Unsupervised feature selection algorithm based on L 2,p -norm feature reconstruction

Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we pro...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 3; p. e0318431
Main Authors Liu, Wei, Ning, Qian, Liu, Guangwei, Wang, Haonan, Zhu, Yixin, Zhong, Miao
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0318431

Cover

Abstract Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we propose an unsupervised feature selection method named unsupervised feature selection algorithm based on l 2 , p -norm feature reconstruction (NFRFS). Employing a flexible norm to represent both the original space and the spatial distance of feature reconstruction, enhances adaptability and broadens its applicability by adjusting p . Additionally, adaptive graph learning is integrated into the feature selection process to preserve the local geometric structure of the data. Features exhibiting sparsity and low redundancy are selected through the regularization constraint of the inner product in the feature selection matrix. To demonstrate the effectiveness of the method, numerical studies were conducted on 14 benchmark datasets. Our results indicate that the method outperforms 10 unsupervised feature selection algorithms in terms of clustering performance.
AbstractList Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we propose an unsupervised feature selection method named unsupervised feature selection algorithm based on -norm feature reconstruction (NFRFS). Employing a flexible norm to represent both the original space and the spatial distance of feature reconstruction, enhances adaptability and broadens its applicability by adjusting p. Additionally, adaptive graph learning is integrated into the feature selection process to preserve the local geometric structure of the data. Features exhibiting sparsity and low redundancy are selected through the regularization constraint of the inner product in the feature selection matrix. To demonstrate the effectiveness of the method, numerical studies were conducted on 14 benchmark datasets. Our results indicate that the method outperforms 10 unsupervised feature selection algorithms in terms of clustering performance.
Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we propose an unsupervised feature selection method named unsupervised feature selection algorithm based on l2,p-norm feature reconstruction (NFRFS). Employing a flexible norm to represent both the original space and the spatial distance of feature reconstruction, enhances adaptability and broadens its applicability by adjusting p. Additionally, adaptive graph learning is integrated into the feature selection process to preserve the local geometric structure of the data. Features exhibiting sparsity and low redundancy are selected through the regularization constraint of the inner product in the feature selection matrix. To demonstrate the effectiveness of the method, numerical studies were conducted on 14 benchmark datasets. Our results indicate that the method outperforms 10 unsupervised feature selection algorithms in terms of clustering performance.
Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we propose an unsupervised feature selection method named unsupervised feature selection algorithm based on [Formula: see text]-norm feature reconstruction (NFRFS). Employing a flexible norm to represent both the original space and the spatial distance of feature reconstruction, enhances adaptability and broadens its applicability by adjusting p. Additionally, adaptive graph learning is integrated into the feature selection process to preserve the local geometric structure of the data. Features exhibiting sparsity and low redundancy are selected through the regularization constraint of the inner product in the feature selection matrix. To demonstrate the effectiveness of the method, numerical studies were conducted on 14 benchmark datasets. Our results indicate that the method outperforms 10 unsupervised feature selection algorithms in terms of clustering performance.
Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we propose an unsupervised feature selection method named unsupervised feature selection algorithm based on l 2 , p -norm feature reconstruction (NFRFS). Employing a flexible norm to represent both the original space and the spatial distance of feature reconstruction, enhances adaptability and broadens its applicability by adjusting p . Additionally, adaptive graph learning is integrated into the feature selection process to preserve the local geometric structure of the data. Features exhibiting sparsity and low redundancy are selected through the regularization constraint of the inner product in the feature selection matrix. To demonstrate the effectiveness of the method, numerical studies were conducted on 14 benchmark datasets. Our results indicate that the method outperforms 10 unsupervised feature selection algorithms in terms of clustering performance.
Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we propose an unsupervised feature selection method named unsupervised feature selection algorithm based on [Formula: see text]-norm feature reconstruction (NFRFS). Employing a flexible norm to represent both the original space and the spatial distance of feature reconstruction, enhances adaptability and broadens its applicability by adjusting p. Additionally, adaptive graph learning is integrated into the feature selection process to preserve the local geometric structure of the data. Features exhibiting sparsity and low redundancy are selected through the regularization constraint of the inner product in the feature selection matrix. To demonstrate the effectiveness of the method, numerical studies were conducted on 14 benchmark datasets. Our results indicate that the method outperforms 10 unsupervised feature selection algorithms in terms of clustering performance.Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we propose an unsupervised feature selection method named unsupervised feature selection algorithm based on [Formula: see text]-norm feature reconstruction (NFRFS). Employing a flexible norm to represent both the original space and the spatial distance of feature reconstruction, enhances adaptability and broadens its applicability by adjusting p. Additionally, adaptive graph learning is integrated into the feature selection process to preserve the local geometric structure of the data. Features exhibiting sparsity and low redundancy are selected through the regularization constraint of the inner product in the feature selection matrix. To demonstrate the effectiveness of the method, numerical studies were conducted on 14 benchmark datasets. Our results indicate that the method outperforms 10 unsupervised feature selection algorithms in terms of clustering performance.
Author Zhong, Miao
Liu, Guangwei
Liu, Wei
Wang, Haonan
Ning, Qian
Zhu, Yixin
AuthorAffiliation 1 College of Science, Liaoning Technical University, Fuxin, Liaoning, China
2 College of Mines, Liaoning Technical University, Fuxin, Liaoning, China
3 Johns Hopkins University, Baltimore, Maryland, United States of America
AuthorAffiliation_xml – name: 3 Johns Hopkins University, Baltimore, Maryland, United States of America
– name: 2 College of Mines, Liaoning Technical University, Fuxin, Liaoning, China
– name: 1 College of Science, Liaoning Technical University, Fuxin, Liaoning, China
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0001-5821-9265
  surname: Liu
  fullname: Liu, Wei
– sequence: 2
  givenname: Qian
  surname: Ning
  fullname: Ning, Qian
– sequence: 3
  givenname: Guangwei
  surname: Liu
  fullname: Liu, Guangwei
– sequence: 4
  givenname: Haonan
  surname: Wang
  fullname: Wang, Haonan
– sequence: 5
  givenname: Yixin
  surname: Zhu
  fullname: Zhu, Yixin
– sequence: 6
  givenname: Miao
  surname: Zhong
  fullname: Zhong, Miao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40029916$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URB_wDxBEYsOCDHb8zKpCFY9KI7Fp15ZfmWbk2MFOivrv8cykoxaxYGXr-rtH597jc3ASYnAAvEVwhTBHn7dxTkH51VjKK4iRIBi9AGeoxU3NGohPntxPwXnOWwgpFoy9AqcEwqZtETsDN7chz6NL9312tuqcmubkquy8M1MfQ6X8JqZ-uhsqrXZEKa2r5tNY1SGm4diQnIkhT2ned70GLzvls3uznBfg9tvXm6sf9frn9-urL-va4Aah2mprMNYYKoooFFBzQ1FjhYJEQ2u7lglMWku1sEpD0TUCs4YzpVknsOMcX4D3B93RxyyXhWSJEceYQERFIa4PhI1qK8fUDyo9yKh6uS_EtJEqTb3xTiJDtG67sjPCiVVYMSGghYq3iHKImqJFD1pzGNXDb-X9URBBucvk0YLcZSKXTErf5eJy1oOzxoUpKf_MzPOX0N_JTbyXCAlOMaVF4eOikOKv2eVJDn02znsVXJz3AxPYspJpQT_8hf57Le-eWjp6efwXBSAHwKSYc3Ld_436B-sPzlg
Cites_doi 10.1016/j.eswa.2024.124696
10.3390/axioms13010006
10.1016/j.knosys.2022.109884
10.1016/j.dsp.2024.104738
10.1016/j.knosys.2024.111900
10.1016/j.knosys.2023.111317
10.1016/j.knosys.2019.07.001
10.1016/j.patcog.2024.110882
10.1609/aaai.v29i1.9211
10.1016/j.knosys.2021.106847
10.1016/j.patcog.2022.108622
10.1007/s11432-022-3579-1
10.1016/j.eswa.2019.112878
10.1371/journal.pone.0295579
ContentType Journal Article
Copyright Copyright: © 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Liu et al 2025 Liu et al
2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Liu et al 2025 Liu et al
– notice: 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0318431
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection (ProQuest)
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database


MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Openly Available Collection - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate NFRFS
EISSN 1932-6203
ExternalDocumentID 3173340158
oai_doaj_org_article_1c4bb9f193474da3a6880d0a79157012
10.1371/journal.pone.0318431
PMC11875355
40029916
10_1371_journal_pone_0318431
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 52374123
– fundername: ;
  grantid: LJ212410147019
– fundername: ;
  grantid: LJ212410147013
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c3211-dbdc33b30a515080b7c512d8a04b0ddf968349d5b8dab08f2836276ab6f83e773
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Aug 13 01:17:38 EDT 2025
Tue Oct 14 18:59:50 EDT 2025
Sun Oct 26 03:37:53 EDT 2025
Tue Sep 30 17:05:08 EDT 2025
Fri Sep 05 07:30:13 EDT 2025
Tue Oct 07 07:47:00 EDT 2025
Mon May 12 02:38:49 EDT 2025
Wed Oct 01 06:42:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright: © 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3211-dbdc33b30a515080b7c512d8a04b0ddf968349d5b8dab08f2836276ab6f83e773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-5821-9265
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0318431
PMID 40029916
PQID 3173340158
PQPubID 1436336
ParticipantIDs plos_journals_3173340158
doaj_primary_oai_doaj_org_article_1c4bb9f193474da3a6880d0a79157012
unpaywall_primary_10_1371_journal_pone_0318431
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11875355
proquest_miscellaneous_3174096029
proquest_journals_3173340158
pubmed_primary_40029916
crossref_primary_10_1371_journal_pone_0318431
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References pone.0318431.ref009
pone.0318431.ref008
pone.0318431.ref005
pone.0318431.ref027
pone.0318431.ref006
pone.0318431.ref028
F Wang (pone.0318431.ref035) 2021; 219
R Shang (pone.0318431.ref020) 2020; 187
S Wang (pone.0318431.ref036) 2020; 140
pone.0318431.ref014
C Tang (pone.0318431.ref044) 2023; 66
pone.0318431.ref015
pone.0318431.ref037
pone.0318431.ref034
pone.0318431.ref013
pone.0318431.ref010
pone.0318431.ref011
pone.0318431.ref033
P Huang (pone.0318431.ref030) 2022; 127
R Sheikhpour (pone.0318431.ref032) 2025; 157
pone.0318431.ref018
pone.0318431.ref019
S Wang (pone.0318431.ref007) 2015; 29
pone.0318431.ref038
pone.0318431.ref017
pone.0318431.ref039
G Liu (pone.0318431.ref043) 2024; 19
R Shang (pone.0318431.ref026) 2020; 187
R Shang (pone.0318431.ref016) 2024; 255
H Bai (pone.0318431.ref031) 2024; 296
Z Ma (pone.0318431.ref012) 2024; 155
Y Mi (pone.0318431.ref040) 2024; 285
F Saberi-Movahed (pone.0318431.ref022) 2022; 256
Z Ma (pone.0318431.ref041) 2023; 13
pone.0318431.ref003
pone.0318431.ref025
pone.0318431.ref004
pone.0318431.ref001
pone.0318431.ref023
pone.0318431.ref002
pone.0318431.ref024
pone.0318431.ref021
F Nie (pone.0318431.ref029) 2016; 30
pone.0318431.ref042
References_xml – ident: pone.0318431.ref005
– ident: pone.0318431.ref003
– ident: pone.0318431.ref009
– ident: pone.0318431.ref034
– volume: 255
  start-page: 124696
  year: 2024
  ident: pone.0318431.ref016
  article-title: Unsupervised feature selection method based on dual manifold learning and dual spatial latent representation
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2024.124696
– ident: pone.0318431.ref028
– ident: pone.0318431.ref024
– ident: pone.0318431.ref001
– volume: 13
  start-page: 6
  issue: 1
  year: 2023
  ident: pone.0318431.ref041
  article-title: Unsupervised feature selection with latent relationship penalty term
  publication-title: Axioms
  doi: 10.3390/axioms13010006
– volume: 256
  start-page: 109884
  year: 2022
  ident: pone.0318431.ref022
  article-title: Dual regularized unsupervised feature selection based on matrix factorization and minimum redundancy with application in gene selection
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.109884
– ident: pone.0318431.ref014
– volume: 155
  start-page: 104738
  year: 2024
  ident: pone.0318431.ref012
  article-title: Unsupervised feature selection based on minimum-redundant subspace learning with self-weighted adaptive graph
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2024.104738
– ident: pone.0318431.ref039
– ident: pone.0318431.ref018
– ident: pone.0318431.ref037
– ident: pone.0318431.ref010
– volume: 296
  start-page: 111900
  year: 2024
  ident: pone.0318431.ref031
  article-title: Precise feature selection via non-convex regularized graph embedding and self-representation for unsupervised learning
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2024.111900
– volume: 285
  start-page: 111317
  year: 2024
  ident: pone.0318431.ref040
  article-title: Unsupervised feature selection with high-order similarity learning
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2023.111317
– ident: pone.0318431.ref006
– ident: pone.0318431.ref004
– volume: 30
  issue: 1
  year: 2016
  ident: pone.0318431.ref029
  article-title: Unsupervised feature selection with structured graph optimization
  publication-title: AAAI
– ident: pone.0318431.ref008
– ident: pone.0318431.ref033
– ident: pone.0318431.ref025
– volume: 187
  start-page: 104830
  year: 2020
  ident: pone.0318431.ref026
  article-title: Sparse and low-redundant subspace learning-based dual-graph regularized robust feature selection
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.07.001
– volume: 187
  start-page: 104830
  year: 2020
  ident: pone.0318431.ref020
  article-title: Sparse and low-redundant subspace learning-based dual-graph regularized robust feature selection
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.07.001
– ident: pone.0318431.ref027
– volume: 157
  start-page: 110882
  year: 2025
  ident: pone.0318431.ref032
  article-title: Sparse feature selection using hypergraph Laplacian-based semi-supervised discriminant analysis
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2024.110882
– volume: 29
  issue: 1
  year: 2015
  ident: pone.0318431.ref007
  article-title: Embedded unsupervised feature selection
  publication-title: AAAI
  doi: 10.1609/aaai.v29i1.9211
– ident: pone.0318431.ref023
– ident: pone.0318431.ref021
– ident: pone.0318431.ref002
– ident: pone.0318431.ref017
– ident: pone.0318431.ref042
– volume: 219
  start-page: 106847
  year: 2021
  ident: pone.0318431.ref035
  article-title: Unsupervised soft-label feature selection
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.106847
– ident: pone.0318431.ref038
– ident: pone.0318431.ref015
– ident: pone.0318431.ref019
– ident: pone.0318431.ref013
– volume: 127
  start-page: 108622
  year: 2022
  ident: pone.0318431.ref030
  article-title: Unsupervised feature selection via adaptive graph and dependency score
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2022.108622
– ident: pone.0318431.ref011
– volume: 66
  start-page: 152101
  issue: 5
  year: 2023
  ident: pone.0318431.ref044
  article-title: Unsupervised feature selection via multiple graph fusion and feature weight learning
  publication-title: Sci China Inf Sci
  doi: 10.1007/s11432-022-3579-1
– volume: 140
  start-page: 112878
  year: 2020
  ident: pone.0318431.ref036
  article-title: Structured learning for unsupervised feature selection with high-order matrix factorization
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2019.112878
– volume: 19
  start-page: e0295579
  issue: 1
  year: 2024
  ident: pone.0318431.ref043
  article-title: A feature selection method based on the Golden Jackal-Grey Wolf hybrid optimization algorithm
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0295579
SSID ssj0053866
Score 2.4694452
Snippet Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces....
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0318431
SubjectTerms Adaptability
Algorithms
Cluster Analysis
Clustering
Computer and Information Sciences
Datasets
Engineering and Technology
Feature selection
Humans
Medicine and Health Sciences
Optimization
Physical Sciences
Reconstruction
Redundancy
Regularization
Regularization methods
Research and Analysis Methods
Sparsity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXuCCKK8GCjISB5DI1onfR0BUFQIusFJvkV-hlbbZiHSF-u87drJRV1SCA9fYUuKZb-xvYvsbgNdSxRZxgZmqorzkVojSeW9K4UNUrRem1unu8Ndv8mTJP5-K0xulvtKZsFEeeDTcUeW5c6ZFnsEVD5ZZiYgL1CpTCUVzfeGaarNNpsY5GKNYyumiHFPV0eSXRb_u4iLBmLNqZyHKev1J33S1Hm7jmn8emby76Xp79duuVjfWo-MHcH8ikuT9OIB9uBO7h7A_hepA3kx60m8fwfdlN2z6NCcMMZA2ZilPMuQCOOgVYlc_17_OL88uSFrSAsFHX0j9ri875LNz_5w5z2qzj2F5_OnHx5NyqqVQeoY5Xhlc8Iw5Rq1ICvDUKY9LfdCWckdDaI3UjJsgnA7WUd0i65C1ktbJVrOoFHsCex1a7wBIKoQrubPC-8B9ZXQMGl2ExK0WjFtbQLk1bNOPkhlN3jdTmGqMxmmSI5rJEQV8SNaf-ybB6_wAYdBMMGj-BoMCDpLvti8YGuRFjGHyKHQBh1t_3t78am7G0Er7JbaL603uw1OGV5sCno7unz-Sp-1MpNYF6B1g7Ixit6U7P8vy3anAu0CaV8BixtA_GerZ_zDUc7hXpxLG-S_SIewhbuIL5FWX7mUOoWvyeyDN
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD7U7YO-iPXWaJUIPiiYbZKZyUweRKy0FNFFpAt9C3NJWmFNouki_nvPmZ1EF4v4mpkwybl-J5P5DsDzQtYN2gVWqjLlCddCJMbaMhHW1bKxoswVnR3-uChOl_z9uTjfgcV4FoZ-qxxjog_UrrP0jfwQ8xxjWAwI9ab_llDXKNpdHVto6NBawb32FGM3YDcnZqwZ7B4dLz59HmMzendRhAN0TGaHQV_zvmvrOZk3Z9lWgvI8_sR7uuqG6zDo379S3ly3vf75Q69Wf-SpkztwOwDM-O3GIvZgp27vwl5w4SF-EXimX96Ds2U7rHuKFUPt4qb2FJ_x4BvjoLZivbpAAVxdfo0p1bkYL32I81d9nLQIdKcbfEk90dDeh-XJ8dm70yQ0WUgsw-IvccZZxgxLtSBq-NRIixjAKZ1ykzrXlIVivHTCKKdNqhqEI0UuC22KRrFaSvYAZi2Kbx9i6pBbcKOFtY7brFS1U8ZgNMWYwbjWESSjZKt-w6VR-Q01iTXIRjoVaaIKmojgiMQ_zSUmbH-h-35RBceqMstxjQZxKJfcaaYLjEgu1bLMhMTsG8E-KW9cYKh-G1IEB6NCrx9-Ng2jz9FGim7rbu3ncCr98jKChxv9Tw_JaZ8TMXcEassytt5ie6T9cul5vanzu0D8F8F8MqL_EtSjf7_IY7iVU9di_-HoAGZoEfUThFJX5mnwj18w5h_3
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5V2wNcoOXVlBYZiQNITcjGzxxbRFUhWnHoSuUU-RVasWSjZlcIfn3HeakLRSpXO1bs8Wf7m0z8DcAbIX2JuEBPVaYsZprz2Fibx9w6L0vL80yFu8OnZ-Jkxj5d8IsNOBjuwtyO31M5fd9bNKkXlU8CAFm4NL0pODLvCWzOzr4cfu0Cx1ksspT2t-P-1XTt9GlF-oOo6XzR3EUw__5P8sGqqvWvn3o-v3UIHT-G06H73b8n35PV0iT29x_Kjvcd3xY86tkoOezgsw0bvnoC2_16b8jbXpT63VM4n1XNqg4bS-MdKX2rB0qaNosOTi3R82-L66vl5Q8SzkVHsOgzyQ5qElfIiscGrf89atY-g9nxx_MPJ3GfkSG2FD3F2BlnKTU01TzoyKdGWiQMTumUmdS5MheKstxxo5w2qSqRu4hMCm1EqaiXkj6HSYUj3QES0ukKZjS31jE7zZV3yhjcenGDoUzrCOJhpoq6E94o2uibRIels04RjFb0RovgKEzn-GyQzW4L0NpFvwqLqWX4jhLRwiRzmmqB25dLtcynXOJRHcFOAMPwgqZAdkUpuqBcRbA3AOTu6tdjNS7QEHXRlV-s2mdY8BOzPIIXHZ7GTrIQFEWCHoFaQ9raKNZrqqvLVgQ8pInnSBYjSEZQ3stQu__b4CU8zELS4_a70x5MECN-H5nY0rzqF-ANN2QybQ
  priority: 102
  providerName: Unpaywall
Title Unsupervised feature selection algorithm based on L 2,p -norm feature reconstruction
URI https://www.ncbi.nlm.nih.gov/pubmed/40029916
https://www.proquest.com/docview/3173340158
https://www.proquest.com/docview/3174096029
https://pubmed.ncbi.nlm.nih.gov/PMC11875355
https://doi.org/10.1371/journal.pone.0318431
https://doaj.org/article/1c4bb9f193474da3a6880d0a79157012
http://dx.doi.org/10.1371/journal.pone.0318431
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTYK9IMbXAqMKEg8gkSqp7dh5QGibVibEqgmoVJ4ifyTbpJKWZhXsv-fOTaJVdBIvebAdJbkP3-_s-H4Ab1JZlGgXmKnKmEdcCxEZa7NIWFfI0opsoOjs8NkoPR3zzxMx2YKWs7URYL0xtSM-qfFi2v_z6-YjOvwHz9ogk_am_nxWFX0yUk4Hq3cwVmVE5nDGu30F9O40bQ7Q3XXnLtzntFeVEQX6rVjlS_pTCdTprN4ER__9q_LBsprrm996Or0VsoaP4GGDNcPDlXHswVZRPYa9xpvr8G1TcvrdE_g2rurlnKaNunBhWfhqn2HtOXJQcaGeXswWV9eXP0OKei7Epi_h4P08qhDyduN9ct0VpH0K4-HJ9-PTqKFbiCzDNDByxlnGDIu1oCLxsZEW0YBTOuYmdq7MUsV45oRRTptYlQhM0oFMtUlLxQop2TPYrlCQ-xASV27KjRbWOm6TTBVOGYPzKs4ejGsdQNQKNp-vqmrkfmtNYjayEk5OOskbnQRwRNLvxlJNbN8wW1zkjYvlieX4jBIRKZfcaaZTnJtcrGWWCIlxOIB90l37gDpH6MQY5pdCBXDQ6nNz9-uuG72PtlR0VcyWfgynJHCQBfB8pf7uJVsrCkCtGcbaV6z3VFeXvsI3ccALRIIB9Dsb-i9BvbjzLV7C7oCoi_3q0QFsozEUrxBPXZse3JMTiVd1nNB1-KkHO0cno_OvPb9C0fMuhG3j0fnhj797hCXU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VciiXivJqoICRQAKJbJPYjpMDQryqLd32tCvtLfiVFmlJAumq6p_iNzL2JoEVFeLSa5znzDffzNjxDMDzVNgScYGZqohYyCTnodI6D7k2VpSa50nm9g4fn6TjGfs85_MN-NnvhXG_Vfac6Ina1NrNke-jn6MUkwGevW2-h65rlFtd7VtorGBxZC8vMGVr3xx-RP2-SJKDT9MP47DrKhBqitlOaJTRlCoaSe5qoUdKaHR6JpMRU5ExZZ5mlOWGq8xIFWUl-t80EalUaZlRKwTF-96Am4wil6D9iPmQ4CF3pGm3PY-KeL9Dw6ipKztyxsNovOb-fJcAV1V1UbdXRbh__6i5tawaeXkhF4s_vODBbdjuwlfyboW3Hdiw1R3Y6QiiJS-7Ktav7sJ0VrXLxjFRaw0prS8gSlrfdgexQOTiFMV7fvaNOEdqCB6akOR1Q8IKw-jhAp-wD0Vu78HsWoR9HzYrFN8uENd_N2VKcq0N03GeWZMphVyNjESZlAGEvWSLZlWpo_DLdQIznJV0CqeJotNEAO-d-IdzXZ1tf6D-cVp0ZlvEmuEzSoxymWBGUpki35lIijzmAn17ALtOef0D2uI3TAPY6xV69fCzYRgt2i3TyMrWS38Oc4llkgfwYKX_4SWZW0XFiD6AbA0Za1-xPlJ9PfNVw11feY7RZQCjAUT_JaiH__6Qp7A1nh5PisnhydEjuJW4_sh-imoPNhEd9jEGbefqibcUAl-u2zR_AazOVW4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXRHk1pYCRQAKJ7CaxHScHhICyammpOHSlvQW_0iJtk0C6qvrX-HWMvUlgRYW49Go7sTPzzSu2ZwCep8KWiAuMVEXEQiY5D5XWeci1saLUPE8yd3f482G6O2WfZny2Bj_7uzDuWGWvE72iNrV2_8jHaOcoxWCAZ-OyOxbxZWfytvkeugpSbqe1L6exhMi-vTjH8K19s7eDvH6RJJOPRx92w67CQKgpRj6hUUZTqmgkucuLHimh0QCaTEZMRcaUeZpRlhuuMiNVlJVoi9NEpFKlZUatEBTfew2u48pyd5xQzIZgD_VImnZX9aiIxx0yRk1d2ZETJEbjFVPoKwa4DKvzur3M2_370ObNRdXIi3M5n_9hESd34HbnypJ3S-xtwJqt7sJGpyxa8rLLaP3qHhxNq3bROK3UWkNK65OJktaX4EFcEDk_RvKenZwSZ1QNwaYDkrxuSFihSz084IP3IeHtfZheCbEfwHqF5NsE4mrxpkxJrrVhOs4zazKlUG-jdqJMygDCnrJFs8zaUfitO4HRzpI6heNE0XEigPeO_MNYl3PbN9Q_jotOhItYM5yjRI-XCWYklSnqPhNJkcdcoJ0PYNMxr5-gLX5DNoDtnqGXdz8bulG63ZaNrGy98GOYCzKTPICHS_4Pi2RuRxW9-wCyFWSsfMVqT_XtxGcQdzXmOXqaAYwGEP0Xobb-_SFP4QYKZXGwd7j_CG4lrlSy_1u1DesIDvsY_bcz9cQLCoGvVy2ZvwCwAFmx
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5V2wNcoOXVlBYZiQNITcjGzxxbRFUhWnHoSuUU-RVasWSjZlcIfn3HeakLRSpXO1bs8Wf7m0z8DcAbIX2JuEBPVaYsZprz2Fibx9w6L0vL80yFu8OnZ-Jkxj5d8IsNOBjuwtyO31M5fd9bNKkXlU8CAFm4NL0pODLvCWzOzr4cfu0Cx1ksspT2t-P-1XTt9GlF-oOo6XzR3EUw__5P8sGqqvWvn3o-v3UIHT-G06H73b8n35PV0iT29x_Kjvcd3xY86tkoOezgsw0bvnoC2_16b8jbXpT63VM4n1XNqg4bS-MdKX2rB0qaNosOTi3R82-L66vl5Q8SzkVHsOgzyQ5qElfIiscGrf89atY-g9nxx_MPJ3GfkSG2FD3F2BlnKTU01TzoyKdGWiQMTumUmdS5MheKstxxo5w2qSqRu4hMCm1EqaiXkj6HSYUj3QES0ukKZjS31jE7zZV3yhjcenGDoUzrCOJhpoq6E94o2uibRIels04RjFb0RovgKEzn-GyQzW4L0NpFvwqLqWX4jhLRwiRzmmqB25dLtcynXOJRHcFOAMPwgqZAdkUpuqBcRbA3AOTu6tdjNS7QEHXRlV-s2mdY8BOzPIIXHZ7GTrIQFEWCHoFaQ9raKNZrqqvLVgQ8pInnSBYjSEZQ3stQu__b4CU8zELS4_a70x5MECN-H5nY0rzqF-ANN2QybQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+feature+selection+algorithm+based+on+L+2%2Cp-norm+feature+reconstruction&rft.jtitle=PloS+one&rft.au=Liu%2C+Wei&rft.au=Ning%2C+Qian&rft.au=Liu%2C+Guangwei&rft.au=Wang%2C+Haonan&rft.date=2025&rft.eissn=1932-6203&rft.volume=20&rft.issue=3&rft.spage=e0318431&rft_id=info:doi/10.1371%2Fjournal.pone.0318431&rft_id=info%3Apmid%2F40029916&rft.externalDocID=40029916
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon