ON THE RELAXED HYBRID-EXTRAGRADIENT METHOD FOR SOLVING CONSTRAINED CONVEX MINIMIZATION PROBLEMS IN HILBERT SPACES
In 2006, Nadezhkina and Takahashi [N. Nadezhkina, W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings,SIAM J. Optim., 16(4) (2006), 1230-1241.] introduced an iterative algorithm for finding a common element of the fixed poi...
        Saved in:
      
    
          | Published in | Taiwanese journal of mathematics Vol. 17; no. 3; pp. 911 - 936 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Mathematical Society of the Republic of China
    
        01.06.2013
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1027-5487 2224-6851 2224-6851  | 
| DOI | 10.11650/tjm.17.2013.2567 | 
Cover
| Abstract | In 2006, Nadezhkina and Takahashi [N. Nadezhkina, W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings,SIAM J. Optim., 16(4) (2006), 1230-1241.] introduced an iterative algorithm for finding a common element of the fixed point set of a nonexpansive mapping and the solution set of a variational inequality in a real Hilbert space via combining two well-known methods: hybrid and extragradient. In this paper, motivated by Nadezhkina and Takahashi’s hybrid-extragradient method we propose and analyze a relaxed hybridextragradient method for finding a solution of a constrained convex minimization problem, which is also a common element of the solution set of a variational inclusion and the fixed point set of a strictly pseudocontractive mapping in a real Hilbert space. We obtain a strong convergence theorem for three sequences generated by this algorithm. Based on this result, we also construct an iterative algorithm for finding a solution of the constrained convex minimization problem, which is also a common fixed point of two mappings taken from the more general class of strictly pseudocontractive mappings.
2010Mathematics Subject Classification: 49J40, 65K05, 47H09.
Key words and phrases: Constrained convex minimization, Variational inclusion, Variational inequality, Nonexpansive mapping, Inverse strongly monotone mapping, Maximal monotone mapping, Strong convergence. | 
    
|---|---|
| AbstractList | In 2006, Nadezhkina and Takahashi [N. Nadezhkina, W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings,SIAM J. Optim., 16(4) (2006), 1230-1241.] introduced an iterative algorithm for finding a common element of the fixed point set of a nonexpansive mapping and the solution set of a variational inequality in a real Hilbert space via combining two well-known methods: hybrid and extragradient. In this paper, motivated by Nadezhkina and Takahashi’s hybrid-extragradient method we propose and analyze a relaxed hybridextragradient method for finding a solution of a constrained convex minimization problem, which is also a common element of the solution set of a variational inclusion and the fixed point set of a strictly pseudocontractive mapping in a real Hilbert space. We obtain a strong convergence theorem for three sequences generated by this algorithm. Based on this result, we also construct an iterative algorithm for finding a solution of the constrained convex minimization problem, which is also a common fixed point of two mappings taken from the more general class of strictly pseudocontractive mappings.
2010Mathematics Subject Classification: 49J40, 65K05, 47H09.
Key words and phrases: Constrained convex minimization, Variational inclusion, Variational inequality, Nonexpansive mapping, Inverse strongly monotone mapping, Maximal monotone mapping, Strong convergence. | 
    
| Author | Ceng, L. C. Chou, C. Y.  | 
    
| Author_xml | – sequence: 1 givenname: L. C. surname: Ceng fullname: Ceng, L. C. – sequence: 2 givenname: C. Y. surname: Chou fullname: Chou, C. Y.  | 
    
| BookMark | eNqNkM1Og0AURidGE9vqA7ibnSvqzPAzsKRlWiah0AA21c1kgCHStKUCpunbS61x4cK4unfxne_mniG43td7BcADRmOMLRM9dZvdGNMxQVgfE9OiV2BACDE0yzbxNRhgRKhmGja9BcO23SBEbAtbA_AehTD1GYxZ4K6ZB_2XScw9ja3T2J3HrsdZmMIFS_3Ig7MohkkUrHg4h9MoTPoID3um31dsDRc85Av-6qa871zG0SRgiwTyEPo8mLA4hcnSnbLkDtyUctuq--85As8zlk59LYjmfOoGWq4T1Gl5_0mmY11Jh9hSmcgpSmoZDi2U6WRFaRh2Ro2CKpQTatLStrEqC0vlZSYto9D1ESCX3o_9QZ6OcrsVh6bayeYkMBJf0kQvTWAqztLEWVoP0QuUN3XbNqoUedXJrqr3XSOr7Z8k_kX-59rjhdm0Xd38AJ2sjpud7N7OaV04GOufMdyJ4g | 
    
| CitedBy_id | crossref_primary_10_1007_s10559_014_9664_y crossref_primary_10_1186_1687_1812_2014_54  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2013 Mathematical Society of the Republic of China | 
    
| Copyright_xml | – notice: 2013 Mathematical Society of the Republic of China | 
    
| DBID | AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.11650/tjm.17.2013.2567 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 2224-6851 | 
    
| EndPage | 936 | 
    
| ExternalDocumentID | 10.11650/tjm.17.2013.2567 10_11650_tjm_17_2013_2567 taiwjmath.17.3.911  | 
    
| GroupedDBID | -~X 123 29Q 2WC AAFWJ AAHSX ABBHK ABXSQ ACHDO ACIPV ACMTB ACTMH ADULT AEHFS AELHJ AENEX AEUPB AFBOV AFFOW AFOWJ AGLNM AIHAF ALMA_UNASSIGNED_HOLDINGS ALRMG E3Z EBS ECEWR EJD IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST OK1 OVT RBV RPE SA0 XSB AAYXX CITATION ADTOC C1A TR2 UNPAY  | 
    
| ID | FETCH-LOGICAL-c320t-c201b313ea928ae509df76497de59bdf448b74d7e0c2757f881efd6ecfba64d33 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1027-5487 2224-6851  | 
    
| IngestDate | Tue Aug 19 19:44:44 EDT 2025 Tue Jul 01 02:33:53 EDT 2025 Thu Apr 24 22:52:08 EDT 2025 Thu Jul 03 21:19:27 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c320t-c201b313ea928ae509df76497de59bdf448b74d7e0c2757f881efd6ecfba64d33 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-17/issue-3/ON-THE-RELAXED-HYBRID-EXTRAGRADIENT-METHOD-FOR-SOLVING-CONSTRAINED-CONVEX/10.11650/tjm.17.2013.2567.pdf | 
    
| PageCount | 26 | 
    
| ParticipantIDs | unpaywall_primary_10_11650_tjm_17_2013_2567 crossref_citationtrail_10_11650_tjm_17_2013_2567 crossref_primary_10_11650_tjm_17_2013_2567 jstor_primary_taiwjmath_17_3_911  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-06-01 | 
    
| PublicationDateYYYYMMDD | 2013-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Taiwanese journal of mathematics | 
    
| PublicationYear | 2013 | 
    
| Publisher | Mathematical Society of the Republic of China | 
    
| Publisher_xml | – name: Mathematical Society of the Republic of China | 
    
| SSID | ssj0028616 | 
    
| Score | 1.9410331 | 
    
| Snippet | In 2006, Nadezhkina and Takahashi [N. Nadezhkina, W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and... | 
    
| SourceID | unpaywall crossref jstor  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 911 | 
    
| SubjectTerms | Academic education Algorithms Hilbert spaces Lipschitz condition Mathematical monotonicity Mathematical sets Perceptron convergence procedure Variational inequalities  | 
    
| Title | ON THE RELAXED HYBRID-EXTRAGRADIENT METHOD FOR SOLVING CONSTRAINED CONVEX MINIMIZATION PROBLEMS IN HILBERT SPACES | 
    
| URI | https://www.jstor.org/stable/taiwjmath.17.3.911 https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-17/issue-3/ON-THE-RELAXED-HYBRID-EXTRAGRADIENT-METHOD-FOR-SOLVING-CONSTRAINED-CONVEX/10.11650/tjm.17.2013.2567.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEGU databaseName: Project Euclid Open Access Journals customDbUrl: eissn: 2224-6851 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028616 issn: 1027-5487 databaseCode: RBV dateStart: 19970101 isFulltext: true titleUrlDefault: https://projecteuclid.org/Search providerName: Project Euclid  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF616QF64I1IgWoPnEDj19re5Jikbh2UOFHiRCkXy95dS5Q0TWmiUv4bf4XfwqzthoAqEEduq9Xs6tNodmdmH_MR8sZq8NRReQqZIwS4UmWQuU0BvsWkRAeJu6X-jdyP_HDivp95sx3y7fYvTHX-oNZi_lEWN_mVTq9MTJWvU03LCFUXXORwviluemWW6xlsbhaYgZm4G8VhAJp9YhYcQXiqX6xAMItHrZNRCwOuKIZ-EIeDI8CcC8aD3rQbnUBnEGnG4m6EY7A9DWbl5oLRjLk6Ozdsrt-EMQPDBW4sZb5L9nwPU4Ea2ZtEw9ZpccPqcNDZgCa3QzcJPoY21a3qnfP84hfLp5H75N56sUxvrtP5fMvpHT8k37fU9eXG-GSsV5khvv5WSfK_1ecj8qAKx2mrXD-PyY5aPCH7_Z_wnpLLQUQRDq3g0Lvg0BIORTi0gkO34NASDu13I_QVH4pjQTocDdq9oD-m3YiG3V47GMV0PGx1gvEzMjkO4k4IFVEFCOZYKxCIPmM2U2nTaaQKYzCZc99tcqm8ZiZzTIEz7kquLOFwj-eNhq1y6SuRZ6nvSsaek9riYqFeEMotJbAzV03GXCa8TFk-TujnbupxIRp1Yt2aSSKqKu6aTGSeFNkcajRBjSY2T7RGE63ROnm7GbIsS5j8SZgWtreR1FZypq1Ci7EEfWOdvNuY5d8nPPgn6ZfkvlPyjYBlvyK11ee1eo1R3yo7JLuj9vSwWmE_AOZuR24 | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6V9AA98EaEl_bACTR-re2Nj2nq1kGJHSVOlXKx7N21REnTQBOV8t_4K_wWZm03BFSBOHJbrWZXn0azOzP7mI-Q11aH544qcygcIcCVqoDCDQT4FpMSHSTulvo38jD2o6n7bubNdsi3678wzfmDWov5B1nd5Dc6vTAxVb7MNS0jNF1wXsLZprjphVmvZ7C5WWEGZuJulEYhaPaJWXgA0Yl-sQLhLB13j8ZdDLjiFIZhGiUHgDkXTJLBcT8-gl4Sa8bifoxjsH0czurNBaMZc3V6ZthcvwljBoYL3FjK8hbZ9T1MBVpkdxqPuifVDavDQWcDmtwO3ST4GNo0t6o3zvOLX6yfRu6R2-vFMr-6zOfzLad3eI9831LXlyvjo7FeFYb4-lslyf9Wn_fJ3SYcp916_TwgO2rxkOwNf8J7RD4lMUU4tIFDb4JDazgU4dAGDt2CQ2s4dNiP0Ve8r44F6Wic7A_C4YT2Yxr1B_vhOKWTUbcXTh6T6WGY9iJoiCpAMMdagUD0BbOZygOnkyuMwWTJfTfgUnlBIUtMgQvuSq4s4XCPl52OrUrpK1EWue9Kxp6Q1uJ8oZ4Syi0lsLNUAWMuE16hLB8n9Es397gQnTaxrs0kE00Vd00mMs-qbA41mqFGM5tnWqOZ1mibvNkMWdYlTP4kTCvb20hqKznVVqHFWIa-sU3ebszy7xM--yfp5-SOU_ONgGW_IK3V57V6iVHfqnjVrK0fP0VGYw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ON+THE+RELAXED+HYBRID-EXTRAGRADIENT+METHOD+FOR+SOLVING+CONSTRAINED+CONVEX+MINIMIZATION+PROBLEMS+IN+HILBERT+SPACES&rft.jtitle=Taiwanese+journal+of+mathematics&rft.au=Ceng%2C+Lu-Chuan&rft.au=Chou%2C+Chun-Yen&rft.date=2013-06-01&rft.issn=1027-5487&rft.volume=17&rft.issue=3&rft_id=info:doi/10.11650%2Ftjm.17.2013.2567&rft.externalDBID=n%2Fa&rft.externalDocID=10_11650_tjm_17_2013_2567 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-5487&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-5487&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-5487&client=summon |