Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination
Phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) constitute the core components of the PI3K/AKT/mTOR signalling cascade, regulating cell proliferation, survival and metabolism. Although these functions are well-defined in the context...
Saved in:
Published in | Development (Cambridge) Vol. 143; no. 17; pp. 3050 - 3060 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
01.09.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0950-1991 1477-9129 |
DOI | 10.1242/dev.137075 |
Cover
Abstract | Phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) constitute the core components of the PI3K/AKT/mTOR signalling cascade, regulating cell proliferation, survival and metabolism. Although these functions are well-defined in the context of tumorigenesis, recent studies – in particular those using pluripotent stem cells – have highlighted the importance of this pathway to development and cellular differentiation. Here, we review the recent in vitro and in vivo evidence for the role PI3K/AKT/mTOR signalling plays in the control of pluripotency and differentiation, with a particular focus on the molecular mechanisms underlying these functions. |
---|---|
AbstractList | Phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) constitute the core components of the PI3K/AKT/mTOR signalling cascade, regulating cell proliferation, survival and metabolism. Although these functions are well-defined in the context of tumorigenesis, recent studies - in particular those using pluripotent stem cells - have highlighted the importance of this pathway to development and cellular differentiation. Here, we review the recent in vitro and in vivo evidence for the role PI3K/AKT/mTOR signalling plays in the control of pluripotency and differentiation, with a particular focus on the molecular mechanisms underlying these functions. Summary: This Review highlights the important role of the PI3K/AKT/mTOR signalling pathway in stem cells and discusses its role in regulating important aspects of proliferation and differentiation. Phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) constitute the core components of the PI3K/AKT/mTOR signalling cascade, regulating cell proliferation, survival and metabolism. Although these functions are well-defined in the context of tumorigenesis, recent studies - in particular those using pluripotent stem cells - have highlighted the importance of this pathway to development and cellular differentiation. Here, we review the recent in vitro and in vivo evidence for the role PI3K/AKT/mTOR signalling plays in the control of pluripotency and differentiation, with a particular focus on the molecular mechanisms underlying these functions. |
Author | Cui, Wei Yu, Jason S. L. |
Author_xml | – sequence: 1 givenname: Jason S. L. orcidid: 0000-0001-5203-3603 surname: Yu fullname: Yu, Jason S. L. organization: Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK – sequence: 2 givenname: Wei orcidid: 0000-0003-2019-380X surname: Cui fullname: Cui, Wei organization: Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27578176$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0T1v2zAQBmCiSJE4H0t_QMGxCGqbR4mi2C0ImsZwgBiBMwsUdUpZUJRLUkbz7yPbSYaiQxdy4MO7w72n5Mj3Hgn5BGwGPOfzBrczyCST4gOZQC7lVAFXR2TClGBTUApOyGmMvxhjWSHlMTnhUsgSZDEhf1ahd7bFoJPt_Vcah7C1W-2o9g3tMOl6fI7dN5p-Ih0p0r6lq0W2nF8t1_Nuff9Ao33y2jnrn6j1dOOGYDd9Qm-e90UMOkdbnZA2mDB01u9bnZOPrXYRL17vM_J48319fTu9u_-xuL66m5qMs7Q7y7JlJTdQM6FrCVlR78ZHEMrkguvWZFmuwZiyKICLRtSyrhELYEwWPDsjXw51N6H_PWBMVWfjbibtsR9iBSWXiud5rv6Djj2lAAUj_fxKh7rDptoE2-nwXL0tdgSXB2BCH2PA9p0Aq3apVWNq1SG1EbO_sLFpv6UUtHX_-vICioSZVQ |
CitedBy_id | crossref_primary_10_1002_ame2_12491 crossref_primary_10_1167_iovs_19_27865 crossref_primary_10_3390_cancers11020254 crossref_primary_10_1097_MPH_0000000000002418 crossref_primary_10_31857_S0044467724010097 crossref_primary_10_3389_fimmu_2020_00528 crossref_primary_10_1038_s41418_018_0064_0 crossref_primary_10_1016_j_lfs_2020_118542 crossref_primary_10_1016_j_phymed_2024_156345 crossref_primary_10_1016_j_ajpath_2025_01_010 crossref_primary_10_1002_ajmg_a_63078 crossref_primary_10_1038_s41419_021_03391_7 crossref_primary_10_1186_s12931_021_01719_7 crossref_primary_10_1038_s41593_024_01865_3 crossref_primary_10_1167_iovs_63_12_9 crossref_primary_10_1007_s42000_018_0051_3 crossref_primary_10_3390_cancers11030293 crossref_primary_10_3390_nu10091190 crossref_primary_10_1016_j_biocel_2019_105615 crossref_primary_10_1016_j_intimp_2021_108427 crossref_primary_10_1111_cge_13543 crossref_primary_10_1016_j_bbrc_2020_08_090 crossref_primary_10_1038_s41536_023_00296_1 crossref_primary_10_1186_s13098_019_0449_3 crossref_primary_10_3390_md17020130 crossref_primary_10_1038_s41419_023_06125_z crossref_primary_10_3390_ani14010167 crossref_primary_10_1038_s41598_020_77217_5 crossref_primary_10_1007_s40778_017_0100_x crossref_primary_10_3390_toxics11040302 crossref_primary_10_2478_aoas_2023_0029 crossref_primary_10_1007_s12672_024_01319_z crossref_primary_10_1016_j_biopha_2024_117266 crossref_primary_10_1155_2019_6027186 crossref_primary_10_3389_fonc_2020_01608 crossref_primary_10_3389_fphar_2019_01329 crossref_primary_10_1073_pnas_2109327118 crossref_primary_10_1080_15548627_2019_1607694 crossref_primary_10_1186_s12943_021_01356_0 crossref_primary_10_1039_D2TB00721E crossref_primary_10_3389_fcell_2022_884004 crossref_primary_10_3389_fmicb_2019_02438 crossref_primary_10_1002_adbi_202300060 crossref_primary_10_1016_j_anireprosci_2021_106767 crossref_primary_10_3389_fcell_2025_1490231 crossref_primary_10_1016_j_jare_2023_09_041 crossref_primary_10_1016_j_abb_2022_109431 crossref_primary_10_1016_j_yexcr_2017_12_002 crossref_primary_10_3390_ijms21165906 crossref_primary_10_1038_s41598_025_87194_2 crossref_primary_10_1166_jbt_2023_3272 crossref_primary_10_1016_j_cbpc_2024_109882 crossref_primary_10_1186_s13578_017_0179_x crossref_primary_10_1111_brv_12579 crossref_primary_10_1016_j_jep_2024_118129 crossref_primary_10_1038_s41540_024_00443_4 crossref_primary_10_3389_fmolb_2021_707461 crossref_primary_10_3390_biomedicines10112703 crossref_primary_10_1111_cpr_13206 crossref_primary_10_1016_j_theriogenology_2022_09_017 crossref_primary_10_18632_oncotarget_27763 crossref_primary_10_1186_s12951_023_01788_4 crossref_primary_10_1007_s12032_019_1268_y crossref_primary_10_1158_1078_0432_CCR_17_3125 crossref_primary_10_1016_j_biochi_2022_10_020 crossref_primary_10_1016_j_csbj_2024_12_014 crossref_primary_10_1016_j_cbi_2019_01_026 crossref_primary_10_1016_j_jep_2021_114164 crossref_primary_10_3892_etm_2018_5744 crossref_primary_10_1007_s10571_020_00921_3 crossref_primary_10_1007_s13770_023_00579_0 crossref_primary_10_7554_eLife_58162 crossref_primary_10_1016_j_stemcr_2021_07_021 crossref_primary_10_1002_lsm_23137 crossref_primary_10_1038_s41598_024_83451_y crossref_primary_10_1007_s12192_017_0844_3 crossref_primary_10_1016_j_biopha_2018_12_072 crossref_primary_10_1016_j_toxlet_2021_06_013 crossref_primary_10_1016_j_ygcen_2021_113870 crossref_primary_10_1186_s13287_022_02865_5 crossref_primary_10_3389_fvets_2021_639752 crossref_primary_10_3389_fimmu_2018_02172 crossref_primary_10_1016_j_neuint_2021_105067 crossref_primary_10_1016_j_neuroscience_2020_02_031 crossref_primary_10_1186_s12967_022_03247_4 crossref_primary_10_3390_ijms21010259 crossref_primary_10_3390_ijms222111864 crossref_primary_10_1016_j_aquaculture_2021_737207 crossref_primary_10_1111_cpr_13435 crossref_primary_10_1016_j_bcp_2020_114384 crossref_primary_10_1016_j_bioorg_2023_106583 crossref_primary_10_1016_j_prp_2020_153049 crossref_primary_10_1038_s41419_019_1943_0 crossref_primary_10_1039_C7TB00897J crossref_primary_10_3892_mmr_2018_9321 crossref_primary_10_1111_1744_7917_13438 crossref_primary_10_31083_j_fbl2906212 crossref_primary_10_1016_j_theriogenology_2020_06_038 crossref_primary_10_1093_jbmrpl_ziad016 crossref_primary_10_1016_j_bbrc_2022_09_112 crossref_primary_10_3390_ijerph16203811 crossref_primary_10_3390_cells12040621 crossref_primary_10_1016_j_stemcr_2021_07_014 crossref_primary_10_1590_1414_431x20198385 crossref_primary_10_1111_nan_12970 crossref_primary_10_31083_j_fbl2802037 crossref_primary_10_21307_ane_2019_012 crossref_primary_10_1016_j_neubiorev_2018_12_014 crossref_primary_10_1016_j_actbio_2021_07_009 crossref_primary_10_3389_fcell_2020_580072 crossref_primary_10_1080_15592294_2021_1955188 crossref_primary_10_1007_s12015_018_9847_4 crossref_primary_10_1155_2021_5233462 crossref_primary_10_1016_j_aqrep_2021_100838 crossref_primary_10_1016_j_ejbas_2018_02_001 crossref_primary_10_1080_15384101_2021_2019411 crossref_primary_10_1038_s41419_018_0310_x crossref_primary_10_3390_cells11091459 crossref_primary_10_3389_fimmu_2021_756042 crossref_primary_10_1080_14737140_2021_1918001 crossref_primary_10_3390_cells10061280 crossref_primary_10_1093_jpp_rgac007 crossref_primary_10_1242_bio_058544 crossref_primary_10_1016_j_fct_2020_111472 crossref_primary_10_3390_ijms19072013 crossref_primary_10_1007_s12032_024_02529_9 crossref_primary_10_1111_wrr_12759 crossref_primary_10_1515_tnsci_2022_0251 crossref_primary_10_1038_s41598_021_92758_z crossref_primary_10_1111_cas_15371 crossref_primary_10_1038_s41416_021_01529_0 crossref_primary_10_3389_fphar_2019_00020 crossref_primary_10_1007_s10528_023_10451_4 crossref_primary_10_3390_cells12050797 crossref_primary_10_1016_j_chemosphere_2018_11_086 crossref_primary_10_1016_j_jep_2024_118418 crossref_primary_10_3892_ijo_2018_4579 crossref_primary_10_1007_s12640_023_00663_2 crossref_primary_10_1002_advs_202104136 crossref_primary_10_1007_s12035_022_03173_y crossref_primary_10_1016_j_phrs_2019_104385 crossref_primary_10_1080_17410541_2024_2412514 crossref_primary_10_3390_biom12030460 crossref_primary_10_1111_pcmr_12910 crossref_primary_10_3390_cells9010218 crossref_primary_10_1016_j_isci_2022_104459 crossref_primary_10_1016_j_stem_2023_12_011 crossref_primary_10_1016_j_devcel_2023_04_013 crossref_primary_10_1038_s41467_021_26423_4 crossref_primary_10_4103_tcmj_tcmj_52_24 crossref_primary_10_1002_fsn3_4674 crossref_primary_10_1016_j_lfs_2020_118467 crossref_primary_10_3389_fendo_2024_1486608 crossref_primary_10_4155_fmc_2020_0307 crossref_primary_10_3390_ijms20030472 crossref_primary_10_7717_peerj_9110 crossref_primary_10_1016_j_gastrohep_2020_05_021 crossref_primary_10_1111_evj_13224 crossref_primary_10_1016_j_scr_2022_102748 crossref_primary_10_3390_ijms21082851 crossref_primary_10_1016_j_bmc_2021_116265 crossref_primary_10_1038_nrd_2017_106 crossref_primary_10_3389_fphys_2023_1272764 crossref_primary_10_1016_j_intimp_2024_113758 crossref_primary_10_1038_s41467_021_25933_5 crossref_primary_10_1093_infdis_jiz064 crossref_primary_10_1002_jcp_29333 crossref_primary_10_1155_2021_5521519 crossref_primary_10_1002_sctm_19_0020 crossref_primary_10_1007_s12035_023_03649_5 crossref_primary_10_1016_j_ejphar_2020_173796 crossref_primary_10_1038_s41419_018_1284_4 crossref_primary_10_1016_j_hermed_2024_100963 crossref_primary_10_1016_j_compbiolchem_2025_108433 crossref_primary_10_1007_s12031_016_0872_y crossref_primary_10_32604_biocell_2023_026618 crossref_primary_10_3389_fonc_2021_752784 crossref_primary_10_2147_DMSO_S281527 crossref_primary_10_1016_j_biomaterials_2021_120841 crossref_primary_10_3390_cells10092194 crossref_primary_10_1111_nph_17129 crossref_primary_10_1016_j_heliyon_2023_e16999 crossref_primary_10_3390_cells11101648 crossref_primary_10_1007_s10266_021_00597_1 crossref_primary_10_1007_s11262_021_01880_7 crossref_primary_10_37621_JNAMSU_2022_1_3 crossref_primary_10_3892_ol_2019_10035 crossref_primary_10_1002_ame2_12475 crossref_primary_10_5851_kosfa_2024_e50 crossref_primary_10_3389_fphar_2021_663551 crossref_primary_10_1096_fj_202101428RR crossref_primary_10_3389_fgene_2019_01386 crossref_primary_10_3390_ijms21207751 crossref_primary_10_1158_1541_7786_MCR_20_0464 crossref_primary_10_18632_aging_103730 crossref_primary_10_3390_cells9061550 crossref_primary_10_1016_j_jbior_2020_100722 crossref_primary_10_1016_j_ejphar_2023_176004 crossref_primary_10_1016_j_hermed_2023_100797 crossref_primary_10_1017_S1431927618015532 crossref_primary_10_3390_ph17121564 crossref_primary_10_1016_j_lfs_2020_117481 crossref_primary_10_3389_fphar_2021_650816 crossref_primary_10_3389_fphar_2022_791272 crossref_primary_10_1002_adfm_202307634 crossref_primary_10_3390_cells11142150 crossref_primary_10_1016_j_bbadis_2020_165988 crossref_primary_10_3390_cancers12030731 crossref_primary_10_1016_j_cbpa_2021_111081 crossref_primary_10_1111_jpi_12620 crossref_primary_10_3390_antiox13080897 crossref_primary_10_3389_fnmol_2020_00141 crossref_primary_10_1158_1078_0432_CCR_22_0391 crossref_primary_10_3390_ijms26031389 crossref_primary_10_1016_j_bbrc_2021_01_055 crossref_primary_10_1038_srep46246 crossref_primary_10_1021_acs_jproteome_0c00100 crossref_primary_10_1016_j_bcp_2019_113729 crossref_primary_10_3389_fphar_2021_632040 crossref_primary_10_3390_ani14070988 crossref_primary_10_1002_term_2595 crossref_primary_10_1016_j_bbamcr_2020_118713 crossref_primary_10_1038_s41598_025_91047_3 crossref_primary_10_1016_j_bbrep_2023_101625 crossref_primary_10_1038_s41392_022_01013_y crossref_primary_10_3892_ijo_2017_3942 crossref_primary_10_1016_j_tox_2019_02_017 crossref_primary_10_3390_md17060315 crossref_primary_10_1007_s10571_020_01009_8 crossref_primary_10_1134_S0022093021020095 crossref_primary_10_1097_MD_0000000000022172 crossref_primary_10_1038_s41416_020_0729_6 crossref_primary_10_1097_PAI_0000000000000961 crossref_primary_10_1097_BRS_0000000000004264 crossref_primary_10_3389_fimmu_2022_831636 crossref_primary_10_3389_fcell_2020_607444 crossref_primary_10_1186_s10020_022_00511_7 crossref_primary_10_1002_jbm_a_36213 crossref_primary_10_1186_s12885_019_6110_6 crossref_primary_10_3389_fonc_2020_00486 crossref_primary_10_1534_g3_117_043513 crossref_primary_10_4062_biomolther_2021_074 crossref_primary_10_18027_2224_5057_2024_010 crossref_primary_10_1002_ajmg_a_62709 crossref_primary_10_1080_10495398_2020_1752703 crossref_primary_10_1038_s41417_024_00827_y crossref_primary_10_1007_s11224_019_01303_2 crossref_primary_10_1016_j_bbadis_2025_167689 crossref_primary_10_1038_s41419_019_1587_0 crossref_primary_10_3390_md20040235 crossref_primary_10_1038_s41420_022_01204_0 crossref_primary_10_3390_cells10081933 crossref_primary_10_1016_j_envint_2023_107973 crossref_primary_10_1111_jpn_13756 crossref_primary_10_3389_fgene_2019_00556 crossref_primary_10_1016_j_trsl_2019_04_006 crossref_primary_10_1093_jjco_hyz174 crossref_primary_10_1016_j_neuron_2019_11_029 crossref_primary_10_1177_17590914221131452 crossref_primary_10_1016_j_biopha_2022_113864 crossref_primary_10_1016_j_seizure_2024_08_013 crossref_primary_10_1186_s12967_023_04167_7 crossref_primary_10_18632_aging_203134 crossref_primary_10_4049_jimmunol_1901094 crossref_primary_10_1002_jcb_29843 crossref_primary_10_1016_j_brainres_2018_04_028 crossref_primary_10_1177_1744806919900814 crossref_primary_10_1038_s41598_019_40358_3 crossref_primary_10_1186_s13058_018_0996_9 crossref_primary_10_1016_j_biopha_2020_110909 crossref_primary_10_1172_jci_insight_94200 crossref_primary_10_3390_ijms26030955 crossref_primary_10_1089_jir_2021_0236 crossref_primary_10_3389_fmolb_2023_1297198 crossref_primary_10_1155_2022_4711499 crossref_primary_10_2147_DDDT_S222244 crossref_primary_10_1038_s41419_024_07077_8 crossref_primary_10_2147_OTT_S268899 crossref_primary_10_1016_j_jep_2021_114443 crossref_primary_10_3390_ijms241612964 crossref_primary_10_1007_s10787_020_00698_3 crossref_primary_10_1016_j_stemcr_2023_01_008 crossref_primary_10_1038_s41419_020_2723_6 crossref_primary_10_1007_s10735_024_10338_7 crossref_primary_10_3390_cancers12020287 crossref_primary_10_1002_jcb_27991 crossref_primary_10_1016_j_intimp_2024_113791 crossref_primary_10_1038_s41388_020_01399_5 crossref_primary_10_3390_cells9071706 crossref_primary_10_1080_14737159_2018_1538794 crossref_primary_10_1016_j_devcel_2022_10_011 crossref_primary_10_3892_ijo_2022_5372 crossref_primary_10_3389_fgene_2020_00121 crossref_primary_10_3390_cancers12071790 crossref_primary_10_1016_j_ajpath_2021_06_004 crossref_primary_10_1007_s10565_024_09896_z crossref_primary_10_1016_j_bmc_2023_117402 crossref_primary_10_1016_j_jep_2022_115448 crossref_primary_10_1186_s12935_024_03462_7 crossref_primary_10_3390_ijms26051869 crossref_primary_10_1016_j_jff_2021_104854 crossref_primary_10_1017_S0967199421000265 crossref_primary_10_1016_j_fct_2019_110863 crossref_primary_10_1016_j_ijbiomac_2022_04_143 crossref_primary_10_1007_s13237_020_00313_4 crossref_primary_10_1155_2022_9461444 crossref_primary_10_1002_iub_2446 crossref_primary_10_1016_j_freeradbiomed_2020_12_443 crossref_primary_10_3389_fendo_2022_882214 crossref_primary_10_1016_j_rvsc_2021_01_020 crossref_primary_10_1016_j_yexmp_2022_104813 crossref_primary_10_1177_1535370220903463 crossref_primary_10_3389_fimmu_2021_696061 crossref_primary_10_3390_cancers13112809 crossref_primary_10_3389_fimmu_2021_739452 crossref_primary_10_1016_j_bbrc_2020_06_085 crossref_primary_10_1039_C8MT00183A crossref_primary_10_1016_j_theriogenology_2023_06_017 crossref_primary_10_3390_ijms21093285 crossref_primary_10_1038_s41418_023_01223_z crossref_primary_10_1007_s00441_020_03355_x crossref_primary_10_1016_j_cels_2019_03_012 crossref_primary_10_1039_D4FO04446K crossref_primary_10_1002_advs_202202093 crossref_primary_10_1042_BST20190778 crossref_primary_10_3389_fimmu_2021_764749 crossref_primary_10_1016_j_phymed_2021_153795 crossref_primary_10_3892_mmr_2021_12533 crossref_primary_10_5812_gct_119242 crossref_primary_10_1016_j_phytochem_2024_114199 crossref_primary_10_1155_2019_1569740 crossref_primary_10_3390_ijms26072945 crossref_primary_10_1021_acs_jproteome_4c00298 crossref_primary_10_1016_j_jhazmat_2020_122996 crossref_primary_10_3389_fcell_2021_696545 crossref_primary_10_1016_j_brainres_2019_05_012 crossref_primary_10_3390_molecules23112819 crossref_primary_10_1007_s00203_023_03559_z crossref_primary_10_3389_fphys_2022_806171 crossref_primary_10_1016_j_neuro_2021_05_002 crossref_primary_10_1016_j_ecoenv_2021_112636 crossref_primary_10_1111_1440_1681_13235 crossref_primary_10_3390_ijms24020919 crossref_primary_10_1016_j_gene_2020_144459 crossref_primary_10_3390_ijms20112704 crossref_primary_10_1016_j_aqrep_2024_102467 crossref_primary_10_3389_fmicb_2022_1041314 crossref_primary_10_3390_ijms24043091 crossref_primary_10_1002_jcp_31385 crossref_primary_10_3390_molecules26092442 crossref_primary_10_1038_s41598_021_84879_2 crossref_primary_10_3390_genes13101836 crossref_primary_10_3389_fphar_2024_1410942 crossref_primary_10_1002_smtd_202301281 crossref_primary_10_3390_molecules27123803 crossref_primary_10_1016_j_biopha_2021_112551 crossref_primary_10_1096_fj_202001295R crossref_primary_10_1016_j_yexcr_2024_114090 crossref_primary_10_1038_s41536_022_00246_3 crossref_primary_10_3389_fphys_2019_00917 crossref_primary_10_1089_scd_2019_0188 crossref_primary_10_3390_cells13181551 crossref_primary_10_1177_03946320241249397 crossref_primary_10_3390_ijms242316552 crossref_primary_10_1038_s41598_021_92720_z crossref_primary_10_1155_2022_5262189 crossref_primary_10_1016_j_ydbio_2020_04_004 crossref_primary_10_1615_JEnvironPatholToxicolOncol_2022041136 crossref_primary_10_3389_fcell_2021_670059 crossref_primary_10_1007_s12035_023_03353_4 crossref_primary_10_1007_s13410_023_01240_1 crossref_primary_10_1111_cas_13248 crossref_primary_10_15252_embr_202357339 crossref_primary_10_1016_j_brainres_2024_149381 crossref_primary_10_1186_s12935_019_1054_0 crossref_primary_10_1007_s12015_022_10471_4 crossref_primary_10_3389_fendo_2019_00356 crossref_primary_10_1111_jre_12630 crossref_primary_10_3390_biology11040559 crossref_primary_10_3390_ijms20143468 crossref_primary_10_1016_j_tice_2022_101971 crossref_primary_10_3892_etm_2018_6510 crossref_primary_10_1007_s00044_024_03333_w crossref_primary_10_3892_ol_2018_9461 crossref_primary_10_1166_jbn_2023_3591 crossref_primary_10_3389_fphar_2022_946193 crossref_primary_10_1097_MD_0000000000025415 crossref_primary_10_1021_acsami_3c17863 crossref_primary_10_1016_j_phymed_2020_153360 crossref_primary_10_3389_fncel_2020_00143 crossref_primary_10_3892_mmr_2020_11462 crossref_primary_10_1007_s00011_022_01617_8 crossref_primary_10_1016_j_cbpa_2020_110653 crossref_primary_10_1007_s12032_017_0897_2 crossref_primary_10_1111_jpn_13730 crossref_primary_10_1155_2020_5474608 crossref_primary_10_1142_S0192415X21500208 crossref_primary_10_2147_CCID_S425295 crossref_primary_10_1111_cas_14204 crossref_primary_10_1093_toxres_tfae199 crossref_primary_10_1016_j_canlet_2021_10_010 crossref_primary_10_3389_fcvm_2021_688513 crossref_primary_10_1097_WNR_0000000000001479 crossref_primary_10_1093_jpp_rgaa011 crossref_primary_10_1111_cas_13482 crossref_primary_10_1016_j_brainres_2024_149248 crossref_primary_10_1097_PAI_0000000000000874 crossref_primary_10_1002_cam4_70267 crossref_primary_10_1007_s40200_020_00566_5 crossref_primary_10_1247_csf_19013 crossref_primary_10_1007_s11064_022_03833_4 crossref_primary_10_1016_j_jep_2022_115637 crossref_primary_10_1038_s41523_021_00329_2 crossref_primary_10_3389_fonc_2021_624837 crossref_primary_10_1016_j_ccell_2020_08_016 crossref_primary_10_1007_s11033_020_05349_y crossref_primary_10_1186_s13287_022_03025_5 crossref_primary_10_1186_s13046_023_02692_3 crossref_primary_10_1016_j_cbi_2017_01_004 crossref_primary_10_1002_ajmg_a_62660 crossref_primary_10_1038_s41419_020_03203_4 crossref_primary_10_3390_ijms24043438 crossref_primary_10_3389_fonc_2021_678824 crossref_primary_10_1016_j_cellsig_2022_110350 crossref_primary_10_1007_s00210_024_03682_8 crossref_primary_10_1002_dvdy_402 crossref_primary_10_1111_imm_13379 crossref_primary_10_3389_fcvm_2022_956538 crossref_primary_10_3390_ani13040600 crossref_primary_10_1038_s41467_024_51794_9 crossref_primary_10_1242_dev_201704 crossref_primary_10_1111_jpi_70022 crossref_primary_10_1007_s12011_023_03866_y crossref_primary_10_1016_j_celrep_2019_11_047 crossref_primary_10_1016_j_yexcr_2022_113352 crossref_primary_10_3892_mmr_2019_10839 crossref_primary_10_1016_j_jgr_2019_07_003 crossref_primary_10_3389_fdmed_2021_807046 crossref_primary_10_1016_j_prp_2023_154898 crossref_primary_10_1186_s13578_019_0361_4 crossref_primary_10_1002_cbf_3677 crossref_primary_10_1038_s41467_022_34363_w crossref_primary_10_3389_fnins_2019_01089 crossref_primary_10_3390_cancers17020255 crossref_primary_10_1089_jmf_2023_K_0117 crossref_primary_10_1016_j_bioorg_2019_103232 crossref_primary_10_1007_s11655_023_3594_3 crossref_primary_10_3390_ijms24065345 crossref_primary_10_1097_CAD_0000000000001024 crossref_primary_10_1007_s12015_021_10131_z crossref_primary_10_1016_j_jphs_2022_03_007 crossref_primary_10_1097_CCM_0000000000005180 crossref_primary_10_3389_fnmol_2021_809878 crossref_primary_10_1016_j_jbc_2022_102193 crossref_primary_10_1038_s41598_019_55663_0 crossref_primary_10_1142_S0192415X23500581 crossref_primary_10_1111_jpn_13026 crossref_primary_10_3390_life14050554 crossref_primary_10_1038_s41418_018_0269_2 crossref_primary_10_3389_fimmu_2021_642771 crossref_primary_10_1096_fj_201903253R crossref_primary_10_3389_fvets_2021_771411 crossref_primary_10_3390_v11020171 crossref_primary_10_3390_molecules27134304 crossref_primary_10_1515_hmbci_2020_0009 crossref_primary_10_3390_pharmaceutics14091977 crossref_primary_10_1002_JLB_1HI0421_181R crossref_primary_10_1038_s41418_019_0359_9 crossref_primary_10_1016_j_cytogfr_2019_03_001 crossref_primary_10_1016_j_jare_2023_12_016 crossref_primary_10_1016_j_prmcm_2024_100550 crossref_primary_10_2147_DDDT_S270124 crossref_primary_10_1186_s13058_018_0944_8 crossref_primary_10_1186_s12943_024_02119_3 crossref_primary_10_1210_en_2019_00177 crossref_primary_10_1016_j_isci_2018_05_006 crossref_primary_10_1016_j_biopha_2017_06_058 crossref_primary_10_1016_j_molcel_2019_07_007 crossref_primary_10_1016_j_biosystems_2023_104961 crossref_primary_10_1186_s12885_021_07844_2 crossref_primary_10_1371_journal_pgen_1007491 crossref_primary_10_1016_j_fitote_2016_11_010 crossref_primary_10_1142_S0192415X21500245 crossref_primary_10_1016_j_kint_2020_07_043 crossref_primary_10_1111_jnc_15441 crossref_primary_10_1002_jcb_27367 crossref_primary_10_1080_07420528_2022_2082302 crossref_primary_10_1007_s13258_023_01431_4 crossref_primary_10_17826_cumj_1186118 crossref_primary_10_1016_j_biopha_2019_108610 crossref_primary_10_2174_1874467215666220217103233 crossref_primary_10_1017_S0967199420000209 crossref_primary_10_2174_1570161120666220720101352 crossref_primary_10_3390_ijms23168856 crossref_primary_10_1177_03009858231207021 crossref_primary_10_1186_s12943_024_02217_2 crossref_primary_10_1016_j_sjbs_2021_05_006 crossref_primary_10_3390_biom12091181 crossref_primary_10_2147_DDDT_S231814 crossref_primary_10_1186_s13287_020_01945_8 crossref_primary_10_1016_j_vph_2018_02_001 crossref_primary_10_1007_s00335_021_09873_5 crossref_primary_10_1016_j_phrs_2019_03_010 crossref_primary_10_3390_cells11071178 crossref_primary_10_1007_s11033_023_08628_6 crossref_primary_10_3389_fcell_2025_1489958 crossref_primary_10_1080_02713683_2022_2134426 crossref_primary_10_31744_einstein_journal_2023AO0171 crossref_primary_10_1039_D4MD00425F crossref_primary_10_1016_j_labinv_2024_102202 crossref_primary_10_1111_cpr_12739 crossref_primary_10_1186_s13058_024_01802_z crossref_primary_10_1155_2020_8871745 crossref_primary_10_1016_j_neuint_2018_05_006 crossref_primary_10_3389_fphar_2024_1510098 crossref_primary_10_3390_ijerph20032283 crossref_primary_10_1042_BSR20181341 crossref_primary_10_1007_s11010_017_3164_0 crossref_primary_10_1016_j_bioorg_2021_105101 crossref_primary_10_3892_ol_2020_11835 crossref_primary_10_1038_s41467_020_15267_z crossref_primary_10_1016_j_ijbiomac_2021_03_075 crossref_primary_10_1186_s13287_018_0895_0 crossref_primary_10_1016_j_lfs_2024_122557 crossref_primary_10_1038_s41598_020_75657_7 crossref_primary_10_1113_JP284552 crossref_primary_10_2147_IJN_S241163 crossref_primary_10_3390_ijms21072259 crossref_primary_10_1186_s12964_018_0307_1 crossref_primary_10_1016_j_biopha_2020_110397 crossref_primary_10_1002_ptr_7523 crossref_primary_10_1007_s12015_024_10810_7 crossref_primary_10_1590_1678_4685_gmb_2020_0371 crossref_primary_10_1002_ptr_7766 crossref_primary_10_1016_j_phymed_2021_153727 crossref_primary_10_1590_1414_431x2024e13796 crossref_primary_10_7554_eLife_50087 crossref_primary_10_1371_journal_pone_0240022 crossref_primary_10_3390_md17090501 crossref_primary_10_1002_cam4_2403 crossref_primary_10_1016_j_stemcr_2020_10_008 crossref_primary_10_3389_fmars_2021_618489 crossref_primary_10_4062_biomolther_2020_122 crossref_primary_10_1016_j_ecoenv_2024_117304 crossref_primary_10_3390_cells10123423 crossref_primary_10_1016_j_reth_2022_11_004 crossref_primary_10_1016_j_isci_2021_102762 crossref_primary_10_3390_metabo12010040 crossref_primary_10_3390_toxics9010008 crossref_primary_10_3390_cells11233762 crossref_primary_10_1186_s12964_019_0351_5 crossref_primary_10_1155_2018_9364364 crossref_primary_10_1016_j_drudis_2019_10_006 crossref_primary_10_1016_j_yexmp_2019_104282 crossref_primary_10_1007_s13402_021_00645_6 crossref_primary_10_3390_cancers12020259 crossref_primary_10_1016_j_semcancer_2019_02_002 crossref_primary_10_3390_molecules26206189 crossref_primary_10_1016_j_tiv_2023_105561 crossref_primary_10_1002_stem_3052 crossref_primary_10_3389_fcell_2020_00159 crossref_primary_10_1016_j_canlet_2023_216511 crossref_primary_10_1038_s41467_019_13850_7 crossref_primary_10_1038_s41525_023_00377_6 crossref_primary_10_1016_j_prp_2022_154010 crossref_primary_10_1097_WNR_0000000000001513 crossref_primary_10_1167_iovs_62_12_26 crossref_primary_10_1007_s11060_019_03301_0 crossref_primary_10_3389_fcell_2022_952832 crossref_primary_10_3389_fonc_2018_00575 crossref_primary_10_1128_jvi_01700_23 crossref_primary_10_3390_ijms20071762 crossref_primary_10_1016_j_brainresbull_2019_04_013 crossref_primary_10_1111_are_14607 crossref_primary_10_3389_fnmol_2023_1308066 crossref_primary_10_3390_fishes9100411 crossref_primary_10_1080_15592294_2022_2044126 crossref_primary_10_1016_j_lfs_2018_03_059 crossref_primary_10_1186_s11658_020_00211_2 crossref_primary_10_1080_21655979_2022_2062530 crossref_primary_10_1016_j_jtct_2020_11_012 crossref_primary_10_1016_j_phymed_2022_154207 crossref_primary_10_1021_acsnano_3c07828 crossref_primary_10_1155_2022_9364313 crossref_primary_10_1155_2020_6454281 crossref_primary_10_1002_jcp_30301 crossref_primary_10_1016_j_prp_2023_154384 crossref_primary_10_3390_cancers12113142 crossref_primary_10_3390_cancers13143445 crossref_primary_10_15252_embr_201744816 crossref_primary_10_1002_cbin_11858 crossref_primary_10_1016_j_cellsig_2017_01_017 crossref_primary_10_1016_j_lfs_2023_121835 crossref_primary_10_3390_brainsci15030254 crossref_primary_10_3389_fphar_2024_1423480 crossref_primary_10_3390_brainsci14111133 crossref_primary_10_1016_j_lfs_2020_118814 crossref_primary_10_1155_2024_8555211 crossref_primary_10_3389_fonc_2020_592853 crossref_primary_10_1002_stem_3008 crossref_primary_10_1038_s41598_021_82156_w crossref_primary_10_2139_ssrn_4090930 crossref_primary_10_3390_genes12020162 crossref_primary_10_18632_oncotarget_21234 crossref_primary_10_1002_1878_0261_13384 crossref_primary_10_1016_j_bcp_2020_114403 crossref_primary_10_1016_j_mce_2018_08_008 crossref_primary_10_1155_2019_2318680 crossref_primary_10_17650_2313_805X_2018_5_4_41_63 crossref_primary_10_1016_j_ejphar_2018_10_007 crossref_primary_10_1016_j_sajb_2021_04_028 crossref_primary_10_1042_BCJ20220223 crossref_primary_10_3389_fnins_2019_00155 crossref_primary_10_1038_s41419_024_06582_0 crossref_primary_10_1038_s41598_024_75666_w crossref_primary_10_1002_path_5696 crossref_primary_10_1016_j_molmed_2018_08_003 crossref_primary_10_3389_fneur_2025_1555411 crossref_primary_10_3390_cells11193031 crossref_primary_10_1111_jcmm_17266 crossref_primary_10_1007_s11055_024_01676_w crossref_primary_10_1016_j_isci_2022_105469 crossref_primary_10_1186_s13287_018_0935_9 crossref_primary_10_1016_j_gene_2025_149275 crossref_primary_10_1002_ptr_7841 crossref_primary_10_1016_j_ejphar_2024_176929 crossref_primary_10_1002_adma_202401750 crossref_primary_10_1016_j_aquaculture_2023_740382 crossref_primary_10_1080_01635581_2020_1856895 crossref_primary_10_1016_j_gastre_2020_05_015 crossref_primary_10_3390_diagnostics11071269 crossref_primary_10_3892_mmr_2017_8132 crossref_primary_10_1681_ASN_2016111196 crossref_primary_10_2147_OTT_S244928 crossref_primary_10_1590_1414_431x2024e13474 crossref_primary_10_1186_s13287_023_03339_y crossref_primary_10_1152_ajpcell_00606_2023 crossref_primary_10_1016_j_bioorg_2024_107461 crossref_primary_10_3390_ijms241311210 crossref_primary_10_1007_s12013_023_01179_4 crossref_primary_10_1093_advances_nmac101 crossref_primary_10_3390_cells11213515 crossref_primary_10_2147_OTT_S272599 crossref_primary_10_3892_etm_2023_11892 crossref_primary_10_1080_08923973_2021_2006216 crossref_primary_10_3390_cimb46040219 crossref_primary_10_3389_fimmu_2024_1428232 crossref_primary_10_1016_j_heliyon_2024_e35235 crossref_primary_10_62610_RJOR_2024_2_16_21 crossref_primary_10_1038_s41598_019_38982_0 crossref_primary_10_1007_s00432_023_04583_8 crossref_primary_10_1111_febs_15541 crossref_primary_10_1016_j_ejmech_2020_112954 crossref_primary_10_1016_j_jtcms_2019_02_002 crossref_primary_10_1016_j_pnpbp_2024_111036 crossref_primary_10_1016_j_tranon_2022_101560 crossref_primary_10_1016_j_virs_2022_09_001 crossref_primary_10_1080_1062936X_2022_2109062 crossref_primary_10_1016_j_intimp_2023_110370 crossref_primary_10_1038_s41467_025_56591_6 crossref_primary_10_3390_nu14142813 crossref_primary_10_3390_ijms19041045 crossref_primary_10_1016_j_biopha_2023_114867 crossref_primary_10_1111_jcmm_16155 crossref_primary_10_3389_fonc_2019_01215 crossref_primary_10_1016_j_ijbiomac_2023_127375 crossref_primary_10_3390_biom11010062 crossref_primary_10_3390_molecules29061233 crossref_primary_10_1002_2211_5463_13310 crossref_primary_10_3389_fmolb_2020_615816 crossref_primary_10_3390_ani13030419 crossref_primary_10_3390_ijms24076763 crossref_primary_10_1016_j_biopha_2019_109372 crossref_primary_10_1093_hmg_ddac201 crossref_primary_10_1038_s41598_024_77897_3 crossref_primary_10_1074_jbc_RA120_012715 crossref_primary_10_1007_s11010_021_04174_6 crossref_primary_10_70322_ldmh_2025_10005 crossref_primary_10_1016_j_jep_2024_117850 crossref_primary_10_3390_ph15101204 crossref_primary_10_1002_mc_23372 crossref_primary_10_3390_cancers11040584 crossref_primary_10_1002_jcp_26123 crossref_primary_10_1016_j_prp_2024_155316 crossref_primary_10_3390_ijms222011229 crossref_primary_10_1016_j_devcel_2024_10_001 crossref_primary_10_1016_j_pbb_2019_172830 crossref_primary_10_4239_wjd_v12_i7_1010 crossref_primary_10_14368_jdras_2020_36_3_145 crossref_primary_10_14814_phy2_15553 crossref_primary_10_1016_j_prp_2022_154063 crossref_primary_10_1093_stmcls_sxac050 crossref_primary_10_3390_cells8040331 crossref_primary_10_1038_s41467_020_18084_6 crossref_primary_10_3389_fphys_2018_01588 crossref_primary_10_1021_acs_jmedchem_2c01070 crossref_primary_10_2174_0929867327666200824110332 crossref_primary_10_1093_jas_sky473 crossref_primary_10_1002_ptr_6842 crossref_primary_10_23736_S2724_6507_22_03895_7 crossref_primary_10_1093_biolre_ioab184 crossref_primary_10_1016_j_biopha_2019_109241 crossref_primary_10_1016_j_tube_2019_04_010 crossref_primary_10_1111_jcmm_18020 crossref_primary_10_3389_fonc_2023_1164250 crossref_primary_10_1111_jcmm_18385 crossref_primary_10_1155_2018_1547120 crossref_primary_10_1016_j_chemosphere_2019_125400 crossref_primary_10_3390_nu12020488 crossref_primary_10_1172_JCI176402 crossref_primary_10_3390_ijms20163985 crossref_primary_10_1002_btm2_10560 crossref_primary_10_3389_fphar_2022_1003614 crossref_primary_10_3390_polym12112567 crossref_primary_10_1016_j_freeradbiomed_2020_11_037 crossref_primary_10_1186_s13036_019_0168_1 crossref_primary_10_1007_s10571_017_0550_9 crossref_primary_10_1155_2022_2624434 crossref_primary_10_1016_j_jep_2023_116466 crossref_primary_10_1093_biolre_ioaa079 crossref_primary_10_2174_0929867325666180117105522 crossref_primary_10_5534_wjmh_220108 crossref_primary_10_3390_cells12131751 crossref_primary_10_1016_j_tox_2023_153614 crossref_primary_10_1016_j_lfs_2023_121899 crossref_primary_10_18632_aging_102015 crossref_primary_10_3389_fendo_2023_1116770 crossref_primary_10_18632_aging_103588 crossref_primary_10_1111_and_14169 crossref_primary_10_1007_s10571_020_00882_7 crossref_primary_10_1016_j_stem_2024_01_013 crossref_primary_10_1182_blood_2021012197 crossref_primary_10_1002_advs_202308508 crossref_primary_10_1111_jcmm_16060 crossref_primary_10_1016_j_bbcan_2022_188798 crossref_primary_10_1371_journal_pone_0259241 crossref_primary_10_1007_s12672_024_00875_8 crossref_primary_10_1101_gr_257840_119 crossref_primary_10_61474_ncs_2023_00002 crossref_primary_10_3389_fcell_2019_00180 crossref_primary_10_1016_j_lfs_2024_122810 crossref_primary_10_1002_dvg_23220 crossref_primary_10_1111_jcpp_13783 crossref_primary_10_1016_j_heliyon_2019_e01494 crossref_primary_10_1016_j_jep_2017_04_030 crossref_primary_10_3390_biology10030194 crossref_primary_10_3390_ijms23115892 crossref_primary_10_1016_j_taap_2022_116135 crossref_primary_10_1155_2019_2424751 crossref_primary_10_5534_wjmh_230004 crossref_primary_10_1016_j_jds_2021_09_035 crossref_primary_10_1021_acsnano_4c07833 crossref_primary_10_1080_21691401_2019_1620255 crossref_primary_10_1016_j_biochi_2024_05_001 crossref_primary_10_1080_15384101_2022_2083708 crossref_primary_10_3389_fphar_2023_1103062 crossref_primary_10_1155_2021_5833857 crossref_primary_10_1016_j_yexcr_2018_12_007 crossref_primary_10_1186_s13287_022_03161_y crossref_primary_10_3390_ijms24043665 crossref_primary_10_3390_ijms22147588 crossref_primary_10_1186_s13287_025_04229_1 crossref_primary_10_3390_cells10040842 crossref_primary_10_1016_j_freeradbiomed_2020_04_027 crossref_primary_10_1016_j_sajb_2025_03_004 |
Cites_doi | 10.1016/j.cmet.2014.03.017 10.1038/nature12122 10.1016/j.cell.2006.08.033 10.1182/blood-2008-02-137398 10.1016/j.cell.2011.02.014 10.1016/j.devcel.2006.10.007 10.1038/385810a0 10.1038/nsmb.2660 10.1016/j.cmet.2006.02.002 10.1038/nature01646 10.1002/pmic.201100048 10.1016/j.cell.2011.08.033 10.1002/stem.1589 10.1038/nature06968 10.1038/ncb3264 10.1371/journal.pone.0016358 10.1073/pnas.1118777109 10.1128/MCB.00468-10 10.1128/MCB.25.23.10407-10418.2005 10.1242/jcs.046557 10.1073/pnas.95.26.15629 10.1242/jcs.150029 10.1038/nature13981 10.1038/nature17948 10.1073/pnas.012581799 10.1038/nature14107 10.1016/j.stem.2015.01.015 10.1126/science.1259472 10.1016/j.cell.2016.03.023 10.1038/nm.2928 10.1084/jem.20020805 10.1007/s00335-001-2123-x 10.1128/MCB.24.15.6710-6718.2004 10.1101/gad.913901 10.1128/MCB.25.24.11122-11130.2005 10.1101/cshperspect.a006783 10.1371/journal.pbio.0060253 10.1634/stemcells.2007-0617 10.1038/1235 10.1371/journal.pone.0020914 10.1016/j.cell.2012.07.032 10.1016/j.molcel.2016.04.009 10.1016/j.cmet.2016.03.001 10.1128/MCB.00144-14 10.1111/j.1749-6632.1991.tb37743.x 10.1126/science.1116447 10.1016/j.cmet.2014.06.004 10.1016/j.cell.2013.04.031 10.1074/jbc.274.16.10963 10.1038/nature04694 10.1038/emboj.2012.71 10.1038/ncb3256 10.1126/science.1173288 10.1038/nature08113 10.1101/gad.1089403 10.1002/stem.1447 10.1038/6023 10.1073/pnas.151033798 10.1016/j.stem.2012.01.014 10.1083/jcb.152.4.657 10.1016/j.cmet.2015.02.002 10.1038/nrm2672 10.1002/emmm.201100131 10.1038/sj.onc.1209307 10.1128/MCB.24.8.3112-3124.2004 10.1242/dev.086165 10.1038/ncomms8212 10.1242/dev.021121 10.1038/nrc3860 10.1016/j.stem.2013.10.005 10.1016/j.cell.2013.03.012 10.1128/MCB.00985-10 10.1242/dev.01864 10.1073/pnas.0901854106 10.7554/eLife.11058 10.1172/JCI29528 10.1016/j.cell.2012.03.017 10.1038/81715 10.1074/jbc.M110.216283 10.1038/ncb3347 10.1038/ncomms5004 10.1126/science.292.5522.1728 10.1093/hmg/ddl112 10.1038/ncb3172 10.1126/science.1257132 10.1016/j.devcel.2006.08.013 10.1038/ncb0910-823 10.1016/j.cell.2006.07.024 10.1126/scisignal.1161577 10.1016/j.ydbio.2009.12.001 10.1016/j.stem.2015.08.010 10.1126/science.1250684 10.1158/2159-8290.CD-15-0460 10.1016/j.molcel.2006.03.029 10.1074/jbc.M406467200 10.1016/j.stem.2010.11.015 10.1634/stemcells.2006-0219 10.1002/stem.748 10.1016/j.stem.2016.05.009 10.1002/stem.404 10.1016/j.cmet.2013.10.001 10.1126/science.1226603 10.1038/nrm2882 10.1038/ncb2267 10.1002/stem.1893 10.1016/j.tcb.2016.03.006 10.1126/science.287.5455.1040 10.1172/JCI0215696 10.1128/MCB.00722-06 |
ContentType | Journal Article |
Copyright | 2016. Published by The Company of Biologists Ltd. |
Copyright_xml | – notice: 2016. Published by The Company of Biologists Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 8FD FR3 P64 RC3 |
DOI | 10.1242/dev.137075 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Genetics Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1477-9129 |
EndPage | 3060 |
ExternalDocumentID | 27578176 10_1242_dev_137075 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Medical Research Council |
GroupedDBID | --- -DZ -ET -~X .55 0R~ 186 18M 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAYXX ABZEH ACGFS ACMFV ACPRK ACREN ADBBV ADFRT ADVGF AENEX AFFNX AGGIJ ALMA_UNASSIGNED_HOLDINGS AMTXH BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 HZ~ INIJC KQ8 O9- OK1 P2P R.V RCB RHI SJN TR2 TWZ UPT W8F WH7 WOQ X7M XJT XSW CGR CUY CVF ECM EIF NPM RHF 7X8 8FD FR3 P64 RC3 |
ID | FETCH-LOGICAL-c320t-c3288f082c1b05ab7136b2757e159c452afc334a1cc866125d5b7bbee61007623 |
ISSN | 0950-1991 |
IngestDate | Fri Sep 05 04:20:04 EDT 2025 Fri Sep 05 00:13:21 EDT 2025 Wed Feb 19 02:40:54 EST 2025 Thu Apr 24 23:08:22 EDT 2025 Tue Jul 01 00:45:06 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | mTOR AKT Proliferation and differentiation PI3K Metabolism Pluripotency |
Language | English |
License | http://www.biologists.com/user-licence-1-1 2016. Published by The Company of Biologists Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-c3288f082c1b05ab7136b2757e159c452afc334a1cc866125d5b7bbee61007623 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 ObjectType-Article-1 ObjectType-Feature-2 |
ORCID | 0000-0003-2019-380X 0000-0001-5203-3603 |
PMID | 27578176 |
PQID | 1815975191 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1827924449 proquest_miscellaneous_1815975191 pubmed_primary_27578176 crossref_primary_10_1242_dev_137075 crossref_citationtrail_10_1242_dev_137075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-01 20160901 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Development (Cambridge) |
PublicationTitleAlternate | Development |
PublicationYear | 2016 |
References | Harada (2021042608364927000_DEV137075C28) 2005; 25 Yang (2021042608364927000_DEV137075C93) 2005; 25 Cho (2021042608364927000_DEV137075C12) 2014; 32 Kingham (2021042608364927000_DEV137075C36) 2009; 122 Sasaki (2021042608364927000_DEV137075C64) 2000; 287 Wang (2021042608364927000_DEV137075C84) 2013; 13 Betschinger (2021042608364927000_DEV137075C4) 2013; 153 Yu (2021042608364927000_DEV137075C98) 2015; 6 Kundu (2021042608364927000_DEV137075C39) 2008; 112 Ryu (2021042608364927000_DEV137075C62) 2011; 286 Tang (2021042608364927000_DEV137075C75) 2014; 127 Armstrong (2021042608364927000_DEV137075C2) 2006; 15 Neuman (2021042608364927000_DEV137075C53) 2011; 3 Zinzalla (2021042608364927000_DEV137075C107) 2011; 144 Shiraki (2021042608364927000_DEV137075C67) 2014; 19 Wilmut (2021042608364927000_DEV137075C88) 1997; 385 Hishida (2021042608364927000_DEV137075C30) 2015; 33 Takahashi (2021042608364927000_DEV137075C73) 2006; 126 Clayton (2021042608364927000_DEV137075C14) 2002; 196 Harris (2021042608364927000_DEV137075C29) 2011; 31 Vanhaesebroeck (2021042608364927000_DEV137075C81) 2010; 11 Ying (2021042608364927000_DEV137075C95) 2008; 453 Ho (2021042608364927000_DEV137075C31) 2015; 17 Ma (2021042608364927000_DEV137075C46) 2015; 17 Rennebeck (2021042608364927000_DEV137075C61) 1998; 95 Ciraolo (2021042608364927000_DEV137075C13) 2008; 1 Kim (2021042608364927000_DEV137075C35) 2006; 3 Laplante (2021042608364927000_DEV137075C40) 2012; 149 Di Cristofano (2021042608364927000_DEV137075C19) 1998; 19 Tschopp (2021042608364927000_DEV137075C79) 2005; 132 Lee (2021042608364927000_DEV137075C42) 2014; 20 Zhu (2021042608364927000_DEV137075C106) 2011; 147 Le Bacquer (2021042608364927000_DEV137075C41) 2007; 117 Liu (2021042608364927000_DEV137075C44) 2015; 5 Zhou (2021042608364927000_DEV137075C102) 2011; 6 Ueki (2021042608364927000_DEV137075C80) 2002; 99 Yu (2021042608364927000_DEV137075C97) 2014; 32 Jewell (2021042608364927000_DEV137075C34) 2015; 347 Shyh-Chang (2021042608364927000_DEV137075C68) 2013; 339 McLean (2021042608364927000_DEV137075C47) 2007; 25 Deglincerti (2021042608364927000_DEV137075C18) 2016; 533 Morita (2021042608364927000_DEV137075C50) 2013; 18 Wang (2021042608364927000_DEV137075C85) 2015; 347 Zunder (2021042608364927000_DEV137075C109) 2015; 16 Alva (2021042608364927000_DEV137075C1) 2011; 29 Shahbazi (2021042608364927000_DEV137075C65) 2016; 18 Zhao (2021042608364927000_DEV137075C100) 2014; 34 Carey (2021042608364927000_DEV137075C7) 2015; 518 Mizushima (2021042608364927000_DEV137075C49) 2001; 152 Terauchi (2021042608364927000_DEV137075C76) 1999; 21 Yan (2021042608364927000_DEV137075C92) 2013; 20 Ma (2021042608364927000_DEV137075C45) 2009; 10 Ward (2021042608364927000_DEV137075C86) 2012; 4 Pende (2021042608364927000_DEV137075C56) 2004; 24 Bi (2021042608364927000_DEV137075C5) 1999; 274 Wu (2021042608364927000_DEV137075C90) 2015; 17 Li (2021042608364927000_DEV137075C43) 2016; 62 Fritsch (2021042608364927000_DEV137075C24) 2013; 153 Curatolo (2021042608364927000_DEV137075C16) 1991; 615 Jacinto (2021042608364927000_DEV137075C33) 2006; 127 Chen (2021042608364927000_DEV137075C9) 2001; 15 Tohyama (2021042608364927000_DEV137075C78) 2016; 23 Fishwick (2021042608364927000_DEV137075C21) 2010; 338 Davidson (2021042608364927000_DEV137075C17) 2012; 109 Moussaieff (2021042608364927000_DEV137075C51) 2015; 21 Zoumaro-Djayoon (2021042608364927000_DEV137075C108) 2011; 11 Wang (2021042608364927000_DEV137075C83) 2009; 325 Varum (2021042608364927000_DEV137075C82) 2011; 6 Zhang (2021042608364927000_DEV137075C99) 2016; 19 Foukas (2021042608364927000_DEV137075C22) 2006; 441 Carroll (2021042608364927000_DEV137075C8) 2016; 5 Fruman (2021042608364927000_DEV137075C25) 2000; 26 Mizushima (2021042608364927000_DEV137075C48) 2010; 12 Zhu (2021042608364927000_DEV137075C105) 2010; 7 Bi (2021042608364927000_DEV137075C6) 2002; 13 Thorpe (2021042608364927000_DEV137075C77) 2015; 15 Goorden (2021042608364927000_DEV137075C26) 2011; 31 Yang (2021042608364927000_DEV137075C94) 2013; 497 Cho (2021042608364927000_DEV137075C11) 2001; 292 Kobayashi (2021042608364927000_DEV137075C37) 2001; 98 Yoshioka (2021042608364927000_DEV137075C96) 2012; 18 Dummler (2021042608364927000_DEV137075C20) 2006; 26 Cowan (2021042608364927000_DEV137075C15) 2005; 309 Ktistakis (2021042608364927000_DEV137075C38) 2016; 26 Prigione (2021042608364927000_DEV137075C59) 2010; 28 Sperber (2021042608364927000_DEV137075C71) 2015; 17 Zhu (2021042608364927000_DEV137075C104) 2013; 140 Zhou (2021042608364927000_DEV137075C103) 2012; 31 Bar-Peled (2021042608364927000_DEV137075C3) 2012; 150 Silva (2021042608364927000_DEV137075C69) 2008; 6 Wray (2021042608364927000_DEV137075C89) 2011; 13 Watanabe (2021042608364927000_DEV137075C87) 2006; 25 Shiota (2021042608364927000_DEV137075C66) 2006; 11 Peng (2021042608364927000_DEV137075C57) 2003; 17 Singh (2021042608364927000_DEV137075C70) 2012; 10 Sarbassov (2021042608364927000_DEV137075C63) 2006; 22 Wulff (2021042608364927000_DEV137075C91) 2002; 110 Takahashi (2021042608364927000_DEV137075C74) 2003; 423 Petropoulos (2021042608364927000_DEV137075C58) 2016; 165 Cheng (2021042608364927000_DEV137075C10) 2014; 345 Niwa (2021042608364927000_DEV137075C54) 2009; 460 Rebsamen (2021042608364927000_DEV137075C60) 2015; 519 Honda (2021042608364927000_DEV137075C32) 2014; 5 Paling (2021042608364927000_DEV137075C55) 2004; 279 Murakami (2021042608364927000_DEV137075C52) 2004; 24 Sumi (2021042608364927000_DEV137075C72) 2008; 135 Zhou (2021042608364927000_DEV137075C101) 2009; 106 Freund (2021042608364927000_DEV137075C23) 2008; 26 Guertin (2021042608364927000_DEV137075C27) 2006; 11 |
References_xml | – volume: 19 start-page: 780 year: 2014 ident: 2021042608364927000_DEV137075C67 article-title: Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.03.017 – volume: 497 start-page: 217 year: 2013 ident: 2021042608364927000_DEV137075C94 article-title: mTOR kinase structure, mechanism and regulation publication-title: Nature doi: 10.1038/nature12122 – volume: 127 start-page: 125 year: 2006 ident: 2021042608364927000_DEV137075C33 article-title: SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity publication-title: Cell doi: 10.1016/j.cell.2006.08.033 – volume: 112 start-page: 1493 year: 2008 ident: 2021042608364927000_DEV137075C39 article-title: Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation publication-title: Blood doi: 10.1182/blood-2008-02-137398 – volume: 144 start-page: 757 year: 2011 ident: 2021042608364927000_DEV137075C107 article-title: Activation of mTORC2 by association with the ribosome publication-title: Cell doi: 10.1016/j.cell.2011.02.014 – volume: 11 start-page: 859 year: 2006 ident: 2021042608364927000_DEV137075C27 article-title: Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1 publication-title: Dev. Cell doi: 10.1016/j.devcel.2006.10.007 – volume: 385 start-page: 810 year: 1997 ident: 2021042608364927000_DEV137075C88 article-title: Viable offspring derived from fetal and adult mammalian cells publication-title: Nature doi: 10.1038/385810a0 – volume: 20 start-page: 1131 year: 2013 ident: 2021042608364927000_DEV137075C92 article-title: Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2660 – volume: 3 start-page: 177 year: 2006 ident: 2021042608364927000_DEV137075C35 article-title: HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.02.002 – volume: 423 start-page: 541 year: 2003 ident: 2021042608364927000_DEV137075C74 article-title: Role of ERas in promoting tumour-like properties in mouse embryonic stem cells publication-title: Nature doi: 10.1038/nature01646 – volume: 11 start-page: 3962 year: 2011 ident: 2021042608364927000_DEV137075C108 article-title: Investigating the role of FGF-2 in stem cell maintenance by global phosphoproteomics profiling publication-title: Proteomics doi: 10.1002/pmic.201100048 – volume: 147 start-page: 81 year: 2011 ident: 2021042608364927000_DEV137075C106 article-title: The Lin28/let-7 axis regulates glucose metabolism publication-title: Cell doi: 10.1016/j.cell.2011.08.033 – volume: 32 start-page: 424 year: 2014 ident: 2021042608364927000_DEV137075C12 article-title: Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs publication-title: Stem Cells doi: 10.1002/stem.1589 – volume: 453 start-page: 519 year: 2008 ident: 2021042608364927000_DEV137075C95 article-title: The ground state of embryonic stem cell self-renewal publication-title: Nature doi: 10.1038/nature06968 – volume: 17 start-page: 1523 year: 2015 ident: 2021042608364927000_DEV137075C71 article-title: The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition publication-title: Nat. Cell Biol. doi: 10.1038/ncb3264 – volume: 6 start-page: e16358 year: 2011 ident: 2021042608364927000_DEV137075C102 article-title: The mammalian class 3 PI3K (PIK3C3) is required for early embryogenesis and cell proliferation publication-title: PLoS ONE doi: 10.1371/journal.pone.0016358 – volume: 109 start-page: 4485 year: 2012 ident: 2021042608364927000_DEV137075C17 article-title: Wnt/beta-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1118777109 – volume: 31 start-page: 63 year: 2011 ident: 2021042608364927000_DEV137075C29 article-title: Requirement for class II phosphoinositide 3-kinase C2alpha in maintenance of glomerular structure and function publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00468-10 – volume: 25 start-page: 10407 year: 2005 ident: 2021042608364927000_DEV137075C93 article-title: Dosage-dependent effects of Akt1/protein kinase Balpha (PKBalpha) and Akt3/PKBgamma on thymus, skin, and cardiovascular and nervous system development in mice publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.23.10407-10418.2005 – volume: 122 start-page: 2311 year: 2009 ident: 2021042608364927000_DEV137075C36 article-title: Distinct roles for isoforms of the catalytic subunit of class-IA PI3K in the regulation of behaviour of murine embryonic stem cells publication-title: J. Cell Sci. doi: 10.1242/jcs.046557 – volume: 95 start-page: 15629 year: 1998 ident: 2021042608364927000_DEV137075C61 article-title: Loss of function of the tuberous sclerosis 2 tumor suppressor gene results in embryonic lethality characterized by disrupted neuroepithelial growth and development publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.26.15629 – volume: 127 start-page: 3998 year: 2014 ident: 2021042608364927000_DEV137075C75 article-title: Differential effects of Akt isoforms on somatic cell reprogramming publication-title: J. Cell Sci. doi: 10.1242/jcs.150029 – volume: 518 start-page: 413 year: 2015 ident: 2021042608364927000_DEV137075C7 article-title: Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells publication-title: Nature doi: 10.1038/nature13981 – volume: 533 start-page: 251 year: 2016 ident: 2021042608364927000_DEV137075C18 article-title: Self-organization of the in vitro attached human embryo publication-title: Nature doi: 10.1038/nature17948 – volume: 99 start-page: 419 year: 2002 ident: 2021042608364927000_DEV137075C80 article-title: Increased insulin sensitivity in mice lacking p85beta subunit of phosphoinositide 3-kinase publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.012581799 – volume: 519 start-page: 477 year: 2015 ident: 2021042608364927000_DEV137075C60 article-title: SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1 publication-title: Nature doi: 10.1038/nature14107 – volume: 16 start-page: 323 year: 2015 ident: 2021042608364927000_DEV137075C109 article-title: A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.01.015 – volume: 347 start-page: 194 year: 2015 ident: 2021042608364927000_DEV137075C34 article-title: Metabolism. Differential regulation of mTORC1 by leucine and glutamine publication-title: Science doi: 10.1126/science.1259472 – volume: 165 start-page: 1012 year: 2016 ident: 2021042608364927000_DEV137075C58 article-title: Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos publication-title: Cell doi: 10.1016/j.cell.2016.03.023 – volume: 18 start-page: 1560 year: 2012 ident: 2021042608364927000_DEV137075C96 article-title: Endothelial PI3K-C2alpha, a class II PI3K, has an essential role in angiogenesis and vascular barrier function publication-title: Nat. Med. doi: 10.1038/nm.2928 – volume: 196 start-page: 753 year: 2002 ident: 2021042608364927000_DEV137075C14 article-title: A crucial role for the p110delta subunit of phosphatidylinositol 3-kinase in B cell development and activation publication-title: J. Exp. Med. doi: 10.1084/jem.20020805 – volume: 13 start-page: 169 year: 2002 ident: 2021042608364927000_DEV137075C6 article-title: Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI 3-kinase publication-title: Mamm. Genome doi: 10.1007/s00335-001-2123-x – volume: 24 start-page: 6710 year: 2004 ident: 2021042608364927000_DEV137075C52 article-title: mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.15.6710-6718.2004 – volume: 15 start-page: 2203 year: 2001 ident: 2021042608364927000_DEV137075C9 article-title: Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene publication-title: Genes Dev. doi: 10.1101/gad.913901 – volume: 25 start-page: 11122 year: 2005 ident: 2021042608364927000_DEV137075C28 article-title: The class II phosphoinositide 3-kinase C2beta is not essential for epidermal differentiation publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.24.11122-11130.2005 – volume: 4 start-page: a006783 year: 2012 ident: 2021042608364927000_DEV137075C86 article-title: Signaling in control of cell growth and metabolism publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a006783 – volume: 6 start-page: e253 year: 2008 ident: 2021042608364927000_DEV137075C69 article-title: Promotion of reprogramming to ground state pluripotency by signal inhibition publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060253 – volume: 26 start-page: 724 year: 2008 ident: 2021042608364927000_DEV137075C23 article-title: Insulin redirects differentiation from cardiogenic mesoderm and endoderm to neuroectoderm in differentiating human embryonic stem cells publication-title: Stem Cells doi: 10.1634/stemcells.2007-0617 – volume: 19 start-page: 348 year: 1998 ident: 2021042608364927000_DEV137075C19 article-title: Pten is essential for embryonic development and tumour suppression publication-title: Nat. Genet. doi: 10.1038/1235 – volume: 6 start-page: e20914 year: 2011 ident: 2021042608364927000_DEV137075C82 article-title: Energy metabolism in human pluripotent stem cells and their differentiated counterparts publication-title: PLoS ONE doi: 10.1371/journal.pone.0020914 – volume: 150 start-page: 1196 year: 2012 ident: 2021042608364927000_DEV137075C3 article-title: Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1 publication-title: Cell doi: 10.1016/j.cell.2012.07.032 – volume: 62 start-page: 359 year: 2016 ident: 2021042608364927000_DEV137075C43 article-title: ULK1/2 constitute a bifurcate node controlling glucose metabolic fluxes in addition to autophagy publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.04.009 – volume: 23 start-page: 663 year: 2016 ident: 2021042608364927000_DEV137075C78 article-title: Glutamine Oxidation Is Indispensable for Survival of Human Pluripotent Stem Cells publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.03.001 – volume: 34 start-page: 1966 year: 2014 ident: 2021042608364927000_DEV137075C100 article-title: Phosphoinositide-dependent kinase 1 and mTORC2 synergistically maintain postnatal heart growth and heart function in mice publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00144-14 – volume: 615 start-page: 8 year: 1991 ident: 2021042608364927000_DEV137075C16 article-title: Neuropsychiatric aspects of tuberous sclerosis publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.1991.tb37743.x – volume: 309 start-page: 1369 year: 2005 ident: 2021042608364927000_DEV137075C15 article-title: Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells publication-title: Science doi: 10.1126/science.1116447 – volume: 20 start-page: 306 year: 2014 ident: 2021042608364927000_DEV137075C42 article-title: Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.06.004 – volume: 153 start-page: 1050 year: 2013 ident: 2021042608364927000_DEV137075C24 article-title: RAS and RHO Families of GTPases Directly Regulate Distinct Phosphoinositide 3-Kinase Isoforms publication-title: Cell doi: 10.1016/j.cell.2013.04.031 – volume: 274 start-page: 10963 year: 1999 ident: 2021042608364927000_DEV137075C5 article-title: Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.16.10963 – volume: 441 start-page: 366 year: 2006 ident: 2021042608364927000_DEV137075C22 article-title: Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation publication-title: Nature doi: 10.1038/nature04694 – volume: 31 start-page: 2103 year: 2012 ident: 2021042608364927000_DEV137075C103 article-title: HIF1alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition publication-title: EMBO J. doi: 10.1038/emboj.2012.71 – volume: 17 start-page: 1379 year: 2015 ident: 2021042608364927000_DEV137075C46 article-title: Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming publication-title: Nat. Cell Biol. doi: 10.1038/ncb3256 – volume: 325 start-page: 435 year: 2009 ident: 2021042608364927000_DEV137075C83 article-title: Dependence of mouse embryonic stem cells on threonine catabolism publication-title: Science doi: 10.1126/science.1173288 – volume: 460 start-page: 118 year: 2009 ident: 2021042608364927000_DEV137075C54 article-title: A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells publication-title: Nature doi: 10.1038/nature08113 – volume: 17 start-page: 1352 year: 2003 ident: 2021042608364927000_DEV137075C57 article-title: Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2 publication-title: Genes Dev. doi: 10.1101/gad.1089403 – volume: 32 start-page: 349 year: 2014 ident: 2021042608364927000_DEV137075C97 article-title: Stimulation of somatic cell reprogramming by ERas-Akt-FoxO1 signaling axis publication-title: Stem Cells doi: 10.1002/stem.1447 – volume: 21 start-page: 230 year: 1999 ident: 2021042608364927000_DEV137075C76 article-title: Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 alpha subunit of phosphoinositide 3-kinase publication-title: Nat. Genet. doi: 10.1038/6023 – volume: 98 start-page: 8762 year: 2001 ident: 2021042608364927000_DEV137075C37 article-title: A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.151033798 – volume: 10 start-page: 312 year: 2012 ident: 2021042608364927000_DEV137075C70 article-title: Signaling network crosstalk in human pluripotent cells: a Smad2/3-regulated switch that controls the balance between self-renewal and differentiation publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.01.014 – volume: 152 start-page: 657 year: 2001 ident: 2021042608364927000_DEV137075C49 article-title: Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells publication-title: J. Cell Biol. doi: 10.1083/jcb.152.4.657 – volume: 21 start-page: 392 year: 2015 ident: 2021042608364927000_DEV137075C51 article-title: Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.02.002 – volume: 10 start-page: 307 year: 2009 ident: 2021042608364927000_DEV137075C45 article-title: Molecular mechanisms of mTOR-mediated translational control publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2672 – volume: 3 start-page: 189 year: 2011 ident: 2021042608364927000_DEV137075C53 article-title: Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis publication-title: EMBO Mol. Med. doi: 10.1002/emmm.201100131 – volume: 25 start-page: 2697 year: 2006 ident: 2021042608364927000_DEV137075C87 article-title: Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells publication-title: Oncogene doi: 10.1038/sj.onc.1209307 – volume: 24 start-page: 3112 year: 2004 ident: 2021042608364927000_DEV137075C56 article-title: S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.8.3112-3124.2004 – volume: 140 start-page: 705 year: 2013 ident: 2021042608364927000_DEV137075C104 article-title: Human pluripotent stem cells: an emerging model in developmental biology publication-title: Development doi: 10.1242/dev.086165 – volume: 6 start-page: 7212 year: 2015 ident: 2021042608364927000_DEV137075C98 article-title: PI3K/mTORC2 regulates TGF-beta/Activin signalling by modulating Smad2/3 activity via linker phosphorylation publication-title: Nat. Commun. doi: 10.1038/ncomms8212 – volume: 135 start-page: 2969 year: 2008 ident: 2021042608364927000_DEV137075C72 article-title: Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling publication-title: Development doi: 10.1242/dev.021121 – volume: 15 start-page: 7 year: 2015 ident: 2021042608364927000_DEV137075C77 article-title: PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3860 – volume: 13 start-page: 617 year: 2013 ident: 2021042608364927000_DEV137075C84 article-title: Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.10.005 – volume: 153 start-page: 335 year: 2013 ident: 2021042608364927000_DEV137075C4 article-title: Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3 publication-title: Cell doi: 10.1016/j.cell.2013.03.012 – volume: 31 start-page: 1672 year: 2011 ident: 2021042608364927000_DEV137075C26 article-title: Rheb is essential for murine development publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00985-10 – volume: 132 start-page: 2943 year: 2005 ident: 2021042608364927000_DEV137075C79 article-title: Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis publication-title: Development doi: 10.1242/dev.01864 – volume: 106 start-page: 7840 year: 2009 ident: 2021042608364927000_DEV137075C101 article-title: mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0901854106 – volume: 5 start-page: e11058 year: 2016 ident: 2021042608364927000_DEV137075C8 article-title: Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity publication-title: eLife doi: 10.7554/eLife.11058 – volume: 117 start-page: 387 year: 2007 ident: 2021042608364927000_DEV137075C41 article-title: Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2 publication-title: J. Clin. Invest. doi: 10.1172/JCI29528 – volume: 149 start-page: 274 year: 2012 ident: 2021042608364927000_DEV137075C40 article-title: mTOR signaling in growth control and disease publication-title: Cell doi: 10.1016/j.cell.2012.03.017 – volume: 26 start-page: 379 year: 2000 ident: 2021042608364927000_DEV137075C25 article-title: Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha publication-title: Nat. Genet. doi: 10.1038/81715 – volume: 286 start-page: 23667 year: 2011 ident: 2021042608364927000_DEV137075C62 article-title: L-threonine regulates G1/S phase transition of mouse embryonic stem cells via PI3K/Akt, MAPKs, and mTORC pathways publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.216283 – volume: 18 start-page: 700 year: 2016 ident: 2021042608364927000_DEV137075C65 article-title: Self-organization of the human embryo in the absence of maternal tissues publication-title: Nat. Cell Biol. doi: 10.1038/ncb3347 – volume: 5 start-page: 4004 year: 2014 ident: 2021042608364927000_DEV137075C32 article-title: Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes publication-title: Nat. Commun. doi: 10.1038/ncomms5004 – volume: 292 start-page: 1728 year: 2001 ident: 2021042608364927000_DEV137075C11 article-title: Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta) publication-title: Science doi: 10.1126/science.292.5522.1728 – volume: 15 start-page: 1894 year: 2006 ident: 2021042608364927000_DEV137075C2 article-title: The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddl112 – volume: 17 start-page: 715 year: 2015 ident: 2021042608364927000_DEV137075C90 article-title: Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming publication-title: Nat. Cell Biol. doi: 10.1038/ncb3172 – volume: 347 start-page: 188 year: 2015 ident: 2021042608364927000_DEV137075C85 article-title: Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1 publication-title: Science doi: 10.1126/science.1257132 – volume: 11 start-page: 583 year: 2006 ident: 2021042608364927000_DEV137075C66 article-title: Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability publication-title: Dev. Cell doi: 10.1016/j.devcel.2006.08.013 – volume: 12 start-page: 823 year: 2010 ident: 2021042608364927000_DEV137075C48 article-title: Autophagy in mammalian development and differentiation publication-title: Nat. Cell Biol. doi: 10.1038/ncb0910-823 – volume: 126 start-page: 663 year: 2006 ident: 2021042608364927000_DEV137075C73 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 1 start-page: ra3 year: 2008 ident: 2021042608364927000_DEV137075C13 article-title: Phosphoinositide 3-kinase p110beta activity: key role in metabolism and mammary gland cancer but not development publication-title: Sci. Signal. doi: 10.1126/scisignal.1161577 – volume: 338 start-page: 215 year: 2010 ident: 2021042608364927000_DEV137075C21 article-title: Initiation of neuronal differentiation requires PI3-kinase/TOR signalling in the vertebrate neural tube publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2009.12.001 – volume: 17 start-page: 435 year: 2015 ident: 2021042608364927000_DEV137075C31 article-title: ELABELA Is an endogenous growth factor that sustains hESC SELF-RENEwal via the PI3K/AKT pathway publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.08.010 – volume: 345 start-page: 1250684 year: 2014 ident: 2021042608364927000_DEV137075C10 article-title: mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity publication-title: Science doi: 10.1126/science.1250684 – volume: 5 start-page: 1194 year: 2015 ident: 2021042608364927000_DEV137075C44 article-title: PtdIns(3,4,5)P3-dependent activation of the mTORC2 kinase complex publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-15-0460 – volume: 22 start-page: 159 year: 2006 ident: 2021042608364927000_DEV137075C63 article-title: Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.03.029 – volume: 279 start-page: 48063 year: 2004 ident: 2021042608364927000_DEV137075C55 article-title: Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M406467200 – volume: 7 start-page: 651 year: 2010 ident: 2021042608364927000_DEV137075C105 article-title: Reprogramming of human primary somatic cells by OCT4 and chemical compounds publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.11.015 – volume: 25 start-page: 29 year: 2007 ident: 2021042608364927000_DEV137075C47 article-title: Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed publication-title: Stem Cells doi: 10.1634/stemcells.2006-0219 – volume: 29 start-page: 1952 year: 2011 ident: 2021042608364927000_DEV137075C1 article-title: Phosphatase and tensin homolog regulates the pluripotent state and lineage fate choice in human embryonic stem cells publication-title: Stem Cells doi: 10.1002/stem.748 – volume: 19 start-page: 66 year: 2016 ident: 2021042608364927000_DEV137075C99 article-title: LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.05.009 – volume: 28 start-page: 721 year: 2010 ident: 2021042608364927000_DEV137075C59 article-title: The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells publication-title: Stem Cells doi: 10.1002/stem.404 – volume: 18 start-page: 698 year: 2013 ident: 2021042608364927000_DEV137075C50 article-title: mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.10.001 – volume: 339 start-page: 222 year: 2013 ident: 2021042608364927000_DEV137075C68 article-title: Influence of threonine metabolism on S-adenosylmethionine and histone methylation publication-title: Science doi: 10.1126/science.1226603 – volume: 11 start-page: 329 year: 2010 ident: 2021042608364927000_DEV137075C81 article-title: The emerging mechanisms of isoform-specific PI3K signalling publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2882 – volume: 13 start-page: 838 year: 2011 ident: 2021042608364927000_DEV137075C89 article-title: Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation publication-title: Nat. Cell Biol. doi: 10.1038/ncb2267 – volume: 33 start-page: 713 year: 2015 ident: 2021042608364927000_DEV137075C30 article-title: Functional compensation between Myc and PI3K signaling supports self-renewal of embryonic stem cells publication-title: Stem Cells doi: 10.1002/stem.1893 – volume: 26 start-page: 624 year: 2016 ident: 2021042608364927000_DEV137075C38 article-title: Digesting the expanding mechanisms of autophagy publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2016.03.006 – volume: 287 start-page: 1040 year: 2000 ident: 2021042608364927000_DEV137075C64 article-title: Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration publication-title: Science doi: 10.1126/science.287.5455.1040 – volume: 110 start-page: 1263 year: 2002 ident: 2021042608364927000_DEV137075C91 article-title: Impaired renal Na(+) retention in the sgk1-knockout mouse publication-title: J. Clin. Invest. doi: 10.1172/JCI0215696 – volume: 26 start-page: 8042 year: 2006 ident: 2021042608364927000_DEV137075C20 article-title: Life with a single isoform of Akt: mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00722-06 |
SSID | ssj0003677 |
Score | 2.6780705 |
SecondaryResourceType | review_article |
Snippet | Phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) constitute the core components of the... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 3050 |
SubjectTerms | Animals Cell Proliferation - genetics Cell Proliferation - physiology Cell Survival - genetics Cell Survival - physiology Humans Phosphatidylinositol 3-Kinases - genetics Phosphatidylinositol 3-Kinases - metabolism Pluripotent Stem Cells - metabolism Proto-Oncogene Proteins c-akt - genetics Proto-Oncogene Proteins c-akt - metabolism Signal Transduction - genetics Signal Transduction - physiology TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - metabolism |
Title | Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27578176 https://www.proquest.com/docview/1815975191 https://www.proquest.com/docview/1827924449 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCMQLgnErNxnBCypZ48SxU97QBNqoBhN0YvASxa4jTWqTiSUT8Os5x3YuRR0CXqzKSR0l3-eTz865EPJcac1TJVhQyNwEfMFUMNVGBDyWWke5VMqmLz54L_aO-Lvj5Liv2WqjS2q1o39ujCv5H1ShD3DFKNl_QLYbFDrgN-ALLSAM7V9hfIgldwrjQMSHddbAzD_34f8rUwPCS-9aMXQlPNyPZ5hIYTaHdjX_8HGMbhy5S8-NbuXLBmxJVduwTBv4hjt8BcjS8aJ1n-kA9cp24H1kvwy3sWCDrYYvjfPLxaKHn8bdrvNuYz0KPpuT4RYEE52PFbxBnNnk-CGY-QFbu-ryL7UEkgMzCUYm3Gi_QTDAjS_M-Q6LZehqqgyAPF1ZJCNMws_kbym07Uu5PXSZXIkkqCmUyfuz7t0cCyl9klq41KS_ECaF9n9dVygXLDus_JjfJDf8uoG-diS4RS6ZcptcdZVEf2yTawfeRwI6v1a28zb5vsaPl7RlBwVIac-OVxS4QZEbtCoocmMCzJggL2jPC3pS0iEv7CDIC4q8oGu8uEOO3r6Z7-4FvtJGoOMorLFN0wLUoGYqTHIlWSwUPg8DalfzJMoLHcc8Z1qnAjXxIlEwjY0R6GQDCvou2Sqr0twnFGZ4osJ0Ko0AgVSkqQYNKiWMDqt9negRedE-3Uz7NPRYDWWZ4XIUQMkAlMyBMiLPunNPXfKVjWc9bUHKwDbineelqZqzDNQrrJdhjcL-dA6m0OScT0fknkO4u1bLiAcXHnlIrvcT4hHZqr815jGo1Fo9scT7BXLVkMs |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proliferation%2C+survival+and+metabolism%3A+the+role+of+PI3K%2FAKT%2FmTOR+signalling+in+pluripotency+and+cell+fate+determination&rft.jtitle=Development+%28Cambridge%29&rft.au=Yu%2C+Jason+S+L&rft.au=Cui%2C+Wei&rft.date=2016-09-01&rft.eissn=1477-9129&rft.volume=143&rft.issue=17&rft.spage=3050&rft_id=info:doi/10.1242%2Fdev.137075&rft_id=info%3Apmid%2F27578176&rft.externalDocID=27578176 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-1991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-1991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-1991&client=summon |