Convexification of restricted Dirichlet-to-Neumann map
By our definition, “restricted Dirichlet-to-Neumann (DN) map” means that the Dirichlet and Neumann boundary data for a coefficient inverse problem (CIP) are generated by a point source running along an interval of a straight line. On the other hand, the conventional DN data can be generated, at leas...
Saved in:
Published in | Journal of inverse and ill-posed problems Vol. 25; no. 5; pp. 669 - 685 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
01.10.2017
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
ISSN | 0928-0219 1569-3945 |
DOI | 10.1515/jiip-2017-0067 |
Cover
Abstract | By our definition, “restricted Dirichlet-to-Neumann (DN) map” means that the Dirichlet and Neumann boundary data for a coefficient inverse problem (CIP) are generated by a point source running along an interval of a straight line.
On the other hand, the conventional DN data can be generated, at least sometimes, by a point source running along a hypersurface.
CIPs with restricted DN data are non-overdetermined in the
-dimensional case, with
.
We develop, in a unified way, a general and radically new numerical concept for CIPs with restricted DN data for a broad class of PDEs of second order, such as, e.g., elliptic, parabolic and hyperbolic ones.
Namely, using Carleman weight functions, we construct globally convergent numerical methods.
Hölder stability and uniqueness are also proved.
The price we pay for these features is a well-acceptable one in the numerical analysis, that is, we truncate a certain Fourier-like series with respect to some functions depending only on the position of the point source.
At least three applications are imaging of land mines, crosswell imaging and electrical impedance tomography. |
---|---|
AbstractList | By our definition, “restricted Dirichlet-to-Neumann (DN) map” means that the Dirichlet and Neumann boundary data for a coefficient inverse problem (CIP) are generated by a point source running along an interval of a straight line.
On the other hand, the conventional DN data can be generated, at least sometimes, by a point source running along a hypersurface.
CIPs with restricted DN data are non-overdetermined in the
n
-dimensional case, with
n
≥
2
{n\geq 2}
.
We develop, in a unified way, a general and radically new numerical concept for CIPs with restricted DN data for a broad class of PDEs of second order, such as, e.g., elliptic, parabolic and hyperbolic ones.
Namely, using Carleman weight functions, we construct globally convergent numerical methods.
Hölder stability and uniqueness are also proved.
The price we pay for these features is a well-acceptable one in the numerical analysis, that is, we truncate a certain Fourier-like series with respect to some functions depending only on the position of the point source.
At least three applications are imaging of land mines, crosswell imaging and electrical impedance tomography. By our definition, “restricted Dirichlet-to-Neumann (DN) map” means that the Dirichlet and Neumann boundary data for a coefficient inverse problem (CIP) are generated by a point source running along an interval of a straight line. On the other hand, the conventional DN data can be generated, at least sometimes, by a point source running along a hypersurface. CIPs with restricted DN data are non-overdetermined in the -dimensional case, with . We develop, in a unified way, a general and radically new numerical concept for CIPs with restricted DN data for a broad class of PDEs of second order, such as, e.g., elliptic, parabolic and hyperbolic ones. Namely, using Carleman weight functions, we construct globally convergent numerical methods. Hölder stability and uniqueness are also proved. The price we pay for these features is a well-acceptable one in the numerical analysis, that is, we truncate a certain Fourier-like series with respect to some functions depending only on the position of the point source. At least three applications are imaging of land mines, crosswell imaging and electrical impedance tomography. By our definition, “restricted Dirichlet-to-Neumann (DN) map” means that the Dirichlet and Neumann boundary data for a coefficient inverse problem (CIP) are generated by a point source running along an interval of a straight line. On the other hand, the conventional DN data can be generated, at least sometimes, by a point source running along a hypersurface. CIPs with restricted DN data are non-overdetermined in the n -dimensional case, with [Image omitted]. We develop, in a unified way, a general and radically new numerical concept for CIPs with restricted DN data for a broad class of PDEs of second order, such as, e.g., elliptic, parabolic and hyperbolic ones. Namely, using Carleman weight functions, we construct globally convergent numerical methods. Hölder stability and uniqueness are also proved. The price we pay for these features is a well-acceptable one in the numerical analysis, that is, we truncate a certain Fourier-like series with respect to some functions depending only on the position of the point source. At least three applications are imaging of land mines, crosswell imaging and electrical impedance tomography. |
Author | Klibanov, Michael V. |
Author_xml | – sequence: 1 givenname: Michael V. surname: Klibanov fullname: Klibanov, Michael V. email: mklibanv@uncc.edu organization: Department of Mathematics and Statistics, University of North Carolina atCharlotte, Charlotte, NC 28223, USA |
BookMark | eNp1kL1PwzAQxS1UJNrCyhyJ2cXfjiUWVD4lBAvMlus44CqNg-MA_e9xKANCMN1J9353794MTNrQOgCOMVpgjvnp2vsOEoQlREjIPTDFXChIFeMTMEWKlBARrA7ArO_XKMs4IVMglqF9cx--9tYkH9oi1EV0fYreJlcVFz43L41LMAV474aNadtiY7pDsF-bpndH33UOnq4uH5c38O7h-nZ5fgctJShBq1hdcSFZSRCSSpgSlczhkhuFOLKCCsykUdhUmK1oHhInaymtdNUqSyidg5Pd3i6G1yH70uswxDaf1FgxRksmpMoqtlPZGPo-ulpbn77eSdH4RmOkx4T0mJAeE9JjQhlb_MK66Dcmbv8HznbAu2mSi5V7jsM2Nz9M_QkSzoVQ9BNWyX0n |
CitedBy_id | crossref_primary_10_1088_1361_6420_ab0133 crossref_primary_10_1007_s10915_022_01846_3 crossref_primary_10_1016_j_camwa_2020_09_010 crossref_primary_10_1016_j_camwa_2022_10_021 crossref_primary_10_1016_j_cnsns_2023_107679 crossref_primary_10_1016_j_camwa_2022_08_032 crossref_primary_10_1088_1361_6420_ad9498 crossref_primary_10_1088_1361_6420_aadbc6 crossref_primary_10_1137_20M1376558 crossref_primary_10_1088_1361_6420_ab261e crossref_primary_10_1515_jiip_2020_0039 crossref_primary_10_3934_cac_2023002 crossref_primary_10_1063_1_5097915 crossref_primary_10_1515_jiip_2020_0117 crossref_primary_10_1080_17415977_2020_1802447 crossref_primary_10_1088_1361_6420_aafecd crossref_primary_10_1016_j_cnsns_2024_108166 crossref_primary_10_1080_17415977_2019_1643850 crossref_primary_10_1016_j_camwa_2024_03_038 crossref_primary_10_1137_19M1299487 crossref_primary_10_1137_19M1303101 crossref_primary_10_1137_19M1253605 crossref_primary_10_1515_jiip_2019_0026 crossref_primary_10_1007_s00211_020_01162_8 crossref_primary_10_1007_s10915_021_01501_3 crossref_primary_10_1016_j_apnum_2024_01_020 crossref_primary_10_1134_S199047892304018X crossref_primary_10_1007_s40306_023_00500_w crossref_primary_10_1016_j_cam_2024_115827 crossref_primary_10_1137_23M1565449 crossref_primary_10_1016_j_amc_2025_129286 crossref_primary_10_1515_jiip_2020_0028 crossref_primary_10_1515_jiip_2019_0036 crossref_primary_10_1017_S1474748018000488 crossref_primary_10_1088_1361_6420_ad006f crossref_primary_10_1088_1361_6420_ab95aa crossref_primary_10_1515_jiip_2020_0042 crossref_primary_10_1137_22M1509837 crossref_primary_10_1134_S1990478923040191 crossref_primary_10_1016_j_jcp_2023_111910 crossref_primary_10_1088_1361_6420_ab7d2d crossref_primary_10_1080_17415977_2021_1943384 |
Cites_doi | 10.1137/16M1061564 10.1016/j.jcp.2017.05.015 10.1007/BF01077418 10.1093/imrn/rns025 10.2307/2118653 10.2478/s11533-013-0202-3 10.1088/0266-5611/23/5/R01 10.1137/140981198 10.1137/120872164 10.1137/15M1022367 10.1515/9783110915549 10.1016/j.nonrwa.2014.09.015 10.1515/jiip-2015-0052 10.1515/9783110960716 10.1515/jiip-2014-0018 10.1088/0266-5611/32/12/125002 10.1088/0266-5611/31/12/125007 10.1002/mma.3531 10.1002/cpa.3160390106 10.1137/S0036141096297364 10.1515/jip-2012-0072 10.1093/imanum/drw045 10.1515/jiip-2017-0047 10.1016/j.nonrwa.2016.08.008 |
ContentType | Journal Article |
Copyright | Copyright Walter de Gruyter GmbH Oct 2017 |
Copyright_xml | – notice: Copyright Walter de Gruyter GmbH Oct 2017 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1515/jiip-2017-0067 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1569-3945 |
EndPage | 685 |
ExternalDocumentID | 10_1515_jiip_2017_0067 10_1515_jiip_2017_0067255669 |
GrantInformation_xml | – fundername: Army Research Laboratory grantid: W911NF-15-1-0233 funderid: https://doi.org/10.13039/100006754 – fundername: Office of Naval Research grantid: N00014-15-1-2330 funderid: https://doi.org/10.13039/100000006 – fundername: Army Research Office grantid: W911NF-15-1-0233 funderid: https://doi.org/10.13039/100000183 |
GroupedDBID | 0R~ 0~D 4.4 5GY AAAEU AADQG AAFPC AAGVJ AAJBH AALGR AAONY AAOUV AAPJK AAQCX AARVR AASOL AASQH AAWFC AAXCG ABAOT ABAQN ABFKT ABIQR ABJNI ABMBZ ABPLS ABRQL ABSOE ABUVI ABWLS ABXMZ ABYKJ ACDEB ACEFL ACGFS ACIWK ACMKP ACPMA ACUND ACXLN ACZBO ADEQT ADGQD ADGYE ADJVZ ADNPR ADOZN AECWL AEGVQ AEICA AEJTT AEKEB AENEX AEQDQ AERZL AEXIE AFBAA AFBDD AFCXV AFGNR AFQUK AFYRI AGBEV AHGBP AHVWV AHXUK AIERV AIKXB AIWOI AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS AMAVY AMVHM ASYPN AZMOX BAKPI BBCWN BCIFA BLHJL CFGNV CS3 DSRVY DU5 EBS EJD FSTRU HZ~ IY9 KDIRW O9- P2P PQQKQ QD8 RDG SA. SLJYH UK5 WTRAM AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c320t-c94fd56748200796a8084e185a9050c636147a91ad14b38082e7f77c7edba9033 |
ISSN | 0928-0219 |
IngestDate | Wed Aug 13 07:27:13 EDT 2025 Tue Jul 01 01:23:32 EDT 2025 Thu Apr 24 23:12:29 EDT 2025 Sat Sep 06 17:02:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-c94fd56748200796a8084e185a9050c636147a91ad14b38082e7f77c7edba9033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1944384679 |
PQPubID | 2030080 |
PageCount | 17 |
ParticipantIDs | proquest_journals_1944384679 crossref_citationtrail_10_1515_jiip_2017_0067 crossref_primary_10_1515_jiip_2017_0067 walterdegruyter_journals_10_1515_jiip_2017_0067255669 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-1 20171001 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-1 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Journal of inverse and ill-posed problems |
PublicationYear | 2017 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2023033123504275563_j_jiip-2017-0067_ref_003_w2aab3b7b8b1b6b1ab1b8b3Aa 2023033123504275563_j_jiip-2017-0067_ref_013_w2aab3b7b8b1b6b1ab1b8c13Aa 2023033123504275563_j_jiip-2017-0067_ref_006_w2aab3b7b8b1b6b1ab1b8b6Aa 2023033123504275563_j_jiip-2017-0067_ref_022_w2aab3b7b8b1b6b1ab1b8c22Aa 2023033123504275563_j_jiip-2017-0067_ref_017_w2aab3b7b8b1b6b1ab1b8c17Aa 2023033123504275563_j_jiip-2017-0067_ref_026_w2aab3b7b8b1b6b1ab1b8c26Aa 2023033123504275563_j_jiip-2017-0067_ref_012_w2aab3b7b8b1b6b1ab1b8c12Aa 2023033123504275563_j_jiip-2017-0067_ref_021_w2aab3b7b8b1b6b1ab1b8c21Aa 2023033123504275563_j_jiip-2017-0067_ref_002_w2aab3b7b8b1b6b1ab1b8b2Aa 2023033123504275563_j_jiip-2017-0067_ref_016_w2aab3b7b8b1b6b1ab1b8c16Aa 2023033123504275563_j_jiip-2017-0067_ref_025_w2aab3b7b8b1b6b1ab1b8c25Aa 2023033123504275563_j_jiip-2017-0067_ref_029_w2aab3b7b8b1b6b1ab1b8c29Aa 2023033123504275563_j_jiip-2017-0067_ref_009_w2aab3b7b8b1b6b1ab1b8b9Aa 2023033123504275563_j_jiip-2017-0067_ref_020_w2aab3b7b8b1b6b1ab1b8c20Aa 2023033123504275563_j_jiip-2017-0067_ref_005_w2aab3b7b8b1b6b1ab1b8b5Aa 2023033123504275563_j_jiip-2017-0067_ref_024_w2aab3b7b8b1b6b1ab1b8c24Aa 2023033123504275563_j_jiip-2017-0067_ref_001_w2aab3b7b8b1b6b1ab1b8b1Aa 2023033123504275563_j_jiip-2017-0067_ref_011_w2aab3b7b8b1b6b1ab1b8c11Aa 2023033123504275563_j_jiip-2017-0067_ref_008_w2aab3b7b8b1b6b1ab1b8b8Aa 2023033123504275563_j_jiip-2017-0067_ref_015_w2aab3b7b8b1b6b1ab1b8c15Aa 2023033123504275563_j_jiip-2017-0067_ref_019_w2aab3b7b8b1b6b1ab1b8c19Aa 2023033123504275563_j_jiip-2017-0067_ref_028_w2aab3b7b8b1b6b1ab1b8c28Aa 2023033123504275563_j_jiip-2017-0067_ref_010_w2aab3b7b8b1b6b1ab1b8c10Aa 2023033123504275563_j_jiip-2017-0067_ref_004_w2aab3b7b8b1b6b1ab1b8b4Aa 2023033123504275563_j_jiip-2017-0067_ref_014_w2aab3b7b8b1b6b1ab1b8c14Aa 2023033123504275563_j_jiip-2017-0067_ref_023_w2aab3b7b8b1b6b1ab1b8c23Aa 2023033123504275563_j_jiip-2017-0067_ref_018_w2aab3b7b8b1b6b1ab1b8c18Aa 2023033123504275563_j_jiip-2017-0067_ref_027_w2aab3b7b8b1b6b1ab1b8c27Aa 2023033123504275563_j_jiip-2017-0067_ref_007_w2aab3b7b8b1b6b1ab1b8b7Aa |
References_xml | – ident: 2023033123504275563_j_jiip-2017-0067_ref_001_w2aab3b7b8b1b6b1ab1b8b1Aa doi: 10.1137/16M1061564 – ident: 2023033123504275563_j_jiip-2017-0067_ref_007_w2aab3b7b8b1b6b1ab1b8b7Aa – ident: 2023033123504275563_j_jiip-2017-0067_ref_025_w2aab3b7b8b1b6b1ab1b8c25Aa doi: 10.1016/j.jcp.2017.05.015 – ident: 2023033123504275563_j_jiip-2017-0067_ref_027_w2aab3b7b8b1b6b1ab1b8c27Aa doi: 10.1007/BF01077418 – ident: 2023033123504275563_j_jiip-2017-0067_ref_028_w2aab3b7b8b1b6b1ab1b8c28Aa doi: 10.1093/imrn/rns025 – ident: 2023033123504275563_j_jiip-2017-0067_ref_024_w2aab3b7b8b1b6b1ab1b8c24Aa doi: 10.2307/2118653 – ident: 2023033123504275563_j_jiip-2017-0067_ref_003_w2aab3b7b8b1b6b1ab1b8b3Aa doi: 10.2478/s11533-013-0202-3 – ident: 2023033123504275563_j_jiip-2017-0067_ref_023_w2aab3b7b8b1b6b1ab1b8c23Aa – ident: 2023033123504275563_j_jiip-2017-0067_ref_005_w2aab3b7b8b1b6b1ab1b8b5Aa doi: 10.1088/0266-5611/23/5/R01 – ident: 2023033123504275563_j_jiip-2017-0067_ref_019_w2aab3b7b8b1b6b1ab1b8c19Aa doi: 10.1137/140981198 – ident: 2023033123504275563_j_jiip-2017-0067_ref_010_w2aab3b7b8b1b6b1ab1b8c10Aa doi: 10.1137/120872164 – ident: 2023033123504275563_j_jiip-2017-0067_ref_018_w2aab3b7b8b1b6b1ab1b8c18Aa doi: 10.1137/15M1022367 – ident: 2023033123504275563_j_jiip-2017-0067_ref_020_w2aab3b7b8b1b6b1ab1b8c20Aa doi: 10.1515/9783110915549 – ident: 2023033123504275563_j_jiip-2017-0067_ref_004_w2aab3b7b8b1b6b1ab1b8b4Aa doi: 10.1016/j.nonrwa.2014.09.015 – ident: 2023033123504275563_j_jiip-2017-0067_ref_006_w2aab3b7b8b1b6b1ab1b8b6Aa doi: 10.1515/jiip-2015-0052 – ident: 2023033123504275563_j_jiip-2017-0067_ref_013_w2aab3b7b8b1b6b1ab1b8c13Aa doi: 10.1515/9783110960716 – ident: 2023033123504275563_j_jiip-2017-0067_ref_012_w2aab3b7b8b1b6b1ab1b8c12Aa doi: 10.1515/jiip-2014-0018 – ident: 2023033123504275563_j_jiip-2017-0067_ref_009_w2aab3b7b8b1b6b1ab1b8b9Aa doi: 10.1088/0266-5611/32/12/125002 – ident: 2023033123504275563_j_jiip-2017-0067_ref_016_w2aab3b7b8b1b6b1ab1b8c16Aa doi: 10.1088/0266-5611/31/12/125007 – ident: 2023033123504275563_j_jiip-2017-0067_ref_017_w2aab3b7b8b1b6b1ab1b8c17Aa doi: 10.1002/mma.3531 – ident: 2023033123504275563_j_jiip-2017-0067_ref_029_w2aab3b7b8b1b6b1ab1b8c29Aa doi: 10.1002/cpa.3160390106 – ident: 2023033123504275563_j_jiip-2017-0067_ref_014_w2aab3b7b8b1b6b1ab1b8c14Aa doi: 10.1137/S0036141096297364 – ident: 2023033123504275563_j_jiip-2017-0067_ref_015_w2aab3b7b8b1b6b1ab1b8c15Aa doi: 10.1515/jip-2012-0072 – ident: 2023033123504275563_j_jiip-2017-0067_ref_021_w2aab3b7b8b1b6b1ab1b8c21Aa – ident: 2023033123504275563_j_jiip-2017-0067_ref_022_w2aab3b7b8b1b6b1ab1b8c22Aa – ident: 2023033123504275563_j_jiip-2017-0067_ref_011_w2aab3b7b8b1b6b1ab1b8c11Aa doi: 10.1093/imanum/drw045 – ident: 2023033123504275563_j_jiip-2017-0067_ref_026_w2aab3b7b8b1b6b1ab1b8c26Aa doi: 10.1515/jiip-2017-0047 – ident: 2023033123504275563_j_jiip-2017-0067_ref_002_w2aab3b7b8b1b6b1ab1b8b2Aa doi: 10.1016/j.nonrwa.2016.08.008 – ident: 2023033123504275563_j_jiip-2017-0067_ref_008_w2aab3b7b8b1b6b1ab1b8b8Aa |
SSID | ssj0017522 |
Score | 2.3733733 |
Snippet | By our definition, “restricted Dirichlet-to-Neumann (DN) map” means that the Dirichlet and Neumann boundary data for a coefficient inverse problem (CIP) are... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 669 |
SubjectTerms | 35R30 convexification Dirichlet problem Electrical impedance Fourier series global strict convexity, Carleman weight functions Inverse problems Land mines Mathematical analysis Medical imaging Numerical analysis Numerical methods Restricted Dirichlet-to-Neumann data Uniqueness |
Title | Convexification of restricted Dirichlet-to-Neumann map |
URI | https://www.degruyter.com/doi/10.1515/jiip-2017-0067 https://www.proquest.com/docview/1944384679 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagu8Bh4qcoGyiHSRwmQ9Ikdn0cU7cKbePSot4s23GgU5tUa8Y2_nreS5wfG90EXKIotdzofc7z9-zn7xGyh4v5LIGwRHMDAQrTMdz5EdUwNWOlByXK3JzTMzaeRl9m8awtWVeeLin0R_Nr47mS_0EVngGueEr2H5BtOoUHcA_4whUQhutfYXyIKePXmOzTED8stQGuDXkkeLO5-QG40CJHEY6lyrL9pVrdw0fnGWZouN2ExYKu8rVFDYGy4Ey75QPxtcryn52Ue5cn65YOYDqqk9Ccgyo35PcTGI4Xlzd4e7zU4-4SIapX1y7NOgfJBA1FJQFZe9Dq6LIbKXHHHbKqDMsfbjouFS3O5_MVLd8L58x2Qqo34c--yqPpyYmcjGaTx2RrwIEd9cjWwfHn0bdmp4g7Rfj6XZ0wJ_zDp9v93yYebTSxfVWaIbHfKyN06MXkGdl2OHgHFcjPySObvSBPTxtR3fVLwu7A7eWp18LtbYLbA7hfkenRaHI4pq7sBTXhwC-oEVGaxFgEBteRBVPwyUQWeJUSfuwbFgKj4koEKgkiHcKPA8tTzg23iYYmYfia9LI8s2-IZ9IUIkatlELqPkyGfjxUJghCHQVDw_0-obVNpHGa8FiaZCExNgQbSrShRBtKtGGffGjaryo1lHtb7tYmlu6LWctARFGIhFf0SXzH7J1WGztEqTwm3j7c7Q550o7zXdIrLi7tOyCNhX7vxs1vlVJsiA |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oHtQDviOK2oOJp0prX-wRCYgPOIHh1uxuW0WlJdLGx693ppSKqBe9Nel0s53ZndfOfgNwTMl828OwRDgSAxRbWPikmapA00ydHjhLa3PaHbvVM6_6Vn_mLgyVVXr-3XPyFk8QUiteJBNKlOVYA2iBKw-DwQgFjBqW1G3lPh4-LcJSGqwUYKl2cd64zc8SnAwznBEWM27QDLrx-zBfTdOnv1l8SU-u82nNGKDmGsjp1Cd1J4-nSSxO5fscquP__m0dipl_qtQmC2oDFvxwE1bbObjreAvsOlWqv1KNUSpWJQoU6vCBGhXdVwWV6EDe43JQ44iwP4Y8DJUhH21Dr9no1ltq1n5BlcaZFquSmYFnUTMSymcym6PoTB_tO2eapUnbQMvucKZzTzeFgS_PfCdwHOn4nkASw9iBQhiF_i4oMggwchGcc3Ihq15Vs6pc6rohTL0qHa0E6pTzrsywyalFxpNLMQoyxSWmuMQUl5hSgpOcfjRB5fiVsjwVpJvtzrGrM9M0yPFiJbDmhDtD9eOABNlms70_fncEy61u-8a9uexc78NKKuW0MrAMhfg58Q_Qw4nFYbaEPwCcbPVi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oJEYP-I4oag8mngotfbFHRBAfEA9ivDW721ZRKQRKfPx6Z0qpiHrRW5NON9uZ3XnsfvkG4IgO820PyxLhSCxQbGHhk2aqAkMzdXrgLMbmtNp2s2Ne3FlTNOEogVV6_v1w_BZNGFJLXl-O6aAs5RrACFx67HYHaGD0sORuSwMvWIQs1io61l_Z6tlJ_Ta9SnASynBGVMy4PxPmxu-jfI1Mn-lm7iW-uE5nNRN_GqsgpjOfwE6eiuNIFOX7HKnjv35tDXJJdqpUJ8tpHRb8cANWWim162gT7Brh1F8JYRQbVekHCvX3QH-KyauCLrQrH3AxqFGfmD96PAyVHh9sQadRv6k11aT5giqNshapkpmBZ1ErEjrNZDZHw5k-RnfONEuTtoFx3eFM555uCgNfln0ncBzp-J5AEcPYhkzYD_0dUGQQYN0iOOeUQFa8imZVuNR1Q5h6RTpaHtSp4l2ZMJNTg4xnlyoU1IlLOnFJJy7pJA_Hqfxgwsnxq2Rhakc32ZsjV2emaVDaxfJgzdl2RurHAYmwzWa7f_zuEJauTxvu1Xn7cg-WYxvHsMACZKLh2N_H9CYSB8kC_gDBUPQJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convexification+of+restricted+Dirichlet-to-Neumann+map&rft.jtitle=Journal+of+inverse+and+ill-posed+problems&rft.au=Klibanov%2C+Michael+V&rft.date=2017-10-01&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=0928-0219&rft.eissn=1569-3945&rft.volume=25&rft.issue=5&rft.spage=669&rft_id=info:doi/10.1515%2Fjiip-2017-0067&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-0219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-0219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-0219&client=summon |