Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination

Phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) constitute the core components of the PI3K/AKT/mTOR signalling cascade, regulating cell proliferation, survival and metabolism. Although these functions are well-defined in the context...

Full description

Saved in:
Bibliographic Details
Published inDevelopment (Cambridge) Vol. 143; no. 17; pp. 3050 - 3060
Main Authors Yu, Jason S. L., Cui, Wei
Format Journal Article
LanguageEnglish
Published England 01.09.2016
Subjects
Online AccessGet full text
ISSN0950-1991
1477-9129
DOI10.1242/dev.137075

Cover

Abstract Phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) constitute the core components of the PI3K/AKT/mTOR signalling cascade, regulating cell proliferation, survival and metabolism. Although these functions are well-defined in the context of tumorigenesis, recent studies – in particular those using pluripotent stem cells – have highlighted the importance of this pathway to development and cellular differentiation. Here, we review the recent in vitro and in vivo evidence for the role PI3K/AKT/mTOR signalling plays in the control of pluripotency and differentiation, with a particular focus on the molecular mechanisms underlying these functions.
AbstractList Phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) constitute the core components of the PI3K/AKT/mTOR signalling cascade, regulating cell proliferation, survival and metabolism. Although these functions are well-defined in the context of tumorigenesis, recent studies - in particular those using pluripotent stem cells - have highlighted the importance of this pathway to development and cellular differentiation. Here, we review the recent in vitro and in vivo evidence for the role PI3K/AKT/mTOR signalling plays in the control of pluripotency and differentiation, with a particular focus on the molecular mechanisms underlying these functions. Summary: This Review highlights the important role of the PI3K/AKT/mTOR signalling pathway in stem cells and discusses its role in regulating important aspects of proliferation and differentiation.
Phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) constitute the core components of the PI3K/AKT/mTOR signalling cascade, regulating cell proliferation, survival and metabolism. Although these functions are well-defined in the context of tumorigenesis, recent studies - in particular those using pluripotent stem cells - have highlighted the importance of this pathway to development and cellular differentiation. Here, we review the recent in vitro and in vivo evidence for the role PI3K/AKT/mTOR signalling plays in the control of pluripotency and differentiation, with a particular focus on the molecular mechanisms underlying these functions.
Author Cui, Wei
Yu, Jason S. L.
Author_xml – sequence: 1
  givenname: Jason S. L.
  orcidid: 0000-0001-5203-3603
  surname: Yu
  fullname: Yu, Jason S. L.
  organization: Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK
– sequence: 2
  givenname: Wei
  orcidid: 0000-0003-2019-380X
  surname: Cui
  fullname: Cui, Wei
  organization: Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27578176$$D View this record in MEDLINE/PubMed
BookMark eNqN0T1v2zAQBmCiSJE4H0t_QMGxCGqbR4mi2C0ImsZwgBiBMwsUdUpZUJRLUkbz7yPbSYaiQxdy4MO7w72n5Mj3Hgn5BGwGPOfzBrczyCST4gOZQC7lVAFXR2TClGBTUApOyGmMvxhjWSHlMTnhUsgSZDEhf1ahd7bFoJPt_Vcah7C1W-2o9g3tMOl6fI7dN5p-Ih0p0r6lq0W2nF8t1_Nuff9Ao33y2jnrn6j1dOOGYDd9Qm-e90UMOkdbnZA2mDB01u9bnZOPrXYRL17vM_J48319fTu9u_-xuL66m5qMs7Q7y7JlJTdQM6FrCVlR78ZHEMrkguvWZFmuwZiyKICLRtSyrhELYEwWPDsjXw51N6H_PWBMVWfjbibtsR9iBSWXiud5rv6Djj2lAAUj_fxKh7rDptoE2-nwXL0tdgSXB2BCH2PA9p0Aq3apVWNq1SG1EbO_sLFpv6UUtHX_-vICioSZVQ
CitedBy_id crossref_primary_10_1002_ame2_12491
crossref_primary_10_1167_iovs_19_27865
crossref_primary_10_3390_cancers11020254
crossref_primary_10_1097_MPH_0000000000002418
crossref_primary_10_31857_S0044467724010097
crossref_primary_10_3389_fimmu_2020_00528
crossref_primary_10_1038_s41418_018_0064_0
crossref_primary_10_1016_j_lfs_2020_118542
crossref_primary_10_1016_j_phymed_2024_156345
crossref_primary_10_1016_j_ajpath_2025_01_010
crossref_primary_10_1002_ajmg_a_63078
crossref_primary_10_1038_s41419_021_03391_7
crossref_primary_10_1186_s12931_021_01719_7
crossref_primary_10_1038_s41593_024_01865_3
crossref_primary_10_1167_iovs_63_12_9
crossref_primary_10_1007_s42000_018_0051_3
crossref_primary_10_3390_cancers11030293
crossref_primary_10_3390_nu10091190
crossref_primary_10_1016_j_biocel_2019_105615
crossref_primary_10_1016_j_intimp_2021_108427
crossref_primary_10_1111_cge_13543
crossref_primary_10_1016_j_bbrc_2020_08_090
crossref_primary_10_1038_s41536_023_00296_1
crossref_primary_10_1186_s13098_019_0449_3
crossref_primary_10_3390_md17020130
crossref_primary_10_1038_s41419_023_06125_z
crossref_primary_10_3390_ani14010167
crossref_primary_10_1038_s41598_020_77217_5
crossref_primary_10_1007_s40778_017_0100_x
crossref_primary_10_3390_toxics11040302
crossref_primary_10_2478_aoas_2023_0029
crossref_primary_10_1007_s12672_024_01319_z
crossref_primary_10_1016_j_biopha_2024_117266
crossref_primary_10_1155_2019_6027186
crossref_primary_10_3389_fonc_2020_01608
crossref_primary_10_3389_fphar_2019_01329
crossref_primary_10_1073_pnas_2109327118
crossref_primary_10_1080_15548627_2019_1607694
crossref_primary_10_1186_s12943_021_01356_0
crossref_primary_10_1039_D2TB00721E
crossref_primary_10_3389_fcell_2022_884004
crossref_primary_10_3389_fmicb_2019_02438
crossref_primary_10_1002_adbi_202300060
crossref_primary_10_1016_j_anireprosci_2021_106767
crossref_primary_10_3389_fcell_2025_1490231
crossref_primary_10_1016_j_jare_2023_09_041
crossref_primary_10_1016_j_abb_2022_109431
crossref_primary_10_1016_j_yexcr_2017_12_002
crossref_primary_10_3390_ijms21165906
crossref_primary_10_1038_s41598_025_87194_2
crossref_primary_10_1166_jbt_2023_3272
crossref_primary_10_1016_j_cbpc_2024_109882
crossref_primary_10_1186_s13578_017_0179_x
crossref_primary_10_1111_brv_12579
crossref_primary_10_1016_j_jep_2024_118129
crossref_primary_10_1038_s41540_024_00443_4
crossref_primary_10_3389_fmolb_2021_707461
crossref_primary_10_3390_biomedicines10112703
crossref_primary_10_1111_cpr_13206
crossref_primary_10_1016_j_theriogenology_2022_09_017
crossref_primary_10_18632_oncotarget_27763
crossref_primary_10_1186_s12951_023_01788_4
crossref_primary_10_1007_s12032_019_1268_y
crossref_primary_10_1158_1078_0432_CCR_17_3125
crossref_primary_10_1016_j_biochi_2022_10_020
crossref_primary_10_1016_j_csbj_2024_12_014
crossref_primary_10_1016_j_cbi_2019_01_026
crossref_primary_10_1016_j_jep_2021_114164
crossref_primary_10_3892_etm_2018_5744
crossref_primary_10_1007_s10571_020_00921_3
crossref_primary_10_1007_s13770_023_00579_0
crossref_primary_10_7554_eLife_58162
crossref_primary_10_1016_j_stemcr_2021_07_021
crossref_primary_10_1002_lsm_23137
crossref_primary_10_1038_s41598_024_83451_y
crossref_primary_10_1007_s12192_017_0844_3
crossref_primary_10_1016_j_biopha_2018_12_072
crossref_primary_10_1016_j_toxlet_2021_06_013
crossref_primary_10_1016_j_ygcen_2021_113870
crossref_primary_10_1186_s13287_022_02865_5
crossref_primary_10_3389_fvets_2021_639752
crossref_primary_10_3389_fimmu_2018_02172
crossref_primary_10_1016_j_neuint_2021_105067
crossref_primary_10_1016_j_neuroscience_2020_02_031
crossref_primary_10_1186_s12967_022_03247_4
crossref_primary_10_3390_ijms21010259
crossref_primary_10_3390_ijms222111864
crossref_primary_10_1016_j_aquaculture_2021_737207
crossref_primary_10_1111_cpr_13435
crossref_primary_10_1016_j_bcp_2020_114384
crossref_primary_10_1016_j_bioorg_2023_106583
crossref_primary_10_1016_j_prp_2020_153049
crossref_primary_10_1038_s41419_019_1943_0
crossref_primary_10_1039_C7TB00897J
crossref_primary_10_3892_mmr_2018_9321
crossref_primary_10_1111_1744_7917_13438
crossref_primary_10_31083_j_fbl2906212
crossref_primary_10_1016_j_theriogenology_2020_06_038
crossref_primary_10_1093_jbmrpl_ziad016
crossref_primary_10_1016_j_bbrc_2022_09_112
crossref_primary_10_3390_ijerph16203811
crossref_primary_10_3390_cells12040621
crossref_primary_10_1016_j_stemcr_2021_07_014
crossref_primary_10_1590_1414_431x20198385
crossref_primary_10_1111_nan_12970
crossref_primary_10_31083_j_fbl2802037
crossref_primary_10_21307_ane_2019_012
crossref_primary_10_1016_j_neubiorev_2018_12_014
crossref_primary_10_1016_j_actbio_2021_07_009
crossref_primary_10_3389_fcell_2020_580072
crossref_primary_10_1080_15592294_2021_1955188
crossref_primary_10_1007_s12015_018_9847_4
crossref_primary_10_1155_2021_5233462
crossref_primary_10_1016_j_aqrep_2021_100838
crossref_primary_10_1016_j_ejbas_2018_02_001
crossref_primary_10_1080_15384101_2021_2019411
crossref_primary_10_1038_s41419_018_0310_x
crossref_primary_10_3390_cells11091459
crossref_primary_10_3389_fimmu_2021_756042
crossref_primary_10_1080_14737140_2021_1918001
crossref_primary_10_3390_cells10061280
crossref_primary_10_1093_jpp_rgac007
crossref_primary_10_1242_bio_058544
crossref_primary_10_1016_j_fct_2020_111472
crossref_primary_10_3390_ijms19072013
crossref_primary_10_1007_s12032_024_02529_9
crossref_primary_10_1111_wrr_12759
crossref_primary_10_1515_tnsci_2022_0251
crossref_primary_10_1038_s41598_021_92758_z
crossref_primary_10_1111_cas_15371
crossref_primary_10_1038_s41416_021_01529_0
crossref_primary_10_3389_fphar_2019_00020
crossref_primary_10_1007_s10528_023_10451_4
crossref_primary_10_3390_cells12050797
crossref_primary_10_1016_j_chemosphere_2018_11_086
crossref_primary_10_1016_j_jep_2024_118418
crossref_primary_10_3892_ijo_2018_4579
crossref_primary_10_1007_s12640_023_00663_2
crossref_primary_10_1002_advs_202104136
crossref_primary_10_1007_s12035_022_03173_y
crossref_primary_10_1016_j_phrs_2019_104385
crossref_primary_10_1080_17410541_2024_2412514
crossref_primary_10_3390_biom12030460
crossref_primary_10_1111_pcmr_12910
crossref_primary_10_3390_cells9010218
crossref_primary_10_1016_j_isci_2022_104459
crossref_primary_10_1016_j_stem_2023_12_011
crossref_primary_10_1016_j_devcel_2023_04_013
crossref_primary_10_1038_s41467_021_26423_4
crossref_primary_10_4103_tcmj_tcmj_52_24
crossref_primary_10_1002_fsn3_4674
crossref_primary_10_1016_j_lfs_2020_118467
crossref_primary_10_3389_fendo_2024_1486608
crossref_primary_10_4155_fmc_2020_0307
crossref_primary_10_3390_ijms20030472
crossref_primary_10_7717_peerj_9110
crossref_primary_10_1016_j_gastrohep_2020_05_021
crossref_primary_10_1111_evj_13224
crossref_primary_10_1016_j_scr_2022_102748
crossref_primary_10_3390_ijms21082851
crossref_primary_10_1016_j_bmc_2021_116265
crossref_primary_10_1038_nrd_2017_106
crossref_primary_10_3389_fphys_2023_1272764
crossref_primary_10_1016_j_intimp_2024_113758
crossref_primary_10_1038_s41467_021_25933_5
crossref_primary_10_1093_infdis_jiz064
crossref_primary_10_1002_jcp_29333
crossref_primary_10_1155_2021_5521519
crossref_primary_10_1002_sctm_19_0020
crossref_primary_10_1007_s12035_023_03649_5
crossref_primary_10_1016_j_ejphar_2020_173796
crossref_primary_10_1038_s41419_018_1284_4
crossref_primary_10_1016_j_hermed_2024_100963
crossref_primary_10_1016_j_compbiolchem_2025_108433
crossref_primary_10_1007_s12031_016_0872_y
crossref_primary_10_32604_biocell_2023_026618
crossref_primary_10_3389_fonc_2021_752784
crossref_primary_10_2147_DMSO_S281527
crossref_primary_10_1016_j_biomaterials_2021_120841
crossref_primary_10_3390_cells10092194
crossref_primary_10_1111_nph_17129
crossref_primary_10_1016_j_heliyon_2023_e16999
crossref_primary_10_3390_cells11101648
crossref_primary_10_1007_s10266_021_00597_1
crossref_primary_10_1007_s11262_021_01880_7
crossref_primary_10_37621_JNAMSU_2022_1_3
crossref_primary_10_3892_ol_2019_10035
crossref_primary_10_1002_ame2_12475
crossref_primary_10_5851_kosfa_2024_e50
crossref_primary_10_3389_fphar_2021_663551
crossref_primary_10_1096_fj_202101428RR
crossref_primary_10_3389_fgene_2019_01386
crossref_primary_10_3390_ijms21207751
crossref_primary_10_1158_1541_7786_MCR_20_0464
crossref_primary_10_18632_aging_103730
crossref_primary_10_3390_cells9061550
crossref_primary_10_1016_j_jbior_2020_100722
crossref_primary_10_1016_j_ejphar_2023_176004
crossref_primary_10_1016_j_hermed_2023_100797
crossref_primary_10_1017_S1431927618015532
crossref_primary_10_3390_ph17121564
crossref_primary_10_1016_j_lfs_2020_117481
crossref_primary_10_3389_fphar_2021_650816
crossref_primary_10_3389_fphar_2022_791272
crossref_primary_10_1002_adfm_202307634
crossref_primary_10_3390_cells11142150
crossref_primary_10_1016_j_bbadis_2020_165988
crossref_primary_10_3390_cancers12030731
crossref_primary_10_1016_j_cbpa_2021_111081
crossref_primary_10_1111_jpi_12620
crossref_primary_10_3390_antiox13080897
crossref_primary_10_3389_fnmol_2020_00141
crossref_primary_10_1158_1078_0432_CCR_22_0391
crossref_primary_10_3390_ijms26031389
crossref_primary_10_1016_j_bbrc_2021_01_055
crossref_primary_10_1038_srep46246
crossref_primary_10_1021_acs_jproteome_0c00100
crossref_primary_10_1016_j_bcp_2019_113729
crossref_primary_10_3389_fphar_2021_632040
crossref_primary_10_3390_ani14070988
crossref_primary_10_1002_term_2595
crossref_primary_10_1016_j_bbamcr_2020_118713
crossref_primary_10_1038_s41598_025_91047_3
crossref_primary_10_1016_j_bbrep_2023_101625
crossref_primary_10_1038_s41392_022_01013_y
crossref_primary_10_3892_ijo_2017_3942
crossref_primary_10_1016_j_tox_2019_02_017
crossref_primary_10_3390_md17060315
crossref_primary_10_1007_s10571_020_01009_8
crossref_primary_10_1134_S0022093021020095
crossref_primary_10_1097_MD_0000000000022172
crossref_primary_10_1038_s41416_020_0729_6
crossref_primary_10_1097_PAI_0000000000000961
crossref_primary_10_1097_BRS_0000000000004264
crossref_primary_10_3389_fimmu_2022_831636
crossref_primary_10_3389_fcell_2020_607444
crossref_primary_10_1186_s10020_022_00511_7
crossref_primary_10_1002_jbm_a_36213
crossref_primary_10_1186_s12885_019_6110_6
crossref_primary_10_3389_fonc_2020_00486
crossref_primary_10_1534_g3_117_043513
crossref_primary_10_4062_biomolther_2021_074
crossref_primary_10_18027_2224_5057_2024_010
crossref_primary_10_1002_ajmg_a_62709
crossref_primary_10_1080_10495398_2020_1752703
crossref_primary_10_1038_s41417_024_00827_y
crossref_primary_10_1007_s11224_019_01303_2
crossref_primary_10_1016_j_bbadis_2025_167689
crossref_primary_10_1038_s41419_019_1587_0
crossref_primary_10_3390_md20040235
crossref_primary_10_1038_s41420_022_01204_0
crossref_primary_10_3390_cells10081933
crossref_primary_10_1016_j_envint_2023_107973
crossref_primary_10_1111_jpn_13756
crossref_primary_10_3389_fgene_2019_00556
crossref_primary_10_1016_j_trsl_2019_04_006
crossref_primary_10_1093_jjco_hyz174
crossref_primary_10_1016_j_neuron_2019_11_029
crossref_primary_10_1177_17590914221131452
crossref_primary_10_1016_j_biopha_2022_113864
crossref_primary_10_1016_j_seizure_2024_08_013
crossref_primary_10_1186_s12967_023_04167_7
crossref_primary_10_18632_aging_203134
crossref_primary_10_4049_jimmunol_1901094
crossref_primary_10_1002_jcb_29843
crossref_primary_10_1016_j_brainres_2018_04_028
crossref_primary_10_1177_1744806919900814
crossref_primary_10_1038_s41598_019_40358_3
crossref_primary_10_1186_s13058_018_0996_9
crossref_primary_10_1016_j_biopha_2020_110909
crossref_primary_10_1172_jci_insight_94200
crossref_primary_10_3390_ijms26030955
crossref_primary_10_1089_jir_2021_0236
crossref_primary_10_3389_fmolb_2023_1297198
crossref_primary_10_1155_2022_4711499
crossref_primary_10_2147_DDDT_S222244
crossref_primary_10_1038_s41419_024_07077_8
crossref_primary_10_2147_OTT_S268899
crossref_primary_10_1016_j_jep_2021_114443
crossref_primary_10_3390_ijms241612964
crossref_primary_10_1007_s10787_020_00698_3
crossref_primary_10_1016_j_stemcr_2023_01_008
crossref_primary_10_1038_s41419_020_2723_6
crossref_primary_10_1007_s10735_024_10338_7
crossref_primary_10_3390_cancers12020287
crossref_primary_10_1002_jcb_27991
crossref_primary_10_1016_j_intimp_2024_113791
crossref_primary_10_1038_s41388_020_01399_5
crossref_primary_10_3390_cells9071706
crossref_primary_10_1080_14737159_2018_1538794
crossref_primary_10_1016_j_devcel_2022_10_011
crossref_primary_10_3892_ijo_2022_5372
crossref_primary_10_3389_fgene_2020_00121
crossref_primary_10_3390_cancers12071790
crossref_primary_10_1016_j_ajpath_2021_06_004
crossref_primary_10_1007_s10565_024_09896_z
crossref_primary_10_1016_j_bmc_2023_117402
crossref_primary_10_1016_j_jep_2022_115448
crossref_primary_10_1186_s12935_024_03462_7
crossref_primary_10_3390_ijms26051869
crossref_primary_10_1016_j_jff_2021_104854
crossref_primary_10_1017_S0967199421000265
crossref_primary_10_1016_j_fct_2019_110863
crossref_primary_10_1016_j_ijbiomac_2022_04_143
crossref_primary_10_1007_s13237_020_00313_4
crossref_primary_10_1155_2022_9461444
crossref_primary_10_1002_iub_2446
crossref_primary_10_1016_j_freeradbiomed_2020_12_443
crossref_primary_10_3389_fendo_2022_882214
crossref_primary_10_1016_j_rvsc_2021_01_020
crossref_primary_10_1016_j_yexmp_2022_104813
crossref_primary_10_1177_1535370220903463
crossref_primary_10_3389_fimmu_2021_696061
crossref_primary_10_3390_cancers13112809
crossref_primary_10_3389_fimmu_2021_739452
crossref_primary_10_1016_j_bbrc_2020_06_085
crossref_primary_10_1039_C8MT00183A
crossref_primary_10_1016_j_theriogenology_2023_06_017
crossref_primary_10_3390_ijms21093285
crossref_primary_10_1038_s41418_023_01223_z
crossref_primary_10_1007_s00441_020_03355_x
crossref_primary_10_1016_j_cels_2019_03_012
crossref_primary_10_1039_D4FO04446K
crossref_primary_10_1002_advs_202202093
crossref_primary_10_1042_BST20190778
crossref_primary_10_3389_fimmu_2021_764749
crossref_primary_10_1016_j_phymed_2021_153795
crossref_primary_10_3892_mmr_2021_12533
crossref_primary_10_5812_gct_119242
crossref_primary_10_1016_j_phytochem_2024_114199
crossref_primary_10_1155_2019_1569740
crossref_primary_10_3390_ijms26072945
crossref_primary_10_1021_acs_jproteome_4c00298
crossref_primary_10_1016_j_jhazmat_2020_122996
crossref_primary_10_3389_fcell_2021_696545
crossref_primary_10_1016_j_brainres_2019_05_012
crossref_primary_10_3390_molecules23112819
crossref_primary_10_1007_s00203_023_03559_z
crossref_primary_10_3389_fphys_2022_806171
crossref_primary_10_1016_j_neuro_2021_05_002
crossref_primary_10_1016_j_ecoenv_2021_112636
crossref_primary_10_1111_1440_1681_13235
crossref_primary_10_3390_ijms24020919
crossref_primary_10_1016_j_gene_2020_144459
crossref_primary_10_3390_ijms20112704
crossref_primary_10_1016_j_aqrep_2024_102467
crossref_primary_10_3389_fmicb_2022_1041314
crossref_primary_10_3390_ijms24043091
crossref_primary_10_1002_jcp_31385
crossref_primary_10_3390_molecules26092442
crossref_primary_10_1038_s41598_021_84879_2
crossref_primary_10_3390_genes13101836
crossref_primary_10_3389_fphar_2024_1410942
crossref_primary_10_1002_smtd_202301281
crossref_primary_10_3390_molecules27123803
crossref_primary_10_1016_j_biopha_2021_112551
crossref_primary_10_1096_fj_202001295R
crossref_primary_10_1016_j_yexcr_2024_114090
crossref_primary_10_1038_s41536_022_00246_3
crossref_primary_10_3389_fphys_2019_00917
crossref_primary_10_1089_scd_2019_0188
crossref_primary_10_3390_cells13181551
crossref_primary_10_1177_03946320241249397
crossref_primary_10_3390_ijms242316552
crossref_primary_10_1038_s41598_021_92720_z
crossref_primary_10_1155_2022_5262189
crossref_primary_10_1016_j_ydbio_2020_04_004
crossref_primary_10_1615_JEnvironPatholToxicolOncol_2022041136
crossref_primary_10_3389_fcell_2021_670059
crossref_primary_10_1007_s12035_023_03353_4
crossref_primary_10_1007_s13410_023_01240_1
crossref_primary_10_1111_cas_13248
crossref_primary_10_15252_embr_202357339
crossref_primary_10_1016_j_brainres_2024_149381
crossref_primary_10_1186_s12935_019_1054_0
crossref_primary_10_1007_s12015_022_10471_4
crossref_primary_10_3389_fendo_2019_00356
crossref_primary_10_1111_jre_12630
crossref_primary_10_3390_biology11040559
crossref_primary_10_3390_ijms20143468
crossref_primary_10_1016_j_tice_2022_101971
crossref_primary_10_3892_etm_2018_6510
crossref_primary_10_1007_s00044_024_03333_w
crossref_primary_10_3892_ol_2018_9461
crossref_primary_10_1166_jbn_2023_3591
crossref_primary_10_3389_fphar_2022_946193
crossref_primary_10_1097_MD_0000000000025415
crossref_primary_10_1021_acsami_3c17863
crossref_primary_10_1016_j_phymed_2020_153360
crossref_primary_10_3389_fncel_2020_00143
crossref_primary_10_3892_mmr_2020_11462
crossref_primary_10_1007_s00011_022_01617_8
crossref_primary_10_1016_j_cbpa_2020_110653
crossref_primary_10_1007_s12032_017_0897_2
crossref_primary_10_1111_jpn_13730
crossref_primary_10_1155_2020_5474608
crossref_primary_10_1142_S0192415X21500208
crossref_primary_10_2147_CCID_S425295
crossref_primary_10_1111_cas_14204
crossref_primary_10_1093_toxres_tfae199
crossref_primary_10_1016_j_canlet_2021_10_010
crossref_primary_10_3389_fcvm_2021_688513
crossref_primary_10_1097_WNR_0000000000001479
crossref_primary_10_1093_jpp_rgaa011
crossref_primary_10_1111_cas_13482
crossref_primary_10_1016_j_brainres_2024_149248
crossref_primary_10_1097_PAI_0000000000000874
crossref_primary_10_1002_cam4_70267
crossref_primary_10_1007_s40200_020_00566_5
crossref_primary_10_1247_csf_19013
crossref_primary_10_1007_s11064_022_03833_4
crossref_primary_10_1016_j_jep_2022_115637
crossref_primary_10_1038_s41523_021_00329_2
crossref_primary_10_3389_fonc_2021_624837
crossref_primary_10_1016_j_ccell_2020_08_016
crossref_primary_10_1007_s11033_020_05349_y
crossref_primary_10_1186_s13287_022_03025_5
crossref_primary_10_1186_s13046_023_02692_3
crossref_primary_10_1016_j_cbi_2017_01_004
crossref_primary_10_1002_ajmg_a_62660
crossref_primary_10_1038_s41419_020_03203_4
crossref_primary_10_3390_ijms24043438
crossref_primary_10_3389_fonc_2021_678824
crossref_primary_10_1016_j_cellsig_2022_110350
crossref_primary_10_1007_s00210_024_03682_8
crossref_primary_10_1002_dvdy_402
crossref_primary_10_1111_imm_13379
crossref_primary_10_3389_fcvm_2022_956538
crossref_primary_10_3390_ani13040600
crossref_primary_10_1038_s41467_024_51794_9
crossref_primary_10_1242_dev_201704
crossref_primary_10_1111_jpi_70022
crossref_primary_10_1007_s12011_023_03866_y
crossref_primary_10_1016_j_celrep_2019_11_047
crossref_primary_10_1016_j_yexcr_2022_113352
crossref_primary_10_3892_mmr_2019_10839
crossref_primary_10_1016_j_jgr_2019_07_003
crossref_primary_10_3389_fdmed_2021_807046
crossref_primary_10_1016_j_prp_2023_154898
crossref_primary_10_1186_s13578_019_0361_4
crossref_primary_10_1002_cbf_3677
crossref_primary_10_1038_s41467_022_34363_w
crossref_primary_10_3389_fnins_2019_01089
crossref_primary_10_3390_cancers17020255
crossref_primary_10_1089_jmf_2023_K_0117
crossref_primary_10_1016_j_bioorg_2019_103232
crossref_primary_10_1007_s11655_023_3594_3
crossref_primary_10_3390_ijms24065345
crossref_primary_10_1097_CAD_0000000000001024
crossref_primary_10_1007_s12015_021_10131_z
crossref_primary_10_1016_j_jphs_2022_03_007
crossref_primary_10_1097_CCM_0000000000005180
crossref_primary_10_3389_fnmol_2021_809878
crossref_primary_10_1016_j_jbc_2022_102193
crossref_primary_10_1038_s41598_019_55663_0
crossref_primary_10_1142_S0192415X23500581
crossref_primary_10_1111_jpn_13026
crossref_primary_10_3390_life14050554
crossref_primary_10_1038_s41418_018_0269_2
crossref_primary_10_3389_fimmu_2021_642771
crossref_primary_10_1096_fj_201903253R
crossref_primary_10_3389_fvets_2021_771411
crossref_primary_10_3390_v11020171
crossref_primary_10_3390_molecules27134304
crossref_primary_10_1515_hmbci_2020_0009
crossref_primary_10_3390_pharmaceutics14091977
crossref_primary_10_1002_JLB_1HI0421_181R
crossref_primary_10_1038_s41418_019_0359_9
crossref_primary_10_1016_j_cytogfr_2019_03_001
crossref_primary_10_1016_j_jare_2023_12_016
crossref_primary_10_1016_j_prmcm_2024_100550
crossref_primary_10_2147_DDDT_S270124
crossref_primary_10_1186_s13058_018_0944_8
crossref_primary_10_1186_s12943_024_02119_3
crossref_primary_10_1210_en_2019_00177
crossref_primary_10_1016_j_isci_2018_05_006
crossref_primary_10_1016_j_biopha_2017_06_058
crossref_primary_10_1016_j_molcel_2019_07_007
crossref_primary_10_1016_j_biosystems_2023_104961
crossref_primary_10_1186_s12885_021_07844_2
crossref_primary_10_1371_journal_pgen_1007491
crossref_primary_10_1016_j_fitote_2016_11_010
crossref_primary_10_1142_S0192415X21500245
crossref_primary_10_1016_j_kint_2020_07_043
crossref_primary_10_1111_jnc_15441
crossref_primary_10_1002_jcb_27367
crossref_primary_10_1080_07420528_2022_2082302
crossref_primary_10_1007_s13258_023_01431_4
crossref_primary_10_17826_cumj_1186118
crossref_primary_10_1016_j_biopha_2019_108610
crossref_primary_10_2174_1874467215666220217103233
crossref_primary_10_1017_S0967199420000209
crossref_primary_10_2174_1570161120666220720101352
crossref_primary_10_3390_ijms23168856
crossref_primary_10_1177_03009858231207021
crossref_primary_10_1186_s12943_024_02217_2
crossref_primary_10_1016_j_sjbs_2021_05_006
crossref_primary_10_3390_biom12091181
crossref_primary_10_2147_DDDT_S231814
crossref_primary_10_1186_s13287_020_01945_8
crossref_primary_10_1016_j_vph_2018_02_001
crossref_primary_10_1007_s00335_021_09873_5
crossref_primary_10_1016_j_phrs_2019_03_010
crossref_primary_10_3390_cells11071178
crossref_primary_10_1007_s11033_023_08628_6
crossref_primary_10_3389_fcell_2025_1489958
crossref_primary_10_1080_02713683_2022_2134426
crossref_primary_10_31744_einstein_journal_2023AO0171
crossref_primary_10_1039_D4MD00425F
crossref_primary_10_1016_j_labinv_2024_102202
crossref_primary_10_1111_cpr_12739
crossref_primary_10_1186_s13058_024_01802_z
crossref_primary_10_1155_2020_8871745
crossref_primary_10_1016_j_neuint_2018_05_006
crossref_primary_10_3389_fphar_2024_1510098
crossref_primary_10_3390_ijerph20032283
crossref_primary_10_1042_BSR20181341
crossref_primary_10_1007_s11010_017_3164_0
crossref_primary_10_1016_j_bioorg_2021_105101
crossref_primary_10_3892_ol_2020_11835
crossref_primary_10_1038_s41467_020_15267_z
crossref_primary_10_1016_j_ijbiomac_2021_03_075
crossref_primary_10_1186_s13287_018_0895_0
crossref_primary_10_1016_j_lfs_2024_122557
crossref_primary_10_1038_s41598_020_75657_7
crossref_primary_10_1113_JP284552
crossref_primary_10_2147_IJN_S241163
crossref_primary_10_3390_ijms21072259
crossref_primary_10_1186_s12964_018_0307_1
crossref_primary_10_1016_j_biopha_2020_110397
crossref_primary_10_1002_ptr_7523
crossref_primary_10_1007_s12015_024_10810_7
crossref_primary_10_1590_1678_4685_gmb_2020_0371
crossref_primary_10_1002_ptr_7766
crossref_primary_10_1016_j_phymed_2021_153727
crossref_primary_10_1590_1414_431x2024e13796
crossref_primary_10_7554_eLife_50087
crossref_primary_10_1371_journal_pone_0240022
crossref_primary_10_3390_md17090501
crossref_primary_10_1002_cam4_2403
crossref_primary_10_1016_j_stemcr_2020_10_008
crossref_primary_10_3389_fmars_2021_618489
crossref_primary_10_4062_biomolther_2020_122
crossref_primary_10_1016_j_ecoenv_2024_117304
crossref_primary_10_3390_cells10123423
crossref_primary_10_1016_j_reth_2022_11_004
crossref_primary_10_1016_j_isci_2021_102762
crossref_primary_10_3390_metabo12010040
crossref_primary_10_3390_toxics9010008
crossref_primary_10_3390_cells11233762
crossref_primary_10_1186_s12964_019_0351_5
crossref_primary_10_1155_2018_9364364
crossref_primary_10_1016_j_drudis_2019_10_006
crossref_primary_10_1016_j_yexmp_2019_104282
crossref_primary_10_1007_s13402_021_00645_6
crossref_primary_10_3390_cancers12020259
crossref_primary_10_1016_j_semcancer_2019_02_002
crossref_primary_10_3390_molecules26206189
crossref_primary_10_1016_j_tiv_2023_105561
crossref_primary_10_1002_stem_3052
crossref_primary_10_3389_fcell_2020_00159
crossref_primary_10_1016_j_canlet_2023_216511
crossref_primary_10_1038_s41467_019_13850_7
crossref_primary_10_1038_s41525_023_00377_6
crossref_primary_10_1016_j_prp_2022_154010
crossref_primary_10_1097_WNR_0000000000001513
crossref_primary_10_1167_iovs_62_12_26
crossref_primary_10_1007_s11060_019_03301_0
crossref_primary_10_3389_fcell_2022_952832
crossref_primary_10_3389_fonc_2018_00575
crossref_primary_10_1128_jvi_01700_23
crossref_primary_10_3390_ijms20071762
crossref_primary_10_1016_j_brainresbull_2019_04_013
crossref_primary_10_1111_are_14607
crossref_primary_10_3389_fnmol_2023_1308066
crossref_primary_10_3390_fishes9100411
crossref_primary_10_1080_15592294_2022_2044126
crossref_primary_10_1016_j_lfs_2018_03_059
crossref_primary_10_1186_s11658_020_00211_2
crossref_primary_10_1080_21655979_2022_2062530
crossref_primary_10_1016_j_jtct_2020_11_012
crossref_primary_10_1016_j_phymed_2022_154207
crossref_primary_10_1021_acsnano_3c07828
crossref_primary_10_1155_2022_9364313
crossref_primary_10_1155_2020_6454281
crossref_primary_10_1002_jcp_30301
crossref_primary_10_1016_j_prp_2023_154384
crossref_primary_10_3390_cancers12113142
crossref_primary_10_3390_cancers13143445
crossref_primary_10_15252_embr_201744816
crossref_primary_10_1002_cbin_11858
crossref_primary_10_1016_j_cellsig_2017_01_017
crossref_primary_10_1016_j_lfs_2023_121835
crossref_primary_10_3390_brainsci15030254
crossref_primary_10_3389_fphar_2024_1423480
crossref_primary_10_3390_brainsci14111133
crossref_primary_10_1016_j_lfs_2020_118814
crossref_primary_10_1155_2024_8555211
crossref_primary_10_3389_fonc_2020_592853
crossref_primary_10_1002_stem_3008
crossref_primary_10_1038_s41598_021_82156_w
crossref_primary_10_2139_ssrn_4090930
crossref_primary_10_3390_genes12020162
crossref_primary_10_18632_oncotarget_21234
crossref_primary_10_1002_1878_0261_13384
crossref_primary_10_1016_j_bcp_2020_114403
crossref_primary_10_1016_j_mce_2018_08_008
crossref_primary_10_1155_2019_2318680
crossref_primary_10_17650_2313_805X_2018_5_4_41_63
crossref_primary_10_1016_j_ejphar_2018_10_007
crossref_primary_10_1016_j_sajb_2021_04_028
crossref_primary_10_1042_BCJ20220223
crossref_primary_10_3389_fnins_2019_00155
crossref_primary_10_1038_s41419_024_06582_0
crossref_primary_10_1038_s41598_024_75666_w
crossref_primary_10_1002_path_5696
crossref_primary_10_1016_j_molmed_2018_08_003
crossref_primary_10_3389_fneur_2025_1555411
crossref_primary_10_3390_cells11193031
crossref_primary_10_1111_jcmm_17266
crossref_primary_10_1007_s11055_024_01676_w
crossref_primary_10_1016_j_isci_2022_105469
crossref_primary_10_1186_s13287_018_0935_9
crossref_primary_10_1016_j_gene_2025_149275
crossref_primary_10_1002_ptr_7841
crossref_primary_10_1016_j_ejphar_2024_176929
crossref_primary_10_1002_adma_202401750
crossref_primary_10_1016_j_aquaculture_2023_740382
crossref_primary_10_1080_01635581_2020_1856895
crossref_primary_10_1016_j_gastre_2020_05_015
crossref_primary_10_3390_diagnostics11071269
crossref_primary_10_3892_mmr_2017_8132
crossref_primary_10_1681_ASN_2016111196
crossref_primary_10_2147_OTT_S244928
crossref_primary_10_1590_1414_431x2024e13474
crossref_primary_10_1186_s13287_023_03339_y
crossref_primary_10_1152_ajpcell_00606_2023
crossref_primary_10_1016_j_bioorg_2024_107461
crossref_primary_10_3390_ijms241311210
crossref_primary_10_1007_s12013_023_01179_4
crossref_primary_10_1093_advances_nmac101
crossref_primary_10_3390_cells11213515
crossref_primary_10_2147_OTT_S272599
crossref_primary_10_3892_etm_2023_11892
crossref_primary_10_1080_08923973_2021_2006216
crossref_primary_10_3390_cimb46040219
crossref_primary_10_3389_fimmu_2024_1428232
crossref_primary_10_1016_j_heliyon_2024_e35235
crossref_primary_10_62610_RJOR_2024_2_16_21
crossref_primary_10_1038_s41598_019_38982_0
crossref_primary_10_1007_s00432_023_04583_8
crossref_primary_10_1111_febs_15541
crossref_primary_10_1016_j_ejmech_2020_112954
crossref_primary_10_1016_j_jtcms_2019_02_002
crossref_primary_10_1016_j_pnpbp_2024_111036
crossref_primary_10_1016_j_tranon_2022_101560
crossref_primary_10_1016_j_virs_2022_09_001
crossref_primary_10_1080_1062936X_2022_2109062
crossref_primary_10_1016_j_intimp_2023_110370
crossref_primary_10_1038_s41467_025_56591_6
crossref_primary_10_3390_nu14142813
crossref_primary_10_3390_ijms19041045
crossref_primary_10_1016_j_biopha_2023_114867
crossref_primary_10_1111_jcmm_16155
crossref_primary_10_3389_fonc_2019_01215
crossref_primary_10_1016_j_ijbiomac_2023_127375
crossref_primary_10_3390_biom11010062
crossref_primary_10_3390_molecules29061233
crossref_primary_10_1002_2211_5463_13310
crossref_primary_10_3389_fmolb_2020_615816
crossref_primary_10_3390_ani13030419
crossref_primary_10_3390_ijms24076763
crossref_primary_10_1016_j_biopha_2019_109372
crossref_primary_10_1093_hmg_ddac201
crossref_primary_10_1038_s41598_024_77897_3
crossref_primary_10_1074_jbc_RA120_012715
crossref_primary_10_1007_s11010_021_04174_6
crossref_primary_10_70322_ldmh_2025_10005
crossref_primary_10_1016_j_jep_2024_117850
crossref_primary_10_3390_ph15101204
crossref_primary_10_1002_mc_23372
crossref_primary_10_3390_cancers11040584
crossref_primary_10_1002_jcp_26123
crossref_primary_10_1016_j_prp_2024_155316
crossref_primary_10_3390_ijms222011229
crossref_primary_10_1016_j_devcel_2024_10_001
crossref_primary_10_1016_j_pbb_2019_172830
crossref_primary_10_4239_wjd_v12_i7_1010
crossref_primary_10_14368_jdras_2020_36_3_145
crossref_primary_10_14814_phy2_15553
crossref_primary_10_1016_j_prp_2022_154063
crossref_primary_10_1093_stmcls_sxac050
crossref_primary_10_3390_cells8040331
crossref_primary_10_1038_s41467_020_18084_6
crossref_primary_10_3389_fphys_2018_01588
crossref_primary_10_1021_acs_jmedchem_2c01070
crossref_primary_10_2174_0929867327666200824110332
crossref_primary_10_1093_jas_sky473
crossref_primary_10_1002_ptr_6842
crossref_primary_10_23736_S2724_6507_22_03895_7
crossref_primary_10_1093_biolre_ioab184
crossref_primary_10_1016_j_biopha_2019_109241
crossref_primary_10_1016_j_tube_2019_04_010
crossref_primary_10_1111_jcmm_18020
crossref_primary_10_3389_fonc_2023_1164250
crossref_primary_10_1111_jcmm_18385
crossref_primary_10_1155_2018_1547120
crossref_primary_10_1016_j_chemosphere_2019_125400
crossref_primary_10_3390_nu12020488
crossref_primary_10_1172_JCI176402
crossref_primary_10_3390_ijms20163985
crossref_primary_10_1002_btm2_10560
crossref_primary_10_3389_fphar_2022_1003614
crossref_primary_10_3390_polym12112567
crossref_primary_10_1016_j_freeradbiomed_2020_11_037
crossref_primary_10_1186_s13036_019_0168_1
crossref_primary_10_1007_s10571_017_0550_9
crossref_primary_10_1155_2022_2624434
crossref_primary_10_1016_j_jep_2023_116466
crossref_primary_10_1093_biolre_ioaa079
crossref_primary_10_2174_0929867325666180117105522
crossref_primary_10_5534_wjmh_220108
crossref_primary_10_3390_cells12131751
crossref_primary_10_1016_j_tox_2023_153614
crossref_primary_10_1016_j_lfs_2023_121899
crossref_primary_10_18632_aging_102015
crossref_primary_10_3389_fendo_2023_1116770
crossref_primary_10_18632_aging_103588
crossref_primary_10_1111_and_14169
crossref_primary_10_1007_s10571_020_00882_7
crossref_primary_10_1016_j_stem_2024_01_013
crossref_primary_10_1182_blood_2021012197
crossref_primary_10_1002_advs_202308508
crossref_primary_10_1111_jcmm_16060
crossref_primary_10_1016_j_bbcan_2022_188798
crossref_primary_10_1371_journal_pone_0259241
crossref_primary_10_1007_s12672_024_00875_8
crossref_primary_10_1101_gr_257840_119
crossref_primary_10_61474_ncs_2023_00002
crossref_primary_10_3389_fcell_2019_00180
crossref_primary_10_1016_j_lfs_2024_122810
crossref_primary_10_1002_dvg_23220
crossref_primary_10_1111_jcpp_13783
crossref_primary_10_1016_j_heliyon_2019_e01494
crossref_primary_10_1016_j_jep_2017_04_030
crossref_primary_10_3390_biology10030194
crossref_primary_10_3390_ijms23115892
crossref_primary_10_1016_j_taap_2022_116135
crossref_primary_10_1155_2019_2424751
crossref_primary_10_5534_wjmh_230004
crossref_primary_10_1016_j_jds_2021_09_035
crossref_primary_10_1021_acsnano_4c07833
crossref_primary_10_1080_21691401_2019_1620255
crossref_primary_10_1016_j_biochi_2024_05_001
crossref_primary_10_1080_15384101_2022_2083708
crossref_primary_10_3389_fphar_2023_1103062
crossref_primary_10_1155_2021_5833857
crossref_primary_10_1016_j_yexcr_2018_12_007
crossref_primary_10_1186_s13287_022_03161_y
crossref_primary_10_3390_ijms24043665
crossref_primary_10_3390_ijms22147588
crossref_primary_10_1186_s13287_025_04229_1
crossref_primary_10_3390_cells10040842
crossref_primary_10_1016_j_freeradbiomed_2020_04_027
crossref_primary_10_1016_j_sajb_2025_03_004
Cites_doi 10.1016/j.cmet.2014.03.017
10.1038/nature12122
10.1016/j.cell.2006.08.033
10.1182/blood-2008-02-137398
10.1016/j.cell.2011.02.014
10.1016/j.devcel.2006.10.007
10.1038/385810a0
10.1038/nsmb.2660
10.1016/j.cmet.2006.02.002
10.1038/nature01646
10.1002/pmic.201100048
10.1016/j.cell.2011.08.033
10.1002/stem.1589
10.1038/nature06968
10.1038/ncb3264
10.1371/journal.pone.0016358
10.1073/pnas.1118777109
10.1128/MCB.00468-10
10.1128/MCB.25.23.10407-10418.2005
10.1242/jcs.046557
10.1073/pnas.95.26.15629
10.1242/jcs.150029
10.1038/nature13981
10.1038/nature17948
10.1073/pnas.012581799
10.1038/nature14107
10.1016/j.stem.2015.01.015
10.1126/science.1259472
10.1016/j.cell.2016.03.023
10.1038/nm.2928
10.1084/jem.20020805
10.1007/s00335-001-2123-x
10.1128/MCB.24.15.6710-6718.2004
10.1101/gad.913901
10.1128/MCB.25.24.11122-11130.2005
10.1101/cshperspect.a006783
10.1371/journal.pbio.0060253
10.1634/stemcells.2007-0617
10.1038/1235
10.1371/journal.pone.0020914
10.1016/j.cell.2012.07.032
10.1016/j.molcel.2016.04.009
10.1016/j.cmet.2016.03.001
10.1128/MCB.00144-14
10.1111/j.1749-6632.1991.tb37743.x
10.1126/science.1116447
10.1016/j.cmet.2014.06.004
10.1016/j.cell.2013.04.031
10.1074/jbc.274.16.10963
10.1038/nature04694
10.1038/emboj.2012.71
10.1038/ncb3256
10.1126/science.1173288
10.1038/nature08113
10.1101/gad.1089403
10.1002/stem.1447
10.1038/6023
10.1073/pnas.151033798
10.1016/j.stem.2012.01.014
10.1083/jcb.152.4.657
10.1016/j.cmet.2015.02.002
10.1038/nrm2672
10.1002/emmm.201100131
10.1038/sj.onc.1209307
10.1128/MCB.24.8.3112-3124.2004
10.1242/dev.086165
10.1038/ncomms8212
10.1242/dev.021121
10.1038/nrc3860
10.1016/j.stem.2013.10.005
10.1016/j.cell.2013.03.012
10.1128/MCB.00985-10
10.1242/dev.01864
10.1073/pnas.0901854106
10.7554/eLife.11058
10.1172/JCI29528
10.1016/j.cell.2012.03.017
10.1038/81715
10.1074/jbc.M110.216283
10.1038/ncb3347
10.1038/ncomms5004
10.1126/science.292.5522.1728
10.1093/hmg/ddl112
10.1038/ncb3172
10.1126/science.1257132
10.1016/j.devcel.2006.08.013
10.1038/ncb0910-823
10.1016/j.cell.2006.07.024
10.1126/scisignal.1161577
10.1016/j.ydbio.2009.12.001
10.1016/j.stem.2015.08.010
10.1126/science.1250684
10.1158/2159-8290.CD-15-0460
10.1016/j.molcel.2006.03.029
10.1074/jbc.M406467200
10.1016/j.stem.2010.11.015
10.1634/stemcells.2006-0219
10.1002/stem.748
10.1016/j.stem.2016.05.009
10.1002/stem.404
10.1016/j.cmet.2013.10.001
10.1126/science.1226603
10.1038/nrm2882
10.1038/ncb2267
10.1002/stem.1893
10.1016/j.tcb.2016.03.006
10.1126/science.287.5455.1040
10.1172/JCI0215696
10.1128/MCB.00722-06
ContentType Journal Article
Copyright 2016. Published by The Company of Biologists Ltd.
Copyright_xml – notice: 2016. Published by The Company of Biologists Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
8FD
FR3
P64
RC3
DOI 10.1242/dev.137075
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Genetics Abstracts
MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1477-9129
EndPage 3060
ExternalDocumentID 27578176
10_1242_dev_137075
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Medical Research Council
GroupedDBID ---
-DZ
-ET
-~X
.55
0R~
186
18M
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAYXX
ABZEH
ACGFS
ACMFV
ACPRK
ACREN
ADBBV
ADFRT
ADVGF
AENEX
AFFNX
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
AMTXH
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
HZ~
INIJC
KQ8
O9-
OK1
P2P
R.V
RCB
RHI
SJN
TR2
TWZ
UPT
W8F
WH7
WOQ
X7M
XJT
XSW
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
8FD
FR3
P64
RC3
ID FETCH-LOGICAL-c320t-c3288f082c1b05ab7136b2757e159c452afc334a1cc866125d5b7bbee61007623
ISSN 0950-1991
IngestDate Fri Sep 05 04:20:04 EDT 2025
Fri Sep 05 00:13:21 EDT 2025
Wed Feb 19 02:40:54 EST 2025
Thu Apr 24 23:08:22 EDT 2025
Tue Jul 01 00:45:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords mTOR
AKT
Proliferation and differentiation
PI3K
Metabolism
Pluripotency
Language English
License http://www.biologists.com/user-licence-1-1
2016. Published by The Company of Biologists Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-c3288f082c1b05ab7136b2757e159c452afc334a1cc866125d5b7bbee61007623
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0003-2019-380X
0000-0001-5203-3603
PMID 27578176
PQID 1815975191
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1827924449
proquest_miscellaneous_1815975191
pubmed_primary_27578176
crossref_primary_10_1242_dev_137075
crossref_citationtrail_10_1242_dev_137075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-01
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Development (Cambridge)
PublicationTitleAlternate Development
PublicationYear 2016
References Harada (2021042608364927000_DEV137075C28) 2005; 25
Yang (2021042608364927000_DEV137075C93) 2005; 25
Cho (2021042608364927000_DEV137075C12) 2014; 32
Kingham (2021042608364927000_DEV137075C36) 2009; 122
Sasaki (2021042608364927000_DEV137075C64) 2000; 287
Wang (2021042608364927000_DEV137075C84) 2013; 13
Betschinger (2021042608364927000_DEV137075C4) 2013; 153
Yu (2021042608364927000_DEV137075C98) 2015; 6
Kundu (2021042608364927000_DEV137075C39) 2008; 112
Ryu (2021042608364927000_DEV137075C62) 2011; 286
Tang (2021042608364927000_DEV137075C75) 2014; 127
Armstrong (2021042608364927000_DEV137075C2) 2006; 15
Neuman (2021042608364927000_DEV137075C53) 2011; 3
Zinzalla (2021042608364927000_DEV137075C107) 2011; 144
Shiraki (2021042608364927000_DEV137075C67) 2014; 19
Wilmut (2021042608364927000_DEV137075C88) 1997; 385
Hishida (2021042608364927000_DEV137075C30) 2015; 33
Takahashi (2021042608364927000_DEV137075C73) 2006; 126
Clayton (2021042608364927000_DEV137075C14) 2002; 196
Harris (2021042608364927000_DEV137075C29) 2011; 31
Vanhaesebroeck (2021042608364927000_DEV137075C81) 2010; 11
Ying (2021042608364927000_DEV137075C95) 2008; 453
Ho (2021042608364927000_DEV137075C31) 2015; 17
Ma (2021042608364927000_DEV137075C46) 2015; 17
Rennebeck (2021042608364927000_DEV137075C61) 1998; 95
Ciraolo (2021042608364927000_DEV137075C13) 2008; 1
Kim (2021042608364927000_DEV137075C35) 2006; 3
Laplante (2021042608364927000_DEV137075C40) 2012; 149
Di Cristofano (2021042608364927000_DEV137075C19) 1998; 19
Tschopp (2021042608364927000_DEV137075C79) 2005; 132
Lee (2021042608364927000_DEV137075C42) 2014; 20
Zhu (2021042608364927000_DEV137075C106) 2011; 147
Le Bacquer (2021042608364927000_DEV137075C41) 2007; 117
Liu (2021042608364927000_DEV137075C44) 2015; 5
Zhou (2021042608364927000_DEV137075C102) 2011; 6
Ueki (2021042608364927000_DEV137075C80) 2002; 99
Yu (2021042608364927000_DEV137075C97) 2014; 32
Jewell (2021042608364927000_DEV137075C34) 2015; 347
Shyh-Chang (2021042608364927000_DEV137075C68) 2013; 339
McLean (2021042608364927000_DEV137075C47) 2007; 25
Deglincerti (2021042608364927000_DEV137075C18) 2016; 533
Morita (2021042608364927000_DEV137075C50) 2013; 18
Wang (2021042608364927000_DEV137075C85) 2015; 347
Zunder (2021042608364927000_DEV137075C109) 2015; 16
Alva (2021042608364927000_DEV137075C1) 2011; 29
Shahbazi (2021042608364927000_DEV137075C65) 2016; 18
Zhao (2021042608364927000_DEV137075C100) 2014; 34
Carey (2021042608364927000_DEV137075C7) 2015; 518
Mizushima (2021042608364927000_DEV137075C49) 2001; 152
Terauchi (2021042608364927000_DEV137075C76) 1999; 21
Yan (2021042608364927000_DEV137075C92) 2013; 20
Ma (2021042608364927000_DEV137075C45) 2009; 10
Ward (2021042608364927000_DEV137075C86) 2012; 4
Pende (2021042608364927000_DEV137075C56) 2004; 24
Bi (2021042608364927000_DEV137075C5) 1999; 274
Wu (2021042608364927000_DEV137075C90) 2015; 17
Li (2021042608364927000_DEV137075C43) 2016; 62
Fritsch (2021042608364927000_DEV137075C24) 2013; 153
Curatolo (2021042608364927000_DEV137075C16) 1991; 615
Jacinto (2021042608364927000_DEV137075C33) 2006; 127
Chen (2021042608364927000_DEV137075C9) 2001; 15
Tohyama (2021042608364927000_DEV137075C78) 2016; 23
Fishwick (2021042608364927000_DEV137075C21) 2010; 338
Davidson (2021042608364927000_DEV137075C17) 2012; 109
Moussaieff (2021042608364927000_DEV137075C51) 2015; 21
Zoumaro-Djayoon (2021042608364927000_DEV137075C108) 2011; 11
Wang (2021042608364927000_DEV137075C83) 2009; 325
Varum (2021042608364927000_DEV137075C82) 2011; 6
Zhang (2021042608364927000_DEV137075C99) 2016; 19
Foukas (2021042608364927000_DEV137075C22) 2006; 441
Carroll (2021042608364927000_DEV137075C8) 2016; 5
Fruman (2021042608364927000_DEV137075C25) 2000; 26
Mizushima (2021042608364927000_DEV137075C48) 2010; 12
Zhu (2021042608364927000_DEV137075C105) 2010; 7
Bi (2021042608364927000_DEV137075C6) 2002; 13
Thorpe (2021042608364927000_DEV137075C77) 2015; 15
Goorden (2021042608364927000_DEV137075C26) 2011; 31
Yang (2021042608364927000_DEV137075C94) 2013; 497
Cho (2021042608364927000_DEV137075C11) 2001; 292
Kobayashi (2021042608364927000_DEV137075C37) 2001; 98
Yoshioka (2021042608364927000_DEV137075C96) 2012; 18
Dummler (2021042608364927000_DEV137075C20) 2006; 26
Cowan (2021042608364927000_DEV137075C15) 2005; 309
Ktistakis (2021042608364927000_DEV137075C38) 2016; 26
Prigione (2021042608364927000_DEV137075C59) 2010; 28
Sperber (2021042608364927000_DEV137075C71) 2015; 17
Zhu (2021042608364927000_DEV137075C104) 2013; 140
Zhou (2021042608364927000_DEV137075C103) 2012; 31
Bar-Peled (2021042608364927000_DEV137075C3) 2012; 150
Silva (2021042608364927000_DEV137075C69) 2008; 6
Wray (2021042608364927000_DEV137075C89) 2011; 13
Watanabe (2021042608364927000_DEV137075C87) 2006; 25
Shiota (2021042608364927000_DEV137075C66) 2006; 11
Peng (2021042608364927000_DEV137075C57) 2003; 17
Singh (2021042608364927000_DEV137075C70) 2012; 10
Sarbassov (2021042608364927000_DEV137075C63) 2006; 22
Wulff (2021042608364927000_DEV137075C91) 2002; 110
Takahashi (2021042608364927000_DEV137075C74) 2003; 423
Petropoulos (2021042608364927000_DEV137075C58) 2016; 165
Cheng (2021042608364927000_DEV137075C10) 2014; 345
Niwa (2021042608364927000_DEV137075C54) 2009; 460
Rebsamen (2021042608364927000_DEV137075C60) 2015; 519
Honda (2021042608364927000_DEV137075C32) 2014; 5
Paling (2021042608364927000_DEV137075C55) 2004; 279
Murakami (2021042608364927000_DEV137075C52) 2004; 24
Sumi (2021042608364927000_DEV137075C72) 2008; 135
Zhou (2021042608364927000_DEV137075C101) 2009; 106
Freund (2021042608364927000_DEV137075C23) 2008; 26
Guertin (2021042608364927000_DEV137075C27) 2006; 11
References_xml – volume: 19
  start-page: 780
  year: 2014
  ident: 2021042608364927000_DEV137075C67
  article-title: Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.03.017
– volume: 497
  start-page: 217
  year: 2013
  ident: 2021042608364927000_DEV137075C94
  article-title: mTOR kinase structure, mechanism and regulation
  publication-title: Nature
  doi: 10.1038/nature12122
– volume: 127
  start-page: 125
  year: 2006
  ident: 2021042608364927000_DEV137075C33
  article-title: SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity
  publication-title: Cell
  doi: 10.1016/j.cell.2006.08.033
– volume: 112
  start-page: 1493
  year: 2008
  ident: 2021042608364927000_DEV137075C39
  article-title: Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation
  publication-title: Blood
  doi: 10.1182/blood-2008-02-137398
– volume: 144
  start-page: 757
  year: 2011
  ident: 2021042608364927000_DEV137075C107
  article-title: Activation of mTORC2 by association with the ribosome
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.014
– volume: 11
  start-page: 859
  year: 2006
  ident: 2021042608364927000_DEV137075C27
  article-title: Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2006.10.007
– volume: 385
  start-page: 810
  year: 1997
  ident: 2021042608364927000_DEV137075C88
  article-title: Viable offspring derived from fetal and adult mammalian cells
  publication-title: Nature
  doi: 10.1038/385810a0
– volume: 20
  start-page: 1131
  year: 2013
  ident: 2021042608364927000_DEV137075C92
  article-title: Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2660
– volume: 3
  start-page: 177
  year: 2006
  ident: 2021042608364927000_DEV137075C35
  article-title: HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.02.002
– volume: 423
  start-page: 541
  year: 2003
  ident: 2021042608364927000_DEV137075C74
  article-title: Role of ERas in promoting tumour-like properties in mouse embryonic stem cells
  publication-title: Nature
  doi: 10.1038/nature01646
– volume: 11
  start-page: 3962
  year: 2011
  ident: 2021042608364927000_DEV137075C108
  article-title: Investigating the role of FGF-2 in stem cell maintenance by global phosphoproteomics profiling
  publication-title: Proteomics
  doi: 10.1002/pmic.201100048
– volume: 147
  start-page: 81
  year: 2011
  ident: 2021042608364927000_DEV137075C106
  article-title: The Lin28/let-7 axis regulates glucose metabolism
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.033
– volume: 32
  start-page: 424
  year: 2014
  ident: 2021042608364927000_DEV137075C12
  article-title: Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs
  publication-title: Stem Cells
  doi: 10.1002/stem.1589
– volume: 453
  start-page: 519
  year: 2008
  ident: 2021042608364927000_DEV137075C95
  article-title: The ground state of embryonic stem cell self-renewal
  publication-title: Nature
  doi: 10.1038/nature06968
– volume: 17
  start-page: 1523
  year: 2015
  ident: 2021042608364927000_DEV137075C71
  article-title: The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3264
– volume: 6
  start-page: e16358
  year: 2011
  ident: 2021042608364927000_DEV137075C102
  article-title: The mammalian class 3 PI3K (PIK3C3) is required for early embryogenesis and cell proliferation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0016358
– volume: 109
  start-page: 4485
  year: 2012
  ident: 2021042608364927000_DEV137075C17
  article-title: Wnt/beta-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1118777109
– volume: 31
  start-page: 63
  year: 2011
  ident: 2021042608364927000_DEV137075C29
  article-title: Requirement for class II phosphoinositide 3-kinase C2alpha in maintenance of glomerular structure and function
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00468-10
– volume: 25
  start-page: 10407
  year: 2005
  ident: 2021042608364927000_DEV137075C93
  article-title: Dosage-dependent effects of Akt1/protein kinase Balpha (PKBalpha) and Akt3/PKBgamma on thymus, skin, and cardiovascular and nervous system development in mice
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.23.10407-10418.2005
– volume: 122
  start-page: 2311
  year: 2009
  ident: 2021042608364927000_DEV137075C36
  article-title: Distinct roles for isoforms of the catalytic subunit of class-IA PI3K in the regulation of behaviour of murine embryonic stem cells
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.046557
– volume: 95
  start-page: 15629
  year: 1998
  ident: 2021042608364927000_DEV137075C61
  article-title: Loss of function of the tuberous sclerosis 2 tumor suppressor gene results in embryonic lethality characterized by disrupted neuroepithelial growth and development
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.26.15629
– volume: 127
  start-page: 3998
  year: 2014
  ident: 2021042608364927000_DEV137075C75
  article-title: Differential effects of Akt isoforms on somatic cell reprogramming
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.150029
– volume: 518
  start-page: 413
  year: 2015
  ident: 2021042608364927000_DEV137075C7
  article-title: Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells
  publication-title: Nature
  doi: 10.1038/nature13981
– volume: 533
  start-page: 251
  year: 2016
  ident: 2021042608364927000_DEV137075C18
  article-title: Self-organization of the in vitro attached human embryo
  publication-title: Nature
  doi: 10.1038/nature17948
– volume: 99
  start-page: 419
  year: 2002
  ident: 2021042608364927000_DEV137075C80
  article-title: Increased insulin sensitivity in mice lacking p85beta subunit of phosphoinositide 3-kinase
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.012581799
– volume: 519
  start-page: 477
  year: 2015
  ident: 2021042608364927000_DEV137075C60
  article-title: SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1
  publication-title: Nature
  doi: 10.1038/nature14107
– volume: 16
  start-page: 323
  year: 2015
  ident: 2021042608364927000_DEV137075C109
  article-title: A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.01.015
– volume: 347
  start-page: 194
  year: 2015
  ident: 2021042608364927000_DEV137075C34
  article-title: Metabolism. Differential regulation of mTORC1 by leucine and glutamine
  publication-title: Science
  doi: 10.1126/science.1259472
– volume: 165
  start-page: 1012
  year: 2016
  ident: 2021042608364927000_DEV137075C58
  article-title: Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos
  publication-title: Cell
  doi: 10.1016/j.cell.2016.03.023
– volume: 18
  start-page: 1560
  year: 2012
  ident: 2021042608364927000_DEV137075C96
  article-title: Endothelial PI3K-C2alpha, a class II PI3K, has an essential role in angiogenesis and vascular barrier function
  publication-title: Nat. Med.
  doi: 10.1038/nm.2928
– volume: 196
  start-page: 753
  year: 2002
  ident: 2021042608364927000_DEV137075C14
  article-title: A crucial role for the p110delta subunit of phosphatidylinositol 3-kinase in B cell development and activation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20020805
– volume: 13
  start-page: 169
  year: 2002
  ident: 2021042608364927000_DEV137075C6
  article-title: Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI 3-kinase
  publication-title: Mamm. Genome
  doi: 10.1007/s00335-001-2123-x
– volume: 24
  start-page: 6710
  year: 2004
  ident: 2021042608364927000_DEV137075C52
  article-title: mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.15.6710-6718.2004
– volume: 15
  start-page: 2203
  year: 2001
  ident: 2021042608364927000_DEV137075C9
  article-title: Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene
  publication-title: Genes Dev.
  doi: 10.1101/gad.913901
– volume: 25
  start-page: 11122
  year: 2005
  ident: 2021042608364927000_DEV137075C28
  article-title: The class II phosphoinositide 3-kinase C2beta is not essential for epidermal differentiation
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.24.11122-11130.2005
– volume: 4
  start-page: a006783
  year: 2012
  ident: 2021042608364927000_DEV137075C86
  article-title: Signaling in control of cell growth and metabolism
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a006783
– volume: 6
  start-page: e253
  year: 2008
  ident: 2021042608364927000_DEV137075C69
  article-title: Promotion of reprogramming to ground state pluripotency by signal inhibition
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060253
– volume: 26
  start-page: 724
  year: 2008
  ident: 2021042608364927000_DEV137075C23
  article-title: Insulin redirects differentiation from cardiogenic mesoderm and endoderm to neuroectoderm in differentiating human embryonic stem cells
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-0617
– volume: 19
  start-page: 348
  year: 1998
  ident: 2021042608364927000_DEV137075C19
  article-title: Pten is essential for embryonic development and tumour suppression
  publication-title: Nat. Genet.
  doi: 10.1038/1235
– volume: 6
  start-page: e20914
  year: 2011
  ident: 2021042608364927000_DEV137075C82
  article-title: Energy metabolism in human pluripotent stem cells and their differentiated counterparts
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0020914
– volume: 150
  start-page: 1196
  year: 2012
  ident: 2021042608364927000_DEV137075C3
  article-title: Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
  publication-title: Cell
  doi: 10.1016/j.cell.2012.07.032
– volume: 62
  start-page: 359
  year: 2016
  ident: 2021042608364927000_DEV137075C43
  article-title: ULK1/2 constitute a bifurcate node controlling glucose metabolic fluxes in addition to autophagy
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.04.009
– volume: 23
  start-page: 663
  year: 2016
  ident: 2021042608364927000_DEV137075C78
  article-title: Glutamine Oxidation Is Indispensable for Survival of Human Pluripotent Stem Cells
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.03.001
– volume: 34
  start-page: 1966
  year: 2014
  ident: 2021042608364927000_DEV137075C100
  article-title: Phosphoinositide-dependent kinase 1 and mTORC2 synergistically maintain postnatal heart growth and heart function in mice
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00144-14
– volume: 615
  start-page: 8
  year: 1991
  ident: 2021042608364927000_DEV137075C16
  article-title: Neuropsychiatric aspects of tuberous sclerosis
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1991.tb37743.x
– volume: 309
  start-page: 1369
  year: 2005
  ident: 2021042608364927000_DEV137075C15
  article-title: Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells
  publication-title: Science
  doi: 10.1126/science.1116447
– volume: 20
  start-page: 306
  year: 2014
  ident: 2021042608364927000_DEV137075C42
  article-title: Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.06.004
– volume: 153
  start-page: 1050
  year: 2013
  ident: 2021042608364927000_DEV137075C24
  article-title: RAS and RHO Families of GTPases Directly Regulate Distinct Phosphoinositide 3-Kinase Isoforms
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.031
– volume: 274
  start-page: 10963
  year: 1999
  ident: 2021042608364927000_DEV137075C5
  article-title: Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.16.10963
– volume: 441
  start-page: 366
  year: 2006
  ident: 2021042608364927000_DEV137075C22
  article-title: Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation
  publication-title: Nature
  doi: 10.1038/nature04694
– volume: 31
  start-page: 2103
  year: 2012
  ident: 2021042608364927000_DEV137075C103
  article-title: HIF1alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.71
– volume: 17
  start-page: 1379
  year: 2015
  ident: 2021042608364927000_DEV137075C46
  article-title: Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3256
– volume: 325
  start-page: 435
  year: 2009
  ident: 2021042608364927000_DEV137075C83
  article-title: Dependence of mouse embryonic stem cells on threonine catabolism
  publication-title: Science
  doi: 10.1126/science.1173288
– volume: 460
  start-page: 118
  year: 2009
  ident: 2021042608364927000_DEV137075C54
  article-title: A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells
  publication-title: Nature
  doi: 10.1038/nature08113
– volume: 17
  start-page: 1352
  year: 2003
  ident: 2021042608364927000_DEV137075C57
  article-title: Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2
  publication-title: Genes Dev.
  doi: 10.1101/gad.1089403
– volume: 32
  start-page: 349
  year: 2014
  ident: 2021042608364927000_DEV137075C97
  article-title: Stimulation of somatic cell reprogramming by ERas-Akt-FoxO1 signaling axis
  publication-title: Stem Cells
  doi: 10.1002/stem.1447
– volume: 21
  start-page: 230
  year: 1999
  ident: 2021042608364927000_DEV137075C76
  article-title: Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 alpha subunit of phosphoinositide 3-kinase
  publication-title: Nat. Genet.
  doi: 10.1038/6023
– volume: 98
  start-page: 8762
  year: 2001
  ident: 2021042608364927000_DEV137075C37
  article-title: A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.151033798
– volume: 10
  start-page: 312
  year: 2012
  ident: 2021042608364927000_DEV137075C70
  article-title: Signaling network crosstalk in human pluripotent cells: a Smad2/3-regulated switch that controls the balance between self-renewal and differentiation
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.01.014
– volume: 152
  start-page: 657
  year: 2001
  ident: 2021042608364927000_DEV137075C49
  article-title: Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.152.4.657
– volume: 21
  start-page: 392
  year: 2015
  ident: 2021042608364927000_DEV137075C51
  article-title: Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.02.002
– volume: 10
  start-page: 307
  year: 2009
  ident: 2021042608364927000_DEV137075C45
  article-title: Molecular mechanisms of mTOR-mediated translational control
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2672
– volume: 3
  start-page: 189
  year: 2011
  ident: 2021042608364927000_DEV137075C53
  article-title: Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis
  publication-title: EMBO Mol. Med.
  doi: 10.1002/emmm.201100131
– volume: 25
  start-page: 2697
  year: 2006
  ident: 2021042608364927000_DEV137075C87
  article-title: Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209307
– volume: 24
  start-page: 3112
  year: 2004
  ident: 2021042608364927000_DEV137075C56
  article-title: S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.8.3112-3124.2004
– volume: 140
  start-page: 705
  year: 2013
  ident: 2021042608364927000_DEV137075C104
  article-title: Human pluripotent stem cells: an emerging model in developmental biology
  publication-title: Development
  doi: 10.1242/dev.086165
– volume: 6
  start-page: 7212
  year: 2015
  ident: 2021042608364927000_DEV137075C98
  article-title: PI3K/mTORC2 regulates TGF-beta/Activin signalling by modulating Smad2/3 activity via linker phosphorylation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8212
– volume: 135
  start-page: 2969
  year: 2008
  ident: 2021042608364927000_DEV137075C72
  article-title: Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling
  publication-title: Development
  doi: 10.1242/dev.021121
– volume: 15
  start-page: 7
  year: 2015
  ident: 2021042608364927000_DEV137075C77
  article-title: PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3860
– volume: 13
  start-page: 617
  year: 2013
  ident: 2021042608364927000_DEV137075C84
  article-title: Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.10.005
– volume: 153
  start-page: 335
  year: 2013
  ident: 2021042608364927000_DEV137075C4
  article-title: Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.012
– volume: 31
  start-page: 1672
  year: 2011
  ident: 2021042608364927000_DEV137075C26
  article-title: Rheb is essential for murine development
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00985-10
– volume: 132
  start-page: 2943
  year: 2005
  ident: 2021042608364927000_DEV137075C79
  article-title: Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis
  publication-title: Development
  doi: 10.1242/dev.01864
– volume: 106
  start-page: 7840
  year: 2009
  ident: 2021042608364927000_DEV137075C101
  article-title: mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0901854106
– volume: 5
  start-page: e11058
  year: 2016
  ident: 2021042608364927000_DEV137075C8
  article-title: Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity
  publication-title: eLife
  doi: 10.7554/eLife.11058
– volume: 117
  start-page: 387
  year: 2007
  ident: 2021042608364927000_DEV137075C41
  article-title: Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI29528
– volume: 149
  start-page: 274
  year: 2012
  ident: 2021042608364927000_DEV137075C40
  article-title: mTOR signaling in growth control and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.017
– volume: 26
  start-page: 379
  year: 2000
  ident: 2021042608364927000_DEV137075C25
  article-title: Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha
  publication-title: Nat. Genet.
  doi: 10.1038/81715
– volume: 286
  start-page: 23667
  year: 2011
  ident: 2021042608364927000_DEV137075C62
  article-title: L-threonine regulates G1/S phase transition of mouse embryonic stem cells via PI3K/Akt, MAPKs, and mTORC pathways
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.216283
– volume: 18
  start-page: 700
  year: 2016
  ident: 2021042608364927000_DEV137075C65
  article-title: Self-organization of the human embryo in the absence of maternal tissues
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3347
– volume: 5
  start-page: 4004
  year: 2014
  ident: 2021042608364927000_DEV137075C32
  article-title: Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5004
– volume: 292
  start-page: 1728
  year: 2001
  ident: 2021042608364927000_DEV137075C11
  article-title: Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta)
  publication-title: Science
  doi: 10.1126/science.292.5522.1728
– volume: 15
  start-page: 1894
  year: 2006
  ident: 2021042608364927000_DEV137075C2
  article-title: The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddl112
– volume: 17
  start-page: 715
  year: 2015
  ident: 2021042608364927000_DEV137075C90
  article-title: Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3172
– volume: 347
  start-page: 188
  year: 2015
  ident: 2021042608364927000_DEV137075C85
  article-title: Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
  publication-title: Science
  doi: 10.1126/science.1257132
– volume: 11
  start-page: 583
  year: 2006
  ident: 2021042608364927000_DEV137075C66
  article-title: Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2006.08.013
– volume: 12
  start-page: 823
  year: 2010
  ident: 2021042608364927000_DEV137075C48
  article-title: Autophagy in mammalian development and differentiation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb0910-823
– volume: 126
  start-page: 663
  year: 2006
  ident: 2021042608364927000_DEV137075C73
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 1
  start-page: ra3
  year: 2008
  ident: 2021042608364927000_DEV137075C13
  article-title: Phosphoinositide 3-kinase p110beta activity: key role in metabolism and mammary gland cancer but not development
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.1161577
– volume: 338
  start-page: 215
  year: 2010
  ident: 2021042608364927000_DEV137075C21
  article-title: Initiation of neuronal differentiation requires PI3-kinase/TOR signalling in the vertebrate neural tube
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2009.12.001
– volume: 17
  start-page: 435
  year: 2015
  ident: 2021042608364927000_DEV137075C31
  article-title: ELABELA Is an endogenous growth factor that sustains hESC SELF-RENEwal via the PI3K/AKT pathway
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.08.010
– volume: 345
  start-page: 1250684
  year: 2014
  ident: 2021042608364927000_DEV137075C10
  article-title: mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity
  publication-title: Science
  doi: 10.1126/science.1250684
– volume: 5
  start-page: 1194
  year: 2015
  ident: 2021042608364927000_DEV137075C44
  article-title: PtdIns(3,4,5)P3-dependent activation of the mTORC2 kinase complex
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-15-0460
– volume: 22
  start-page: 159
  year: 2006
  ident: 2021042608364927000_DEV137075C63
  article-title: Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.03.029
– volume: 279
  start-page: 48063
  year: 2004
  ident: 2021042608364927000_DEV137075C55
  article-title: Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M406467200
– volume: 7
  start-page: 651
  year: 2010
  ident: 2021042608364927000_DEV137075C105
  article-title: Reprogramming of human primary somatic cells by OCT4 and chemical compounds
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.11.015
– volume: 25
  start-page: 29
  year: 2007
  ident: 2021042608364927000_DEV137075C47
  article-title: Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2006-0219
– volume: 29
  start-page: 1952
  year: 2011
  ident: 2021042608364927000_DEV137075C1
  article-title: Phosphatase and tensin homolog regulates the pluripotent state and lineage fate choice in human embryonic stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.748
– volume: 19
  start-page: 66
  year: 2016
  ident: 2021042608364927000_DEV137075C99
  article-title: LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.05.009
– volume: 28
  start-page: 721
  year: 2010
  ident: 2021042608364927000_DEV137075C59
  article-title: The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.404
– volume: 18
  start-page: 698
  year: 2013
  ident: 2021042608364927000_DEV137075C50
  article-title: mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.10.001
– volume: 339
  start-page: 222
  year: 2013
  ident: 2021042608364927000_DEV137075C68
  article-title: Influence of threonine metabolism on S-adenosylmethionine and histone methylation
  publication-title: Science
  doi: 10.1126/science.1226603
– volume: 11
  start-page: 329
  year: 2010
  ident: 2021042608364927000_DEV137075C81
  article-title: The emerging mechanisms of isoform-specific PI3K signalling
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2882
– volume: 13
  start-page: 838
  year: 2011
  ident: 2021042608364927000_DEV137075C89
  article-title: Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2267
– volume: 33
  start-page: 713
  year: 2015
  ident: 2021042608364927000_DEV137075C30
  article-title: Functional compensation between Myc and PI3K signaling supports self-renewal of embryonic stem cells
  publication-title: Stem Cells
  doi: 10.1002/stem.1893
– volume: 26
  start-page: 624
  year: 2016
  ident: 2021042608364927000_DEV137075C38
  article-title: Digesting the expanding mechanisms of autophagy
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2016.03.006
– volume: 287
  start-page: 1040
  year: 2000
  ident: 2021042608364927000_DEV137075C64
  article-title: Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration
  publication-title: Science
  doi: 10.1126/science.287.5455.1040
– volume: 110
  start-page: 1263
  year: 2002
  ident: 2021042608364927000_DEV137075C91
  article-title: Impaired renal Na(+) retention in the sgk1-knockout mouse
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI0215696
– volume: 26
  start-page: 8042
  year: 2006
  ident: 2021042608364927000_DEV137075C20
  article-title: Life with a single isoform of Akt: mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00722-06
SSID ssj0003677
Score 2.6780705
SecondaryResourceType review_article
Snippet Phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) constitute the core components of the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 3050
SubjectTerms Animals
Cell Proliferation - genetics
Cell Proliferation - physiology
Cell Survival - genetics
Cell Survival - physiology
Humans
Phosphatidylinositol 3-Kinases - genetics
Phosphatidylinositol 3-Kinases - metabolism
Pluripotent Stem Cells - metabolism
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-akt - metabolism
Signal Transduction - genetics
Signal Transduction - physiology
TOR Serine-Threonine Kinases - genetics
TOR Serine-Threonine Kinases - metabolism
Title Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination
URI https://www.ncbi.nlm.nih.gov/pubmed/27578176
https://www.proquest.com/docview/1815975191
https://www.proquest.com/docview/1827924449
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCMQLgnErNxnBCypZ48SxU97QBNqoBhN0YvASxa4jTWqTiSUT8Os5x3YuRR0CXqzKSR0l3-eTz865EPJcac1TJVhQyNwEfMFUMNVGBDyWWke5VMqmLz54L_aO-Lvj5Liv2WqjS2q1o39ujCv5H1ShD3DFKNl_QLYbFDrgN-ALLSAM7V9hfIgldwrjQMSHddbAzD_34f8rUwPCS-9aMXQlPNyPZ5hIYTaHdjX_8HGMbhy5S8-NbuXLBmxJVduwTBv4hjt8BcjS8aJ1n-kA9cp24H1kvwy3sWCDrYYvjfPLxaKHn8bdrvNuYz0KPpuT4RYEE52PFbxBnNnk-CGY-QFbu-ryL7UEkgMzCUYm3Gi_QTDAjS_M-Q6LZehqqgyAPF1ZJCNMws_kbym07Uu5PXSZXIkkqCmUyfuz7t0cCyl9klq41KS_ECaF9n9dVygXLDus_JjfJDf8uoG-diS4RS6ZcptcdZVEf2yTawfeRwI6v1a28zb5vsaPl7RlBwVIac-OVxS4QZEbtCoocmMCzJggL2jPC3pS0iEv7CDIC4q8oGu8uEOO3r6Z7-4FvtJGoOMorLFN0wLUoGYqTHIlWSwUPg8DalfzJMoLHcc8Z1qnAjXxIlEwjY0R6GQDCvou2Sqr0twnFGZ4osJ0Ko0AgVSkqQYNKiWMDqt9negRedE-3Uz7NPRYDWWZ4XIUQMkAlMyBMiLPunNPXfKVjWc9bUHKwDbineelqZqzDNQrrJdhjcL-dA6m0OScT0fknkO4u1bLiAcXHnlIrvcT4hHZqr815jGo1Fo9scT7BXLVkMs
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proliferation%2C+survival+and+metabolism%3A+the+role+of+PI3K%2FAKT%2FmTOR+signalling+in+pluripotency+and+cell+fate+determination&rft.jtitle=Development+%28Cambridge%29&rft.au=Yu%2C+Jason+S+L&rft.au=Cui%2C+Wei&rft.date=2016-09-01&rft.eissn=1477-9129&rft.volume=143&rft.issue=17&rft.spage=3050&rft_id=info:doi/10.1242%2Fdev.137075&rft_id=info%3Apmid%2F27578176&rft.externalDocID=27578176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon