Selecting features for nuclear transients classification by means of genetic algorithms
The issue of feature selection is particularly critical for the application of monitoring and "on condition" diagnostic techniques to complex plants, like the nuclear power plants, where hundreds of parameters are measured. Indeed, irrelevant and noisy features unnecessarily increase the c...
Saved in:
| Published in | IEEE transactions on nuclear science Vol. 53; no. 3; pp. 1479 - 1493 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.06.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9499 1558-1578 |
| DOI | 10.1109/TNS.2006.873868 |
Cover
| Abstract | The issue of feature selection is particularly critical for the application of monitoring and "on condition" diagnostic techniques to complex plants, like the nuclear power plants, where hundreds of parameters are measured. Indeed, irrelevant and noisy features unnecessarily increase the complexity of the problem and can degrade the diagnostic performance. In this paper, the problem of choosing among the several measured plant parameters those to be used for efficient, early transient diagnosis is tackled by means of genetic algorithms. Three different schemes for simultaneously performing the feature selection and the training of an empirical diagnostic classifier are presented. The first approach employs a single objective genetic algorithm to search the vector of features optimal with respect to the classification performance of a Fuzzy K-Nearest Neighbors classifier. With reference to the same classifier, the second and third approaches embrace a multi-objective perspective to find feature sets that achieve high classification performances with low numbers of features. In all cases, validation of the performance of the classifiers based on the optimal feature subsets identified by the genetic algorithm is successively carried out with respect to transients never used during the feature selection phase. The effectiveness of the proposed approaches is tested on a diagnostic problem regarding the classification of simulated transients in the feedwater system of a Boiling Water Reactor. |
|---|---|
| AbstractList | The issue of feature selection is particularly critical for the application of monitoring and "on condition" diagnostic techniques to complex plants, like the nuclear power plants, where hundreds of parameters are measured. Indeed, irrelevant and noisy features unnecessarily increase the complexity of the problem and can degrade the diagnostic performance. In this paper, the problem of choosing among the several measured plant parameters those to be used for efficient, early transient diagnosis is tackled by means of genetic algorithms. Three different schemes for simultaneously performing the feature selection and the training of an empirical diagnostic classifier are presented. The first approach employs a single objective genetic algorithm to search the vector of features optimal with respect to the classification performance of a Fuzzy K-Nearest Neighbors classifier. With reference to the same classifier, the second and third approaches embrace a multi-objective perspective to find feature sets that achieve high classification performances with low numbers of features. In all cases, validation of the performance of the classifiers based on the optimal feature subsets identified by the genetic algorithm is successively carried out with respect to transients never used during the feature selection phase. The effectiveness of the proposed approaches is tested on a diagnostic problem regarding the classification of simulated transients in the feedwater system of a Boiling Water Reactor. The first approach employs a single objective genetic algorithm to search the vector of features optimal with respect to the classification performance of a Fuzzy K-Nearest Neighbors classifier. |
| Author | Pedroni, N. Baraldi, P. Zio, E. |
| Author_xml | – sequence: 1 givenname: E. surname: Zio fullname: Zio, E. organization: Dept. of Nucl. Eng., Politecnico di Milano, Milan, Italy – sequence: 2 givenname: P. surname: Baraldi fullname: Baraldi, P. organization: Dept. of Nucl. Eng., Politecnico di Milano, Milan, Italy – sequence: 3 givenname: N. surname: Pedroni fullname: Pedroni, N. organization: Dept. of Nucl. Eng., Politecnico di Milano, Milan, Italy |
| BookMark | eNp9kT1PBCEQhok5E8-P2sKG2FjtHSzLLpTG-JUYLdRYEo4dTsweKLDF_Xs5z8TkCisy4XknM88cookPHhA6pWRGKZHzl8fnWU1IOxMdE63YQ1PKuago78QETQmhopKNlAfoMKWPUjac8Cl6e4YBTHZ-iS3oPEZI2IaI_WgG0BHnqH1y4HPCZtApOeuMzi54vFjjFZRPHCxegofsDNbDMkSX31fpGO1bPSQ4-X2P0OvN9cvVXfXwdHt_dflQGVaTXFmpZa87YdreLPqulYxIJjnVpDOi5YRozURdtz21kjcLISnTtqEgaC_ANsCO0MW272cMXyOkrFYuGRgG7SGMSQkhmWCEs0Ke75AfYYy-DKckrSmtSU0KxLeQiSGlCFYZl3_2LSLcoChRG9mqyFYb2Woru-TmO7nP6FY6rv9JnG0TDgD-6Lacpa3ZNx9NjGo |
| CODEN | IETNAE |
| CitedBy_id | crossref_primary_10_1016_j_anucene_2020_107667 crossref_primary_10_1016_j_addma_2023_103810 crossref_primary_10_1016_j_anucene_2022_109668 crossref_primary_10_1016_j_ress_2010_01_004 crossref_primary_10_3390_math10030464 crossref_primary_10_1177_0954406215573976 crossref_primary_10_1016_j_anucene_2019_107232 crossref_primary_10_1109_TNS_2014_2329055 crossref_primary_10_3389_fenrg_2021_696785 crossref_primary_10_1016_j_anucene_2021_108299 crossref_primary_10_1016_j_compchemeng_2013_09_014 crossref_primary_10_1109_TNS_2021_3125794 crossref_primary_10_1016_j_ress_2008_04_004 crossref_primary_10_1016_j_ress_2010_11_005 crossref_primary_10_1016_j_ress_2020_106891 crossref_primary_10_1109_TNS_2012_2230647 crossref_primary_10_1243_1748006XJRR38 crossref_primary_10_1002_int_20328 crossref_primary_10_1016_j_anucene_2010_12_009 crossref_primary_10_1016_j_ymssp_2017_09_013 crossref_primary_10_1016_j_ymssp_2016_11_004 crossref_primary_10_1016_j_asoc_2007_10_005 crossref_primary_10_1080_03091900701455524 crossref_primary_10_1080_18756891_2013_804145 crossref_primary_10_1109_TNS_2016_2547866 crossref_primary_10_1016_j_ijdrr_2022_103112 crossref_primary_10_1016_j_anucene_2021_108222 crossref_primary_10_1016_j_engappai_2016_08_011 crossref_primary_10_1016_j_engappai_2006_11_013 crossref_primary_10_1177_1748006X12463502 crossref_primary_10_1016_j_nucengdes_2010_10_012 crossref_primary_10_1109_TNS_2012_2209125 crossref_primary_10_2514_1_I010265 crossref_primary_10_1016_j_pnucene_2013_03_017 crossref_primary_10_1016_j_ress_2020_107197 crossref_primary_10_1243_1748006XJRR137 |
| Cites_doi | 10.1109/ICEC.1996.542382 10.1109/TC.1977.1674939 10.1016/S0020-0255(02)00402-4 10.1109/72.363467 10.1016/S0004-3702(97)00043-X 10.1016/S0167-8655(03)00020-5 10.1016/S0031-3203(01)00046-2 10.1201/9781420050073 10.1109/TSMC.1985.6313426 10.1109/5326.704576 10.1109/4235.771166 10.1016/0167-8655(89)90037-8 10.1016/j.anucene.2005.06.003 10.1109/ICEC.1994.350037 10.1016/S1088-467X(97)00008-5 10.1016/S0167-8655(02)00081-8 10.1109/72.554193 10.1162/evco.1995.3.1.1 10.1109/4235.850656 10.1016/S0167-8655(02)00303-3 10.1109/78.554319 10.1117/12.488995 10.1049/cp:19991201 10.1201/9780203497159 10.1109/34.574797 10.1109/TEVC.2003.810758 10.1016/B978-0-444-81892-8.50040-7 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006 |
| DBID | 97E RIA RIE AAYXX CITATION 7QF 7QL 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 |
| DOI | 10.1109/TNS.2006.873868 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Aluminium Industry Abstracts Bacteriology Abstracts (Microbiology B) Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Engineered Materials Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-1578 |
| EndPage | 1493 |
| ExternalDocumentID | 2543774931 10_1109_TNS_2006_873868 1645062 |
| Genre | orig-research |
| GroupedDBID | .DC .GJ 0R~ 29I 3O- 4.4 53G 5GY 5RE 5VS 6IK 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETEA AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VOH AAYXX CITATION 7QF 7QL 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H94 JG9 JQ2 KR7 L7M L~C L~D M7N P64 |
| ID | FETCH-LOGICAL-c320t-f9a9da78c6dcbd7693093951a07c86500aa38226d1f954b8913af41e81d8ef4e3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9499 |
| IngestDate | Sun Sep 28 05:22:33 EDT 2025 Sat Aug 23 12:47:02 EDT 2025 Wed Oct 01 03:38:16 EDT 2025 Thu Apr 24 23:12:01 EDT 2025 Tue Aug 26 16:40:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c320t-f9a9da78c6dcbd7693093951a07c86500aa38226d1f954b8913af41e81d8ef4e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 912112020 |
| PQPubID | 85457 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_912112020 crossref_citationtrail_10_1109_TNS_2006_873868 ieee_primary_1645062 crossref_primary_10_1109_TNS_2006_873868 proquest_miscellaneous_889383053 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2006-06-01 |
| PublicationDateYYYYMMDD | 2006-06-01 |
| PublicationDate_xml | – month: 06 year: 2006 text: 2006-06-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on nuclear science |
| PublicationTitleAbbrev | TNS |
| PublicationYear | 2006 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 mhlenbein (ref42) 1992 ref36 ref14 ref33 ref32 ref10 holland (ref22) 1975 sawaragy (ref25) 1985 jakob (ref27) 1992; 2 ref2 ref1 ref39 raymer (ref11) 1997 ref17 ref19 goldberg (ref23) 1989 ref18 buckner (ref6) 2002 pereira (ref16) 2002 na (ref5) 1997 puska (ref15) 2002; 2 laumanns (ref31) 2002 ref24 zio (ref37) 2006 ref26 ref20 ref44 ref21 ref43 verikas (ref7) 2002; 23 schaffer (ref29) 1985 ref28 ref8 de jong (ref40) 1975 michalewicz (ref38) 1991 ref9 ref4 ref3 bremermann (ref41) 1996 zitzler (ref30) 1999 |
| References_xml | – ident: ref43 doi: 10.1109/ICEC.1996.542382 – year: 1975 ident: ref40 publication-title: The Analysis of the Behaviour of a Class of Genetic Adaptive Systems – year: 1989 ident: ref23 publication-title: Genetic Algorithms in Search Optimization and Machine Learning – ident: ref19 doi: 10.1109/TC.1977.1674939 – year: 2002 ident: ref16 publication-title: Computational Intelligent System for Applied Research Proc FLINS 2002 – ident: ref35 doi: 10.1016/S0020-0255(02)00402-4 – year: 1997 ident: ref5 publication-title: Intelligent Hybrid Systems Fuzzy Logic Neural Network and Genetic Algorithms – ident: ref10 doi: 10.1109/72.363467 – year: 2006 ident: ref37 publication-title: Genetic Algorithm-Based Wrapper Feature Selection in Nuclear Transients – start-page: 151 year: 1991 ident: ref38 article-title: handling constraints in genetic algorithms publication-title: Genetic Algorithms Proc 4th Int Conf – volume: 2 start-page: 291 year: 1992 ident: ref27 publication-title: Parallel Problem Solving from Nature – year: 2002 ident: ref6 article-title: application of generalized ridge regression for nuclear power plant sensor calibration monitoring publication-title: 5th Int Conf Fuzzy Logic and Intelligent Technologies in Nuclear Science (FLINS) – ident: ref12 doi: 10.1016/S0004-3702(97)00043-X – ident: ref20 doi: 10.1016/S0167-8655(03)00020-5 – year: 1975 ident: ref22 publication-title: Control and Artificial Intelligence – start-page: 3 year: 1996 ident: ref41 publication-title: Natural Automata and Useful Simulations – ident: ref21 doi: 10.1016/S0031-3203(01)00046-2 – ident: ref24 doi: 10.1201/9781420050073 – ident: ref14 doi: 10.1109/TSMC.1985.6313426 – ident: ref28 doi: 10.1109/5326.704576 – ident: ref39 doi: 10.1109/4235.771166 – ident: ref34 doi: 10.1016/0167-8655(89)90037-8 – ident: ref17 doi: 10.1016/j.anucene.2005.06.003 – start-page: 15 year: 1992 ident: ref42 article-title: how genetic algorithms really work-part i: mutation and hillclimbing publication-title: Proc 2nd Conf Parallel Problem Solving from Nature – ident: ref44 doi: 10.1109/ICEC.1994.350037 – ident: ref18 doi: 10.1016/S1088-467X(97)00008-5 – volume: 23 start-page: 1323 year: 2002 ident: ref7 article-title: feature selection with neural networks publication-title: Pattern Recognit Lett doi: 10.1016/S0167-8655(02)00081-8 – start-page: 439 year: 2002 ident: ref31 publication-title: Proc Genetic Evolutionary Computation Conf (GECCO 2002) – year: 1999 ident: ref30 publication-title: Evolutionary algorithms for multiobjective optimization Methods and applications – ident: ref8 doi: 10.1109/72.554193 – ident: ref26 doi: 10.1162/evco.1995.3.1.1 – year: 1985 ident: ref25 publication-title: Theory of Multiobjective Optimization – ident: ref3 doi: 10.1109/4235.850656 – ident: ref13 doi: 10.1016/S0167-8655(02)00303-3 – ident: ref9 doi: 10.1109/78.554319 – ident: ref36 doi: 10.1117/12.488995 – start-page: 561 year: 1997 ident: ref11 publication-title: Proc 7th Int Conf Genetic Algorithms (ICGA) – start-page: 93 year: 1985 ident: ref29 article-title: multiple objective optimization with vector evaluated genetic algorithms publication-title: Proc Int Conf Genetic Algorithms and Their Applications – volume: 2 year: 2002 ident: ref15 article-title: 3-d core studies for hambo simulator publication-title: Proc Presentations on Man-Machine System Research – ident: ref4 doi: 10.1049/cp:19991201 – ident: ref33 doi: 10.1201/9780203497159 – ident: ref1 doi: 10.1109/34.574797 – ident: ref32 doi: 10.1109/TEVC.2003.810758 – ident: ref2 doi: 10.1016/B978-0-444-81892-8.50040-7 |
| SSID | ssj0014505 |
| Score | 2.0176902 |
| Snippet | The issue of feature selection is particularly critical for the application of monitoring and "on condition" diagnostic techniques to complex plants, like the... The first approach employs a single objective genetic algorithm to search the vector of features optimal with respect to the classification performance of a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1479 |
| SubjectTerms | Algorithms Boiling water reactor Classification Classifiers Condition monitoring Degradation Diagnostic software Diagnostic systems Fault diagnosis feature selection feedwater system Fuzzy K-Nearest Neighbors Genetic algorithms Inductors Nuclear measurements Optimization Particle measurements Pattern recognition Power generation Power measurement Power plants Searching Studies |
| Title | Selecting features for nuclear transients classification by means of genetic algorithms |
| URI | https://ieeexplore.ieee.org/document/1645062 https://www.proquest.com/docview/912112020 https://www.proquest.com/docview/889383053 |
| Volume | 53 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-1578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014505 issn: 0018-9499 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlDwwMpKQkcewRIRBCahdAsEWOH4CgCWrSAX49d05a3hKbJTuR5fPj853v-wD2Ey2dUS4NjCNvlVIuyEOhAitCRVnLmucU0e0P-MVNfHmX3M3A4TQXxlrrH5_ZLhV9LN-UekyusiOE9klIG-5sKniTqzWNGGBNq1aACxhhfEvj0wvl0fXgqok6CFK4FF9OIC-p8mMf9ofL-RL0J91q3pQ8dcd13tVv3xgb_9vvZVhsUSY7aabFCszYYhUWPnEPrsHtlVfAwTJz1rN7VgwBLCuI4FiNWE2HGCVLVkwTwqYnRd6KLH9lQ4uVrHQMpx9lQTL1fF-OHuuHYbUON-dn16cXQauyEOjoOKwDJ5U0KhWaG50bL40oI8RdKky1QPwWKhUhiuCm52QS5xTWVC7uWQS6wrrYRhswV5SF3QSW6iRNuc0NdxJhllB45-XG8iThxpk47kB3MvKZbinISQnjOfNXkVBmaCoSxuRZY6oOHEw_eGnYN_5uukYD_9GsGfMObE9Mm7Wrs8ok8dodI1DuAJvW4rKiWIkqbDmuMoE4TuBeGG39_t9tmG-cMeSP2YG5ejS2uwhP6nzPz8t3BLLjCw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOLQ9AC2tuuVRH3rooVmyxHbsI6qKlpbdC4vKLXL8AFRI0CZ7KL-eGSe7fUu9WbITWR4_Ps94vg_gnbA6OBPyxAXyVhkTkjJVJvEqNZS1bGVJEd3JVI4v-OdLcbkGH1a5MN77-PjMD6kYY_mutgtylR0itBcpbbgbgnMuumytVcwA63q9AlzCCOR7Ip9Rqg9n0_Mu7qBI41L9cgZFUZU_duJ4vJxswWTZse5Vybfhoi2H9uE3zsb_7fk2bPY4kx13E-M5rPnqBTz7iX1wB76eRw0cLLPgI79nwxDCsooojs2ctXSMUbpkwyxhbHpUFO3Iyu_szmMlqwPDCUh5kMzcXtXzm_b6rnkJFyefZh_HSa-zkNjsKG2ToI12JldWOlu6KI6oM0ReJs2tQgSXGpMhjpBuFLTgJQU2TeAjj1BX-cB99grWq7ryr4HlVuS59KWTQSPQUgZvvdJ5KYR0wXE-gOFy5Avbk5CTFsZtES8jqS7QVCSNKYvOVAN4v_rgvuPf-HfTHRr4H826MR_A7tK0Rb8-m0ITs90RQuUBsFUtLiyKlpjK14umUIjkFO6G2Zu___ctPBnPJmfF2en0yy487Vwz5J3Zg_V2vvD7CFba8iDO0UcN1eZY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selecting+features+for+nuclear+transients+classification+by+means+of+genetic+algorithms&rft.jtitle=IEEE+transactions+on+nuclear+science&rft.au=Zio%2C+E.&rft.au=Baraldi%2C+P.&rft.au=Pedroni%2C+N.&rft.date=2006-06-01&rft.pub=IEEE&rft.issn=0018-9499&rft.volume=53&rft.issue=3&rft.spage=1479&rft.epage=1493&rft_id=info:doi/10.1109%2FTNS.2006.873868&rft.externalDocID=1645062 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9499&client=summon |