Convexification of restricted Dirichlet-to-Neumann map

By our definition, “restricted Dirichlet-to-Neumann (DN) map” means that the Dirichlet and Neumann boundary data for a coefficient inverse problem (CIP) are generated by a point source running along an interval of a straight line. On the other hand, the conventional DN data can be generated, at leas...

Full description

Saved in:
Bibliographic Details
Published inJournal of inverse and ill-posed problems Vol. 25; no. 5; pp. 669 - 685
Main Author Klibanov, Michael V.
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.10.2017
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN0928-0219
1569-3945
DOI10.1515/jiip-2017-0067

Cover

Abstract By our definition, “restricted Dirichlet-to-Neumann (DN) map” means that the Dirichlet and Neumann boundary data for a coefficient inverse problem (CIP) are generated by a point source running along an interval of a straight line. On the other hand, the conventional DN data can be generated, at least sometimes, by a point source running along a hypersurface. CIPs with restricted DN data are non-overdetermined in the -dimensional case, with . We develop, in a unified way, a general and radically new numerical concept for CIPs with restricted DN data for a broad class of PDEs of second order, such as, e.g., elliptic, parabolic and hyperbolic ones. Namely, using Carleman weight functions, we construct globally convergent numerical methods. Hölder stability and uniqueness are also proved. The price we pay for these features is a well-acceptable one in the numerical analysis, that is, we truncate a certain Fourier-like series with respect to some functions depending only on the position of the point source. At least three applications are imaging of land mines, crosswell imaging and electrical impedance tomography.
AbstractList By our definition, “restricted Dirichlet-to-Neumann (DN) map” means that the Dirichlet and Neumann boundary data for a coefficient inverse problem (CIP) are generated by a point source running along an interval of a straight line. On the other hand, the conventional DN data can be generated, at least sometimes, by a point source running along a hypersurface. CIPs with restricted DN data are non-overdetermined in the n -dimensional case, with n ≥ 2 {n\geq 2} . We develop, in a unified way, a general and radically new numerical concept for CIPs with restricted DN data for a broad class of PDEs of second order, such as, e.g., elliptic, parabolic and hyperbolic ones. Namely, using Carleman weight functions, we construct globally convergent numerical methods. Hölder stability and uniqueness are also proved. The price we pay for these features is a well-acceptable one in the numerical analysis, that is, we truncate a certain Fourier-like series with respect to some functions depending only on the position of the point source. At least three applications are imaging of land mines, crosswell imaging and electrical impedance tomography.
By our definition, “restricted Dirichlet-to-Neumann (DN) map” means that the Dirichlet and Neumann boundary data for a coefficient inverse problem (CIP) are generated by a point source running along an interval of a straight line. On the other hand, the conventional DN data can be generated, at least sometimes, by a point source running along a hypersurface. CIPs with restricted DN data are non-overdetermined in the -dimensional case, with . We develop, in a unified way, a general and radically new numerical concept for CIPs with restricted DN data for a broad class of PDEs of second order, such as, e.g., elliptic, parabolic and hyperbolic ones. Namely, using Carleman weight functions, we construct globally convergent numerical methods. Hölder stability and uniqueness are also proved. The price we pay for these features is a well-acceptable one in the numerical analysis, that is, we truncate a certain Fourier-like series with respect to some functions depending only on the position of the point source. At least three applications are imaging of land mines, crosswell imaging and electrical impedance tomography.
By our definition, “restricted Dirichlet-to-Neumann (DN) map” means that the Dirichlet and Neumann boundary data for a coefficient inverse problem (CIP) are generated by a point source running along an interval of a straight line. On the other hand, the conventional DN data can be generated, at least sometimes, by a point source running along a hypersurface. CIPs with restricted DN data are non-overdetermined in the n -dimensional case, with [Image omitted]. We develop, in a unified way, a general and radically new numerical concept for CIPs with restricted DN data for a broad class of PDEs of second order, such as, e.g., elliptic, parabolic and hyperbolic ones. Namely, using Carleman weight functions, we construct globally convergent numerical methods. Hölder stability and uniqueness are also proved. The price we pay for these features is a well-acceptable one in the numerical analysis, that is, we truncate a certain Fourier-like series with respect to some functions depending only on the position of the point source. At least three applications are imaging of land mines, crosswell imaging and electrical impedance tomography.
Author Klibanov, Michael V.
Author_xml – sequence: 1
  givenname: Michael V.
  surname: Klibanov
  fullname: Klibanov, Michael V.
  email: mklibanv@uncc.edu
  organization: Department of Mathematics and Statistics, University of North Carolina atCharlotte, Charlotte, NC 28223, USA
BookMark eNp1kL1PwzAQxS1UJNrCyhyJ2cXfjiUWVD4lBAvMlus44CqNg-MA_e9xKANCMN1J9353794MTNrQOgCOMVpgjvnp2vsOEoQlREjIPTDFXChIFeMTMEWKlBARrA7ArO_XKMs4IVMglqF9cx--9tYkH9oi1EV0fYreJlcVFz43L41LMAV474aNadtiY7pDsF-bpndH33UOnq4uH5c38O7h-nZ5fgctJShBq1hdcSFZSRCSSpgSlczhkhuFOLKCCsykUdhUmK1oHhInaymtdNUqSyidg5Pd3i6G1yH70uswxDaf1FgxRksmpMoqtlPZGPo-ulpbn77eSdH4RmOkx4T0mJAeE9JjQhlb_MK66Dcmbv8HznbAu2mSi5V7jsM2Nz9M_QkSzoVQ9BNWyX0n
CitedBy_id crossref_primary_10_1088_1361_6420_ab0133
crossref_primary_10_1007_s10915_022_01846_3
crossref_primary_10_1016_j_camwa_2020_09_010
crossref_primary_10_1016_j_camwa_2022_10_021
crossref_primary_10_1016_j_cnsns_2023_107679
crossref_primary_10_1016_j_camwa_2022_08_032
crossref_primary_10_1088_1361_6420_ad9498
crossref_primary_10_1088_1361_6420_aadbc6
crossref_primary_10_1137_20M1376558
crossref_primary_10_1088_1361_6420_ab261e
crossref_primary_10_1515_jiip_2020_0039
crossref_primary_10_3934_cac_2023002
crossref_primary_10_1063_1_5097915
crossref_primary_10_1515_jiip_2020_0117
crossref_primary_10_1080_17415977_2020_1802447
crossref_primary_10_1088_1361_6420_aafecd
crossref_primary_10_1016_j_cnsns_2024_108166
crossref_primary_10_1080_17415977_2019_1643850
crossref_primary_10_1016_j_camwa_2024_03_038
crossref_primary_10_1137_19M1299487
crossref_primary_10_1137_19M1303101
crossref_primary_10_1137_19M1253605
crossref_primary_10_1515_jiip_2019_0026
crossref_primary_10_1007_s00211_020_01162_8
crossref_primary_10_1007_s10915_021_01501_3
crossref_primary_10_1016_j_apnum_2024_01_020
crossref_primary_10_1134_S199047892304018X
crossref_primary_10_1007_s40306_023_00500_w
crossref_primary_10_1016_j_cam_2024_115827
crossref_primary_10_1137_23M1565449
crossref_primary_10_1016_j_amc_2025_129286
crossref_primary_10_1515_jiip_2020_0028
crossref_primary_10_1515_jiip_2019_0036
crossref_primary_10_1017_S1474748018000488
crossref_primary_10_1088_1361_6420_ad006f
crossref_primary_10_1088_1361_6420_ab95aa
crossref_primary_10_1515_jiip_2020_0042
crossref_primary_10_1137_22M1509837
crossref_primary_10_1134_S1990478923040191
crossref_primary_10_1016_j_jcp_2023_111910
crossref_primary_10_1088_1361_6420_ab7d2d
crossref_primary_10_1080_17415977_2021_1943384
Cites_doi 10.1137/16M1061564
10.1016/j.jcp.2017.05.015
10.1007/BF01077418
10.1093/imrn/rns025
10.2307/2118653
10.2478/s11533-013-0202-3
10.1088/0266-5611/23/5/R01
10.1137/140981198
10.1137/120872164
10.1137/15M1022367
10.1515/9783110915549
10.1016/j.nonrwa.2014.09.015
10.1515/jiip-2015-0052
10.1515/9783110960716
10.1515/jiip-2014-0018
10.1088/0266-5611/32/12/125002
10.1088/0266-5611/31/12/125007
10.1002/mma.3531
10.1002/cpa.3160390106
10.1137/S0036141096297364
10.1515/jip-2012-0072
10.1093/imanum/drw045
10.1515/jiip-2017-0047
10.1016/j.nonrwa.2016.08.008
ContentType Journal Article
Copyright Copyright Walter de Gruyter GmbH Oct 2017
Copyright_xml – notice: Copyright Walter de Gruyter GmbH Oct 2017
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1515/jiip-2017-0067
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1569-3945
EndPage 685
ExternalDocumentID 10_1515_jiip_2017_0067
10_1515_jiip_2017_0067255669
GrantInformation_xml – fundername: Army Research Laboratory
  grantid: W911NF-15-1-0233
  funderid: https://doi.org/10.13039/100006754
– fundername: Office of Naval Research
  grantid: N00014-15-1-2330
  funderid: https://doi.org/10.13039/100000006
– fundername: Army Research Office
  grantid: W911NF-15-1-0233
  funderid: https://doi.org/10.13039/100000183
GroupedDBID 0R~
0~D
4.4
5GY
AAAEU
AADQG
AAFPC
AAGVJ
AAJBH
AALGR
AAONY
AAOUV
AAPJK
AAQCX
AARVR
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABMBZ
ABPLS
ABRQL
ABSOE
ABUVI
ABWLS
ABXMZ
ABYKJ
ACDEB
ACEFL
ACGFS
ACIWK
ACMKP
ACPMA
ACUND
ACXLN
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADNPR
ADOZN
AECWL
AEGVQ
AEICA
AEJTT
AEKEB
AENEX
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFGNR
AFQUK
AFYRI
AGBEV
AHGBP
AHVWV
AHXUK
AIERV
AIKXB
AIWOI
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMAVY
AMVHM
ASYPN
AZMOX
BAKPI
BBCWN
BCIFA
BLHJL
CFGNV
CS3
DSRVY
DU5
EBS
EJD
FSTRU
HZ~
IY9
KDIRW
O9-
P2P
PQQKQ
QD8
RDG
SA.
SLJYH
UK5
WTRAM
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c320t-c94fd56748200796a8084e185a9050c636147a91ad14b38082e7f77c7edba9033
ISSN 0928-0219
IngestDate Wed Aug 13 07:27:13 EDT 2025
Tue Jul 01 01:23:32 EDT 2025
Thu Apr 24 23:12:29 EDT 2025
Sat Sep 06 17:02:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-c94fd56748200796a8084e185a9050c636147a91ad14b38082e7f77c7edba9033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1944384679
PQPubID 2030080
PageCount 17
ParticipantIDs proquest_journals_1944384679
crossref_citationtrail_10_1515_jiip_2017_0067
crossref_primary_10_1515_jiip_2017_0067
walterdegruyter_journals_10_1515_jiip_2017_0067255669
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-1
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-1
  day: 01
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of inverse and ill-posed problems
PublicationYear 2017
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2023033123504275563_j_jiip-2017-0067_ref_003_w2aab3b7b8b1b6b1ab1b8b3Aa
2023033123504275563_j_jiip-2017-0067_ref_013_w2aab3b7b8b1b6b1ab1b8c13Aa
2023033123504275563_j_jiip-2017-0067_ref_006_w2aab3b7b8b1b6b1ab1b8b6Aa
2023033123504275563_j_jiip-2017-0067_ref_022_w2aab3b7b8b1b6b1ab1b8c22Aa
2023033123504275563_j_jiip-2017-0067_ref_017_w2aab3b7b8b1b6b1ab1b8c17Aa
2023033123504275563_j_jiip-2017-0067_ref_026_w2aab3b7b8b1b6b1ab1b8c26Aa
2023033123504275563_j_jiip-2017-0067_ref_012_w2aab3b7b8b1b6b1ab1b8c12Aa
2023033123504275563_j_jiip-2017-0067_ref_021_w2aab3b7b8b1b6b1ab1b8c21Aa
2023033123504275563_j_jiip-2017-0067_ref_002_w2aab3b7b8b1b6b1ab1b8b2Aa
2023033123504275563_j_jiip-2017-0067_ref_016_w2aab3b7b8b1b6b1ab1b8c16Aa
2023033123504275563_j_jiip-2017-0067_ref_025_w2aab3b7b8b1b6b1ab1b8c25Aa
2023033123504275563_j_jiip-2017-0067_ref_029_w2aab3b7b8b1b6b1ab1b8c29Aa
2023033123504275563_j_jiip-2017-0067_ref_009_w2aab3b7b8b1b6b1ab1b8b9Aa
2023033123504275563_j_jiip-2017-0067_ref_020_w2aab3b7b8b1b6b1ab1b8c20Aa
2023033123504275563_j_jiip-2017-0067_ref_005_w2aab3b7b8b1b6b1ab1b8b5Aa
2023033123504275563_j_jiip-2017-0067_ref_024_w2aab3b7b8b1b6b1ab1b8c24Aa
2023033123504275563_j_jiip-2017-0067_ref_001_w2aab3b7b8b1b6b1ab1b8b1Aa
2023033123504275563_j_jiip-2017-0067_ref_011_w2aab3b7b8b1b6b1ab1b8c11Aa
2023033123504275563_j_jiip-2017-0067_ref_008_w2aab3b7b8b1b6b1ab1b8b8Aa
2023033123504275563_j_jiip-2017-0067_ref_015_w2aab3b7b8b1b6b1ab1b8c15Aa
2023033123504275563_j_jiip-2017-0067_ref_019_w2aab3b7b8b1b6b1ab1b8c19Aa
2023033123504275563_j_jiip-2017-0067_ref_028_w2aab3b7b8b1b6b1ab1b8c28Aa
2023033123504275563_j_jiip-2017-0067_ref_010_w2aab3b7b8b1b6b1ab1b8c10Aa
2023033123504275563_j_jiip-2017-0067_ref_004_w2aab3b7b8b1b6b1ab1b8b4Aa
2023033123504275563_j_jiip-2017-0067_ref_014_w2aab3b7b8b1b6b1ab1b8c14Aa
2023033123504275563_j_jiip-2017-0067_ref_023_w2aab3b7b8b1b6b1ab1b8c23Aa
2023033123504275563_j_jiip-2017-0067_ref_018_w2aab3b7b8b1b6b1ab1b8c18Aa
2023033123504275563_j_jiip-2017-0067_ref_027_w2aab3b7b8b1b6b1ab1b8c27Aa
2023033123504275563_j_jiip-2017-0067_ref_007_w2aab3b7b8b1b6b1ab1b8b7Aa
References_xml – ident: 2023033123504275563_j_jiip-2017-0067_ref_001_w2aab3b7b8b1b6b1ab1b8b1Aa
  doi: 10.1137/16M1061564
– ident: 2023033123504275563_j_jiip-2017-0067_ref_007_w2aab3b7b8b1b6b1ab1b8b7Aa
– ident: 2023033123504275563_j_jiip-2017-0067_ref_025_w2aab3b7b8b1b6b1ab1b8c25Aa
  doi: 10.1016/j.jcp.2017.05.015
– ident: 2023033123504275563_j_jiip-2017-0067_ref_027_w2aab3b7b8b1b6b1ab1b8c27Aa
  doi: 10.1007/BF01077418
– ident: 2023033123504275563_j_jiip-2017-0067_ref_028_w2aab3b7b8b1b6b1ab1b8c28Aa
  doi: 10.1093/imrn/rns025
– ident: 2023033123504275563_j_jiip-2017-0067_ref_024_w2aab3b7b8b1b6b1ab1b8c24Aa
  doi: 10.2307/2118653
– ident: 2023033123504275563_j_jiip-2017-0067_ref_003_w2aab3b7b8b1b6b1ab1b8b3Aa
  doi: 10.2478/s11533-013-0202-3
– ident: 2023033123504275563_j_jiip-2017-0067_ref_023_w2aab3b7b8b1b6b1ab1b8c23Aa
– ident: 2023033123504275563_j_jiip-2017-0067_ref_005_w2aab3b7b8b1b6b1ab1b8b5Aa
  doi: 10.1088/0266-5611/23/5/R01
– ident: 2023033123504275563_j_jiip-2017-0067_ref_019_w2aab3b7b8b1b6b1ab1b8c19Aa
  doi: 10.1137/140981198
– ident: 2023033123504275563_j_jiip-2017-0067_ref_010_w2aab3b7b8b1b6b1ab1b8c10Aa
  doi: 10.1137/120872164
– ident: 2023033123504275563_j_jiip-2017-0067_ref_018_w2aab3b7b8b1b6b1ab1b8c18Aa
  doi: 10.1137/15M1022367
– ident: 2023033123504275563_j_jiip-2017-0067_ref_020_w2aab3b7b8b1b6b1ab1b8c20Aa
  doi: 10.1515/9783110915549
– ident: 2023033123504275563_j_jiip-2017-0067_ref_004_w2aab3b7b8b1b6b1ab1b8b4Aa
  doi: 10.1016/j.nonrwa.2014.09.015
– ident: 2023033123504275563_j_jiip-2017-0067_ref_006_w2aab3b7b8b1b6b1ab1b8b6Aa
  doi: 10.1515/jiip-2015-0052
– ident: 2023033123504275563_j_jiip-2017-0067_ref_013_w2aab3b7b8b1b6b1ab1b8c13Aa
  doi: 10.1515/9783110960716
– ident: 2023033123504275563_j_jiip-2017-0067_ref_012_w2aab3b7b8b1b6b1ab1b8c12Aa
  doi: 10.1515/jiip-2014-0018
– ident: 2023033123504275563_j_jiip-2017-0067_ref_009_w2aab3b7b8b1b6b1ab1b8b9Aa
  doi: 10.1088/0266-5611/32/12/125002
– ident: 2023033123504275563_j_jiip-2017-0067_ref_016_w2aab3b7b8b1b6b1ab1b8c16Aa
  doi: 10.1088/0266-5611/31/12/125007
– ident: 2023033123504275563_j_jiip-2017-0067_ref_017_w2aab3b7b8b1b6b1ab1b8c17Aa
  doi: 10.1002/mma.3531
– ident: 2023033123504275563_j_jiip-2017-0067_ref_029_w2aab3b7b8b1b6b1ab1b8c29Aa
  doi: 10.1002/cpa.3160390106
– ident: 2023033123504275563_j_jiip-2017-0067_ref_014_w2aab3b7b8b1b6b1ab1b8c14Aa
  doi: 10.1137/S0036141096297364
– ident: 2023033123504275563_j_jiip-2017-0067_ref_015_w2aab3b7b8b1b6b1ab1b8c15Aa
  doi: 10.1515/jip-2012-0072
– ident: 2023033123504275563_j_jiip-2017-0067_ref_021_w2aab3b7b8b1b6b1ab1b8c21Aa
– ident: 2023033123504275563_j_jiip-2017-0067_ref_022_w2aab3b7b8b1b6b1ab1b8c22Aa
– ident: 2023033123504275563_j_jiip-2017-0067_ref_011_w2aab3b7b8b1b6b1ab1b8c11Aa
  doi: 10.1093/imanum/drw045
– ident: 2023033123504275563_j_jiip-2017-0067_ref_026_w2aab3b7b8b1b6b1ab1b8c26Aa
  doi: 10.1515/jiip-2017-0047
– ident: 2023033123504275563_j_jiip-2017-0067_ref_002_w2aab3b7b8b1b6b1ab1b8b2Aa
  doi: 10.1016/j.nonrwa.2016.08.008
– ident: 2023033123504275563_j_jiip-2017-0067_ref_008_w2aab3b7b8b1b6b1ab1b8b8Aa
SSID ssj0017522
Score 2.3733733
Snippet By our definition, “restricted Dirichlet-to-Neumann (DN) map” means that the Dirichlet and Neumann boundary data for a coefficient inverse problem (CIP) are...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 669
SubjectTerms 35R30
convexification
Dirichlet problem
Electrical impedance
Fourier series
global strict convexity, Carleman weight functions
Inverse problems
Land mines
Mathematical analysis
Medical imaging
Numerical analysis
Numerical methods
Restricted Dirichlet-to-Neumann data
Uniqueness
Title Convexification of restricted Dirichlet-to-Neumann map
URI https://www.degruyter.com/doi/10.1515/jiip-2017-0067
https://www.proquest.com/docview/1944384679
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagu8Bh4qcoGyiHSRwmQ9Ikdn0cU7cKbePSot4s23GgU5tUa8Y2_nreS5wfG90EXKIotdzofc7z9-zn7xGyh4v5LIGwRHMDAQrTMdz5EdUwNWOlByXK3JzTMzaeRl9m8awtWVeeLin0R_Nr47mS_0EVngGueEr2H5BtOoUHcA_4whUQhutfYXyIKePXmOzTED8stQGuDXkkeLO5-QG40CJHEY6lyrL9pVrdw0fnGWZouN2ExYKu8rVFDYGy4Ey75QPxtcryn52Ue5cn65YOYDqqk9Ccgyo35PcTGI4Xlzd4e7zU4-4SIapX1y7NOgfJBA1FJQFZe9Dq6LIbKXHHHbKqDMsfbjouFS3O5_MVLd8L58x2Qqo34c--yqPpyYmcjGaTx2RrwIEd9cjWwfHn0bdmp4g7Rfj6XZ0wJ_zDp9v93yYebTSxfVWaIbHfKyN06MXkGdl2OHgHFcjPySObvSBPTxtR3fVLwu7A7eWp18LtbYLbA7hfkenRaHI4pq7sBTXhwC-oEVGaxFgEBteRBVPwyUQWeJUSfuwbFgKj4koEKgkiHcKPA8tTzg23iYYmYfia9LI8s2-IZ9IUIkatlELqPkyGfjxUJghCHQVDw_0-obVNpHGa8FiaZCExNgQbSrShRBtKtGGffGjaryo1lHtb7tYmlu6LWctARFGIhFf0SXzH7J1WGztEqTwm3j7c7Q550o7zXdIrLi7tOyCNhX7vxs1vlVJsiA
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHtQDviOK2oOJp0prX-wRCYgPOIHh1uxuW0WlJdLGx693ppSKqBe9Nel0s53ZndfOfgNwTMl828OwRDgSAxRbWPikmapA00ydHjhLa3PaHbvVM6_6Vn_mLgyVVXr-3XPyFk8QUiteJBNKlOVYA2iBKw-DwQgFjBqW1G3lPh4-LcJSGqwUYKl2cd64zc8SnAwznBEWM27QDLrx-zBfTdOnv1l8SU-u82nNGKDmGsjp1Cd1J4-nSSxO5fscquP__m0dipl_qtQmC2oDFvxwE1bbObjreAvsOlWqv1KNUSpWJQoU6vCBGhXdVwWV6EDe43JQ44iwP4Y8DJUhH21Dr9no1ltq1n5BlcaZFquSmYFnUTMSymcym6PoTB_tO2eapUnbQMvucKZzTzeFgS_PfCdwHOn4nkASw9iBQhiF_i4oMggwchGcc3Ihq15Vs6pc6rohTL0qHa0E6pTzrsywyalFxpNLMQoyxSWmuMQUl5hSgpOcfjRB5fiVsjwVpJvtzrGrM9M0yPFiJbDmhDtD9eOABNlms70_fncEy61u-8a9uexc78NKKuW0MrAMhfg58Q_Qw4nFYbaEPwCcbPVi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oJEYP-I4oag8mngotfbFHRBAfEA9ivDW721ZRKQRKfPx6Z0qpiHrRW5NON9uZ3XnsfvkG4IgO820PyxLhSCxQbGHhk2aqAkMzdXrgLMbmtNp2s2Ne3FlTNOEogVV6_v1w_BZNGFJLXl-O6aAs5RrACFx67HYHaGD0sORuSwMvWIQs1io61l_Z6tlJ_Ta9SnASynBGVMy4PxPmxu-jfI1Mn-lm7iW-uE5nNRN_GqsgpjOfwE6eiuNIFOX7HKnjv35tDXJJdqpUJ8tpHRb8cANWWim162gT7Brh1F8JYRQbVekHCvX3QH-KyauCLrQrH3AxqFGfmD96PAyVHh9sQadRv6k11aT5giqNshapkpmBZ1ErEjrNZDZHw5k-RnfONEuTtoFx3eFM555uCgNfln0ncBzp-J5AEcPYhkzYD_0dUGQQYN0iOOeUQFa8imZVuNR1Q5h6RTpaHtSp4l2ZMJNTg4xnlyoU1IlLOnFJJy7pJA_Hqfxgwsnxq2Rhakc32ZsjV2emaVDaxfJgzdl2RurHAYmwzWa7f_zuEJauTxvu1Xn7cg-WYxvHsMACZKLh2N_H9CYSB8kC_gDBUPQJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convexification+of+restricted+Dirichlet-to-Neumann+map&rft.jtitle=Journal+of+inverse+and+ill-posed+problems&rft.au=Klibanov%2C+Michael+V&rft.date=2017-10-01&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=0928-0219&rft.eissn=1569-3945&rft.volume=25&rft.issue=5&rft.spage=669&rft_id=info:doi/10.1515%2Fjiip-2017-0067&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0219&client=summon