Unsupervised feature selection algorithm based on L 2,p -norm feature reconstruction
Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we pro...
        Saved in:
      
    
          | Published in | PloS one Vol. 20; no. 3; p. e0318431 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Public Library of Science
    
        2025
     Public Library of Science (PLoS)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1932-6203 1932-6203  | 
| DOI | 10.1371/journal.pone.0318431 | 
Cover
| Abstract | Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we propose an unsupervised feature selection method named unsupervised feature selection algorithm based on l 2 , p -norm feature reconstruction (NFRFS). Employing a flexible norm to represent both the original space and the spatial distance of feature reconstruction, enhances adaptability and broadens its applicability by adjusting p . Additionally, adaptive graph learning is integrated into the feature selection process to preserve the local geometric structure of the data. Features exhibiting sparsity and low redundancy are selected through the regularization constraint of the inner product in the feature selection matrix. To demonstrate the effectiveness of the method, numerical studies were conducted on 14 benchmark datasets. Our results indicate that the method outperforms 10 unsupervised feature selection algorithms in terms of clustering performance. | 
    
|---|---|
| AbstractList | Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we propose an unsupervised feature selection method named unsupervised feature selection algorithm based on -norm feature reconstruction (NFRFS). Employing a flexible norm to represent both the original space and the spatial distance of feature reconstruction, enhances adaptability and broadens its applicability by adjusting p. Additionally, adaptive graph learning is integrated into the feature selection process to preserve the local geometric structure of the data. Features exhibiting sparsity and low redundancy are selected through the regularization constraint of the inner product in the feature selection matrix. To demonstrate the effectiveness of the method, numerical studies were conducted on 14 benchmark datasets. Our results indicate that the method outperforms 10 unsupervised feature selection algorithms in terms of clustering performance. Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we propose an unsupervised feature selection method named unsupervised feature selection algorithm based on l2,p-norm feature reconstruction (NFRFS). Employing a flexible norm to represent both the original space and the spatial distance of feature reconstruction, enhances adaptability and broadens its applicability by adjusting p. Additionally, adaptive graph learning is integrated into the feature selection process to preserve the local geometric structure of the data. Features exhibiting sparsity and low redundancy are selected through the regularization constraint of the inner product in the feature selection matrix. To demonstrate the effectiveness of the method, numerical studies were conducted on 14 benchmark datasets. Our results indicate that the method outperforms 10 unsupervised feature selection algorithms in terms of clustering performance. Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we propose an unsupervised feature selection method named unsupervised feature selection algorithm based on [Formula: see text]-norm feature reconstruction (NFRFS). Employing a flexible norm to represent both the original space and the spatial distance of feature reconstruction, enhances adaptability and broadens its applicability by adjusting p. Additionally, adaptive graph learning is integrated into the feature selection process to preserve the local geometric structure of the data. Features exhibiting sparsity and low redundancy are selected through the regularization constraint of the inner product in the feature selection matrix. To demonstrate the effectiveness of the method, numerical studies were conducted on 14 benchmark datasets. Our results indicate that the method outperforms 10 unsupervised feature selection algorithms in terms of clustering performance. Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we propose an unsupervised feature selection method named unsupervised feature selection algorithm based on l 2 , p -norm feature reconstruction (NFRFS). Employing a flexible norm to represent both the original space and the spatial distance of feature reconstruction, enhances adaptability and broadens its applicability by adjusting p . Additionally, adaptive graph learning is integrated into the feature selection process to preserve the local geometric structure of the data. Features exhibiting sparsity and low redundancy are selected through the regularization constraint of the inner product in the feature selection matrix. To demonstrate the effectiveness of the method, numerical studies were conducted on 14 benchmark datasets. Our results indicate that the method outperforms 10 unsupervised feature selection algorithms in terms of clustering performance. Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we propose an unsupervised feature selection method named unsupervised feature selection algorithm based on [Formula: see text]-norm feature reconstruction (NFRFS). Employing a flexible norm to represent both the original space and the spatial distance of feature reconstruction, enhances adaptability and broadens its applicability by adjusting p. Additionally, adaptive graph learning is integrated into the feature selection process to preserve the local geometric structure of the data. Features exhibiting sparsity and low redundancy are selected through the regularization constraint of the inner product in the feature selection matrix. To demonstrate the effectiveness of the method, numerical studies were conducted on 14 benchmark datasets. Our results indicate that the method outperforms 10 unsupervised feature selection algorithms in terms of clustering performance.Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces. However, this approach struggles to adapt to diverse datasets and often fails to handle noise and outliers effectively. In this paper, we propose an unsupervised feature selection method named unsupervised feature selection algorithm based on [Formula: see text]-norm feature reconstruction (NFRFS). Employing a flexible norm to represent both the original space and the spatial distance of feature reconstruction, enhances adaptability and broadens its applicability by adjusting p. Additionally, adaptive graph learning is integrated into the feature selection process to preserve the local geometric structure of the data. Features exhibiting sparsity and low redundancy are selected through the regularization constraint of the inner product in the feature selection matrix. To demonstrate the effectiveness of the method, numerical studies were conducted on 14 benchmark datasets. Our results indicate that the method outperforms 10 unsupervised feature selection algorithms in terms of clustering performance.  | 
    
| Author | Zhong, Miao Liu, Guangwei Liu, Wei Wang, Haonan Ning, Qian Zhu, Yixin  | 
    
| AuthorAffiliation | 1 College of Science, Liaoning Technical University, Fuxin, Liaoning, China 2 College of Mines, Liaoning Technical University, Fuxin, Liaoning, China 3 Johns Hopkins University, Baltimore, Maryland, United States of America  | 
    
| AuthorAffiliation_xml | – name: 3 Johns Hopkins University, Baltimore, Maryland, United States of America – name: 2 College of Mines, Liaoning Technical University, Fuxin, Liaoning, China – name: 1 College of Science, Liaoning Technical University, Fuxin, Liaoning, China  | 
    
| Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0001-5821-9265 surname: Liu fullname: Liu, Wei – sequence: 2 givenname: Qian surname: Ning fullname: Ning, Qian – sequence: 3 givenname: Guangwei surname: Liu fullname: Liu, Guangwei – sequence: 4 givenname: Haonan surname: Wang fullname: Wang, Haonan – sequence: 5 givenname: Yixin surname: Zhu fullname: Zhu, Yixin – sequence: 6 givenname: Miao surname: Zhong fullname: Zhong, Miao  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40029916$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkktv1DAUhS1URB_wDxBEYsOCDHb8zKpCFY9KI7Fp15ZfmWbk2MFOivrv8cykoxaxYGXr-rtH597jc3ASYnAAvEVwhTBHn7dxTkH51VjKK4iRIBi9AGeoxU3NGohPntxPwXnOWwgpFoy9AqcEwqZtETsDN7chz6NL9312tuqcmubkquy8M1MfQ6X8JqZ-uhsqrXZEKa2r5tNY1SGm4diQnIkhT2ned70GLzvls3uznBfg9tvXm6sf9frn9-urL-va4Aah2mprMNYYKoooFFBzQ1FjhYJEQ2u7lglMWku1sEpD0TUCs4YzpVknsOMcX4D3B93RxyyXhWSJEceYQERFIa4PhI1qK8fUDyo9yKh6uS_EtJEqTb3xTiJDtG67sjPCiVVYMSGghYq3iHKImqJFD1pzGNXDb-X9URBBucvk0YLcZSKXTErf5eJy1oOzxoUpKf_MzPOX0N_JTbyXCAlOMaVF4eOikOKv2eVJDn02znsVXJz3AxPYspJpQT_8hf57Le-eWjp6efwXBSAHwKSYc3Ld_436B-sPzlg | 
    
| Cites_doi | 10.1016/j.eswa.2024.124696 10.3390/axioms13010006 10.1016/j.knosys.2022.109884 10.1016/j.dsp.2024.104738 10.1016/j.knosys.2024.111900 10.1016/j.knosys.2023.111317 10.1016/j.knosys.2019.07.001 10.1016/j.patcog.2024.110882 10.1609/aaai.v29i1.9211 10.1016/j.knosys.2021.106847 10.1016/j.patcog.2022.108622 10.1007/s11432-022-3579-1 10.1016/j.eswa.2019.112878 10.1371/journal.pone.0295579  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright: © 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Liu et al 2025 Liu et al 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: Copyright: © 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Liu et al 2025 Liu et al – notice: 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1371/journal.pone.0318431 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (ProQuest) Natural Science Collection (ProQuest) Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Agricultural Science Database MEDLINE CrossRef MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: Openly Available Collection - DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| DocumentTitleAlternate | NFRFS | 
    
| EISSN | 1932-6203 | 
    
| ExternalDocumentID | 3173340158 oai_doaj_org_article_1c4bb9f193474da3a6880d0a79157012 10.1371/journal.pone.0318431 PMC11875355 40029916 10_1371_journal_pone_0318431  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: ; grantid: 52374123 – fundername: ; grantid: LJ212410147019 – fundername: ; grantid: LJ212410147013  | 
    
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c3211-dbdc33b30a515080b7c512d8a04b0ddf968349d5b8dab08f2836276ab6f83e773 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1932-6203 | 
    
| IngestDate | Wed Aug 13 01:17:38 EDT 2025 Tue Oct 14 18:59:50 EDT 2025 Sun Oct 26 03:37:53 EDT 2025 Tue Sep 30 17:05:08 EDT 2025 Fri Sep 05 07:30:13 EDT 2025 Tue Oct 07 07:47:00 EDT 2025 Mon May 12 02:38:49 EDT 2025 Wed Oct 01 06:42:54 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | Copyright: © 2025 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3211-dbdc33b30a515080b7c512d8a04b0ddf968349d5b8dab08f2836276ab6f83e773 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist.  | 
    
| ORCID | 0000-0001-5821-9265 | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0318431 | 
    
| PMID | 40029916 | 
    
| PQID | 3173340158 | 
    
| PQPubID | 1436336 | 
    
| ParticipantIDs | plos_journals_3173340158 doaj_primary_oai_doaj_org_article_1c4bb9f193474da3a6880d0a79157012 unpaywall_primary_10_1371_journal_pone_0318431 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11875355 proquest_miscellaneous_3174096029 proquest_journals_3173340158 pubmed_primary_40029916 crossref_primary_10_1371_journal_pone_0318431  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-00-00 | 
    
| PublicationDateYYYYMMDD | 2025-01-01 | 
    
| PublicationDate_xml | – year: 2025 text: 2025-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA  | 
    
| PublicationTitle | PloS one | 
    
| PublicationTitleAlternate | PLoS One | 
    
| PublicationYear | 2025 | 
    
| Publisher | Public Library of Science Public Library of Science (PLoS)  | 
    
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS)  | 
    
| References | pone.0318431.ref009 pone.0318431.ref008 pone.0318431.ref005 pone.0318431.ref027 pone.0318431.ref006 pone.0318431.ref028 F Wang (pone.0318431.ref035) 2021; 219 R Shang (pone.0318431.ref020) 2020; 187 S Wang (pone.0318431.ref036) 2020; 140 pone.0318431.ref014 C Tang (pone.0318431.ref044) 2023; 66 pone.0318431.ref015 pone.0318431.ref037 pone.0318431.ref034 pone.0318431.ref013 pone.0318431.ref010 pone.0318431.ref011 pone.0318431.ref033 P Huang (pone.0318431.ref030) 2022; 127 R Sheikhpour (pone.0318431.ref032) 2025; 157 pone.0318431.ref018 pone.0318431.ref019 S Wang (pone.0318431.ref007) 2015; 29 pone.0318431.ref038 pone.0318431.ref017 pone.0318431.ref039 G Liu (pone.0318431.ref043) 2024; 19 R Shang (pone.0318431.ref026) 2020; 187 R Shang (pone.0318431.ref016) 2024; 255 H Bai (pone.0318431.ref031) 2024; 296 Z Ma (pone.0318431.ref012) 2024; 155 Y Mi (pone.0318431.ref040) 2024; 285 F Saberi-Movahed (pone.0318431.ref022) 2022; 256 Z Ma (pone.0318431.ref041) 2023; 13 pone.0318431.ref003 pone.0318431.ref025 pone.0318431.ref004 pone.0318431.ref001 pone.0318431.ref023 pone.0318431.ref002 pone.0318431.ref024 pone.0318431.ref021 F Nie (pone.0318431.ref029) 2016; 30 pone.0318431.ref042  | 
    
| References_xml | – ident: pone.0318431.ref005 – ident: pone.0318431.ref003 – ident: pone.0318431.ref009 – ident: pone.0318431.ref034 – volume: 255 start-page: 124696 year: 2024 ident: pone.0318431.ref016 article-title: Unsupervised feature selection method based on dual manifold learning and dual spatial latent representation publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2024.124696 – ident: pone.0318431.ref028 – ident: pone.0318431.ref024 – ident: pone.0318431.ref001 – volume: 13 start-page: 6 issue: 1 year: 2023 ident: pone.0318431.ref041 article-title: Unsupervised feature selection with latent relationship penalty term publication-title: Axioms doi: 10.3390/axioms13010006 – volume: 256 start-page: 109884 year: 2022 ident: pone.0318431.ref022 article-title: Dual regularized unsupervised feature selection based on matrix factorization and minimum redundancy with application in gene selection publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.109884 – ident: pone.0318431.ref014 – volume: 155 start-page: 104738 year: 2024 ident: pone.0318431.ref012 article-title: Unsupervised feature selection based on minimum-redundant subspace learning with self-weighted adaptive graph publication-title: Digit Signal Process doi: 10.1016/j.dsp.2024.104738 – ident: pone.0318431.ref039 – ident: pone.0318431.ref018 – ident: pone.0318431.ref037 – ident: pone.0318431.ref010 – volume: 296 start-page: 111900 year: 2024 ident: pone.0318431.ref031 article-title: Precise feature selection via non-convex regularized graph embedding and self-representation for unsupervised learning publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2024.111900 – volume: 285 start-page: 111317 year: 2024 ident: pone.0318431.ref040 article-title: Unsupervised feature selection with high-order similarity learning publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2023.111317 – ident: pone.0318431.ref006 – ident: pone.0318431.ref004 – volume: 30 issue: 1 year: 2016 ident: pone.0318431.ref029 article-title: Unsupervised feature selection with structured graph optimization publication-title: AAAI – ident: pone.0318431.ref008 – ident: pone.0318431.ref033 – ident: pone.0318431.ref025 – volume: 187 start-page: 104830 year: 2020 ident: pone.0318431.ref026 article-title: Sparse and low-redundant subspace learning-based dual-graph regularized robust feature selection publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.07.001 – volume: 187 start-page: 104830 year: 2020 ident: pone.0318431.ref020 article-title: Sparse and low-redundant subspace learning-based dual-graph regularized robust feature selection publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.07.001 – ident: pone.0318431.ref027 – volume: 157 start-page: 110882 year: 2025 ident: pone.0318431.ref032 article-title: Sparse feature selection using hypergraph Laplacian-based semi-supervised discriminant analysis publication-title: Pattern Recognit doi: 10.1016/j.patcog.2024.110882 – volume: 29 issue: 1 year: 2015 ident: pone.0318431.ref007 article-title: Embedded unsupervised feature selection publication-title: AAAI doi: 10.1609/aaai.v29i1.9211 – ident: pone.0318431.ref023 – ident: pone.0318431.ref021 – ident: pone.0318431.ref002 – ident: pone.0318431.ref017 – ident: pone.0318431.ref042 – volume: 219 start-page: 106847 year: 2021 ident: pone.0318431.ref035 article-title: Unsupervised soft-label feature selection publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.106847 – ident: pone.0318431.ref038 – ident: pone.0318431.ref015 – ident: pone.0318431.ref019 – ident: pone.0318431.ref013 – volume: 127 start-page: 108622 year: 2022 ident: pone.0318431.ref030 article-title: Unsupervised feature selection via adaptive graph and dependency score publication-title: Pattern Recognit doi: 10.1016/j.patcog.2022.108622 – ident: pone.0318431.ref011 – volume: 66 start-page: 152101 issue: 5 year: 2023 ident: pone.0318431.ref044 article-title: Unsupervised feature selection via multiple graph fusion and feature weight learning publication-title: Sci China Inf Sci doi: 10.1007/s11432-022-3579-1 – volume: 140 start-page: 112878 year: 2020 ident: pone.0318431.ref036 article-title: Structured learning for unsupervised feature selection with high-order matrix factorization publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2019.112878 – volume: 19 start-page: e0295579 issue: 1 year: 2024 ident: pone.0318431.ref043 article-title: A feature selection method based on the Golden Jackal-Grey Wolf hybrid optimization algorithm publication-title: PLoS One doi: 10.1371/journal.pone.0295579  | 
    
| SSID | ssj0053866 | 
    
| Score | 2.4694452 | 
    
| Snippet | Traditional subspace feature selection methods typically rely on a fixed distance to compute residuals between the original and feature reconstruction spaces.... | 
    
| SourceID | plos doaj unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | e0318431 | 
    
| SubjectTerms | Adaptability Algorithms Cluster Analysis Clustering Computer and Information Sciences Datasets Engineering and Technology Feature selection Humans Medicine and Health Sciences Optimization Physical Sciences Reconstruction Redundancy Regularization Regularization methods Research and Analysis Methods Sparsity  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXuCCKK8GCjISB5DI1onfR0BUFQIusFJvkV-hlbbZiHSF-u87drJRV1SCA9fYUuKZb-xvYvsbgNdSxRZxgZmqorzkVojSeW9K4UNUrRem1unu8Ndv8mTJP5-K0xulvtKZsFEeeDTcUeW5c6ZFnsEVD5ZZiYgL1CpTCUVzfeGaarNNpsY5GKNYyumiHFPV0eSXRb_u4iLBmLNqZyHKev1J33S1Hm7jmn8emby76Xp79duuVjfWo-MHcH8ikuT9OIB9uBO7h7A_hepA3kx60m8fwfdlN2z6NCcMMZA2ZilPMuQCOOgVYlc_17_OL88uSFrSAsFHX0j9ri875LNz_5w5z2qzj2F5_OnHx5NyqqVQeoY5Xhlc8Iw5Rq1ICvDUKY9LfdCWckdDaI3UjJsgnA7WUd0i65C1ktbJVrOoFHsCex1a7wBIKoQrubPC-8B9ZXQMGl2ExK0WjFtbQLk1bNOPkhlN3jdTmGqMxmmSI5rJEQV8SNaf-ybB6_wAYdBMMGj-BoMCDpLvti8YGuRFjGHyKHQBh1t_3t78am7G0Er7JbaL603uw1OGV5sCno7unz-Sp-1MpNYF6B1g7Ixit6U7P8vy3anAu0CaV8BixtA_GerZ_zDUc7hXpxLG-S_SIewhbuIL5FWX7mUOoWvyeyDN priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD7U7YO-iPXWaJUIPiiYbZKZyUweRKy0FNFFpAt9C3NJWmFNouki_nvPmZ1EF4v4mpkwybl-J5P5DsDzQtYN2gVWqjLlCddCJMbaMhHW1bKxoswVnR3-uChOl_z9uTjfgcV4FoZ-qxxjog_UrrP0jfwQ8xxjWAwI9ab_llDXKNpdHVto6NBawb32FGM3YDcnZqwZ7B4dLz59HmMzendRhAN0TGaHQV_zvmvrOZk3Z9lWgvI8_sR7uuqG6zDo379S3ly3vf75Q69Wf-SpkztwOwDM-O3GIvZgp27vwl5w4SF-EXimX96Ds2U7rHuKFUPt4qb2FJ_x4BvjoLZivbpAAVxdfo0p1bkYL32I81d9nLQIdKcbfEk90dDeh-XJ8dm70yQ0WUgsw-IvccZZxgxLtSBq-NRIixjAKZ1ykzrXlIVivHTCKKdNqhqEI0UuC22KRrFaSvYAZi2Kbx9i6pBbcKOFtY7brFS1U8ZgNMWYwbjWESSjZKt-w6VR-Q01iTXIRjoVaaIKmojgiMQ_zSUmbH-h-35RBceqMstxjQZxKJfcaaYLjEgu1bLMhMTsG8E-KW9cYKh-G1IEB6NCrx9-Ng2jz9FGim7rbu3ncCr98jKChxv9Tw_JaZ8TMXcEassytt5ie6T9cul5vanzu0D8F8F8MqL_EtSjf7_IY7iVU9di_-HoAGZoEfUThFJX5mnwj18w5h_3 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5V2wNcoOXVlBYZiQNITcjGzxxbRFUhWnHoSuUU-RVasWSjZlcIfn3HeakLRSpXO1bs8Wf7m0z8DcAbIX2JuEBPVaYsZprz2Fibx9w6L0vL80yFu8OnZ-Jkxj5d8IsNOBjuwtyO31M5fd9bNKkXlU8CAFm4NL0pODLvCWzOzr4cfu0Cx1ksspT2t-P-1XTt9GlF-oOo6XzR3EUw__5P8sGqqvWvn3o-v3UIHT-G06H73b8n35PV0iT29x_Kjvcd3xY86tkoOezgsw0bvnoC2_16b8jbXpT63VM4n1XNqg4bS-MdKX2rB0qaNosOTi3R82-L66vl5Q8SzkVHsOgzyQ5qElfIiscGrf89atY-g9nxx_MPJ3GfkSG2FD3F2BlnKTU01TzoyKdGWiQMTumUmdS5MheKstxxo5w2qSqRu4hMCm1EqaiXkj6HSYUj3QES0ukKZjS31jE7zZV3yhjcenGDoUzrCOJhpoq6E94o2uibRIels04RjFb0RovgKEzn-GyQzW4L0NpFvwqLqWX4jhLRwiRzmmqB25dLtcynXOJRHcFOAMPwgqZAdkUpuqBcRbA3AOTu6tdjNS7QEHXRlV-s2mdY8BOzPIIXHZ7GTrIQFEWCHoFaQ9raKNZrqqvLVgQ8pInnSBYjSEZQ3stQu__b4CU8zELS4_a70x5MECN-H5nY0rzqF-ANN2QybQ priority: 102 providerName: Unpaywall  | 
    
| Title | Unsupervised feature selection algorithm based on L 2,p -norm feature reconstruction | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40029916 https://www.proquest.com/docview/3173340158 https://www.proquest.com/docview/3174096029 https://pubmed.ncbi.nlm.nih.gov/PMC11875355 https://doi.org/10.1371/journal.pone.0318431 https://doaj.org/article/1c4bb9f193474da3a6880d0a79157012 http://dx.doi.org/10.1371/journal.pone.0318431  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 20 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Openly Available Collection - DOAJ customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTYK9IMbXAqMKEg8gkSqp7dh5QGibVibEqgmoVJ4ifyTbpJKWZhXsv-fOTaJVdBIvebAdJbkP3-_s-H4Ab1JZlGgXmKnKmEdcCxEZa7NIWFfI0opsoOjs8NkoPR3zzxMx2YKWs7URYL0xtSM-qfFi2v_z6-YjOvwHz9ogk_am_nxWFX0yUk4Hq3cwVmVE5nDGu30F9O40bQ7Q3XXnLtzntFeVEQX6rVjlS_pTCdTprN4ER__9q_LBsprrm996Or0VsoaP4GGDNcPDlXHswVZRPYa9xpvr8G1TcvrdE_g2rurlnKaNunBhWfhqn2HtOXJQcaGeXswWV9eXP0OKei7Epi_h4P08qhDyduN9ct0VpH0K4-HJ9-PTqKFbiCzDNDByxlnGDIu1oCLxsZEW0YBTOuYmdq7MUsV45oRRTptYlQhM0oFMtUlLxQop2TPYrlCQ-xASV27KjRbWOm6TTBVOGYPzKs4ejGsdQNQKNp-vqmrkfmtNYjayEk5OOskbnQRwRNLvxlJNbN8wW1zkjYvlieX4jBIRKZfcaaZTnJtcrGWWCIlxOIB90l37gDpH6MQY5pdCBXDQ6nNz9-uuG72PtlR0VcyWfgynJHCQBfB8pf7uJVsrCkCtGcbaV6z3VFeXvsI3ccALRIIB9Dsb-i9BvbjzLV7C7oCoi_3q0QFsozEUrxBPXZse3JMTiVd1nNB1-KkHO0cno_OvPb9C0fMuhG3j0fnhj797hCXU | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VciiXivJqoICRQAKJbJPYjpMDQryqLd32tCvtLfiVFmlJAumq6p_iNzL2JoEVFeLSa5znzDffzNjxDMDzVNgScYGZqohYyCTnodI6D7k2VpSa50nm9g4fn6TjGfs85_MN-NnvhXG_Vfac6Ina1NrNke-jn6MUkwGevW2-h65rlFtd7VtorGBxZC8vMGVr3xx-RP2-SJKDT9MP47DrKhBqitlOaJTRlCoaSe5qoUdKaHR6JpMRU5ExZZ5mlOWGq8xIFWUl-t80EalUaZlRKwTF-96Am4wil6D9iPmQ4CF3pGm3PY-KeL9Dw6ipKztyxsNovOb-fJcAV1V1UbdXRbh__6i5tawaeXkhF4s_vODBbdjuwlfyboW3Hdiw1R3Y6QiiJS-7Ktav7sJ0VrXLxjFRaw0prS8gSlrfdgexQOTiFMV7fvaNOEdqCB6akOR1Q8IKw-jhAp-wD0Vu78HsWoR9HzYrFN8uENd_N2VKcq0N03GeWZMphVyNjESZlAGEvWSLZlWpo_DLdQIznJV0CqeJotNEAO-d-IdzXZ1tf6D-cVp0ZlvEmuEzSoxymWBGUpki35lIijzmAn17ALtOef0D2uI3TAPY6xV69fCzYRgt2i3TyMrWS38Oc4llkgfwYKX_4SWZW0XFiD6AbA0Za1-xPlJ9PfNVw11feY7RZQCjAUT_JaiH__6Qp7A1nh5PisnhydEjuJW4_sh-imoPNhEd9jEGbefqibcUAl-u2zR_AazOVW4 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXRHk1pYCRQAKJ7CaxHScHhICyammpOHSlvQW_0iJtk0C6qvrX-HWMvUlgRYW49Go7sTPzzSu2ZwCep8KWiAuMVEXEQiY5D5XWeci1saLUPE8yd3f482G6O2WfZny2Bj_7uzDuWGWvE72iNrV2_8jHaOcoxWCAZ-OyOxbxZWfytvkeugpSbqe1L6exhMi-vTjH8K19s7eDvH6RJJOPRx92w67CQKgpRj6hUUZTqmgkucuLHimh0QCaTEZMRcaUeZpRlhuuMiNVlJVoi9NEpFKlZUatEBTfew2u48pyd5xQzIZgD_VImnZX9aiIxx0yRk1d2ZETJEbjFVPoKwa4DKvzur3M2_370ObNRdXIi3M5n_9hESd34HbnypJ3S-xtwJqt7sJGpyxa8rLLaP3qHhxNq3bROK3UWkNK65OJktaX4EFcEDk_RvKenZwSZ1QNwaYDkrxuSFihSz084IP3IeHtfZheCbEfwHqF5NsE4mrxpkxJrrVhOs4zazKlUG-jdqJMygDCnrJFs8zaUfitO4HRzpI6heNE0XEigPeO_MNYl3PbN9Q_jotOhItYM5yjRI-XCWYklSnqPhNJkcdcoJ0PYNMxr5-gLX5DNoDtnqGXdz8bulG63ZaNrGy98GOYCzKTPICHS_4Pi2RuRxW9-wCyFWSsfMVqT_XtxGcQdzXmOXqaAYwGEP0Xobb-_SFP4QYKZXGwd7j_CG4lrlSy_1u1DesIDvsY_bcz9cQLCoGvVy2ZvwCwAFmx | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5V2wNcoOXVlBYZiQNITcjGzxxbRFUhWnHoSuUU-RVasWSjZlcIfn3HeakLRSpXO1bs8Wf7m0z8DcAbIX2JuEBPVaYsZprz2Fibx9w6L0vL80yFu8OnZ-Jkxj5d8IsNOBjuwtyO31M5fd9bNKkXlU8CAFm4NL0pODLvCWzOzr4cfu0Cx1ksspT2t-P-1XTt9GlF-oOo6XzR3EUw__5P8sGqqvWvn3o-v3UIHT-G06H73b8n35PV0iT29x_Kjvcd3xY86tkoOezgsw0bvnoC2_16b8jbXpT63VM4n1XNqg4bS-MdKX2rB0qaNosOTi3R82-L66vl5Q8SzkVHsOgzyQ5qElfIiscGrf89atY-g9nxx_MPJ3GfkSG2FD3F2BlnKTU01TzoyKdGWiQMTumUmdS5MheKstxxo5w2qSqRu4hMCm1EqaiXkj6HSYUj3QES0ukKZjS31jE7zZV3yhjcenGDoUzrCOJhpoq6E94o2uibRIels04RjFb0RovgKEzn-GyQzW4L0NpFvwqLqWX4jhLRwiRzmmqB25dLtcynXOJRHcFOAMPwgqZAdkUpuqBcRbA3AOTu6tdjNS7QEHXRlV-s2mdY8BOzPIIXHZ7GTrIQFEWCHoFaQ9raKNZrqqvLVgQ8pInnSBYjSEZQ3stQu__b4CU8zELS4_a70x5MECN-H5nY0rzqF-ANN2QybQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+feature+selection+algorithm+based+on+L+2%2Cp-norm+feature+reconstruction&rft.jtitle=PloS+one&rft.au=Liu%2C+Wei&rft.au=Ning%2C+Qian&rft.au=Liu%2C+Guangwei&rft.au=Wang%2C+Haonan&rft.date=2025&rft.eissn=1932-6203&rft.volume=20&rft.issue=3&rft.spage=e0318431&rft_id=info:doi/10.1371%2Fjournal.pone.0318431&rft_id=info%3Apmid%2F40029916&rft.externalDocID=40029916 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |