A mathematical model of photoinhibition: exploring the impact of quenching processes
Abstract Plants are constantly exposed to changing environments, sometimes leading to extreme conditions and stress. For example, sudden exposure to high light leads to excess absorbed light energy, causing reactive oxygen species (ROS) formation. ROS damages the photosynthetic machinery, particular...
Saved in:
Published in | in silico plants Vol. 6; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
UK
Oxford University Press
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2517-5025 2517-5025 |
DOI | 10.1093/insilicoplants/diae001 |
Cover
Abstract | Abstract
Plants are constantly exposed to changing environments, sometimes leading to extreme conditions and stress. For example, sudden exposure to high light leads to excess absorbed light energy, causing reactive oxygen species (ROS) formation. ROS damages the photosynthetic machinery, particularly the D1 protein in photosystem II (PSII), which, therefore, needs to be continuously repaired and replaced. The effect of the damage inflicted by high light is a prolonged decrease in photosynthetic efficiency. Hence, it is not surprising that photoinhibition has been subject to numerous experimental studies investigating its effects in the context of crop productivity. However, it has become apparent that classical measures of photoinhibition, that is, changes in the chlorophyll fluorescence parameter Fv/Fm, are not only determined by the loss of PSII core function but also by processes such as energy transfer and quenching. Mathematical models can help dissect the influences on such fluorescence signals and quantify the contributions of various interacting mechanisms. We present a mathematical model with a dynamic description of the photosynthetic electron transport chain, non-photochemical quenching and photoinhibition. With our model, we investigate the interconnection among quenching, photoprotection and fluorescence using simulations and experimental data. We found that different energy-dissipating properties of intact and damaged PSIIs, as well as energy transfer between PSIIs, are critical components that need to be included in the model to ensure a satisfactory fit to the experimental data. We envisage that our model provides a framework for future investigations of photoinhibition dynamics and its importance for plant growth and yield. |
---|---|
AbstractList | Abstract
Plants are constantly exposed to changing environments, sometimes leading to extreme conditions and stress. For example, sudden exposure to high light leads to excess absorbed light energy, causing reactive oxygen species (ROS) formation. ROS damages the photosynthetic machinery, particularly the D1 protein in photosystem II (PSII), which, therefore, needs to be continuously repaired and replaced. The effect of the damage inflicted by high light is a prolonged decrease in photosynthetic efficiency. Hence, it is not surprising that photoinhibition has been subject to numerous experimental studies investigating its effects in the context of crop productivity. However, it has become apparent that classical measures of photoinhibition, that is, changes in the chlorophyll fluorescence parameter Fv/Fm, are not only determined by the loss of PSII core function but also by processes such as energy transfer and quenching. Mathematical models can help dissect the influences on such fluorescence signals and quantify the contributions of various interacting mechanisms. We present a mathematical model with a dynamic description of the photosynthetic electron transport chain, non-photochemical quenching and photoinhibition. With our model, we investigate the interconnection among quenching, photoprotection and fluorescence using simulations and experimental data. We found that different energy-dissipating properties of intact and damaged PSIIs, as well as energy transfer between PSIIs, are critical components that need to be included in the model to ensure a satisfactory fit to the experimental data. We envisage that our model provides a framework for future investigations of photoinhibition dynamics and its importance for plant growth and yield. Plants are constantly exposed to changing environments, sometimes leading to extreme conditions and stress. For example, sudden exposure to high light leads to excess absorbed light energy, causing reactive oxygen species (ROS) formation. ROS damages the photosynthetic machinery, particularly the D1 protein in photosystem II (PSII), which, therefore, needs to be continuously repaired and replaced. The effect of the damage inflicted by high light is a prolonged decrease in photosynthetic efficiency. Hence, it is not surprising that photoinhibition has been subject to numerous experimental studies investigating its effects in the context of crop productivity. However, it has become apparent that classical measures of photoinhibition, that is, changes in the chlorophyll fluorescence parameter Fv/Fm, are not only determined by the loss of PSII core function but also by processes such as energy transfer and quenching. Mathematical models can help dissect the influences on such fluorescence signals and quantify the contributions of various interacting mechanisms. We present a mathematical model with a dynamic description of the photosynthetic electron transport chain, non-photochemical quenching and photoinhibition. With our model, we investigate the interconnection among quenching, photoprotection and fluorescence using simulations and experimental data. We found that different energy-dissipating properties of intact and damaged PSIIs, as well as energy transfer between PSIIs, are critical components that need to be included in the model to ensure a satisfactory fit to the experimental data. We envisage that our model provides a framework for future investigations of photoinhibition dynamics and its importance for plant growth and yield. |
Author | Nies, Tim Ebenhöh, Oliver Matsubara, Shizue |
Author_xml | – sequence: 1 givenname: Tim orcidid: 0000-0003-1587-2971 surname: Nies fullname: Nies, Tim – sequence: 2 givenname: Shizue orcidid: 0000-0002-1440-6496 surname: Matsubara fullname: Matsubara, Shizue – sequence: 3 givenname: Oliver orcidid: 0000-0002-7229-7398 surname: Ebenhöh fullname: Ebenhöh, Oliver email: oliver.ebenhoeh@hhu.de |
BookMark | eNqNUMtOwzAQtFCRKKW_gCxxDrWT5mFuVQUFqRKXco4ce0NcObaJE0H_HkfpAW697I5WM6PZuUUzYw0gdE_JIyUsWSnjlVbCOs1N71dScSCEXqF5nNI8Skmczv7gG7T0_khIgOs0YWyODhvc8r6BMJTgGrdWgsa2xq6xvVWmUZXqlTVPGH6ctp0ynzjQsWodF_1I_BrAiGa8u84K8B78HbquufawPO8F-nh5Pmxfo_377m272UciiUkfAYUcJJVVUTNCOM0KGYNIeU6ygoq8qmRSk0rIVKw5ZZxIIVlSsaymUK8Fy5IFyiffwTh--uZal65TLe9OJSXl2E_5v5_y3E9QPkzKkDk84PvyaIfOhLBlEnLkRVwUo382sURnve-gvtyeTkI7uEs1v9M3lLw |
Cites_doi | 10.1016/j.matcom.2015.04.007 10.1007/BF00037128 10.1111/pce.13108 10.1186/s12859-021-04122-7 10.1093/aob/mcz171 10.1007/s11120-013-9843-0 10.1104/pp.125.4.1558 10.1098/rstb.2013.0223 10.1073/pnas.2007833117 10.1016/j.envexpbot.2018.05.005 10.1093/jexbot/51.suppl_1.319 10.1111/j.1432-1033.1988.tb14242.x 10.1111/j.1469-8137.2011.03669.x 10.3389/fpls.2021.750580 10.1104/pp.17.01250 10.1093/pcp/pcz193 10.1007/s004250000398 10.1104/pp.117.2.619 10.1007/s11120-021-00843-1 10.1002/pld3.185 10.1016/0005-2728(85)90017-9 10.1073/pnas.0403857102 10.1007/s11120-016-0243-0 10.1073/pnas.1211017109 10.1007/s11120-016-0289-z 10.1016/0005-2728(75)90209-1 10.1002/pld3.138 10.1007/BF02183046 10.1007/BF00042009 10.1016/S0005-2728(98)00149-2 10.1111/j.1742-4658.2008.06263.x 10.1186/1742-4682-3-41 10.1104/pp.17.00779 10.1016/j.bbabio.2010.01.001 10.1016/j.tplants.2018.05.004 10.1111/ppl.12962 10.1007/s11120-012-9743-8 10.1016/0005-2728(75)90210-8 10.3390/plants9010091 10.1016/j.biosystems.2023.104968 10.1111/j.1399-3054.2011.01465.x 10.1016/S0005-2728(98)00126-1 10.1016/j.bbabio.2016.09.003 10.1007/s11120-009-9496-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of the Annals of Botany Company. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of the Annals of Botany Company. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Annals of Botany Company. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Annals of Botany Company. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION 3V. 7X2 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M0K M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
DOI | 10.1093/insilicoplants/diae001 |
DatabaseName | Oxford Journals Open Access Collection CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central (subscription) Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (subscription) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2517-5025 |
ExternalDocumentID | 10.1093/insilicoplants/diae001 10_1093_insilicoplants_diae001 |
GroupedDBID | 0R~ 7X2 AAFWJ AAPXW AAVAP ABDBF ABEJV ABGNP ABPTD ABXVV ACUHS ADMLS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AMNDL ATCPS BBNVY BENPR BHPHI CCPQU EBS GROUPED_DOAJ HCIFZ KSI M0K M7P ML0 M~E OK1 PIMPY TOX AAYXX CITATION PHGZM PHGZT PQGLB PUEGO 3V. 8FE 8FH 8FK ABUWG AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
ID | FETCH-LOGICAL-c320t-e1e7ed1db8f900a168d2ec5a70681c7bbd3f0bcd5c4a19a0dcd93b96f1ef4c963 |
IEDL.DBID | UNPAY |
ISSN | 2517-5025 |
IngestDate | Sun Sep 07 11:11:51 EDT 2025 Fri Sep 19 20:52:58 EDT 2025 Wed Oct 01 03:21:50 EDT 2025 Wed Apr 02 07:02:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Fluorescence mathematical model high light stress photoinhibition quenching |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c320t-e1e7ed1db8f900a168d2ec5a70681c7bbd3f0bcd5c4a19a0dcd93b96f1ef4c963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1440-6496 0000-0003-1587-2971 0000-0002-7229-7398 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/insilicoplants/diae001 |
PQID | 3168782886 |
PQPubID | 7097366 |
ParticipantIDs | unpaywall_primary_10_1093_insilicoplants_diae001 proquest_journals_3168782886 crossref_primary_10_1093_insilicoplants_diae001 oup_primary_10_1093_insilicoplants_diae001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | UK |
PublicationPlace_xml | – name: UK – name: Oxford |
PublicationTitle | in silico plants |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Melis (2024031221160952400_CIT0026) 1985; 808 Saadat (2024031221160952400_CIT0038) 2021; 12 Liebermeister (2024031221160952400_CIT0021) 2006; 3 Khorobrykh (2024031221160952400_CIT0014) 2020; 9 Ksenzhek (2024031221160952400_CIT0018) 1998 Poolman (2024031221160952400_CIT0035) 2000; 51 Giersch (2024031221160952400_CIT0009) 1991; 30 Nies (2024031221160952400_CIT0030) 2023; 231 Matuszyńska (2024031221160952400_CIT0024) 2016; 1857 Matuszyńska (2024031221160952400_CIT0025) 2019; 166 Morales (2024031221160952400_CIT0027) 2018; 176 Kaiser (2024031221160952400_CIT0013) 2018; 176 Patsikka (2024031221160952400_CIT0033) 1998; 117 Black (2024031221160952400_CIT0005) 1986; 8 Bethmann (2024031221160952400_CIT0004) 2019; 3 Rungrat (2024031221160952400_CIT0037) 2019; 3 Belyaeva (2024031221160952400_CIT0002) 2016; 130 Nilkens (2024031221160952400_CIT0031) 2010; 1797 Stirbet (2024031221160952400_CIT0041) 2020; 126 Li (2024031221160952400_CIT0020) 2018; 23 van Aalst (2024031221160952400_CIT0043) 2021; 22 Andersson (2024031221160952400_CIT0001) 2015; 116 Kirchhoff (2024031221160952400_CIT0015) 2013; 116 Raven (2024031221160952400_CIT0036) 2011; 142 Lee (2024031221160952400_CIT0019) 2001; 212 Muller (2024031221160952400_CIT0028) 2001; 125 Chotewutmontri (2024031221160952400_CIT0007) 2020; 117 Butler (2024031221160952400_CIT0006) 1975; 376 Watanabe (2024031221160952400_CIT0044) 2016; 57 Oguchi (2024031221160952400_CIT0032) 2011; 191 Yamada (2024031221160952400_CIT0045) 2020; 61 Zaks (2024031221160952400_CIT0046) 2012; 109 Sarvikas (2024031221160952400_CIT0039) 2010; 103 Tyystjärvi (2024031221160952400_CIT0042) 1994; 41 Stirbet (2024031221160952400_CIT0040) 2016; 130 Kou (2024031221160952400_CIT0017) 2012; 113 Hoefnagel (2024031221160952400_CIT0010) 1998; 1366 Matsubara (2024031221160952400_CIT0023) 2004; 101 Joliot (2024031221160952400_CIT0012) 1964; 258 Bernhardt (2024031221160952400_CIT0003) 1999; 1409 Malnoë (2024031221160952400_CIT0022) 2018; 154 Ebenhöh (2024031221160952400_CIT0008) 2014; 369 Horton (2024031221160952400_CIT0011) 2008; 275 Kitajima (2024031221160952400_CIT0016) 1975; 376 Zavafer (2024031221160952400_CIT0047) 2021; 149 Pettersson (2024031221160952400_CIT0034) 1988; 175 Murata (2024031221160952400_CIT0029) 2018; 41 |
References_xml | – volume: 116 start-page: 26 year: 2015 ident: 2024031221160952400_CIT0001 article-title: ScienceDirect Assimulo: a unified framework for ODE solvers publication-title: Mathematics and Computers in Simulation doi: 10.1016/j.matcom.2015.04.007 – volume: 8 start-page: 193 year: 1986 ident: 2024031221160952400_CIT0005 article-title: Heterogeneity in chloroplast photosystem II publication-title: Photosynthesis Research doi: 10.1007/BF00037128 – volume: 41 start-page: 285 year: 2018 ident: 2024031221160952400_CIT0029 article-title: ATP is a driving force in the repair of photosystem II during photoinhibition publication-title: Plant, Cell & Environment doi: 10.1111/pce.13108 – volume: 22 start-page: 1 year: 2021 ident: 2024031221160952400_CIT0043 article-title: Constructing and analysing dynamic models with modelbase v1. 2.3: a software update publication-title: BMC Bioinformatics doi: 10.1186/s12859-021-04122-7 – volume-title: Plant energetics year: 1998 ident: 2024031221160952400_CIT0018 – volume: 126 start-page: 511 year: 2020 ident: 2024031221160952400_CIT0041 article-title: Photosynthesis: basics, history and modelling publication-title: Annals of Botany doi: 10.1093/aob/mcz171 – volume: 116 start-page: 481 year: 2013 ident: 2024031221160952400_CIT0015 article-title: Architectural switches in plant thylakoid membranes publication-title: Photosynthesis Research doi: 10.1007/s11120-013-9843-0 – volume: 125 start-page: 1558 year: 2001 ident: 2024031221160952400_CIT0028 article-title: Non-photochemical quenching: a response to excess light energy publication-title: Plant Physiology doi: 10.1104/pp.125.4.1558 – volume: 369 start-page: 20130223 year: 2014 ident: 2024031221160952400_CIT0008 article-title: Short-term acclimation of the photosynthetic electron transfer chain to changing light: a mathematical model publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences doi: 10.1098/rstb.2013.0223 – volume: 258 start-page: 4622 year: 1964 ident: 2024031221160952400_CIT0012 article-title: Etude cinetique de la reaction photochimique liberant l’oxygene au cours de la photosynthese publication-title: Comptes Rendus de l’Académie des Sciences – volume: 117 start-page: 21775 year: 2020 ident: 2024031221160952400_CIT0007 article-title: Light-induced PSBA translation in plants is triggered by photosystem II damage via an assembly-linked autoregulatory circuit publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.2007833117 – volume: 154 start-page: 123 year: 2018 ident: 2024031221160952400_CIT0022 article-title: Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qh publication-title: Environmental and Experimental Botany doi: 10.1016/j.envexpbot.2018.05.005 – volume: 51 start-page: 319 year: 2000 ident: 2024031221160952400_CIT0035 article-title: Modelling photosynthesis and its control publication-title: Journal of Experimental Botany doi: 10.1093/jexbot/51.suppl_1.319 – volume: 175 start-page: 661 year: 1988 ident: 2024031221160952400_CIT0034 article-title: A mathematical model of the calvin photosynthesis cycle publication-title: European Journal of Biochemistry doi: 10.1111/j.1432-1033.1988.tb14242.x – volume: 191 start-page: 146 year: 2011 ident: 2024031221160952400_CIT0032 article-title: Intra-leaf gradients of photoinhibition induced by different color lights: implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers publication-title: New Phytologist doi: 10.1111/j.1469-8137.2011.03669.x – volume: 12 start-page: 750580 year: 2021 ident: 2024031221160952400_CIT0038 article-title: Computational analysis of alternative photosynthetic electron flows linked with oxidative stress publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2021.750580 – volume: 176 start-page: 977 year: 2018 ident: 2024031221160952400_CIT0013 article-title: Fluctuating light takes crop photosynthesis on a rollercoaster ride publication-title: Plant Physiology doi: 10.1104/pp.17.01250 – volume: 61 start-page: 283 year: 2020 ident: 2024031221160952400_CIT0045 article-title: The mitochondrial respiratory chain maintains the photosynthetic electron flow in Arabidopsis thaliana leaves under high-light stress publication-title: Plant and Cell Physiology doi: 10.1093/pcp/pcz193 – volume: 212 start-page: 332 year: 2001 ident: 2024031221160952400_CIT0019 article-title: Photoinactivation of photosystem II complexes and photoprotection by non-functional neighbours in Capsicum annuum L. leaves publication-title: Planta doi: 10.1007/s004250000398 – volume: 117 start-page: 619 year: 1998 ident: 2024031221160952400_CIT0033 article-title: Increase in the quantum yield of photoinhibition contributes to copper toxicity in vivo publication-title: Plant Physiology doi: 10.1104/pp.117.2.619 – volume: 149 start-page: 107 year: 2021 ident: 2024031221160952400_CIT0047 article-title: A theoretical framework of the hybrid mechanism of photosystem II photodamage publication-title: Photosynthesis Research doi: 10.1007/s11120-021-00843-1 – volume: 3 start-page: 1 year: 2019 ident: 2024031221160952400_CIT0004 article-title: The zeaxanthin epoxidase is degraded along with the D1 protein during photoinhibition of photosystem II publication-title: Plant Direct doi: 10.1002/pld3.185 – volume: 808 start-page: 334 year: 1985 ident: 2024031221160952400_CIT0026 article-title: Functional properties of photosystem II β in spinach chloroplasts publication-title: Biochimica et Biophysica Acta (BBA)-Bioenergetics doi: 10.1016/0005-2728(85)90017-9 – volume: 101 start-page: 18234 year: 2004 ident: 2024031221160952400_CIT0023 article-title: Populations of photoinactivated photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0403857102 – volume: 130 start-page: 193 year: 2016 ident: 2024031221160952400_CIT0040 article-title: The slow phase of chlorophyll a fluorescence induction in silico: origin of the S–M fluorescence rise publication-title: Photosynthesis Research doi: 10.1007/s11120-016-0243-0 – volume: 109 start-page: 15757 year: 2012 ident: 2024031221160952400_CIT0046 article-title: A kinetic model of rapidly reversible nonphotochemical quenching publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1211017109 – volume: 130 start-page: 491 year: 2016 ident: 2024031221160952400_CIT0002 article-title: Thylakoid membrane model of the chl a fluorescence transient and p700 induction kinetics in plant leaves publication-title: Photosynthesis Research doi: 10.1007/s11120-016-0289-z – volume: 376 start-page: 105 year: 1975 ident: 2024031221160952400_CIT0016 article-title: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone publication-title: Biochimica et Biophysica Acta (BBA)-Bioenergetics doi: 10.1016/0005-2728(75)90209-1 – volume: 3 start-page: e00138 year: 2019 ident: 2024031221160952400_CIT0037 article-title: A genome-wide association study of non-photochemical quenching in response to local seasonal climates in Arabidopsis thaliana publication-title: Plant Direct doi: 10.1002/pld3.138 – volume: 41 start-page: 439 year: 1994 ident: 2024031221160952400_CIT0042 article-title: Mathematical modelling of photoinhibition and photosystem II repair cycle. I. Photoinhibition and d1 protein degradation in vitro and in the absence of chloroplast protein synthesis in vivo publication-title: Photosynthesis Research doi: 10.1007/BF02183046 – volume: 57 start-page: 1426 year: 2016 ident: 2024031221160952400_CIT0044 article-title: Mitochondrial alternative pathway-associated photoprotection of photosystem II is related to the photorespiratory pathway publication-title: Plant and Cell Physiology – volume: 30 start-page: 115 year: 1991 ident: 2024031221160952400_CIT0009 article-title: A simple model relating photoinhibitory fluorescence quenching in chloroplasts to a population of altered photosystem II reaction centers publication-title: Photosynthesis Research doi: 10.1007/BF00042009 – volume: 1409 start-page: 125 year: 1999 ident: 2024031221160952400_CIT0003 article-title: Theories for kinetics and yields of fluorescence and photochemistry: how, if at all, can different models of antenna organization be distinguished experimentally publication-title: Biochimica et Biophysica Acta (BBA)-Bioenergetics doi: 10.1016/S0005-2728(98)00149-2 – volume: 275 start-page: 1069 year: 2008 ident: 2024031221160952400_CIT0011 article-title: Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states publication-title: The FEBS Journal doi: 10.1111/j.1742-4658.2008.06263.x – volume: 3 start-page: 1 year: 2006 ident: 2024031221160952400_CIT0021 article-title: Bringing metabolic networks to life: convenience rate law and thermodynamic constraints publication-title: Theoretical Biology and Medical Modelling doi: 10.1186/1742-4682-3-41 – volume: 176 start-page: 1247 year: 2018 ident: 2024031221160952400_CIT0027 article-title: In silico analysis of the regulation of the photosynthetic electron transport chain in c3 plants publication-title: Plant Physiology doi: 10.1104/pp.17.00779 – volume: 1797 start-page: 466 year: 2010 ident: 2024031221160952400_CIT0031 article-title: Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in arabidopsis publication-title: Biochimica et Biophysica Acta (BBA)-Bioenergetics doi: 10.1016/j.bbabio.2010.01.001 – volume: 23 start-page: 667 year: 2018 ident: 2024031221160952400_CIT0020 article-title: Mechanisms of photodamage and protein turnover in photoinhibition publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2018.05.004 – volume: 166 start-page: 392 year: 2019 ident: 2024031221160952400_CIT0025 article-title: Balancing energy supply during photosynthesis—a theoretical perspective publication-title: Physiologia Plantarum doi: 10.1111/ppl.12962 – volume: 113 start-page: 157 year: 2012 ident: 2024031221160952400_CIT0017 article-title: The time course of photoinactivation of photosystem II in leaves revisited publication-title: Photosynthesis Research doi: 10.1007/s11120-012-9743-8 – volume: 376 start-page: 116 year: 1975 ident: 2024031221160952400_CIT0006 article-title: Fluorescence quenching in photosystem II of chloroplasts publication-title: Biochimica et Biophysica Acta (BBA)-Bioenergetics doi: 10.1016/0005-2728(75)90210-8 – volume: 9 start-page: 91 year: 2020 ident: 2024031221160952400_CIT0014 article-title: Oxygen and ros in photosynthesis publication-title: Plants doi: 10.3390/plants9010091 – volume: 231 start-page: 104968 year: 2023 ident: 2024031221160952400_CIT0030 article-title: What controls carbon sequestration in plants under which conditions publication-title: Biosystems doi: 10.1016/j.biosystems.2023.104968 – volume: 142 start-page: 87 year: 2011 ident: 2024031221160952400_CIT0036 article-title: The cost of photoinhibition publication-title: Physiologia Plantarum doi: 10.1111/j.1399-3054.2011.01465.x – volume: 1366 start-page: 235 year: 1998 ident: 2024031221160952400_CIT0010 article-title: Interdependence between chloroplasts and mitochondria in the light and the dark publication-title: Biochimica et Biophysica Acta (BBA)-Bioenergetics doi: 10.1016/S0005-2728(98)00126-1 – volume: 1857 start-page: 1860 year: 2016 ident: 2024031221160952400_CIT0024 article-title: A mathematical model of non-photochemical quenching to study short-term light memory in plants publication-title: Biochimica et Biophysica Acta (BBA)-Bioenergetics doi: 10.1016/j.bbabio.2016.09.003 – volume: 103 start-page: 7 year: 2010 ident: 2024031221160952400_CIT0039 article-title: Kinetics of prolonged photoinhibition revisited: photoinhibited photosystem II centres do not protect the active ones against loss of oxygen evolution publication-title: Photosynthesis Research doi: 10.1007/s11120-009-9496-1 |
SSID | ssj0002545399 |
Score | 2.2607417 |
Snippet | Abstract
Plants are constantly exposed to changing environments, sometimes leading to extreme conditions and stress. For example, sudden exposure to high light... Plants are constantly exposed to changing environments, sometimes leading to extreme conditions and stress. For example, sudden exposure to high light leads to... |
SourceID | unpaywall proquest crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
SubjectTerms | Changing environments Critical components Crop production D1 protein Damage Electron transport Electron transport chain Energy transfer Environmental changes Experimental data Fluorescence Functions (mathematics) Light effects Mathematical models Photochemicals Photoinhibition Photosynthesis Photosystem II Plant growth Quenching Reactive oxygen species |
SummonAdditionalLinks | – databaseName: ProQuest Central (subscription) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5qFfQiPrFaJQdPwtLseyOIVFGKYBGx0NuSx4QW6u5qK-K_N9lH1Yv0PuTwTZKZTOabD-DcoyJhqKU5aQGzlJzEESGXTowYm3jgC13OmX0cRoNR8DAOxy0YNlwY21bZ3InlRa1yaWvkPSuwZKJZkkTXxZtjVaPs72ojocFraQV1VY4YW4N1z6oqt2H95m749LysupjnkB3F2lCFmd-bZvPpzIBezGzfSc84BWmtENNEqT_MN5uAbn5kBf_65LPZr1h0vwPbdRJJ-pXXd6GF2R5s3OQm0fvah5c-eV0OYzVmpdgNyTUpJvkin2aTqSj7tC4JNg14xJiTijBpDcvualuaIkXFI8D5AYzu715uB04tnuBI36MLB12MUblKJJpRyg16ykMZ8phGiStjIZSvqZAqlAF3GadKKuYLFmkXdSDNsTyEdpZneAREcRnEoWRMKBFIjISHHtUqQguVDvwO9Bqw0qKakZFWf9t--hfetIa3AxcG05WNuw30aX3A5unPdugAXbpjxRWP_1_xBLY8k7pUhZYutBfvH3hqUo-FOKv30ze8LeHf priority: 102 providerName: ProQuest |
Title | A mathematical model of photoinhibition: exploring the impact of quenching processes |
URI | https://www.proquest.com/docview/3168782886 https://doi.org/10.1093/insilicoplants/diae001 |
UnpaywallVersion | publishedVersion |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2517-5025 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002545399 issn: 2517-5025 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2517-5025 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002545399 issn: 2517-5025 databaseCode: ABDBF dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2517-5025 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002545399 issn: 2517-5025 databaseCode: ADMLS dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2517-5025 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002545399 issn: 2517-5025 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2517-5025 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002545399 issn: 2517-5025 databaseCode: TOX dateStart: 20190101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2517-5025 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002545399 issn: 2517-5025 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7SCp58i5VacvAkrM2-N95aaSmCrUgL9bRskgkW6-5it0g9-NtN9lGsINRLTpMlmcnsTDLzzSB0ZREWUJBcaZpDNSQnMJgbccMH8JU9sJnM68w-DL3BxLmfutPyoqixMBvxe2q3Z_FiNlc8Sec6LaSteAZEw7Xqng4o1VB9MnzsPOsOcq763brKglcw4D8nb1igDVSbdi73lnEarT6i-fyHnekfoFG1wiK95PVmmbEb_vmreOP2WzhE-6XLiTvFGTlCOxAfo91uotzC1Qkad_DbunSrIstb4-BE4vQlyZJZ_DJjeVbXLYYqXQ8rclzAKzVhnoutH7JwWqAOYHGKJv3e-G5glK0WDG5bJDPABB-EKVggKSGR6QXCAu5GPvECk_uMCVsSxoXLncikERFcUJtRT5ogHa6U-AzV4iSGc4RFxB3f5ZQywRwOHrPAIlJ4oLctHbuB2hX7w7SoqBEWkXA73GRVWLKqga6VlLYmblbCDEt1XIS6O5dyhYLAayCyFvCWX7z4_5QmqmXvS7hU_krGWqje7Q0fn1r5fV-ND189NY5H01Z5fL8Bcj37lg |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSxxBEC6MBsxF8sRVk_TBXALD9rynBQkalfW1hLCCt0k_qnFhMzO6K7J_zt9m9Tw28SJevBc98HV1V3VNffUBbAdcZQKtppMWCUfJyTwVS-2liCnFg1DZes7s-TAZXEQnl_HlEtx3XBjXVtndifVFbUrtauR9J7BE0SzLkh_VtedUo9zf1U5CQ7bSCma3HjHWEjtOcX5HT7jp7vEB7fe3IDg6HP0ceK3KgKfDgM889DFF4xuVWcG5pM-YAHUsU55kvk6VMqHlSptYR9IXkhttRKhEYn20kSb_pXVfwQqlHSGdqpX9w-Gv34sqDz2_3OjXjposwv64mI4ntMnVxPW59MkJkLeKNF1UfMS0cwnv6m1RyfmdnEz-i31Hb2GtTVrZXuNl72AJi_fwer-kxHL-AUZ77O9i-CuZ1eI6rLSsuipn5bi4Gqu6L2yHYdfwx8icNQRNZ1h3c7tSGKsa3gJOP8LFi8D4CZaLssB1YEbqKI21EMqoSGOiAgy4NQk6qGwU9qDfgZVXzUyOvPmXHuaP4c1beHvwnTB9tvFWB33eHuhp_s_9esAX2_HMFTeeXvErrA5G52f52fHwdBPeBJQ2NUWeLVie3dziZ0p7ZupL61sM_ry0Oz8Au5IhIw |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-yCT75LU6m5MEnoVv63fg2xTEEpw8bzKfSJBdWnG1xHTL_epN-DCsI8_1Skrtc79fe_e4QurYICyhIrjzNoZqSExjMjbjhA_gqHthMFn1mn8beaOo8ztxZ9aGouTCN_D21-3GyjBdKJ9lCl4X0lc6AaLpW29MJpRZqT8cvg1c9Qc5Vr1tXRfCaBvzn4kYEarDaNLjcWyVZtP6MFosfcWZ4gJ7rHZblJW-9Vc56_OtX88btj3CI9ivIiQflHTlCO5Aco927VMHC9QmaDPD7pnWrEitG4-BU4mye5mmczGNWVHXdYqjL9bASxyW9UgsWtdj6RxbOStYBLE_RdPgwuR8Z1agFg9sWyQ0wwQdhChZISkhkeoGwgLuRT7zA5D5jwpaEceFyJzJpRAQX1GbUkyZIhysnPkOtJE3gHGERccd3OaVMMIeDxyywiBQe6GNLx-6gfq3-MCs7aoRlJtwOm6oKK1V10I2y0tbC3dqYYeWOy1BP51JQKAi8DiIbA2_5xIv_L-miVv6xgkuFV3J2VV3Sbyof9ro |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mathematical+model+of+photoinhibition%3A+exploring+the+impact+of+quenching+processes&rft.jtitle=in+silico+plants&rft.au=Nies%2C+Tim&rft.au=Matsubara%2C+Shizue&rft.au=Ebenh%C3%B6h%2C+Oliver&rft.date=2024-01-01&rft.issn=2517-5025&rft.eissn=2517-5025&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1093%2Finsilicoplants%2Fdiae001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_insilicoplants_diae001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2517-5025&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2517-5025&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2517-5025&client=summon |