Impact of Non-linear Radiation on MHD Non-aligned Stagnation Point Flow of Micropolar Fluid Over a Convective Surface

We aimed at examining the magnetohydrodynamic (MHD) radiative non-aligned stagnation point motion of non-Newtonian liquid over a stretched surface. The heat transfer mechanism is investigated in the presence of variable heat sink/source, non-linear Rosseland approximation and Biot number. Appropriat...

Full description

Saved in:
Bibliographic Details
Published inJournal of non-equilibrium thermodynamics Vol. 43; no. 4; pp. 327 - 345
Main Authors Anantha, Kumar K, Sugunamma, V, Sandeep, N
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 25.10.2018
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN0340-0204
1437-4358
DOI10.1515/jnet-2018-0022

Cover

Abstract We aimed at examining the magnetohydrodynamic (MHD) radiative non-aligned stagnation point motion of non-Newtonian liquid over a stretched surface. The heat transfer mechanism is investigated in the presence of variable heat sink/source, non-linear Rosseland approximation and Biot number. Appropriate transmutations are exploited to metamorphose the flow equations into ODEs. The acquired non-linear ODEs are highly coupled. These are tackled with the consecutive implication of fourth-order Runge–Kutta and shooting techniques. The variations of flow governing parameters on the dimensionless velocity, micro-rotation and temperature plus the measure of heat transport, couple stress coefficient and friction factor are thoroughly explained using plots and tables. Outcomes stipulate that increasing the values of the stretching ratio parameter causes the thermal field to decline and the velocity field to inflate. Also, an upsurge in the micropolar parameter produces an increase in the rate of heat transport but an opposite outcome is detected with the couple stress coefficient. To the best of our knowledge the non-orthogonal stagnated motion of micropolar liquid with radiation as non-linear and variable heat source/sink has never before been scrutinized.
AbstractList We aimed at examining the magnetohydrodynamic (MHD) radiative non-aligned stagnation point motion of non-Newtonian liquid over a stretched surface. The heat transfer mechanism is investigated in the presence of variable heat sink/source, non-linear Rosseland approximation and Biot number. Appropriate transmutations are exploited to metamorphose the flow equations into ODEs. The acquired non-linear ODEs are highly coupled. These are tackled with the consecutive implication of fourth-order Runge–Kutta and shooting techniques. The variations of flow governing parameters on the dimensionless velocity, micro-rotation and temperature plus the measure of heat transport, couple stress coefficient and friction factor are thoroughly explained using plots and tables. Outcomes stipulate that increasing the values of the stretching ratio parameter causes the thermal field to decline and the velocity field to inflate. Also, an upsurge in the micropolar parameter produces an increase in the rate of heat transport but an opposite outcome is detected with the couple stress coefficient. To the best of our knowledge the non-orthogonal stagnated motion of micropolar liquid with radiation as non-linear and variable heat source/sink has never before been scrutinized.
Author V., Sugunamma
K., Anantha Kumar
N., Sandeep
Author_xml – sequence: 1
  givenname: Kumar
  surname: Anantha
  middlename: K
  fullname: Anantha, Kumar K
– sequence: 2
  givenname: V
  surname: Sugunamma
  fullname: Sugunamma, V
– sequence: 3
  givenname: N
  surname: Sandeep
  fullname: Sandeep, N
BookMark eNp1kMtLAzEQh4MoWKtXzwHPq5NXtwUvUq0KvvBxXrKbSUlZk5rNtvjfu9sKgiiEZGDy_Wb4DsiuDx4JOWZwyhRTZwuPKePAxhkA5ztkwKTIMynUeJcMQEjIgIPcJwdNswAANZrkA9Levi91lWiw9CH4rHYedaTP2jidXPC0O_c3l5uert3co6EvSc_9tvsUnE90Vod1H3DvqhiWoe4CZnXrDH1cYaSaToNfYZXcCulLG62u8JDsWV03ePT9Dsnb7Op1epPdPV7fTi_uskpwSJkqNbdYTUqTS2lRVIZNVA6TkmmhzEjx3JbCaDCSWz4SqCwDJtDk2lhVjqUYkpNt7jKGjxabVCxCG303suAslwI295Ccbn916zdNRFsso3vX8bNgUPRqi15t0asterUdIH8BlUsbIylqV_-PnW-xta4TRoPz2H52xc9Sf4NSSMFz8QWyNZRQ
CitedBy_id crossref_primary_10_1016_j_jtice_2024_105931
crossref_primary_10_1016_j_icheatmasstransfer_2022_106575
crossref_primary_10_1016_j_aej_2023_09_020
crossref_primary_10_1080_01430750_2021_1909133
crossref_primary_10_1007_s12043_022_02385_0
crossref_primary_10_1080_17455030_2022_2073484
crossref_primary_10_1108_MMMS_11_2018_0183
crossref_primary_10_1016_j_jrras_2024_101270
crossref_primary_10_1016_j_jrras_2024_101152
crossref_primary_10_1016_j_jrras_2024_101272
crossref_primary_10_1007_s12206_024_0908_0
crossref_primary_10_1016_j_csite_2024_105369
crossref_primary_10_1016_j_csite_2023_103501
crossref_primary_10_1080_10407782_2024_2326980
crossref_primary_10_1016_j_jppr_2020_07_001
crossref_primary_10_4028_www_scientific_net_DDF_393_138
crossref_primary_10_1038_s41598_022_22571_9
crossref_primary_10_1016_j_ijft_2022_100232
crossref_primary_10_1016_j_csite_2023_103190
crossref_primary_10_1016_j_physleta_2019_04_021
crossref_primary_10_1007_s10973_019_08977_0
crossref_primary_10_1016_j_imu_2020_100462
crossref_primary_10_1142_S0217984924503597
crossref_primary_10_1080_10407782_2023_2219831
crossref_primary_10_1108_MMMS_11_2019_0192
crossref_primary_10_1007_s11071_019_05084_5
crossref_primary_10_1371_journal_pone_0261860
crossref_primary_10_1007_s12043_020_01990_1
crossref_primary_10_1016_j_csite_2019_100508
crossref_primary_10_1016_j_rinp_2023_106946
crossref_primary_10_1038_s41598_022_25063_y
crossref_primary_10_1038_s41598_019_51242_5
crossref_primary_10_1007_s10973_022_11644_6
crossref_primary_10_1016_j_icheatmasstransfer_2021_105345
crossref_primary_10_1016_j_jtice_2024_105836
crossref_primary_10_1016_j_icheatmasstransfer_2025_108614
crossref_primary_10_1016_j_jrras_2024_101286
crossref_primary_10_1515_jnet_2018_0069
crossref_primary_10_1016_j_padiff_2021_100168
crossref_primary_10_1155_2019_3472518
crossref_primary_10_1007_s10973_019_08776_7
crossref_primary_10_1007_s42452_019_0743_6
crossref_primary_10_1016_j_csite_2023_103209
crossref_primary_10_1002_htj_22275
crossref_primary_10_1016_j_csite_2024_105707
crossref_primary_10_1016_j_jrras_2024_101171
crossref_primary_10_1016_j_csite_2022_101949
crossref_primary_10_1007_s40430_019_1806_8
crossref_primary_10_1016_j_csite_2022_102231
crossref_primary_10_1108_MMMS_08_2019_0145
crossref_primary_10_1016_j_cjph_2022_06_026
crossref_primary_10_1088_1361_665X_ab39f9
crossref_primary_10_1002_zamm_202300794
crossref_primary_10_1016_j_cjph_2025_02_019
crossref_primary_10_1016_j_jrras_2024_101277
crossref_primary_10_1007_s10973_019_08628_4
crossref_primary_10_1007_s10973_023_12745_6
crossref_primary_10_1007_s12046_019_1093_1
crossref_primary_10_1002_htj_21518
crossref_primary_10_1016_j_applthermaleng_2024_123792
crossref_primary_10_1016_j_csite_2022_101934
crossref_primary_10_1080_10407782_2024_2343327
crossref_primary_10_1155_2019_9158093
crossref_primary_10_1080_02286203_2023_2223401
crossref_primary_10_1016_j_jics_2022_100592
crossref_primary_10_4028_www_scientific_net_DDF_393_121
crossref_primary_10_3390_e26080702
crossref_primary_10_1016_j_icheatmasstransfer_2023_106775
crossref_primary_10_1080_17455030_2022_2119491
crossref_primary_10_3389_fphy_2023_1072296
crossref_primary_10_1140_epjp_s13360_024_05027_z
crossref_primary_10_1038_s41598_018_37964_y
crossref_primary_10_1155_2020_6737243
crossref_primary_10_1002_htj_21442
crossref_primary_10_1016_j_amc_2021_126878
crossref_primary_10_1016_j_aej_2022_10_067
crossref_primary_10_1007_s10973_019_08477_1
crossref_primary_10_1007_s40430_019_1984_4
crossref_primary_10_1177_09544089221087811
crossref_primary_10_1016_j_csite_2024_104236
crossref_primary_10_1016_j_csite_2024_105720
crossref_primary_10_1016_j_rineng_2025_104293
crossref_primary_10_18186_thermal_1429409
crossref_primary_10_1007_s11071_019_05310_0
crossref_primary_10_3390_math9091000
crossref_primary_10_1080_16583655_2024_2414518
crossref_primary_10_1016_j_csite_2023_103031
crossref_primary_10_1177_09544089211043605
crossref_primary_10_1007_s10973_020_09425_0
crossref_primary_10_1016_j_ijhydene_2022_04_039
crossref_primary_10_1016_j_heliyon_2019_e01555
crossref_primary_10_1002_htj_21577
crossref_primary_10_1016_j_csite_2024_104746
crossref_primary_10_1016_j_csite_2023_102980
crossref_primary_10_1016_j_csite_2023_103553
crossref_primary_10_1177_09544062221110397
crossref_primary_10_32350_sir_34_05
crossref_primary_10_1016_j_aej_2024_07_079
crossref_primary_10_1016_j_csite_2023_103760
crossref_primary_10_1016_j_icheatmasstransfer_2022_106239
crossref_primary_10_1016_j_jrras_2025_101369
crossref_primary_10_1016_j_cjph_2022_07_020
crossref_primary_10_1016_j_ijft_2024_100589
crossref_primary_10_1080_01430750_2020_1768895
crossref_primary_10_1615_ComputThermalScien_2022041799
crossref_primary_10_1007_s41939_025_00756_9
crossref_primary_10_1016_j_jmapro_2022_06_030
crossref_primary_10_1038_s41598_020_77615_9
crossref_primary_10_1016_j_csite_2024_105506
crossref_primary_10_1038_s41598_020_63708_y
crossref_primary_10_4028_www_scientific_net_DDF_401_79
crossref_primary_10_1016_j_icheatmasstransfer_2022_106003
crossref_primary_10_1016_j_taml_2022_100360
crossref_primary_10_1007_s40430_022_03903_2
crossref_primary_10_1016_j_jrras_2024_101197
crossref_primary_10_1016_j_jics_2022_100558
crossref_primary_10_1080_10407790_2024_2348766
crossref_primary_10_1016_j_aej_2023_02_038
crossref_primary_10_1007_s12043_019_1847_7
crossref_primary_10_1142_S0217984920503546
Cites_doi 10.1016/j.aej.2017.03.008
10.4028/www.scientific.net/DDF.378.157
10.1007/BF01176953
10.1016/j.cma.2018.04.023
10.1016/j.ijthermalsci.2018.06.016
10.1016/j.net.2017.07.013
10.1016/j.ijengsci.2006.04.016
10.1016/j.ijheatmasstransfer.2018.05.116
10.1007/s00542-018-3996-x
10.1016/j.ijheatmasstransfer.2017.07.043
10.1016/j.aej.2017.01.026
10.1016/S0096-3003(02)00128-5
10.1016/j.aej.2016.02.007
10.1007/s40430-017-0866-x
10.1016/0020-7225(64)90005-9
10.1016/j.ijnonlinmec.2007.12.021
10.1016/j.aej.2016.08.001
10.1140/epjp/i2017-11287-1
10.1016/j.aej.2016.11.013
10.1016/j.asej.2016.09.011
10.1017/jmech.2016.76
10.1016/j.ijthermalsci.2009.12.005
10.1016/j.rinp.2017.12.037
10.1063/1.4945767
10.1108/MMMS-12-2017-0151
10.1007/s10483-016-2093-9
10.1016/j.nonrwa.2008.01.019
10.1166/jon.2019.1564
10.1016/j.jestch.2015.05.006
10.1016/j.rinp.2018.04.017
10.1007/s40430-018-1071-2
10.1140/epjp/i2017-11537-2
10.18869/acadpub.jafm.68.228.24458
10.1007/s002310050252
10.1007/s00231-007-0322-z
10.1007/s10483-011-1392-7
10.1016/j.jtice.2017.02.001
10.1016/S0375-9601(02)01513-X
10.1016/j.ijheatmasstransfer.2016.05.142
10.1515/zna-2015-0491
10.1016/j.molliq.2016.06.077
10.1016/j.ijnonlinmec.2003.08.007
10.1007/s40430-018-1173-x
ContentType Journal Article
Copyright 2018 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2018 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1515/jnet-2018-0022
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1437-4358
EndPage 345
ExternalDocumentID 10_1515_jnet_2018_0022
10_1515_jnet_2018_0022434327
GroupedDBID 0R~
0~D
4.4
5GY
AAAEU
AADQG
AAFPC
AAGVJ
AAJBH
AALGR
AAOUV
AAPJK
AAQCX
AARVR
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABMBZ
ABPLS
ABRQL
ABSOE
ABUVI
ABWLS
ABXMZ
ABYKJ
ACDEB
ACEFL
ACGFS
ACIWK
ACMKP
ACPMA
ACUND
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADMLS
ADNPR
ADOZN
AECWL
AEGVQ
AEICA
AEJTT
AEKEB
AENEX
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFQUK
AFYRI
AGBEV
AHVWV
AHXUK
AIERV
AIKXB
AIWOI
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ASYPN
BAKPI
BBCWN
BCIFA
CFGNV
CS3
DSRVY
DU5
EBS
EJD
FSTRU
HZ~
IY9
KDIRW
O9-
P0W
P2P
QD8
RDG
SA.
SLJYH
TN5
UK5
WTRAM
AAYXX
CITATION
7TB
8FD
AAONY
ACXLN
AFGNR
AMAVY
AZMOX
BLHJL
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c320t-5ba2fec9bd744fe3cd195709b1a35d6527fb3da0d42f263e5f1013ed7adf5b843
ISSN 0340-0204
IngestDate Sun Jun 29 15:45:40 EDT 2025
Thu Apr 24 23:00:18 EDT 2025
Tue Jul 01 02:16:32 EDT 2025
Sat Sep 06 17:02:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c320t-5ba2fec9bd744fe3cd195709b1a35d6527fb3da0d42f263e5f1013ed7adf5b843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2174302174
PQPubID 2045211
PageCount 19
ParticipantIDs proquest_journals_2174302174
crossref_primary_10_1515_jnet_2018_0022
crossref_citationtrail_10_1515_jnet_2018_0022
walterdegruyter_journals_10_1515_jnet_2018_0022434327
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-25
PublicationDateYYYYMMDD 2018-10-25
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-25
  day: 25
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of non-equilibrium thermodynamics
PublicationYear 2018
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2023033120340798569_j_jnet-2018-0022_ref_024_w2aab3b7b6b1b6b1ab1b7c24Aa
2023033120340798569_j_jnet-2018-0022_ref_033_w2aab3b7b6b1b6b1ab1b7c33Aa
2023033120340798569_j_jnet-2018-0022_ref_015_w2aab3b7b6b1b6b1ab1b7c15Aa
2023033120340798569_j_jnet-2018-0022_ref_037_w2aab3b7b6b1b6b1ab1b7c37Aa
2023033120340798569_j_jnet-2018-0022_ref_019_w2aab3b7b6b1b6b1ab1b7c19Aa
2023033120340798569_j_jnet-2018-0022_ref_028_w2aab3b7b6b1b6b1ab1b7c28Aa
2023033120340798569_j_jnet-2018-0022_ref_009_w2aab3b7b6b1b6b1ab1b7b9Aa
2023033120340798569_j_jnet-2018-0022_ref_004_w2aab3b7b6b1b6b1ab1b7b4Aa
2023033120340798569_j_jnet-2018-0022_ref_010_w2aab3b7b6b1b6b1ab1b7c10Aa
2023033120340798569_j_jnet-2018-0022_ref_041_w2aab3b7b6b1b6b1ab1b7c41Aa
2023033120340798569_j_jnet-2018-0022_ref_023_w2aab3b7b6b1b6b1ab1b7c23Aa
2023033120340798569_j_jnet-2018-0022_ref_032_w2aab3b7b6b1b6b1ab1b7c32Aa
2023033120340798569_j_jnet-2018-0022_ref_043_w2aab3b7b6b1b6b1ab1b7c43Aa
2023033120340798569_j_jnet-2018-0022_ref_001_w2aab3b7b6b1b6b1ab1b7b1Aa
2023033120340798569_j_jnet-2018-0022_ref_025_w2aab3b7b6b1b6b1ab1b7c25Aa
2023033120340798569_j_jnet-2018-0022_ref_034_w2aab3b7b6b1b6b1ab1b7c34Aa
2023033120340798569_j_jnet-2018-0022_ref_016_w2aab3b7b6b1b6b1ab1b7c16Aa
2023033120340798569_j_jnet-2018-0022_ref_038_w2aab3b7b6b1b6b1ab1b7c38Aa
2023033120340798569_j_jnet-2018-0022_ref_029_w2aab3b7b6b1b6b1ab1b7c29Aa
2023033120340798569_j_jnet-2018-0022_ref_008_w2aab3b7b6b1b6b1ab1b7b8Aa
2023033120340798569_j_jnet-2018-0022_ref_020_w2aab3b7b6b1b6b1ab1b7c20Aa
2023033120340798569_j_jnet-2018-0022_ref_005_w2aab3b7b6b1b6b1ab1b7b5Aa
2023033120340798569_j_jnet-2018-0022_ref_011_w2aab3b7b6b1b6b1ab1b7c11Aa
2023033120340798569_j_jnet-2018-0022_ref_042_w2aab3b7b6b1b6b1ab1b7c42Aa
2023033120340798569_j_jnet-2018-0022_ref_044_w2aab3b7b6b1b6b1ab1b7c44Aa
2023033120340798569_j_jnet-2018-0022_ref_035_w2aab3b7b6b1b6b1ab1b7c35Aa
2023033120340798569_j_jnet-2018-0022_ref_017_w2aab3b7b6b1b6b1ab1b7c17Aa
2023033120340798569_j_jnet-2018-0022_ref_026_w2aab3b7b6b1b6b1ab1b7c26Aa
2023033120340798569_j_jnet-2018-0022_ref_002_w2aab3b7b6b1b6b1ab1b7b2Aa
2023033120340798569_j_jnet-2018-0022_ref_039_w2aab3b7b6b1b6b1ab1b7c39Aa
2023033120340798569_j_jnet-2018-0022_ref_006_w2aab3b7b6b1b6b1ab1b7b6Aa
2023033120340798569_j_jnet-2018-0022_ref_021_w2aab3b7b6b1b6b1ab1b7c21Aa
2023033120340798569_j_jnet-2018-0022_ref_030_w2aab3b7b6b1b6b1ab1b7c30Aa
2023033120340798569_j_jnet-2018-0022_ref_012_w2aab3b7b6b1b6b1ab1b7c12Aa
2023033120340798569_j_jnet-2018-0022_ref_014_w2aab3b7b6b1b6b1ab1b7c14Aa
2023033120340798569_j_jnet-2018-0022_ref_003_w2aab3b7b6b1b6b1ab1b7b3Aa
2023033120340798569_j_jnet-2018-0022_ref_036_w2aab3b7b6b1b6b1ab1b7c36Aa
2023033120340798569_j_jnet-2018-0022_ref_018_w2aab3b7b6b1b6b1ab1b7c18Aa
2023033120340798569_j_jnet-2018-0022_ref_027_w2aab3b7b6b1b6b1ab1b7c27Aa
2023033120340798569_j_jnet-2018-0022_ref_007_w2aab3b7b6b1b6b1ab1b7b7Aa
2023033120340798569_j_jnet-2018-0022_ref_040_w2aab3b7b6b1b6b1ab1b7c40Aa
2023033120340798569_j_jnet-2018-0022_ref_022_w2aab3b7b6b1b6b1ab1b7c22Aa
2023033120340798569_j_jnet-2018-0022_ref_031_w2aab3b7b6b1b6b1ab1b7c31Aa
2023033120340798569_j_jnet-2018-0022_ref_013_w2aab3b7b6b1b6b1ab1b7c13Aa
References_xml – ident: 2023033120340798569_j_jnet-2018-0022_ref_043_w2aab3b7b6b1b6b1ab1b7c43Aa
  doi: 10.1016/j.aej.2017.03.008
– ident: 2023033120340798569_j_jnet-2018-0022_ref_044_w2aab3b7b6b1b6b1ab1b7c44Aa
  doi: 10.4028/www.scientific.net/DDF.378.157
– ident: 2023033120340798569_j_jnet-2018-0022_ref_002_w2aab3b7b6b1b6b1ab1b7b2Aa
  doi: 10.1007/BF01176953
– ident: 2023033120340798569_j_jnet-2018-0022_ref_039_w2aab3b7b6b1b6b1ab1b7c39Aa
  doi: 10.1016/j.cma.2018.04.023
– ident: 2023033120340798569_j_jnet-2018-0022_ref_038_w2aab3b7b6b1b6b1ab1b7c38Aa
  doi: 10.1016/j.ijthermalsci.2018.06.016
– ident: 2023033120340798569_j_jnet-2018-0022_ref_028_w2aab3b7b6b1b6b1ab1b7c28Aa
  doi: 10.1016/j.net.2017.07.013
– ident: 2023033120340798569_j_jnet-2018-0022_ref_019_w2aab3b7b6b1b6b1ab1b7c19Aa
  doi: 10.1016/j.ijengsci.2006.04.016
– ident: 2023033120340798569_j_jnet-2018-0022_ref_033_w2aab3b7b6b1b6b1ab1b7c33Aa
  doi: 10.1016/j.ijheatmasstransfer.2018.05.116
– ident: 2023033120340798569_j_jnet-2018-0022_ref_040_w2aab3b7b6b1b6b1ab1b7c40Aa
  doi: 10.1007/s00542-018-3996-x
– ident: 2023033120340798569_j_jnet-2018-0022_ref_013_w2aab3b7b6b1b6b1ab1b7c13Aa
  doi: 10.1016/j.ijheatmasstransfer.2017.07.043
– ident: 2023033120340798569_j_jnet-2018-0022_ref_042_w2aab3b7b6b1b6b1ab1b7c42Aa
  doi: 10.1016/j.aej.2017.01.026
– ident: 2023033120340798569_j_jnet-2018-0022_ref_030_w2aab3b7b6b1b6b1ab1b7c30Aa
  doi: 10.1016/S0096-3003(02)00128-5
– ident: 2023033120340798569_j_jnet-2018-0022_ref_011_w2aab3b7b6b1b6b1ab1b7c11Aa
  doi: 10.1016/j.aej.2016.02.007
– ident: 2023033120340798569_j_jnet-2018-0022_ref_026_w2aab3b7b6b1b6b1ab1b7c26Aa
  doi: 10.1007/s40430-017-0866-x
– ident: 2023033120340798569_j_jnet-2018-0022_ref_009_w2aab3b7b6b1b6b1ab1b7b9Aa
  doi: 10.1016/0020-7225(64)90005-9
– ident: 2023033120340798569_j_jnet-2018-0022_ref_003_w2aab3b7b6b1b6b1ab1b7b3Aa
  doi: 10.1016/j.ijnonlinmec.2007.12.021
– ident: 2023033120340798569_j_jnet-2018-0022_ref_004_w2aab3b7b6b1b6b1ab1b7b4Aa
  doi: 10.1016/j.aej.2016.08.001
– ident: 2023033120340798569_j_jnet-2018-0022_ref_035_w2aab3b7b6b1b6b1ab1b7c35Aa
  doi: 10.1140/epjp/i2017-11287-1
– ident: 2023033120340798569_j_jnet-2018-0022_ref_007_w2aab3b7b6b1b6b1ab1b7b7Aa
  doi: 10.1016/j.aej.2016.11.013
– ident: 2023033120340798569_j_jnet-2018-0022_ref_008_w2aab3b7b6b1b6b1ab1b7b8Aa
  doi: 10.1016/j.asej.2016.09.011
– ident: 2023033120340798569_j_jnet-2018-0022_ref_014_w2aab3b7b6b1b6b1ab1b7c14Aa
  doi: 10.1017/jmech.2016.76
– ident: 2023033120340798569_j_jnet-2018-0022_ref_020_w2aab3b7b6b1b6b1ab1b7c20Aa
  doi: 10.1016/j.ijthermalsci.2009.12.005
– ident: 2023033120340798569_j_jnet-2018-0022_ref_036_w2aab3b7b6b1b6b1ab1b7c36Aa
  doi: 10.1016/j.rinp.2017.12.037
– ident: 2023033120340798569_j_jnet-2018-0022_ref_027_w2aab3b7b6b1b6b1ab1b7c27Aa
  doi: 10.1063/1.4945767
– ident: 2023033120340798569_j_jnet-2018-0022_ref_001_w2aab3b7b6b1b6b1ab1b7b1Aa
– ident: 2023033120340798569_j_jnet-2018-0022_ref_037_w2aab3b7b6b1b6b1ab1b7c37Aa
  doi: 10.1108/MMMS-12-2017-0151
– ident: 2023033120340798569_j_jnet-2018-0022_ref_015_w2aab3b7b6b1b6b1ab1b7c15Aa
  doi: 10.1007/s10483-016-2093-9
– ident: 2023033120340798569_j_jnet-2018-0022_ref_024_w2aab3b7b6b1b6b1ab1b7c24Aa
  doi: 10.1016/j.nonrwa.2008.01.019
– ident: 2023033120340798569_j_jnet-2018-0022_ref_018_w2aab3b7b6b1b6b1ab1b7c18Aa
  doi: 10.1166/jon.2019.1564
– ident: 2023033120340798569_j_jnet-2018-0022_ref_041_w2aab3b7b6b1b6b1ab1b7c41Aa
  doi: 10.1016/j.jestch.2015.05.006
– ident: 2023033120340798569_j_jnet-2018-0022_ref_005_w2aab3b7b6b1b6b1ab1b7b5Aa
  doi: 10.1016/j.rinp.2018.04.017
– ident: 2023033120340798569_j_jnet-2018-0022_ref_016_w2aab3b7b6b1b6b1ab1b7c16Aa
  doi: 10.1007/s40430-018-1071-2
– ident: 2023033120340798569_j_jnet-2018-0022_ref_032_w2aab3b7b6b1b6b1ab1b7c32Aa
  doi: 10.1140/epjp/i2017-11537-2
– ident: 2023033120340798569_j_jnet-2018-0022_ref_021_w2aab3b7b6b1b6b1ab1b7c21Aa
  doi: 10.18869/acadpub.jafm.68.228.24458
– ident: 2023033120340798569_j_jnet-2018-0022_ref_029_w2aab3b7b6b1b6b1ab1b7c29Aa
  doi: 10.1007/s002310050252
– ident: 2023033120340798569_j_jnet-2018-0022_ref_006_w2aab3b7b6b1b6b1ab1b7b6Aa
  doi: 10.1007/s00231-007-0322-z
– ident: 2023033120340798569_j_jnet-2018-0022_ref_025_w2aab3b7b6b1b6b1ab1b7c25Aa
  doi: 10.1007/s10483-011-1392-7
– ident: 2023033120340798569_j_jnet-2018-0022_ref_022_w2aab3b7b6b1b6b1ab1b7c22Aa
  doi: 10.1016/j.jtice.2017.02.001
– ident: 2023033120340798569_j_jnet-2018-0022_ref_023_w2aab3b7b6b1b6b1ab1b7c23Aa
  doi: 10.1016/S0375-9601(02)01513-X
– ident: 2023033120340798569_j_jnet-2018-0022_ref_031_w2aab3b7b6b1b6b1ab1b7c31Aa
  doi: 10.1016/j.ijheatmasstransfer.2016.05.142
– ident: 2023033120340798569_j_jnet-2018-0022_ref_012_w2aab3b7b6b1b6b1ab1b7c12Aa
  doi: 10.1515/zna-2015-0491
– ident: 2023033120340798569_j_jnet-2018-0022_ref_034_w2aab3b7b6b1b6b1ab1b7c34Aa
  doi: 10.1016/j.molliq.2016.06.077
– ident: 2023033120340798569_j_jnet-2018-0022_ref_010_w2aab3b7b6b1b6b1ab1b7c10Aa
  doi: 10.1016/j.ijnonlinmec.2003.08.007
– ident: 2023033120340798569_j_jnet-2018-0022_ref_017_w2aab3b7b6b1b6b1ab1b7c17Aa
  doi: 10.1007/s40430-018-1173-x
SSID ssj0005697
Score 2.5100436
Snippet We aimed at examining the magnetohydrodynamic (MHD) radiative non-aligned stagnation point motion of non-Newtonian liquid over a stretched surface. The heat...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 327
SubjectTerms Biot number
convection
convective surface
Flow equations
Fluid dynamics
Fluid flow
Friction factor
Magnetohydrodynamics
MHD
micropolar fluid
Micropolar fluids
Newtonian liquids
Non Newtonian liquids
non-aligned stagnation point flow
Parameters
Runge-Kutta method
Stagnation point
Transport
variable heat source/sink
Velocity distribution
Title Impact of Non-linear Radiation on MHD Non-aligned Stagnation Point Flow of Micropolar Fluid Over a Convective Surface
URI https://www.degruyter.com/doi/10.1515/jnet-2018-0022
https://www.proquest.com/docview/2174302174
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZKJyReJn6KwkB-QOIhymjsOGkfC7QraN0QtKhvkR07Vac1LV0Cgr-DP5izncYpDARIVRS5lhPdfTl_Z9-dEXomuiyDWSL1ox6NwEFJmd9PCSgkVjC9CkIjrpcGJmfReBa-nbN5q_W9EbVUFuI4_XZtXsn_aBXaQK86S_YfNFsPCg1wD_qFK2gYrn-l4zd1iuPZOvc1YeRb772uNmB5YO5Nxq_Nf8C2F7nllgu7_ue9Wy_zwhtdrk3iykQH5m20nwtN5VJ65yANj-uMwM_WJoKN2WY83Q8dcnQ2h6eoT-XS5BCUJmVlu1pLe-B9TdwHOu7G7jGZ4O7GKmu5KKHviu9F3n7Qa9xq4_aMqgWKwFSLtcnM1gyabX9PAui35Vd9e7IS44aZozrAlNhDiI-VNcMhjX0gcr2mnbblnCo8hg2jS211gWr-prY85S9TAzNVNC5yVfjmLTV7cZPgbuP_7DwZzU5Pk-lwPr2BDkgMjKyNDgYnL4cfXeiQPbSnfvOqGCg84cX--Ptkx3kwh1-MUKRaWJE0KM30NjqslIcHFlh3UEvld9FNExOcXt1DpYUXXmfYwQvX8MLwA3jhBrywgxc28MIaXnoABy9s4IU1vDDHDl64gtd9NBsNp6_GfnVKh59S0i18JjjJVNoXMg7DTNFUBn0Wd_si4JTJiJE4E1TyrgxJRiKqWBbopXcZc5kx0QvpA9QGiKqHCINcJfDdNGCKhyQQgmRM8kjRHpFUhaqD_J04k7QqYa9PUrlMtCsL4k-0-BMt_kSLv4Oe1_03tnjLb3se7bSTVB_4VWK8deOzdxD7SWOu1_UDmoTt-NGfh32MbrkP5gi1i22pngDHLcTTCnI_AJMsqnk
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BJwQv43OiMMAPSDxlTew4aR_HWOlgLQg2tLfIn2VQmqlLNMFfz52TtmPAC0h5ShzLuTv77nc5_wzwXMfSo5cwUdYXGQIUI6OB4aiQ3KF71VxkilID40k2Ok7fnMiTS3thqKzSuumi_l41DKk9W5qaEmUrrgH0wL0viNtRwUk_IifU-1x9m12HjQBWOrCx-_rl_qd1oUdzxEosqJCRx2lL3fh7N7-6pnW8uXkR_lyvhnXJAQ1vg1kOvak7-bpTV3rH_LjC6vh_33YHNtv4lO02BnUXrrn5PbgR6kTN-X2oD8KuSlZ6NinnEcWoasE-EMEBaZjhNR69Cs8wwJ_iGs4wnJ02KUf2vjydV2w4Ky-ogzHVAp4RtMZb9all73BaMcX2qBA-LMPsY73wyrgHcDzcP9obRe3JDZERPK4iqRX3zgy0zdPUO2FsMpB5PNCJEtJmkudeC6tim3LPM-GkTygda3NlvdT9VGxBZ17O3UNgqD2LMZBJpFMpT7TmXlqVOdHnVrjUdSFaKq0wLa05na4xKwjeoDwLkmdB8ixInl14sWp_1hB6_LXl9tIGinZinxcBwQUc1wV5xS7Wrf7cYdjEmz_6x_eewc3R0fiwODyYvH0Mt4KBoA_lchs61aJ2TzA4qvTT1vp_AsvRC1c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BJhAv43OiMMAPSDxlTew4aR_HttIBLRMwxFvkz2owJVWbaIK_njsnbWHAC0h5ShzLuTv77nf5-QzwXMfSo5cwUTYQGQIUI6Oh4aiQ3KF71VxkilIDk2k2Pktff5YrNuGyo1VaN1s03-q2QmrfVqahRNm61gB64P4XxO2o4GQQkRPqz62_DtuIVRLEX9sHr14ef9rwPNoTVmJBPEYep13lxt97-dUzbcLNncvw43o9qp_8z-g26NXIW9rJ1_2m1vvm-5Wijv_1aXdgp4tO2UFrTnfhmivvwY3AEjXL-9CchD2VrPJsWpURRahqwd5TeQPSL8NrMj4KzzC8n-EKzjCYnbUJR3ZanZc1G11Ul9TBhJiAcwLWeKs5t-wdTiqm2CHR4MMizD40C6-MewBno-OPh-OoO7chMoLHdSS14t6ZobZ5mnonjE2GMo-HOlFC2kzy3GthVWxT7nkmnPQJJWNtrqyXepCKXdgqq9I9BIbKsxgBmUQ6lfJEa-6lVZkTA26FS10PopXOCtMVNaezNS4KAjcozoLEWZA4CxJnD16s28_bch5_bbm3MoGim9bLIuC3gOJ6IK-YxabVnzsMW3jzR__43jO4eXo0Kt6eTN88hlvBPNCBcrkHW_WicU8wMqr10872fwCgZQn-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Non-linear+Radiation+on+MHD+Non-aligned+Stagnation+Point+Flow+of+Micropolar+Fluid+Over+a+Convective+Surface&rft.jtitle=Journal+of+non-equilibrium+thermodynamics&rft.au=Anantha%2C+Kumar+K&rft.au=Sugunamma%2C+V&rft.au=Sandeep%2C+N&rft.date=2018-10-25&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=0340-0204&rft.eissn=1437-4358&rft.volume=43&rft.issue=4&rft.spage=327&rft.epage=345&rft_id=info:doi/10.1515%2Fjnet-2018-0022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0340-0204&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0340-0204&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0340-0204&client=summon