Impact of Non-linear Radiation on MHD Non-aligned Stagnation Point Flow of Micropolar Fluid Over a Convective Surface
We aimed at examining the magnetohydrodynamic (MHD) radiative non-aligned stagnation point motion of non-Newtonian liquid over a stretched surface. The heat transfer mechanism is investigated in the presence of variable heat sink/source, non-linear Rosseland approximation and Biot number. Appropriat...
Saved in:
Published in | Journal of non-equilibrium thermodynamics Vol. 43; no. 4; pp. 327 - 345 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin
De Gruyter
25.10.2018
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
ISSN | 0340-0204 1437-4358 |
DOI | 10.1515/jnet-2018-0022 |
Cover
Abstract | We aimed at examining the magnetohydrodynamic (MHD) radiative non-aligned stagnation point motion of non-Newtonian liquid over a stretched surface. The heat transfer mechanism is investigated in the presence of variable heat sink/source, non-linear Rosseland approximation and Biot number. Appropriate transmutations are exploited to metamorphose the flow equations into ODEs. The acquired non-linear ODEs are highly coupled. These are tackled with the consecutive implication of fourth-order Runge–Kutta and shooting techniques. The variations of flow governing parameters on the dimensionless velocity, micro-rotation and temperature plus the measure of heat transport, couple stress coefficient and friction factor are thoroughly explained using plots and tables. Outcomes stipulate that increasing the values of the stretching ratio parameter causes the thermal field to decline and the velocity field to inflate. Also, an upsurge in the micropolar parameter produces an increase in the rate of heat transport but an opposite outcome is detected with the couple stress coefficient. To the best of our knowledge the non-orthogonal stagnated motion of micropolar liquid with radiation as non-linear and variable heat source/sink has never before been scrutinized. |
---|---|
AbstractList | We aimed at examining the magnetohydrodynamic (MHD) radiative non-aligned stagnation point motion of non-Newtonian liquid over a stretched surface. The heat transfer mechanism is investigated in the presence of variable heat sink/source, non-linear Rosseland approximation and Biot number. Appropriate transmutations are exploited to metamorphose the flow equations into ODEs. The acquired non-linear ODEs are highly coupled. These are tackled with the consecutive implication of fourth-order Runge–Kutta and shooting techniques. The variations of flow governing parameters on the dimensionless velocity, micro-rotation and temperature plus the measure of heat transport, couple stress coefficient and friction factor are thoroughly explained using plots and tables. Outcomes stipulate that increasing the values of the stretching ratio parameter causes the thermal field to decline and the velocity field to inflate. Also, an upsurge in the micropolar parameter produces an increase in the rate of heat transport but an opposite outcome is detected with the couple stress coefficient. To the best of our knowledge the non-orthogonal stagnated motion of micropolar liquid with radiation as non-linear and variable heat source/sink has never before been scrutinized. |
Author | V., Sugunamma K., Anantha Kumar N., Sandeep |
Author_xml | – sequence: 1 givenname: Kumar surname: Anantha middlename: K fullname: Anantha, Kumar K – sequence: 2 givenname: V surname: Sugunamma fullname: Sugunamma, V – sequence: 3 givenname: N surname: Sandeep fullname: Sandeep, N |
BookMark | eNp1kMtLAzEQh4MoWKtXzwHPq5NXtwUvUq0KvvBxXrKbSUlZk5rNtvjfu9sKgiiEZGDy_Wb4DsiuDx4JOWZwyhRTZwuPKePAxhkA5ztkwKTIMynUeJcMQEjIgIPcJwdNswAANZrkA9Levi91lWiw9CH4rHYedaTP2jidXPC0O_c3l5uert3co6EvSc_9tvsUnE90Vod1H3DvqhiWoe4CZnXrDH1cYaSaToNfYZXcCulLG62u8JDsWV03ePT9Dsnb7Op1epPdPV7fTi_uskpwSJkqNbdYTUqTS2lRVIZNVA6TkmmhzEjx3JbCaDCSWz4SqCwDJtDk2lhVjqUYkpNt7jKGjxabVCxCG303suAslwI295Ccbn916zdNRFsso3vX8bNgUPRqi15t0asterUdIH8BlUsbIylqV_-PnW-xta4TRoPz2H52xc9Sf4NSSMFz8QWyNZRQ |
CitedBy_id | crossref_primary_10_1016_j_jtice_2024_105931 crossref_primary_10_1016_j_icheatmasstransfer_2022_106575 crossref_primary_10_1016_j_aej_2023_09_020 crossref_primary_10_1080_01430750_2021_1909133 crossref_primary_10_1007_s12043_022_02385_0 crossref_primary_10_1080_17455030_2022_2073484 crossref_primary_10_1108_MMMS_11_2018_0183 crossref_primary_10_1016_j_jrras_2024_101270 crossref_primary_10_1016_j_jrras_2024_101152 crossref_primary_10_1016_j_jrras_2024_101272 crossref_primary_10_1007_s12206_024_0908_0 crossref_primary_10_1016_j_csite_2024_105369 crossref_primary_10_1016_j_csite_2023_103501 crossref_primary_10_1080_10407782_2024_2326980 crossref_primary_10_1016_j_jppr_2020_07_001 crossref_primary_10_4028_www_scientific_net_DDF_393_138 crossref_primary_10_1038_s41598_022_22571_9 crossref_primary_10_1016_j_ijft_2022_100232 crossref_primary_10_1016_j_csite_2023_103190 crossref_primary_10_1016_j_physleta_2019_04_021 crossref_primary_10_1007_s10973_019_08977_0 crossref_primary_10_1016_j_imu_2020_100462 crossref_primary_10_1142_S0217984924503597 crossref_primary_10_1080_10407782_2023_2219831 crossref_primary_10_1108_MMMS_11_2019_0192 crossref_primary_10_1007_s11071_019_05084_5 crossref_primary_10_1371_journal_pone_0261860 crossref_primary_10_1007_s12043_020_01990_1 crossref_primary_10_1016_j_csite_2019_100508 crossref_primary_10_1016_j_rinp_2023_106946 crossref_primary_10_1038_s41598_022_25063_y crossref_primary_10_1038_s41598_019_51242_5 crossref_primary_10_1007_s10973_022_11644_6 crossref_primary_10_1016_j_icheatmasstransfer_2021_105345 crossref_primary_10_1016_j_jtice_2024_105836 crossref_primary_10_1016_j_icheatmasstransfer_2025_108614 crossref_primary_10_1016_j_jrras_2024_101286 crossref_primary_10_1515_jnet_2018_0069 crossref_primary_10_1016_j_padiff_2021_100168 crossref_primary_10_1155_2019_3472518 crossref_primary_10_1007_s10973_019_08776_7 crossref_primary_10_1007_s42452_019_0743_6 crossref_primary_10_1016_j_csite_2023_103209 crossref_primary_10_1002_htj_22275 crossref_primary_10_1016_j_csite_2024_105707 crossref_primary_10_1016_j_jrras_2024_101171 crossref_primary_10_1016_j_csite_2022_101949 crossref_primary_10_1007_s40430_019_1806_8 crossref_primary_10_1016_j_csite_2022_102231 crossref_primary_10_1108_MMMS_08_2019_0145 crossref_primary_10_1016_j_cjph_2022_06_026 crossref_primary_10_1088_1361_665X_ab39f9 crossref_primary_10_1002_zamm_202300794 crossref_primary_10_1016_j_cjph_2025_02_019 crossref_primary_10_1016_j_jrras_2024_101277 crossref_primary_10_1007_s10973_019_08628_4 crossref_primary_10_1007_s10973_023_12745_6 crossref_primary_10_1007_s12046_019_1093_1 crossref_primary_10_1002_htj_21518 crossref_primary_10_1016_j_applthermaleng_2024_123792 crossref_primary_10_1016_j_csite_2022_101934 crossref_primary_10_1080_10407782_2024_2343327 crossref_primary_10_1155_2019_9158093 crossref_primary_10_1080_02286203_2023_2223401 crossref_primary_10_1016_j_jics_2022_100592 crossref_primary_10_4028_www_scientific_net_DDF_393_121 crossref_primary_10_3390_e26080702 crossref_primary_10_1016_j_icheatmasstransfer_2023_106775 crossref_primary_10_1080_17455030_2022_2119491 crossref_primary_10_3389_fphy_2023_1072296 crossref_primary_10_1140_epjp_s13360_024_05027_z crossref_primary_10_1038_s41598_018_37964_y crossref_primary_10_1155_2020_6737243 crossref_primary_10_1002_htj_21442 crossref_primary_10_1016_j_amc_2021_126878 crossref_primary_10_1016_j_aej_2022_10_067 crossref_primary_10_1007_s10973_019_08477_1 crossref_primary_10_1007_s40430_019_1984_4 crossref_primary_10_1177_09544089221087811 crossref_primary_10_1016_j_csite_2024_104236 crossref_primary_10_1016_j_csite_2024_105720 crossref_primary_10_1016_j_rineng_2025_104293 crossref_primary_10_18186_thermal_1429409 crossref_primary_10_1007_s11071_019_05310_0 crossref_primary_10_3390_math9091000 crossref_primary_10_1080_16583655_2024_2414518 crossref_primary_10_1016_j_csite_2023_103031 crossref_primary_10_1177_09544089211043605 crossref_primary_10_1007_s10973_020_09425_0 crossref_primary_10_1016_j_ijhydene_2022_04_039 crossref_primary_10_1016_j_heliyon_2019_e01555 crossref_primary_10_1002_htj_21577 crossref_primary_10_1016_j_csite_2024_104746 crossref_primary_10_1016_j_csite_2023_102980 crossref_primary_10_1016_j_csite_2023_103553 crossref_primary_10_1177_09544062221110397 crossref_primary_10_32350_sir_34_05 crossref_primary_10_1016_j_aej_2024_07_079 crossref_primary_10_1016_j_csite_2023_103760 crossref_primary_10_1016_j_icheatmasstransfer_2022_106239 crossref_primary_10_1016_j_jrras_2025_101369 crossref_primary_10_1016_j_cjph_2022_07_020 crossref_primary_10_1016_j_ijft_2024_100589 crossref_primary_10_1080_01430750_2020_1768895 crossref_primary_10_1615_ComputThermalScien_2022041799 crossref_primary_10_1007_s41939_025_00756_9 crossref_primary_10_1016_j_jmapro_2022_06_030 crossref_primary_10_1038_s41598_020_77615_9 crossref_primary_10_1016_j_csite_2024_105506 crossref_primary_10_1038_s41598_020_63708_y crossref_primary_10_4028_www_scientific_net_DDF_401_79 crossref_primary_10_1016_j_icheatmasstransfer_2022_106003 crossref_primary_10_1016_j_taml_2022_100360 crossref_primary_10_1007_s40430_022_03903_2 crossref_primary_10_1016_j_jrras_2024_101197 crossref_primary_10_1016_j_jics_2022_100558 crossref_primary_10_1080_10407790_2024_2348766 crossref_primary_10_1016_j_aej_2023_02_038 crossref_primary_10_1007_s12043_019_1847_7 crossref_primary_10_1142_S0217984920503546 |
Cites_doi | 10.1016/j.aej.2017.03.008 10.4028/www.scientific.net/DDF.378.157 10.1007/BF01176953 10.1016/j.cma.2018.04.023 10.1016/j.ijthermalsci.2018.06.016 10.1016/j.net.2017.07.013 10.1016/j.ijengsci.2006.04.016 10.1016/j.ijheatmasstransfer.2018.05.116 10.1007/s00542-018-3996-x 10.1016/j.ijheatmasstransfer.2017.07.043 10.1016/j.aej.2017.01.026 10.1016/S0096-3003(02)00128-5 10.1016/j.aej.2016.02.007 10.1007/s40430-017-0866-x 10.1016/0020-7225(64)90005-9 10.1016/j.ijnonlinmec.2007.12.021 10.1016/j.aej.2016.08.001 10.1140/epjp/i2017-11287-1 10.1016/j.aej.2016.11.013 10.1016/j.asej.2016.09.011 10.1017/jmech.2016.76 10.1016/j.ijthermalsci.2009.12.005 10.1016/j.rinp.2017.12.037 10.1063/1.4945767 10.1108/MMMS-12-2017-0151 10.1007/s10483-016-2093-9 10.1016/j.nonrwa.2008.01.019 10.1166/jon.2019.1564 10.1016/j.jestch.2015.05.006 10.1016/j.rinp.2018.04.017 10.1007/s40430-018-1071-2 10.1140/epjp/i2017-11537-2 10.18869/acadpub.jafm.68.228.24458 10.1007/s002310050252 10.1007/s00231-007-0322-z 10.1007/s10483-011-1392-7 10.1016/j.jtice.2017.02.001 10.1016/S0375-9601(02)01513-X 10.1016/j.ijheatmasstransfer.2016.05.142 10.1515/zna-2015-0491 10.1016/j.molliq.2016.06.077 10.1016/j.ijnonlinmec.2003.08.007 10.1007/s40430-018-1173-x |
ContentType | Journal Article |
Copyright | 2018 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2018 Walter de Gruyter GmbH, Berlin/Boston |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1515/jnet-2018-0022 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1437-4358 |
EndPage | 345 |
ExternalDocumentID | 10_1515_jnet_2018_0022 10_1515_jnet_2018_0022434327 |
GroupedDBID | 0R~ 0~D 4.4 5GY AAAEU AADQG AAFPC AAGVJ AAJBH AALGR AAOUV AAPJK AAQCX AARVR AASOL AASQH AAWFC AAXCG ABAOT ABAQN ABFKT ABIQR ABJNI ABMBZ ABPLS ABRQL ABSOE ABUVI ABWLS ABXMZ ABYKJ ACDEB ACEFL ACGFS ACIWK ACMKP ACPMA ACUND ACZBO ADEQT ADGQD ADGYE ADJVZ ADMLS ADNPR ADOZN AECWL AEGVQ AEICA AEJTT AEKEB AENEX AEQDQ AERZL AEXIE AFBAA AFBDD AFCXV AFQUK AFYRI AGBEV AHVWV AHXUK AIERV AIKXB AIWOI AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS ASYPN BAKPI BBCWN BCIFA CFGNV CS3 DSRVY DU5 EBS EJD FSTRU HZ~ IY9 KDIRW O9- P0W P2P QD8 RDG SA. SLJYH TN5 UK5 WTRAM AAYXX CITATION 7TB 8FD AAONY ACXLN AFGNR AMAVY AZMOX BLHJL FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c320t-5ba2fec9bd744fe3cd195709b1a35d6527fb3da0d42f263e5f1013ed7adf5b843 |
ISSN | 0340-0204 |
IngestDate | Sun Jun 29 15:45:40 EDT 2025 Thu Apr 24 23:00:18 EDT 2025 Tue Jul 01 02:16:32 EDT 2025 Sat Sep 06 17:02:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c320t-5ba2fec9bd744fe3cd195709b1a35d6527fb3da0d42f263e5f1013ed7adf5b843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2174302174 |
PQPubID | 2045211 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2174302174 crossref_primary_10_1515_jnet_2018_0022 crossref_citationtrail_10_1515_jnet_2018_0022 walterdegruyter_journals_10_1515_jnet_2018_0022434327 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-25 |
PublicationDateYYYYMMDD | 2018-10-25 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Journal of non-equilibrium thermodynamics |
PublicationYear | 2018 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2023033120340798569_j_jnet-2018-0022_ref_024_w2aab3b7b6b1b6b1ab1b7c24Aa 2023033120340798569_j_jnet-2018-0022_ref_033_w2aab3b7b6b1b6b1ab1b7c33Aa 2023033120340798569_j_jnet-2018-0022_ref_015_w2aab3b7b6b1b6b1ab1b7c15Aa 2023033120340798569_j_jnet-2018-0022_ref_037_w2aab3b7b6b1b6b1ab1b7c37Aa 2023033120340798569_j_jnet-2018-0022_ref_019_w2aab3b7b6b1b6b1ab1b7c19Aa 2023033120340798569_j_jnet-2018-0022_ref_028_w2aab3b7b6b1b6b1ab1b7c28Aa 2023033120340798569_j_jnet-2018-0022_ref_009_w2aab3b7b6b1b6b1ab1b7b9Aa 2023033120340798569_j_jnet-2018-0022_ref_004_w2aab3b7b6b1b6b1ab1b7b4Aa 2023033120340798569_j_jnet-2018-0022_ref_010_w2aab3b7b6b1b6b1ab1b7c10Aa 2023033120340798569_j_jnet-2018-0022_ref_041_w2aab3b7b6b1b6b1ab1b7c41Aa 2023033120340798569_j_jnet-2018-0022_ref_023_w2aab3b7b6b1b6b1ab1b7c23Aa 2023033120340798569_j_jnet-2018-0022_ref_032_w2aab3b7b6b1b6b1ab1b7c32Aa 2023033120340798569_j_jnet-2018-0022_ref_043_w2aab3b7b6b1b6b1ab1b7c43Aa 2023033120340798569_j_jnet-2018-0022_ref_001_w2aab3b7b6b1b6b1ab1b7b1Aa 2023033120340798569_j_jnet-2018-0022_ref_025_w2aab3b7b6b1b6b1ab1b7c25Aa 2023033120340798569_j_jnet-2018-0022_ref_034_w2aab3b7b6b1b6b1ab1b7c34Aa 2023033120340798569_j_jnet-2018-0022_ref_016_w2aab3b7b6b1b6b1ab1b7c16Aa 2023033120340798569_j_jnet-2018-0022_ref_038_w2aab3b7b6b1b6b1ab1b7c38Aa 2023033120340798569_j_jnet-2018-0022_ref_029_w2aab3b7b6b1b6b1ab1b7c29Aa 2023033120340798569_j_jnet-2018-0022_ref_008_w2aab3b7b6b1b6b1ab1b7b8Aa 2023033120340798569_j_jnet-2018-0022_ref_020_w2aab3b7b6b1b6b1ab1b7c20Aa 2023033120340798569_j_jnet-2018-0022_ref_005_w2aab3b7b6b1b6b1ab1b7b5Aa 2023033120340798569_j_jnet-2018-0022_ref_011_w2aab3b7b6b1b6b1ab1b7c11Aa 2023033120340798569_j_jnet-2018-0022_ref_042_w2aab3b7b6b1b6b1ab1b7c42Aa 2023033120340798569_j_jnet-2018-0022_ref_044_w2aab3b7b6b1b6b1ab1b7c44Aa 2023033120340798569_j_jnet-2018-0022_ref_035_w2aab3b7b6b1b6b1ab1b7c35Aa 2023033120340798569_j_jnet-2018-0022_ref_017_w2aab3b7b6b1b6b1ab1b7c17Aa 2023033120340798569_j_jnet-2018-0022_ref_026_w2aab3b7b6b1b6b1ab1b7c26Aa 2023033120340798569_j_jnet-2018-0022_ref_002_w2aab3b7b6b1b6b1ab1b7b2Aa 2023033120340798569_j_jnet-2018-0022_ref_039_w2aab3b7b6b1b6b1ab1b7c39Aa 2023033120340798569_j_jnet-2018-0022_ref_006_w2aab3b7b6b1b6b1ab1b7b6Aa 2023033120340798569_j_jnet-2018-0022_ref_021_w2aab3b7b6b1b6b1ab1b7c21Aa 2023033120340798569_j_jnet-2018-0022_ref_030_w2aab3b7b6b1b6b1ab1b7c30Aa 2023033120340798569_j_jnet-2018-0022_ref_012_w2aab3b7b6b1b6b1ab1b7c12Aa 2023033120340798569_j_jnet-2018-0022_ref_014_w2aab3b7b6b1b6b1ab1b7c14Aa 2023033120340798569_j_jnet-2018-0022_ref_003_w2aab3b7b6b1b6b1ab1b7b3Aa 2023033120340798569_j_jnet-2018-0022_ref_036_w2aab3b7b6b1b6b1ab1b7c36Aa 2023033120340798569_j_jnet-2018-0022_ref_018_w2aab3b7b6b1b6b1ab1b7c18Aa 2023033120340798569_j_jnet-2018-0022_ref_027_w2aab3b7b6b1b6b1ab1b7c27Aa 2023033120340798569_j_jnet-2018-0022_ref_007_w2aab3b7b6b1b6b1ab1b7b7Aa 2023033120340798569_j_jnet-2018-0022_ref_040_w2aab3b7b6b1b6b1ab1b7c40Aa 2023033120340798569_j_jnet-2018-0022_ref_022_w2aab3b7b6b1b6b1ab1b7c22Aa 2023033120340798569_j_jnet-2018-0022_ref_031_w2aab3b7b6b1b6b1ab1b7c31Aa 2023033120340798569_j_jnet-2018-0022_ref_013_w2aab3b7b6b1b6b1ab1b7c13Aa |
References_xml | – ident: 2023033120340798569_j_jnet-2018-0022_ref_043_w2aab3b7b6b1b6b1ab1b7c43Aa doi: 10.1016/j.aej.2017.03.008 – ident: 2023033120340798569_j_jnet-2018-0022_ref_044_w2aab3b7b6b1b6b1ab1b7c44Aa doi: 10.4028/www.scientific.net/DDF.378.157 – ident: 2023033120340798569_j_jnet-2018-0022_ref_002_w2aab3b7b6b1b6b1ab1b7b2Aa doi: 10.1007/BF01176953 – ident: 2023033120340798569_j_jnet-2018-0022_ref_039_w2aab3b7b6b1b6b1ab1b7c39Aa doi: 10.1016/j.cma.2018.04.023 – ident: 2023033120340798569_j_jnet-2018-0022_ref_038_w2aab3b7b6b1b6b1ab1b7c38Aa doi: 10.1016/j.ijthermalsci.2018.06.016 – ident: 2023033120340798569_j_jnet-2018-0022_ref_028_w2aab3b7b6b1b6b1ab1b7c28Aa doi: 10.1016/j.net.2017.07.013 – ident: 2023033120340798569_j_jnet-2018-0022_ref_019_w2aab3b7b6b1b6b1ab1b7c19Aa doi: 10.1016/j.ijengsci.2006.04.016 – ident: 2023033120340798569_j_jnet-2018-0022_ref_033_w2aab3b7b6b1b6b1ab1b7c33Aa doi: 10.1016/j.ijheatmasstransfer.2018.05.116 – ident: 2023033120340798569_j_jnet-2018-0022_ref_040_w2aab3b7b6b1b6b1ab1b7c40Aa doi: 10.1007/s00542-018-3996-x – ident: 2023033120340798569_j_jnet-2018-0022_ref_013_w2aab3b7b6b1b6b1ab1b7c13Aa doi: 10.1016/j.ijheatmasstransfer.2017.07.043 – ident: 2023033120340798569_j_jnet-2018-0022_ref_042_w2aab3b7b6b1b6b1ab1b7c42Aa doi: 10.1016/j.aej.2017.01.026 – ident: 2023033120340798569_j_jnet-2018-0022_ref_030_w2aab3b7b6b1b6b1ab1b7c30Aa doi: 10.1016/S0096-3003(02)00128-5 – ident: 2023033120340798569_j_jnet-2018-0022_ref_011_w2aab3b7b6b1b6b1ab1b7c11Aa doi: 10.1016/j.aej.2016.02.007 – ident: 2023033120340798569_j_jnet-2018-0022_ref_026_w2aab3b7b6b1b6b1ab1b7c26Aa doi: 10.1007/s40430-017-0866-x – ident: 2023033120340798569_j_jnet-2018-0022_ref_009_w2aab3b7b6b1b6b1ab1b7b9Aa doi: 10.1016/0020-7225(64)90005-9 – ident: 2023033120340798569_j_jnet-2018-0022_ref_003_w2aab3b7b6b1b6b1ab1b7b3Aa doi: 10.1016/j.ijnonlinmec.2007.12.021 – ident: 2023033120340798569_j_jnet-2018-0022_ref_004_w2aab3b7b6b1b6b1ab1b7b4Aa doi: 10.1016/j.aej.2016.08.001 – ident: 2023033120340798569_j_jnet-2018-0022_ref_035_w2aab3b7b6b1b6b1ab1b7c35Aa doi: 10.1140/epjp/i2017-11287-1 – ident: 2023033120340798569_j_jnet-2018-0022_ref_007_w2aab3b7b6b1b6b1ab1b7b7Aa doi: 10.1016/j.aej.2016.11.013 – ident: 2023033120340798569_j_jnet-2018-0022_ref_008_w2aab3b7b6b1b6b1ab1b7b8Aa doi: 10.1016/j.asej.2016.09.011 – ident: 2023033120340798569_j_jnet-2018-0022_ref_014_w2aab3b7b6b1b6b1ab1b7c14Aa doi: 10.1017/jmech.2016.76 – ident: 2023033120340798569_j_jnet-2018-0022_ref_020_w2aab3b7b6b1b6b1ab1b7c20Aa doi: 10.1016/j.ijthermalsci.2009.12.005 – ident: 2023033120340798569_j_jnet-2018-0022_ref_036_w2aab3b7b6b1b6b1ab1b7c36Aa doi: 10.1016/j.rinp.2017.12.037 – ident: 2023033120340798569_j_jnet-2018-0022_ref_027_w2aab3b7b6b1b6b1ab1b7c27Aa doi: 10.1063/1.4945767 – ident: 2023033120340798569_j_jnet-2018-0022_ref_001_w2aab3b7b6b1b6b1ab1b7b1Aa – ident: 2023033120340798569_j_jnet-2018-0022_ref_037_w2aab3b7b6b1b6b1ab1b7c37Aa doi: 10.1108/MMMS-12-2017-0151 – ident: 2023033120340798569_j_jnet-2018-0022_ref_015_w2aab3b7b6b1b6b1ab1b7c15Aa doi: 10.1007/s10483-016-2093-9 – ident: 2023033120340798569_j_jnet-2018-0022_ref_024_w2aab3b7b6b1b6b1ab1b7c24Aa doi: 10.1016/j.nonrwa.2008.01.019 – ident: 2023033120340798569_j_jnet-2018-0022_ref_018_w2aab3b7b6b1b6b1ab1b7c18Aa doi: 10.1166/jon.2019.1564 – ident: 2023033120340798569_j_jnet-2018-0022_ref_041_w2aab3b7b6b1b6b1ab1b7c41Aa doi: 10.1016/j.jestch.2015.05.006 – ident: 2023033120340798569_j_jnet-2018-0022_ref_005_w2aab3b7b6b1b6b1ab1b7b5Aa doi: 10.1016/j.rinp.2018.04.017 – ident: 2023033120340798569_j_jnet-2018-0022_ref_016_w2aab3b7b6b1b6b1ab1b7c16Aa doi: 10.1007/s40430-018-1071-2 – ident: 2023033120340798569_j_jnet-2018-0022_ref_032_w2aab3b7b6b1b6b1ab1b7c32Aa doi: 10.1140/epjp/i2017-11537-2 – ident: 2023033120340798569_j_jnet-2018-0022_ref_021_w2aab3b7b6b1b6b1ab1b7c21Aa doi: 10.18869/acadpub.jafm.68.228.24458 – ident: 2023033120340798569_j_jnet-2018-0022_ref_029_w2aab3b7b6b1b6b1ab1b7c29Aa doi: 10.1007/s002310050252 – ident: 2023033120340798569_j_jnet-2018-0022_ref_006_w2aab3b7b6b1b6b1ab1b7b6Aa doi: 10.1007/s00231-007-0322-z – ident: 2023033120340798569_j_jnet-2018-0022_ref_025_w2aab3b7b6b1b6b1ab1b7c25Aa doi: 10.1007/s10483-011-1392-7 – ident: 2023033120340798569_j_jnet-2018-0022_ref_022_w2aab3b7b6b1b6b1ab1b7c22Aa doi: 10.1016/j.jtice.2017.02.001 – ident: 2023033120340798569_j_jnet-2018-0022_ref_023_w2aab3b7b6b1b6b1ab1b7c23Aa doi: 10.1016/S0375-9601(02)01513-X – ident: 2023033120340798569_j_jnet-2018-0022_ref_031_w2aab3b7b6b1b6b1ab1b7c31Aa doi: 10.1016/j.ijheatmasstransfer.2016.05.142 – ident: 2023033120340798569_j_jnet-2018-0022_ref_012_w2aab3b7b6b1b6b1ab1b7c12Aa doi: 10.1515/zna-2015-0491 – ident: 2023033120340798569_j_jnet-2018-0022_ref_034_w2aab3b7b6b1b6b1ab1b7c34Aa doi: 10.1016/j.molliq.2016.06.077 – ident: 2023033120340798569_j_jnet-2018-0022_ref_010_w2aab3b7b6b1b6b1ab1b7c10Aa doi: 10.1016/j.ijnonlinmec.2003.08.007 – ident: 2023033120340798569_j_jnet-2018-0022_ref_017_w2aab3b7b6b1b6b1ab1b7c17Aa doi: 10.1007/s40430-018-1173-x |
SSID | ssj0005697 |
Score | 2.5100436 |
Snippet | We aimed at examining the magnetohydrodynamic (MHD) radiative non-aligned stagnation point motion of non-Newtonian liquid over a stretched surface. The heat... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 327 |
SubjectTerms | Biot number convection convective surface Flow equations Fluid dynamics Fluid flow Friction factor Magnetohydrodynamics MHD micropolar fluid Micropolar fluids Newtonian liquids Non Newtonian liquids non-aligned stagnation point flow Parameters Runge-Kutta method Stagnation point Transport variable heat source/sink Velocity distribution |
Title | Impact of Non-linear Radiation on MHD Non-aligned Stagnation Point Flow of Micropolar Fluid Over a Convective Surface |
URI | https://www.degruyter.com/doi/10.1515/jnet-2018-0022 https://www.proquest.com/docview/2174302174 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZKJyReJn6KwkB-QOIhymjsOGkfC7QraN0QtKhvkR07Vac1LV0Cgr-DP5izncYpDARIVRS5lhPdfTl_Z9-dEXomuiyDWSL1ox6NwEFJmd9PCSgkVjC9CkIjrpcGJmfReBa-nbN5q_W9EbVUFuI4_XZtXsn_aBXaQK86S_YfNFsPCg1wD_qFK2gYrn-l4zd1iuPZOvc1YeRb772uNmB5YO5Nxq_Nf8C2F7nllgu7_ue9Wy_zwhtdrk3iykQH5m20nwtN5VJ65yANj-uMwM_WJoKN2WY83Q8dcnQ2h6eoT-XS5BCUJmVlu1pLe-B9TdwHOu7G7jGZ4O7GKmu5KKHviu9F3n7Qa9xq4_aMqgWKwFSLtcnM1gyabX9PAui35Vd9e7IS44aZozrAlNhDiI-VNcMhjX0gcr2mnbblnCo8hg2jS211gWr-prY85S9TAzNVNC5yVfjmLTV7cZPgbuP_7DwZzU5Pk-lwPr2BDkgMjKyNDgYnL4cfXeiQPbSnfvOqGCg84cX--Ptkx3kwh1-MUKRaWJE0KM30NjqslIcHFlh3UEvld9FNExOcXt1DpYUXXmfYwQvX8MLwA3jhBrywgxc28MIaXnoABy9s4IU1vDDHDl64gtd9NBsNp6_GfnVKh59S0i18JjjJVNoXMg7DTNFUBn0Wd_si4JTJiJE4E1TyrgxJRiKqWBbopXcZc5kx0QvpA9QGiKqHCINcJfDdNGCKhyQQgmRM8kjRHpFUhaqD_J04k7QqYa9PUrlMtCsL4k-0-BMt_kSLv4Oe1_03tnjLb3se7bSTVB_4VWK8deOzdxD7SWOu1_UDmoTt-NGfh32MbrkP5gi1i22pngDHLcTTCnI_AJMsqnk |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BJwQv43OiMMAPSDxlTew4aR_HWOlgLQg2tLfIn2VQmqlLNMFfz52TtmPAC0h5ShzLuTv77nc5_wzwXMfSo5cwUdYXGQIUI6OB4aiQ3KF71VxkilID40k2Ok7fnMiTS3thqKzSuumi_l41DKk9W5qaEmUrrgH0wL0viNtRwUk_IifU-1x9m12HjQBWOrCx-_rl_qd1oUdzxEosqJCRx2lL3fh7N7-6pnW8uXkR_lyvhnXJAQ1vg1kOvak7-bpTV3rH_LjC6vh_33YHNtv4lO02BnUXrrn5PbgR6kTN-X2oD8KuSlZ6NinnEcWoasE-EMEBaZjhNR69Cs8wwJ_iGs4wnJ02KUf2vjydV2w4Ky-ogzHVAp4RtMZb9all73BaMcX2qBA-LMPsY73wyrgHcDzcP9obRe3JDZERPK4iqRX3zgy0zdPUO2FsMpB5PNCJEtJmkudeC6tim3LPM-GkTygda3NlvdT9VGxBZ17O3UNgqD2LMZBJpFMpT7TmXlqVOdHnVrjUdSFaKq0wLa05na4xKwjeoDwLkmdB8ixInl14sWp_1hB6_LXl9tIGinZinxcBwQUc1wV5xS7Wrf7cYdjEmz_6x_eewc3R0fiwODyYvH0Mt4KBoA_lchs61aJ2TzA4qvTT1vp_AsvRC1c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BJhAv43OiMMAPSDxlTew4aR_HttIBLRMwxFvkz2owJVWbaIK_njsnbWHAC0h5ShzLuTv77nf5-QzwXMfSo5cwUTYQGQIUI6Oh4aiQ3KF71VxkilIDk2k2Pktff5YrNuGyo1VaN1s03-q2QmrfVqahRNm61gB64P4XxO2o4GQQkRPqz62_DtuIVRLEX9sHr14ef9rwPNoTVmJBPEYep13lxt97-dUzbcLNncvw43o9qp_8z-g26NXIW9rJ1_2m1vvm-5Wijv_1aXdgp4tO2UFrTnfhmivvwY3AEjXL-9CchD2VrPJsWpURRahqwd5TeQPSL8NrMj4KzzC8n-EKzjCYnbUJR3ZanZc1G11Ul9TBhJiAcwLWeKs5t-wdTiqm2CHR4MMizD40C6-MewBno-OPh-OoO7chMoLHdSS14t6ZobZ5mnonjE2GMo-HOlFC2kzy3GthVWxT7nkmnPQJJWNtrqyXepCKXdgqq9I9BIbKsxgBmUQ6lfJEa-6lVZkTA26FS10PopXOCtMVNaezNS4KAjcozoLEWZA4CxJnD16s28_bch5_bbm3MoGim9bLIuC3gOJ6IK-YxabVnzsMW3jzR__43jO4eXo0Kt6eTN88hlvBPNCBcrkHW_WicU8wMqr10872fwCgZQn- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Non-linear+Radiation+on+MHD+Non-aligned+Stagnation+Point+Flow+of+Micropolar+Fluid+Over+a+Convective+Surface&rft.jtitle=Journal+of+non-equilibrium+thermodynamics&rft.au=Anantha%2C+Kumar+K&rft.au=Sugunamma%2C+V&rft.au=Sandeep%2C+N&rft.date=2018-10-25&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=0340-0204&rft.eissn=1437-4358&rft.volume=43&rft.issue=4&rft.spage=327&rft.epage=345&rft_id=info:doi/10.1515%2Fjnet-2018-0022&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0340-0204&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0340-0204&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0340-0204&client=summon |