statistics
EISSN 1687-5273
Editor Ullah, Inam
Editor_xml – sequence: 1
  givenname: Inam
  surname: Ullah
  fullname: Ullah, Inam
EndPage 8
ExternalDocumentID 10.1155/2022/2183562
PMC9754847
A730543308
36531925
10_1155_2022_2183562
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2021M700249
– fundername: National Natural Science Foundation of China
  grantid: 12026606
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
H13
IHR
OVT
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
2UF
C1A
CGR
CNMHZ
CUY
CVCKV
CVF
ECM
EIF
EJD
IL9
NPM
UZ4
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c3212-5d4fb90c92ca28ef7ac0b10c1cfbd79afe53a3a8cd288e17bd3e6b0a6779e4b83
IEDL.DBID M48
ISSN 1687-5265
1687-5273
IngestDate Sun Oct 26 03:33:18 EDT 2025
Tue Sep 30 17:17:53 EDT 2025
Sun Sep 28 09:48:07 EDT 2025
Tue Oct 07 06:13:55 EDT 2025
Mon Oct 20 22:49:14 EDT 2025
Wed Feb 19 02:26:03 EST 2025
Wed Oct 01 02:22:31 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Sun Jun 02 18:52:13 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Hao Chen et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3212-5d4fb90c92ca28ef7ac0b10c1cfbd79afe53a3a8cd288e17bd3e6b0a6779e4b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Inam Ullah
ORCID 0000-0002-5255-7279
0000-0002-5179-9807
0000-0002-8739-289X
0000-0001-8297-6485
0000-0001-7935-1222
0000-0003-0098-3257
0000-0001-9650-143X
0000-0001-7724-1011
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2022/2183562
PMID 36531925
PQID 2755348903
PQPubID 237303
PageCount 8
ParticipantIDs unpaywall_primary_10_1155_2022_2183562
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9754847
proquest_miscellaneous_2755804348
proquest_journals_2755348903
gale_infotracmisc_A730543308
pubmed_primary_36531925
crossref_citationtrail_10_1155_2022_2183562
crossref_primary_10_1155_2022_2183562
hindawi_primary_10_1155_2022_2183562
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221208
PublicationDateYYYYMMDD 2022-12-08
PublicationDate_xml – month: 12
  year: 2022
  text: 20221208
  day: 8
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationTitleAlternate Comput Intell Neurosci
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 22
23
24
25
26
27
28
29
30
31
10
11
Y. Li (18) 2021; 1
12
13
14
15
16
17
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 19
  doi: 10.1093/biostatistics/kxab007
– ident: 27
  doi: 10.1016/j.compbiomed.2018.05.019
– ident: 14
  doi: 10.1111/epi.13133
– ident: 3
  doi: 10.1007/s11571-019-09551-y
– ident: 28
  doi: 10.1016/j.neunet.2018.04.018
– ident: 20
  doi: 10.1103/physrevlett.91.198104
– ident: 10
  doi: 10.1016/s0013-4694(98)00017-0
– volume: 1
  start-page: 1
  year: 2021
  ident: 18
  article-title: Spatio-temporal-spectral hierarchical graph convolutional network with semisupervised active learning for patient-specific seizure prediction
  publication-title: IEEE Transactions on Cybernetics
– ident: 22
  doi: 10.1016/j.neuroimage.2006.11.004
– ident: 31
  doi: 10.1016/j.neuroimage.2006.09.042
– ident: 24
  doi: 10.1093/biostatistics/kxm045
– ident: 21
  doi: 10.1093/biostatistics/kxs023
– ident: 1
  doi: 10.1056/nejmra022308
– ident: 29
  doi: 10.3389/fneur.2013.00055
– ident: 2
  doi: 10.1136/bmjopen-2017-017188
– ident: 15
  doi: 10.1007/s11571-018-09517-6
– ident: 7
  doi: 10.1002/hbm.20468
– ident: 11
  doi: 10.3389/fneur.2021.645594
– ident: 16
  doi: 10.1016/j.yebeh.2012.07.007
– ident: 17
  doi: 10.1016/j.neuroimage.2012.03.090
– ident: 4
  doi: 10.1016/s0079-6123(09)17711-7
– ident: 6
  doi: 10.1016/j.clinph.2005.04.001
– ident: 12
  doi: 10.1016/j.pneurobio.2014.06.004
– ident: 26
  doi: 10.1016/j.neuroimage.2020.117021
– ident: 5
  doi: 10.1016/s0140-6736(11)60176-1
– ident: 8
  doi: 10.1016/j.neuroscience.2021.11.017
– ident: 25
  doi: 10.1198/jasa.2011.tm10155
– ident: 30
  doi: 10.1016/j.clinph.2011.11.007
– ident: 9
  doi: 10.1111/epi.16804
– ident: 13
  doi: 10.1111/j.1749-6632.2010.05888.x
– ident: 23
SSID ssj0057502
Score 2.2839112
Snippet Background. Epilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can...
Epilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can reduce the...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Alzheimer's disease
Analysis
Availability
Brain
Brain research
Computational neuroscience
Convulsions & seizures
Datasets
Deep learning
EEG
Electrodes
Electroencephalography
Electroencephalography - methods
Epilepsy
Humans
Medical research
Medicine, Experimental
Methods
Nervous system diseases
Neural networks
Neurological diseases
Patients
Predictions
Scalp
Seizures
Seizures (Medicine)
Seizures - diagnosis
Sensitivity
Source code
Statistical analysis
Statistical methods
Statistical prediction
Statistics
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6CSQheEDAugYGMNPaCKpz4_lhQS4U0hIBJfYtsx9EqlWzqVk3br5-P40aUcXtrlROnzfG52Z-_A7Cvgg64PTUqGylH3MZPDk-BiGCRCTUWYy0u6B9-lrMj_mku5pkk6ezmFn6MdlieV-8wkgv0tbe1ROTW19l843BjwtFDC2W0F2R73-Dbf7l3K_Jk_3vnGCvfi8Xv8subMMm76-7UXl7Y5fKnGDR9APdz8kjGvbYfwq3QPYLdcRcL5x-X5IAkOGdaJ9-FMO4IAuzy6SiCWWUiZY4DHKa20STmq-RbWFytV4F8WeGODWqJJBQBeY-9I8g0hr1-tZAkSIzvm00QPJVCJpOPj-FoOvn-YTbKPRVGnlXY9qDhrTPUm8rbSodWWU9dSX3pW9coY9sgmGVW-6bSOpTKNSxIR61UygTuNHsCO91JF54BoaEpacsDVbHIpMgxLCtvTON8a00ofQFvN--79plwHPteLOtUeAhRo3bqrJ0C3gzSpz3Rxh_k9lB1NdpfHM1Ha_D1OPopwRmjuoD9rNJ_jbLRd52N9qyulBCMa0NZAa-Hy_gABKJ14WTdy2jKo1gBT_vpMTyISXRolShAbU2cQQCpvLevdIvjROltVKwcuSrgYJhif_39z__vb76Ae_g1wW_0Huycr9bhZUyizt2rZELXUL8Rvw
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3_a9QwFH_MG-J-Ed3U1U2JMPeLlKVJ06Q_iNzkziHsGOpgv5U0TdnB2budO8b865eXptVDnb8V8khL35e8l3zyeQAH0iqLx1NxUmVZnGr3VOItEGE1MqG6YqzGDf3TSXZynn6-EBcbMOnuwiCssouJPlBXc4N75EdMCsFTlVP-YXEVY9coPF3tWmjo0Fqheu8pxh7AJkNmrAFsHo8mZ1-62OxykxaFmDnXQmL4DgovBO4CsCNMGETG1hapEKofXmKRfDP9Wyr6J6Ly0apZ6NsbPZv9tlyNn8DjkGeSYWsYT2HDNtuwM2xcjf39lhwSj_z0W-rbsIUZZ0vYvAN22BAE5oVbVaQfc7Od-nbTxOW55Kud_lwtLTlb4kkPapd49AE5xp4TZOyWy3aXkXgojWmbVBC8zUJGo0_P4Hw8-vbxJA69GGLDGbZLqNK6zKnJmdFM2VpqQ8uEmsTUZSVzXVvBNdfKVEwpm8iy4jYrqc6kzG1aKv4cBs28sbtAqK0SWqeWSlecUuQmzpjJ86o0tc5tYiJ41_38wgSicuyXMSt8wSJEgaoqgqoieNtLL1qCjn_I7aMeC_RbN5txXmSKoYtvIuWcqggOgn7_N0un_CI4-4_il2lG8KYfxhcggK2x81Uro2jqxCJ40dpK_yKeYSBkIgK5ZkW9AFKAr48000tPBZ5LV3GmMoLD3t7u_f6X93__HmyhtIfrqH0YXC9X9pVLuq7L18GT7gCE3Cbd
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED-6lLF92at7eOuGBl2_jKSyZVk2--SNZGXQUtgCHQyMXqZhmRPSmNL-9dPJjy17s28yOiRbOunu5J9-B7AnbGrx99QwNEkyjKUrKbwFwq1EJlQXjJV4oH90nBxO43en_HQLXnV3YQxSxC-kOR-dYUx6MfO7dTuu5wfaRYsuXI8O0LI70z1amvIabCfcOeID2J4en-QfMcRK3NJB4vdvZcE62DvnG01sGKR2W77edv4rt_Nn9OSNulrKyws5n39nmia34VP3UQ0i5fOoXquRvvqB7_E_v_oO3GpdVpI3OnYXtmx1D3byyoXrXy7JPvEgUn86vwM2rwjC-to7WQR9WU8F7Ro48smqifOSyXs7u6pXlpys8D8R6gbx2AXyGjNWkIkzts0ZJfFAHN2kuCB4F4aMx2_vw3Qy_vDmcNhmchhqFmGyBROXKqM6i7SMUlsKqakKqQ51qYzIZGk5k0ym2kRpakOhDLOJojIRIrOxStkDGFSLyj4CQq0JaRlbKlxoS5HZOIl0lhmlS5nZUAfwspvOQrc055htY174cIfzAkeyaEcygBe99LKh9_iN3C5qRoGr3rWm3RrURe52Rx4zRtMA9tqJ-1srnToV3eQWkeCcxWlGWQDP-2rsAOFvlV3UjUxKYycWwMNG-_qOWILbaMQDEBt62QsggfhmTTU780TimXDxaiwC2O81-I_v__hfBZ_ATXz0sJ90FwbrVW2fOudtrZ61i_Qr7ys9wA
  priority: 102
  providerName: Unpaywall
Title An Explainable Statistical Method for Seizure Prediction Using Brain Functional Connectivity from EEG
URI https://dx.doi.org/10.1155/2022/2183562
https://www.ncbi.nlm.nih.gov/pubmed/36531925
https://www.proquest.com/docview/2755348903
https://www.proquest.com/docview/2755804348
https://pubmed.ncbi.nlm.nih.gov/PMC9754847
https://downloads.hindawi.com/journals/cin/2022/2183562.pdf
UnpaywallVersion publishedVersion
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070625
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1687-5273
  dateEnd: 20230628
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: ABDBF
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: M48
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library : Open Access journals [open access]
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTQheEDA-AqMy0tgLKjgfjp0HhDrUDyG1qgaVylPkOI5Wqcu2smqUv54750MUBki8RIl8saPcne_OPt8P4FBaZWl7quvncdyNNN5ldApEWE2VUDEYK2hBfzyJR7Po41zMd6BBG61_4NcbQzvCk5qtlm--XW7eo8K_cwovBMXvwVsy9YIm4z20UQmBOIyjdj8BfZIq-zBGlaKC8E0K_C9vbxmneoq-fUrB8fXiJhf090zKO-vyQm-u9XL5k5ka3Id7tX_JepVAPIAdWz6E_V6JsfXZhh0xl_HpltL3wfZKRjl49QEqRo6nq9uMHYwdsjRDl5Z9sovv65Vl0xVt6hAjmUs0YMcEL8EGaBmrBUXmsmZMhUfB6OAK6_eHj2A26H_-MOrWsAtdEwaEjJBHRZZwkwRGB8oWUhue-dz4pshymejCilCHWpk8UMr6MstDG2dcx1ImNspU-Bh2y_PSPgXGbe7zIrJcYhzKqQxxHJgkyTNT6MT6xoPXzf9OTV2TnKAxlqmLTYRIiTtpzR0PXrXUF1Utjj_QHRDrUhIa7M2gwpi0h1OZiMKQKw8Oa5b-q5eG32kjlmkghQgjlfDQg5dtMw1AuWqlPV9XNIpHSObBk0o82oHCmOa8QHggtwSnJaBq39st5eLUVf1OJAaXkfTgqBWxv37_s_8e4jncpY5c0o46gN2r1dq-QNfrKuvALTmXeFWDYQf2jvuT6Qk-Ded-x-kbXk9Gc2yZTaa9Lz8AFm4whQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4andD2MmDjEhhgpK0vKJvjxHHywEPZ2nVsnZDYxN6C4zhaRZeWrlXV_Sj-Cn8Jn9ygXMbTHnir5FMncs7V_vwdgC2hA43HU7aT-L7tSfMrxlsgXEtkQjXFWIob-r0Tv3vmvTvn50vwtboLg7DKyifmjjoZKtwj32WCc9cLQlp1qj7S85mpz67eHO6bj7nNWKd9ute1yxYCtnIZsvwnXhqHVIVMSRboVEhFY4cqR6VxIkKZau5KVwYqYUGgHREnrvZjKn0hQu3FgWvmbY6-2NilCk9zy5Ydd2DZ6LnDGrC893H_oFv5fpP7FChH35guEs9XUHvOcZeB7WJCwn22EATLUHD3AovwWf9Pqe7viM2VaTaS85kcDH4Kh5178K1ayAIF83lnOol31PUvHJP_z0rfh7UyMyetwpQewJLO1mGjlcnJ8HJOmiTHyuaHEOuwijl6QXG9AbqVEYQylvfQSD1mZuvlDbqJqQzIB92_no41eT_GszG0B5LjNchb7NJBOibBKPZlSQ4-UkVbD4L3f0i7ffAQzm5lQR5BIxtm-gkQqhOHpp6mwpTzFNmcfabCMIlVKkPtKAteV-oUqZLaHTuMDKK8xOM8QuWLSuWzYLuWHhWUJn-R20TNjNDTmdmU8TsqapmIwD3XpYEFW6XG_muWSsui0j1eRT9UzIJX9TA-ACF_mR5OC5mAekbMgseF9tcPcn0MHYxbIBbsohZA0vTFkax_kZOnh8LU6J6woFlb0I3v__Tm938JK93T3nF0fHhy9AxW8Z852CnYhMZkPNXPTco6iV-UfoLAp9u2oe9V_aQ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4am4C9cNm4BAYYadsL6uo4sZ08IFTWdh1j0ySY2FtwHEerKGnpWlXdT-Ov8GfwyQ3KZTztgbdIPnXS5Fztz98B2JQmMLg91XATIRq-slcxngLhRiETqi3GUlzQPzwSvRP_zSk_XYKv1VkYhFVWPjF31MlQ4xp5k0nOPT8IqddMS1jEcbv7avSlgR2kcKe1aqdRqMiBmc9s-Xb-cr9tv_UWY93O-91eo-ww0NAewyYAiZ_GIdUh04oFJpVK09il2tVpnMhQpYZ7ylOBTlgQGFfGiWdETJWQMjR-HHh23muwEggprFNY2f3Q3utVccDmQQXiUVgzRhL6CnbPOa44sCYmJ1ywhYBYhoXrZ1iQz_p_Snt_R2_enGYjNZ-pweCn0Ni9Dd-ql1ogYj7tTCfxjr74hW_y_3zrd-BWmbGTVmFid2HJZGuw3srUZPh5TrZJjqHNNyfWYBVz94L6eh1MKyMIcSzPp5F6zM52mDfuJrZiIO9M_2I6NuR4jHtmaCckx3GQ19i9g3Rt4lGs15IclKSLdh8EzwWRTmfvHpxcyb-_D8vZMDMPgVCTuDT1DZW2zKfI8iyYDsMk1qkKjasdeFGpVqRLynfsPDKI8tKP8wgVMSoV0YGtWnpUUJ38RW4DtTRCD2hn09Yf6ahlIwX3PY8GDmyW2vuvWSqNi0q3eR79UDcHntfDeAOEAmZmOC1kAupbMQceFJZQ38gTGFIYd0Au2EgtgGTqiyNZ_ywnVQ-lrd196cB2bU2XPv-jy5__GdywhhK93T86eAyr-MMcAxVswPJkPDVPbCY7iZ-WLoPAx6u2l-9_K60E
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swED-6lLF92at7eOuGBl2_jKSyZVk2--SNZGXQUtgCHQyMXqZhmRPSmNL-9dPJjy17s28yOiRbOunu5J9-B7AnbGrx99QwNEkyjKUrKbwFwq1EJlQXjJV4oH90nBxO43en_HQLXnV3YQxSxC-kOR-dYUx6MfO7dTuu5wfaRYsuXI8O0LI70z1amvIabCfcOeID2J4en-QfMcRK3NJB4vdvZcE62DvnG01sGKR2W77edv4rt_Nn9OSNulrKyws5n39nmia34VP3UQ0i5fOoXquRvvqB7_E_v_oO3GpdVpI3OnYXtmx1D3byyoXrXy7JPvEgUn86vwM2rwjC-to7WQR9WU8F7Ro48smqifOSyXs7u6pXlpys8D8R6gbx2AXyGjNWkIkzts0ZJfFAHN2kuCB4F4aMx2_vw3Qy_vDmcNhmchhqFmGyBROXKqM6i7SMUlsKqakKqQ51qYzIZGk5k0ym2kRpakOhDLOJojIRIrOxStkDGFSLyj4CQq0JaRlbKlxoS5HZOIl0lhmlS5nZUAfwspvOQrc055htY174cIfzAkeyaEcygBe99LKh9_iN3C5qRoGr3rWm3RrURe52Rx4zRtMA9tqJ-1srnToV3eQWkeCcxWlGWQDP-2rsAOFvlV3UjUxKYycWwMNG-_qOWILbaMQDEBt62QsggfhmTTU780TimXDxaiwC2O81-I_v__hfBZ_ATXz0sJ90FwbrVW2fOudtrZ61i_Qr7ys9wA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Explainable+Statistical+Method+for+Seizure+Prediction+Using+Brain+Functional+Connectivity+from+EEG&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Chen%2C+Hao&rft.au=Ji%2C+Taoyun&rft.au=Zhan%2C+Xiang&rft.au=Liu%2C+Xiaoxin&rft.date=2022-12-08&rft.pub=Hindawi&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F2183562&rft.externalDocID=PMC9754847
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon