Alternative deep learning method for fast spatial-frequency shift imaging microscopy

Spatial-frequency shift (SFS) imaging microscopy can break the diffraction limit of fluorescently labeled and label-free samples by transferring the high spatial-frequency information into the passband of microscope. However, the resolution improvement is at the cost of decreasing temporal resolutio...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 31; no. 3; p. 3719
Main Authors Zhang, Qianwei, Liang, Chenhui, Tang, Mingwei, Yang, Xiaoyu, Lin, Muchun, Han, Yubing, Liu, Xu, Yang, Qing
Format Journal Article
LanguageEnglish
Published United States 30.01.2023
Online AccessGet full text
ISSN1094-4087
1094-4087
DOI10.1364/OE.482062

Cover

Abstract Spatial-frequency shift (SFS) imaging microscopy can break the diffraction limit of fluorescently labeled and label-free samples by transferring the high spatial-frequency information into the passband of microscope. However, the resolution improvement is at the cost of decreasing temporal resolution since dozens of raw SFS images are needed to expand the frequency spectrum. Although some deep learning methods have been proposed to solve this problem, no neural network that is compatible to both labeled and label-free SFS imaging has been proposed. Here, we propose the joint spatial-Fourier channel attention network (JSFCAN), which learns the general connection between the spatial domain and Fourier frequency domain from complex samples. We demonstrate that JSFCAN can achieve a resolution similar to the traditional algorithm using nearly 1/4 raw images and increase the reconstruction speed by two orders of magnitude. Subsequently, we prove that JSFCAN can be applied to both fluorescently labeled and label-free samples without architecture changes. We also demonstrate that compared with the typical spatial domain optimization network U-net, JSFCAN is more robust to deal with deep-SFS images and noisy images. The proposed JSFCAN provides an alternative route for fast SFS imaging reconstruction, enabling future applications for real-time living cell research.
AbstractList Spatial-frequency shift (SFS) imaging microscopy can break the diffraction limit of fluorescently labeled and label-free samples by transferring the high spatial-frequency information into the passband of microscope. However, the resolution improvement is at the cost of decreasing temporal resolution since dozens of raw SFS images are needed to expand the frequency spectrum. Although some deep learning methods have been proposed to solve this problem, no neural network that is compatible to both labeled and label-free SFS imaging has been proposed. Here, we propose the joint spatial-Fourier channel attention network (JSFCAN), which learns the general connection between the spatial domain and Fourier frequency domain from complex samples. We demonstrate that JSFCAN can achieve a resolution similar to the traditional algorithm using nearly 1/4 raw images and increase the reconstruction speed by two orders of magnitude. Subsequently, we prove that JSFCAN can be applied to both fluorescently labeled and label-free samples without architecture changes. We also demonstrate that compared with the typical spatial domain optimization network U-net, JSFCAN is more robust to deal with deep-SFS images and noisy images. The proposed JSFCAN provides an alternative route for fast SFS imaging reconstruction, enabling future applications for real-time living cell research.
Spatial-frequency shift (SFS) imaging microscopy can break the diffraction limit of fluorescently labeled and label-free samples by transferring the high spatial-frequency information into the passband of microscope. However, the resolution improvement is at the cost of decreasing temporal resolution since dozens of raw SFS images are needed to expand the frequency spectrum. Although some deep learning methods have been proposed to solve this problem, no neural network that is compatible to both labeled and label-free SFS imaging has been proposed. Here, we propose the joint spatial-Fourier channel attention network (JSFCAN), which learns the general connection between the spatial domain and Fourier frequency domain from complex samples. We demonstrate that JSFCAN can achieve a resolution similar to the traditional algorithm using nearly 1/4 raw images and increase the reconstruction speed by two orders of magnitude. Subsequently, we prove that JSFCAN can be applied to both fluorescently labeled and label-free samples without architecture changes. We also demonstrate that compared with the typical spatial domain optimization network U-net, JSFCAN is more robust to deal with deep-SFS images and noisy images. The proposed JSFCAN provides an alternative route for fast SFS imaging reconstruction, enabling future applications for real-time living cell research.Spatial-frequency shift (SFS) imaging microscopy can break the diffraction limit of fluorescently labeled and label-free samples by transferring the high spatial-frequency information into the passband of microscope. However, the resolution improvement is at the cost of decreasing temporal resolution since dozens of raw SFS images are needed to expand the frequency spectrum. Although some deep learning methods have been proposed to solve this problem, no neural network that is compatible to both labeled and label-free SFS imaging has been proposed. Here, we propose the joint spatial-Fourier channel attention network (JSFCAN), which learns the general connection between the spatial domain and Fourier frequency domain from complex samples. We demonstrate that JSFCAN can achieve a resolution similar to the traditional algorithm using nearly 1/4 raw images and increase the reconstruction speed by two orders of magnitude. Subsequently, we prove that JSFCAN can be applied to both fluorescently labeled and label-free samples without architecture changes. We also demonstrate that compared with the typical spatial domain optimization network U-net, JSFCAN is more robust to deal with deep-SFS images and noisy images. The proposed JSFCAN provides an alternative route for fast SFS imaging reconstruction, enabling future applications for real-time living cell research.
Author Lin, Muchun
Han, Yubing
Liu, Xu
Liang, Chenhui
Zhang, Qianwei
Yang, Xiaoyu
Yang, Qing
Tang, Mingwei
Author_xml – sequence: 1
  givenname: Qianwei
  surname: Zhang
  fullname: Zhang, Qianwei
– sequence: 2
  givenname: Chenhui
  surname: Liang
  fullname: Liang, Chenhui
– sequence: 3
  givenname: Mingwei
  orcidid: 0000-0002-2091-2205
  surname: Tang
  fullname: Tang, Mingwei
– sequence: 4
  givenname: Xiaoyu
  surname: Yang
  fullname: Yang, Xiaoyu
– sequence: 5
  givenname: Muchun
  surname: Lin
  fullname: Lin, Muchun
– sequence: 6
  givenname: Yubing
  surname: Han
  fullname: Han, Yubing
– sequence: 7
  givenname: Xu
  surname: Liu
  fullname: Liu, Xu
– sequence: 8
  givenname: Qing
  surname: Yang
  fullname: Yang, Qing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36785358$$D View this record in MEDLINE/PubMed
BookMark eNpdkMtOwzAQRS0EorSw4AdQloAUsGPHiZeoKg-pUjewjlxn3Aa5drAdUP6elJaHWM1Ic-bOnTtGh9ZZQOic4BtCObtdzG5YmWGeHaATggVLGS6Lwz_9CI1DeMWYsEIUx2hEeVHmNC9P0POdieCtjM07JDVAmxiQ3jZ2lWwgrl2daOcTLUNMQjtQ0qTaw1sHVvVJWDc6Js1Grr74RnkXlGv7U3SkpQlwtq8T9HI_e54-pvPFw9P0bp4qmuGYskyqWsiC01pSVuKaYVEC4YIqAlhQrDXjOeZEDFOlcqEyRQXHkNeFXGqgE3S90-1sK_sPaUzV-sGO7yuCq200lYNqF80AX-7g1rvBf4jVpgkKjJEWXBeqrCh4TjgrxYBe7NFuuYH6R_Q7tgG43QHbj4MHXakmDuk4G71szM_1xez3-tW_jf9Of9lPUUuMAQ
CitedBy_id crossref_primary_10_1177_16878132231225312
crossref_primary_10_3390_photonics11060528
Cites_doi 10.1364/PRJ.396122
10.1364/OE.26.026470
10.1364/OE.27.000644
10.1364/BOE.5.002376
10.1038/s41467-020-15784-x
10.1007/s11433-020-1682-1
10.1364/BOE.414680
10.1038/nphoton.2013.187
10.1109/TMI.2017.2785879
10.1109/TCI.2020.3046472
10.1038/nbt.4106
10.1117/1.AP.2.2.026001
10.1038/s41592-020-01048-5
10.1046/j.1365-2818.2000.00710.x
10.1002/advs.202103835
10.1364/BOE.9.005037
10.1364/PRJ.416437
10.1364/OPTICA.5.000458
10.1073/pnas.1107547108
10.1038/s41592-018-0239-0
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1364/OE.482062
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 10.1364/oe.482062
36785358
10_1364_OE_482062
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
ROP
7X8
ADTOC
C1A
EJD
UNPAY
ID FETCH-LOGICAL-c320t-42acd9a763da3480d4098e1693c1e0930ff4650619348cc59c2c3960e5d7abfe3
IEDL.DBID UNPAY
ISSN 1094-4087
IngestDate Tue Aug 19 14:56:58 EDT 2025
Fri Jul 11 09:34:58 EDT 2025
Wed Feb 19 02:25:33 EST 2025
Tue Jul 01 04:01:36 EDT 2025
Thu Apr 24 22:55:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c320t-42acd9a763da3480d4098e1693c1e0930ff4650619348cc59c2c3960e5d7abfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2091-2205
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1364/oe.482062
PMID 36785358
PQID 2776516489
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1364_oe_482062
proquest_miscellaneous_2776516489
pubmed_primary_36785358
crossref_citationtrail_10_1364_OE_482062
crossref_primary_10_1364_OE_482062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-30
2023-Jan-30
20230130
PublicationDateYYYYMMDD 2023-01-30
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2023
References Shah (oe-31-3-3719-R8) 2021; 9
Cao (oe-31-3-3719-R26) 2018; 9
Gustafsson (oe-31-3-3719-R1) 2000; 198
Tang (oe-31-3-3719-R5) 2022; 9
Qiao (oe-31-3-3719-R22) 2021; 18
Christensen (oe-31-3-3719-R17) 2021; 12
oe-31-3-3719-R15
Gerchberg (oe-31-3-3719-R25) 1972; 35
Zheng (oe-31-3-3719-R3) 2013; 7
Ling (oe-31-3-3719-R11) 2020; 8
Tian (oe-31-3-3719-R4) 2014; 5
Liu (oe-31-3-3719-R7) 2021; 64
Nehme (oe-31-3-3719-R16) 2018; 5
Ouyang (oe-31-3-3719-R12) 2018; 36
Rego (oe-31-3-3719-R2) 2012; 109
Nguyen (oe-31-3-3719-R14) 2018; 26
Lim (oe-31-3-3719-R18) 2020; 2
Tang (oe-31-3-3719-R6) 2020
Yang (oe-31-3-3719-R24) 2018; 37
Cheng (oe-31-3-3719-R13) 2019; 27
Jin (oe-31-3-3719-R10) 2020; 11
Wang (oe-31-3-3719-R19) 2019; 16
Zhang (oe-31-3-3719-R20) 2021; 7
References_xml – year: 2020
  ident: oe-31-3-3719-R6
– volume: 8
  start-page: 1350
  year: 2020
  ident: oe-31-3-3719-R11
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.396122
– volume: 26
  start-page: 26470
  year: 2018
  ident: oe-31-3-3719-R14
  publication-title: Opt. Express
  doi: 10.1364/OE.26.026470
– volume: 27
  start-page: 644
  year: 2019
  ident: oe-31-3-3719-R13
  publication-title: Opt. Express
  doi: 10.1364/OE.27.000644
– volume: 5
  start-page: 2376
  year: 2014
  ident: oe-31-3-3719-R4
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.5.002376
– volume: 11
  start-page: 1934
  year: 2020
  ident: oe-31-3-3719-R10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15784-x
– volume: 64
  start-page: 294211
  year: 2021
  ident: oe-31-3-3719-R7
  publication-title: Sci. China-Phys. Mech. Astron.
  doi: 10.1007/s11433-020-1682-1
– volume: 12
  start-page: 2720
  year: 2021
  ident: oe-31-3-3719-R17
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.414680
– volume: 7
  start-page: 739
  year: 2013
  ident: oe-31-3-3719-R3
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.187
– volume: 37
  start-page: 1310
  year: 2018
  ident: oe-31-3-3719-R24
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2785879
– volume: 7
  start-page: 1
  year: 2021
  ident: oe-31-3-3719-R20
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2020.3046472
– volume: 36
  start-page: 460
  year: 2018
  ident: oe-31-3-3719-R12
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4106
– volume: 2
  start-page: 1
  year: 2020
  ident: oe-31-3-3719-R18
  publication-title: Adv. Photonics
  doi: 10.1117/1.AP.2.2.026001
– ident: oe-31-3-3719-R15
– volume: 18
  start-page: 194
  year: 2021
  ident: oe-31-3-3719-R22
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01048-5
– volume: 35
  start-page: 237
  year: 1972
  ident: oe-31-3-3719-R25
  publication-title: Optik
– volume: 198
  start-page: 82
  year: 2000
  ident: oe-31-3-3719-R1
  publication-title: J. Microsc.
  doi: 10.1046/j.1365-2818.2000.00710.x
– volume: 9
  start-page: 2103835
  year: 2022
  ident: oe-31-3-3719-R5
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202103835
– volume: 9
  start-page: 5037
  year: 2018
  ident: oe-31-3-3719-R26
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.9.005037
– volume: 9
  start-page: B168
  year: 2021
  ident: oe-31-3-3719-R8
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.416437
– volume: 5
  start-page: 458
  year: 2018
  ident: oe-31-3-3719-R16
  publication-title: Optica
  doi: 10.1364/OPTICA.5.000458
– volume: 109
  start-page: E135
  year: 2012
  ident: oe-31-3-3719-R2
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1107547108
– volume: 16
  start-page: 103
  year: 2019
  ident: oe-31-3-3719-R19
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0239-0
SSID ssj0014797
Score 2.4517753
Snippet Spatial-frequency shift (SFS) imaging microscopy can break the diffraction limit of fluorescently labeled and label-free samples by transferring the high...
SourceID unpaywall
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3719
Title Alternative deep learning method for fast spatial-frequency shift imaging microscopy
URI https://www.ncbi.nlm.nih.gov/pubmed/36785358
https://www.proquest.com/docview/2776516489
https://doi.org/10.1364/oe.482062
UnpaywallVersion publishedVersion
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DOA
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DIK
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH6UiogH96WiMi4HL6lpZybLsUhFBJdDC_UUJrNoMabFpEo9-Nt9WVqXingJgTwy4b1h5vvy3rwP4BiXO4TplOHkNa6FN74lDHKeEMmDa2tpeK51eHXtXHTZZY_3KnAwOQvzNX9PHXY60HWWtRjHVXbO4Qi3qzDXvb5t3eVZTJ8h__HcsmPQN_vv-8wMeFyEhVE8FONXEUVfNpTz5c9jOUUdyWN9lIZ1-fajS-Of37oCSyWcJK0i_qtQ0fEazOdlnTJZh04rKn_4vWiitB6SUiXinhTS0QQxKzEiSUmSlVaLyDLPRXH1mCQPfZOS_lOuY0Sessq97AzLeAO65-3O2YVV6ihYkjbt1GJNIZUvcCVRgjLPVsjpPJ11YZENbfvUNoYhUEMqhU-l5L5sSoqu1ly5IjSabkI1HsR6Gwg1yqG6oVylDBIXKRpc-ywTVMcRTGhqcDLxeiDLJuOZ1kUU5JkzhwU37aBwUg0Op6bDorPGb0YHk9AFOO-zZIaI9WCUBE3XdThyPc-vwVYR0-lrKO7AnHKvBkfTIM-MMdDlGDv_stqFavo80nsIQdJwP6fueL16b--XE_IDzmzb1w
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH5Ii4gH96WiMlUPXlLTzkyWYxFFBJdDC3oKk1m0mKalSZX6631ZWpeKeAvkMRPmDTPfl7d8ACd43CFMpww3r3EtfPAtYZDzhEgeXFtLw3Otw5tb56rLrh_4wwLUp7UwX-P31GFnA91gWYtxPGWrDke4XYFq9_a-_ZhHMX2G_Mdzy45B3-y_3zNz4HEZlsbxUEzeRBR9uVAuVz_Lcoo8kpfGOA0b8v1Hl8Y_v3UNVko4SdqF_9dhQccbsJindcpkEzrtqPzh96qJ0npISpWIJ1JIRxPErMSIJCVJllotIsuMiuTqCUmeeyYlvX6uY0T6WeZeVsMy2YLu5UXn_MoqdRQsSVt2arGWkMoXeJIoQZlnK-R0ns66sMimtn1qG8MQqCGVwrdScl-2JMWl1ly5IjSabkMlHsR6Fwg1yqG6qVylDBIXKZpc-ywTVMcZTGhqcDpd9UCWTcYzrYsoyCNnDgvuLoJikWpwNDMdFp01fjOqT10X4L7Pghki1oNxErRc1-HI9Ty_BjuFT2fDULyBOeVeDY5nTp6bY6DLOfb-ZbUPlXQ01gcIQdLwsNyEH5GJ2bE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternative+deep+learning+method+for+fast+spatial-frequency+shift+imaging+microscopy&rft.jtitle=Optics+express&rft.au=Zhang%2C+Qianwei&rft.au=Liang%2C+Chenhui&rft.au=Tang%2C+Mingwei&rft.au=Yang%2C+Xiaoyu&rft.date=2023-01-30&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=31&rft.issue=3&rft.spage=3719&rft_id=info:doi/10.1364%2FOE.482062&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_482062
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon