Selecting features for nuclear transients classification by means of genetic algorithms

The issue of feature selection is particularly critical for the application of monitoring and "on condition" diagnostic techniques to complex plants, like the nuclear power plants, where hundreds of parameters are measured. Indeed, irrelevant and noisy features unnecessarily increase the c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on nuclear science Vol. 53; no. 3; pp. 1479 - 1493
Main Authors Zio, E., Baraldi, P., Pedroni, N.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9499
1558-1578
DOI10.1109/TNS.2006.873868

Cover

Abstract The issue of feature selection is particularly critical for the application of monitoring and "on condition" diagnostic techniques to complex plants, like the nuclear power plants, where hundreds of parameters are measured. Indeed, irrelevant and noisy features unnecessarily increase the complexity of the problem and can degrade the diagnostic performance. In this paper, the problem of choosing among the several measured plant parameters those to be used for efficient, early transient diagnosis is tackled by means of genetic algorithms. Three different schemes for simultaneously performing the feature selection and the training of an empirical diagnostic classifier are presented. The first approach employs a single objective genetic algorithm to search the vector of features optimal with respect to the classification performance of a Fuzzy K-Nearest Neighbors classifier. With reference to the same classifier, the second and third approaches embrace a multi-objective perspective to find feature sets that achieve high classification performances with low numbers of features. In all cases, validation of the performance of the classifiers based on the optimal feature subsets identified by the genetic algorithm is successively carried out with respect to transients never used during the feature selection phase. The effectiveness of the proposed approaches is tested on a diagnostic problem regarding the classification of simulated transients in the feedwater system of a Boiling Water Reactor.
AbstractList The issue of feature selection is particularly critical for the application of monitoring and "on condition" diagnostic techniques to complex plants, like the nuclear power plants, where hundreds of parameters are measured. Indeed, irrelevant and noisy features unnecessarily increase the complexity of the problem and can degrade the diagnostic performance. In this paper, the problem of choosing among the several measured plant parameters those to be used for efficient, early transient diagnosis is tackled by means of genetic algorithms. Three different schemes for simultaneously performing the feature selection and the training of an empirical diagnostic classifier are presented. The first approach employs a single objective genetic algorithm to search the vector of features optimal with respect to the classification performance of a Fuzzy K-Nearest Neighbors classifier. With reference to the same classifier, the second and third approaches embrace a multi-objective perspective to find feature sets that achieve high classification performances with low numbers of features. In all cases, validation of the performance of the classifiers based on the optimal feature subsets identified by the genetic algorithm is successively carried out with respect to transients never used during the feature selection phase. The effectiveness of the proposed approaches is tested on a diagnostic problem regarding the classification of simulated transients in the feedwater system of a Boiling Water Reactor.
The first approach employs a single objective genetic algorithm to search the vector of features optimal with respect to the classification performance of a Fuzzy K-Nearest Neighbors classifier.
Author Pedroni, N.
Baraldi, P.
Zio, E.
Author_xml – sequence: 1
  givenname: E.
  surname: Zio
  fullname: Zio, E.
  organization: Dept. of Nucl. Eng., Politecnico di Milano, Milan, Italy
– sequence: 2
  givenname: P.
  surname: Baraldi
  fullname: Baraldi, P.
  organization: Dept. of Nucl. Eng., Politecnico di Milano, Milan, Italy
– sequence: 3
  givenname: N.
  surname: Pedroni
  fullname: Pedroni, N.
  organization: Dept. of Nucl. Eng., Politecnico di Milano, Milan, Italy
BookMark eNp9kT1PBCEQhok5E8-P2sKG2FjtHSzLLpTG-JUYLdRYEo4dTsweKLDF_Xs5z8TkCisy4XknM88cookPHhA6pWRGKZHzl8fnWU1IOxMdE63YQ1PKuago78QETQmhopKNlAfoMKWPUjac8Cl6e4YBTHZ-iS3oPEZI2IaI_WgG0BHnqH1y4HPCZtApOeuMzi54vFjjFZRPHCxegofsDNbDMkSX31fpGO1bPSQ4-X2P0OvN9cvVXfXwdHt_dflQGVaTXFmpZa87YdreLPqulYxIJjnVpDOi5YRozURdtz21kjcLISnTtqEgaC_ANsCO0MW272cMXyOkrFYuGRgG7SGMSQkhmWCEs0Ke75AfYYy-DKckrSmtSU0KxLeQiSGlCFYZl3_2LSLcoChRG9mqyFYb2Woru-TmO7nP6FY6rv9JnG0TDgD-6Lacpa3ZNx9NjGo
CODEN IETNAE
CitedBy_id crossref_primary_10_1016_j_anucene_2020_107667
crossref_primary_10_1016_j_addma_2023_103810
crossref_primary_10_1016_j_anucene_2022_109668
crossref_primary_10_1016_j_ress_2010_01_004
crossref_primary_10_3390_math10030464
crossref_primary_10_1177_0954406215573976
crossref_primary_10_1016_j_anucene_2019_107232
crossref_primary_10_1109_TNS_2014_2329055
crossref_primary_10_3389_fenrg_2021_696785
crossref_primary_10_1016_j_anucene_2021_108299
crossref_primary_10_1016_j_compchemeng_2013_09_014
crossref_primary_10_1109_TNS_2021_3125794
crossref_primary_10_1016_j_ress_2008_04_004
crossref_primary_10_1016_j_ress_2010_11_005
crossref_primary_10_1016_j_ress_2020_106891
crossref_primary_10_1109_TNS_2012_2230647
crossref_primary_10_1243_1748006XJRR38
crossref_primary_10_1002_int_20328
crossref_primary_10_1016_j_anucene_2010_12_009
crossref_primary_10_1016_j_ymssp_2017_09_013
crossref_primary_10_1016_j_ymssp_2016_11_004
crossref_primary_10_1016_j_asoc_2007_10_005
crossref_primary_10_1080_03091900701455524
crossref_primary_10_1080_18756891_2013_804145
crossref_primary_10_1109_TNS_2016_2547866
crossref_primary_10_1016_j_ijdrr_2022_103112
crossref_primary_10_1016_j_anucene_2021_108222
crossref_primary_10_1016_j_engappai_2016_08_011
crossref_primary_10_1016_j_engappai_2006_11_013
crossref_primary_10_1177_1748006X12463502
crossref_primary_10_1016_j_nucengdes_2010_10_012
crossref_primary_10_1109_TNS_2012_2209125
crossref_primary_10_2514_1_I010265
crossref_primary_10_1016_j_pnucene_2013_03_017
crossref_primary_10_1016_j_ress_2020_107197
crossref_primary_10_1243_1748006XJRR137
Cites_doi 10.1109/ICEC.1996.542382
10.1109/TC.1977.1674939
10.1016/S0020-0255(02)00402-4
10.1109/72.363467
10.1016/S0004-3702(97)00043-X
10.1016/S0167-8655(03)00020-5
10.1016/S0031-3203(01)00046-2
10.1201/9781420050073
10.1109/TSMC.1985.6313426
10.1109/5326.704576
10.1109/4235.771166
10.1016/0167-8655(89)90037-8
10.1016/j.anucene.2005.06.003
10.1109/ICEC.1994.350037
10.1016/S1088-467X(97)00008-5
10.1016/S0167-8655(02)00081-8
10.1109/72.554193
10.1162/evco.1995.3.1.1
10.1109/4235.850656
10.1016/S0167-8655(02)00303-3
10.1109/78.554319
10.1117/12.488995
10.1049/cp:19991201
10.1201/9780203497159
10.1109/34.574797
10.1109/TEVC.2003.810758
10.1016/B978-0-444-81892-8.50040-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QL
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
DOI 10.1109/TNS.2006.873868
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Aluminium Industry Abstracts
Bacteriology Abstracts (Microbiology B)
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Engineered Materials Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList
Materials Research Database
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-1578
EndPage 1493
ExternalDocumentID 2543774931
10_1109_TNS_2006_873868
1645062
Genre orig-research
GroupedDBID .DC
.GJ
0R~
29I
3O-
4.4
53G
5GY
5RE
5VS
6IK
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETEA
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VOH
AAYXX
CITATION
7QF
7QL
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
ID FETCH-LOGICAL-c320t-f9a9da78c6dcbd7693093951a07c86500aa38226d1f954b8913af41e81d8ef4e3
IEDL.DBID RIE
ISSN 0018-9499
IngestDate Sun Sep 28 05:22:33 EDT 2025
Sat Aug 23 12:47:02 EDT 2025
Wed Oct 01 03:38:16 EDT 2025
Thu Apr 24 23:12:01 EDT 2025
Tue Aug 26 16:40:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c320t-f9a9da78c6dcbd7693093951a07c86500aa38226d1f954b8913af41e81d8ef4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 912112020
PQPubID 85457
PageCount 15
ParticipantIDs proquest_journals_912112020
crossref_citationtrail_10_1109_TNS_2006_873868
ieee_primary_1645062
crossref_primary_10_1109_TNS_2006_873868
proquest_miscellaneous_889383053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-06-01
PublicationDateYYYYMMDD 2006-06-01
PublicationDate_xml – month: 06
  year: 2006
  text: 2006-06-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on nuclear science
PublicationTitleAbbrev TNS
PublicationYear 2006
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
mhlenbein (ref42) 1992
ref36
ref14
ref33
ref32
ref10
holland (ref22) 1975
sawaragy (ref25) 1985
jakob (ref27) 1992; 2
ref2
ref1
ref39
raymer (ref11) 1997
ref17
ref19
goldberg (ref23) 1989
ref18
buckner (ref6) 2002
pereira (ref16) 2002
na (ref5) 1997
puska (ref15) 2002; 2
laumanns (ref31) 2002
ref24
zio (ref37) 2006
ref26
ref20
ref44
ref21
ref43
verikas (ref7) 2002; 23
schaffer (ref29) 1985
ref28
ref8
de jong (ref40) 1975
michalewicz (ref38) 1991
ref9
ref4
ref3
bremermann (ref41) 1996
zitzler (ref30) 1999
References_xml – ident: ref43
  doi: 10.1109/ICEC.1996.542382
– year: 1975
  ident: ref40
  publication-title: The Analysis of the Behaviour of a Class of Genetic Adaptive Systems
– year: 1989
  ident: ref23
  publication-title: Genetic Algorithms in Search Optimization and Machine Learning
– ident: ref19
  doi: 10.1109/TC.1977.1674939
– year: 2002
  ident: ref16
  publication-title: Computational Intelligent System for Applied Research Proc FLINS 2002
– ident: ref35
  doi: 10.1016/S0020-0255(02)00402-4
– year: 1997
  ident: ref5
  publication-title: Intelligent Hybrid Systems Fuzzy Logic Neural Network and Genetic Algorithms
– ident: ref10
  doi: 10.1109/72.363467
– year: 2006
  ident: ref37
  publication-title: Genetic Algorithm-Based Wrapper Feature Selection in Nuclear Transients
– start-page: 151
  year: 1991
  ident: ref38
  article-title: handling constraints in genetic algorithms
  publication-title: Genetic Algorithms Proc 4th Int Conf
– volume: 2
  start-page: 291
  year: 1992
  ident: ref27
  publication-title: Parallel Problem Solving from Nature
– year: 2002
  ident: ref6
  article-title: application of generalized ridge regression for nuclear power plant sensor calibration monitoring
  publication-title: 5th Int Conf Fuzzy Logic and Intelligent Technologies in Nuclear Science (FLINS)
– ident: ref12
  doi: 10.1016/S0004-3702(97)00043-X
– ident: ref20
  doi: 10.1016/S0167-8655(03)00020-5
– year: 1975
  ident: ref22
  publication-title: Control and Artificial Intelligence
– start-page: 3
  year: 1996
  ident: ref41
  publication-title: Natural Automata and Useful Simulations
– ident: ref21
  doi: 10.1016/S0031-3203(01)00046-2
– ident: ref24
  doi: 10.1201/9781420050073
– ident: ref14
  doi: 10.1109/TSMC.1985.6313426
– ident: ref28
  doi: 10.1109/5326.704576
– ident: ref39
  doi: 10.1109/4235.771166
– ident: ref34
  doi: 10.1016/0167-8655(89)90037-8
– ident: ref17
  doi: 10.1016/j.anucene.2005.06.003
– start-page: 15
  year: 1992
  ident: ref42
  article-title: how genetic algorithms really work-part i: mutation and hillclimbing
  publication-title: Proc 2nd Conf Parallel Problem Solving from Nature
– ident: ref44
  doi: 10.1109/ICEC.1994.350037
– ident: ref18
  doi: 10.1016/S1088-467X(97)00008-5
– volume: 23
  start-page: 1323
  year: 2002
  ident: ref7
  article-title: feature selection with neural networks
  publication-title: Pattern Recognit Lett
  doi: 10.1016/S0167-8655(02)00081-8
– start-page: 439
  year: 2002
  ident: ref31
  publication-title: Proc Genetic Evolutionary Computation Conf (GECCO 2002)
– year: 1999
  ident: ref30
  publication-title: Evolutionary algorithms for multiobjective optimization Methods and applications
– ident: ref8
  doi: 10.1109/72.554193
– ident: ref26
  doi: 10.1162/evco.1995.3.1.1
– year: 1985
  ident: ref25
  publication-title: Theory of Multiobjective Optimization
– ident: ref3
  doi: 10.1109/4235.850656
– ident: ref13
  doi: 10.1016/S0167-8655(02)00303-3
– ident: ref9
  doi: 10.1109/78.554319
– ident: ref36
  doi: 10.1117/12.488995
– start-page: 561
  year: 1997
  ident: ref11
  publication-title: Proc 7th Int Conf Genetic Algorithms (ICGA)
– start-page: 93
  year: 1985
  ident: ref29
  article-title: multiple objective optimization with vector evaluated genetic algorithms
  publication-title: Proc Int Conf Genetic Algorithms and Their Applications
– volume: 2
  year: 2002
  ident: ref15
  article-title: 3-d core studies for hambo simulator
  publication-title: Proc Presentations on Man-Machine System Research
– ident: ref4
  doi: 10.1049/cp:19991201
– ident: ref33
  doi: 10.1201/9780203497159
– ident: ref1
  doi: 10.1109/34.574797
– ident: ref32
  doi: 10.1109/TEVC.2003.810758
– ident: ref2
  doi: 10.1016/B978-0-444-81892-8.50040-7
SSID ssj0014505
Score 2.0176902
Snippet The issue of feature selection is particularly critical for the application of monitoring and "on condition" diagnostic techniques to complex plants, like the...
The first approach employs a single objective genetic algorithm to search the vector of features optimal with respect to the classification performance of a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1479
SubjectTerms Algorithms
Boiling water reactor
Classification
Classifiers
Condition monitoring
Degradation
Diagnostic software
Diagnostic systems
Fault diagnosis
feature selection
feedwater system
Fuzzy K-Nearest Neighbors
Genetic algorithms
Inductors
Nuclear measurements
Optimization
Particle measurements
Pattern recognition
Power generation
Power measurement
Power plants
Searching
Studies
Title Selecting features for nuclear transients classification by means of genetic algorithms
URI https://ieeexplore.ieee.org/document/1645062
https://www.proquest.com/docview/912112020
https://www.proquest.com/docview/889383053
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-1578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014505
  issn: 0018-9499
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlDwwMpKQkcewRIRBCahdAsEWOH4CgCWrSAX49d05a3hKbJTuR5fPj853v-wD2Ey2dUS4NjCNvlVIuyEOhAitCRVnLmucU0e0P-MVNfHmX3M3A4TQXxlrrH5_ZLhV9LN-UekyusiOE9klIG-5sKniTqzWNGGBNq1aACxhhfEvj0wvl0fXgqok6CFK4FF9OIC-p8mMf9ofL-RL0J91q3pQ8dcd13tVv3xgb_9vvZVhsUSY7aabFCszYYhUWPnEPrsHtlVfAwTJz1rN7VgwBLCuI4FiNWE2HGCVLVkwTwqYnRd6KLH9lQ4uVrHQMpx9lQTL1fF-OHuuHYbUON-dn16cXQauyEOjoOKwDJ5U0KhWaG50bL40oI8RdKky1QPwWKhUhiuCm52QS5xTWVC7uWQS6wrrYRhswV5SF3QSW6iRNuc0NdxJhllB45-XG8iThxpk47kB3MvKZbinISQnjOfNXkVBmaCoSxuRZY6oOHEw_eGnYN_5uukYD_9GsGfMObE9Mm7Wrs8ok8dodI1DuAJvW4rKiWIkqbDmuMoE4TuBeGG39_t9tmG-cMeSP2YG5ejS2uwhP6nzPz8t3BLLjCw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOLQ9AC2tuuVRH3rooVmyxHbsI6qKlpbdC4vKLXL8AFRI0CZ7KL-eGSe7fUu9WbITWR4_Ps94vg_gnbA6OBPyxAXyVhkTkjJVJvEqNZS1bGVJEd3JVI4v-OdLcbkGH1a5MN77-PjMD6kYY_mutgtylR0itBcpbbgbgnMuumytVcwA63q9AlzCCOR7Ip9Rqg9n0_Mu7qBI41L9cgZFUZU_duJ4vJxswWTZse5Vybfhoi2H9uE3zsb_7fk2bPY4kx13E-M5rPnqBTz7iX1wB76eRw0cLLPgI79nwxDCsooojs2ctXSMUbpkwyxhbHpUFO3Iyu_szmMlqwPDCUh5kMzcXtXzm_b6rnkJFyefZh_HSa-zkNjsKG2ToI12JldWOlu6KI6oM0ReJs2tQgSXGpMhjpBuFLTgJQU2TeAjj1BX-cB99grWq7ryr4HlVuS59KWTQSPQUgZvvdJ5KYR0wXE-gOFy5Avbk5CTFsZtES8jqS7QVCSNKYvOVAN4v_rgvuPf-HfTHRr4H826MR_A7tK0Rb8-m0ITs90RQuUBsFUtLiyKlpjK14umUIjkFO6G2Zu___ctPBnPJmfF2en0yy487Vwz5J3Zg_V2vvD7CFba8iDO0UcN1eZY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selecting+features+for+nuclear+transients+classification+by+means+of+genetic+algorithms&rft.jtitle=IEEE+transactions+on+nuclear+science&rft.au=Zio%2C+E.&rft.au=Baraldi%2C+P.&rft.au=Pedroni%2C+N.&rft.date=2006-06-01&rft.pub=IEEE&rft.issn=0018-9499&rft.volume=53&rft.issue=3&rft.spage=1479&rft.epage=1493&rft_id=info:doi/10.1109%2FTNS.2006.873868&rft.externalDocID=1645062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9499&client=summon