Automatic detection of face mask wearing based on polarization imaging

Amidst the global health crisis sparked by the coronavirus pandemic, the proliferation of respiratory illnesses has captured worldwide attention. An increasing number of individuals wear masks to mitigate the risk of viral transmission. This trend has posed a critical challenge for the development o...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 32; no. 20; p. 34678
Main Authors Li, Bosong, Li, Yahong, Li, Kexian, Fu, Yuegang, Ouyang, Mingzhao, Jia, Wentao
Format Journal Article
LanguageEnglish
Published United States 23.09.2024
Subjects
Online AccessGet full text
ISSN1094-4087
1094-4087
DOI10.1364/OE.528929

Cover

Abstract Amidst the global health crisis sparked by the coronavirus pandemic, the proliferation of respiratory illnesses has captured worldwide attention. An increasing number of individuals wear masks to mitigate the risk of viral transmission. This trend has posed a critical challenge for the development of automatic face mask wearing detection systems. In response, this paper proposed what we believe is a novel face mask wearing detection framework DOLP-YOLOv5, which innovatively employs polarization imaging to enhance the detection of face mask by leveraging the unique characteristics of mask surfaces. For extracting essential semantic details of masks and diminish the impact of background noise, the lightweight shuffle attention (SA) mechanism is integrated in the backbone. Further, a Content-Aware Bidirectional Feature Pyramid Network (CA-BiFPN) is applied for feature fusion, sufficiently integrating the information at each stage and improving the ability of the feature presentation. Moreover, Focal-EIoU loss is utilized for the bounding box regression to improve the accuracy and efficiency of detection. Benchmark evaluation is performed on the self-constructed polarization face mask (PFM) dataset compared with five other mainstream algorithms. The mAP50-95 of DOLP-YOLOv5 reached 63.5%, with 3.08% and 4.44% improvements over the YOLOv8s and YOLOv9s, and achieved a response speed of 384.6f/s. This research not only demonstrates the superiority of DOLP-YOLOv5 in face mask wearing detection, but also has certain reference significance for other detection of polarization imaging.
AbstractList Amidst the global health crisis sparked by the coronavirus pandemic, the proliferation of respiratory illnesses has captured worldwide attention. An increasing number of individuals wear masks to mitigate the risk of viral transmission. This trend has posed a critical challenge for the development of automatic face mask wearing detection systems. In response, this paper proposed what we believe is a novel face mask wearing detection framework DOLP-YOLOv5, which innovatively employs polarization imaging to enhance the detection of face mask by leveraging the unique characteristics of mask surfaces. For extracting essential semantic details of masks and diminish the impact of background noise, the lightweight shuffle attention (SA) mechanism is integrated in the backbone. Further, a Content-Aware Bidirectional Feature Pyramid Network (CA-BiFPN) is applied for feature fusion, sufficiently integrating the information at each stage and improving the ability of the feature presentation. Moreover, Focal-EIoU loss is utilized for the bounding box regression to improve the accuracy and efficiency of detection. Benchmark evaluation is performed on the self-constructed polarization face mask (PFM) dataset compared with five other mainstream algorithms. The mAP50-95 of DOLP-YOLOv5 reached 63.5%, with 3.08% and 4.44% improvements over the YOLOv8s and YOLOv9s, and achieved a response speed of 384.6f/s. This research not only demonstrates the superiority of DOLP-YOLOv5 in face mask wearing detection, but also has certain reference significance for other detection of polarization imaging.Amidst the global health crisis sparked by the coronavirus pandemic, the proliferation of respiratory illnesses has captured worldwide attention. An increasing number of individuals wear masks to mitigate the risk of viral transmission. This trend has posed a critical challenge for the development of automatic face mask wearing detection systems. In response, this paper proposed what we believe is a novel face mask wearing detection framework DOLP-YOLOv5, which innovatively employs polarization imaging to enhance the detection of face mask by leveraging the unique characteristics of mask surfaces. For extracting essential semantic details of masks and diminish the impact of background noise, the lightweight shuffle attention (SA) mechanism is integrated in the backbone. Further, a Content-Aware Bidirectional Feature Pyramid Network (CA-BiFPN) is applied for feature fusion, sufficiently integrating the information at each stage and improving the ability of the feature presentation. Moreover, Focal-EIoU loss is utilized for the bounding box regression to improve the accuracy and efficiency of detection. Benchmark evaluation is performed on the self-constructed polarization face mask (PFM) dataset compared with five other mainstream algorithms. The mAP50-95 of DOLP-YOLOv5 reached 63.5%, with 3.08% and 4.44% improvements over the YOLOv8s and YOLOv9s, and achieved a response speed of 384.6f/s. This research not only demonstrates the superiority of DOLP-YOLOv5 in face mask wearing detection, but also has certain reference significance for other detection of polarization imaging.
Amidst the global health crisis sparked by the coronavirus pandemic, the proliferation of respiratory illnesses has captured worldwide attention. An increasing number of individuals wear masks to mitigate the risk of viral transmission. This trend has posed a critical challenge for the development of automatic face mask wearing detection systems. In response, this paper proposed what we believe is a novel face mask wearing detection framework DOLP-YOLOv5, which innovatively employs polarization imaging to enhance the detection of face mask by leveraging the unique characteristics of mask surfaces. For extracting essential semantic details of masks and diminish the impact of background noise, the lightweight shuffle attention (SA) mechanism is integrated in the backbone. Further, a Content-Aware Bidirectional Feature Pyramid Network (CA-BiFPN) is applied for feature fusion, sufficiently integrating the information at each stage and improving the ability of the feature presentation. Moreover, Focal-EIoU loss is utilized for the bounding box regression to improve the accuracy and efficiency of detection. Benchmark evaluation is performed on the self-constructed polarization face mask (PFM) dataset compared with five other mainstream algorithms. The mAP50-95 of DOLP-YOLOv5 reached 63.5%, with 3.08% and 4.44% improvements over the YOLOv8s and YOLOv9s, and achieved a response speed of 384.6f/s. This research not only demonstrates the superiority of DOLP-YOLOv5 in face mask wearing detection, but also has certain reference significance for other detection of polarization imaging.
Author Li, Yahong
Ouyang, Mingzhao
Fu, Yuegang
Li, Kexian
Jia, Wentao
Li, Bosong
Author_xml – sequence: 1
  givenname: Bosong
  orcidid: 0009-0006-2492-9131
  surname: Li
  fullname: Li, Bosong
– sequence: 2
  givenname: Yahong
  orcidid: 0000-0003-1222-3095
  surname: Li
  fullname: Li, Yahong
– sequence: 3
  givenname: Kexian
  surname: Li
  fullname: Li, Kexian
– sequence: 4
  givenname: Yuegang
  orcidid: 0000-0003-0601-6516
  surname: Fu
  fullname: Fu, Yuegang
– sequence: 5
  givenname: Mingzhao
  surname: Ouyang
  fullname: Ouyang, Mingzhao
– sequence: 6
  givenname: Wentao
  surname: Jia
  fullname: Jia, Wentao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40514844$$D View this record in MEDLINE/PubMed
BookMark eNptkE1PwzAMhiM0xD7gwB9APQJSt6RNm-Q4TRsgTdoFzpWbplOhbUqTahq_nrCODwEX27Ifv7beMRrUulYIXRI8JWFMZ5vlNAq4CMQJGhEsqE8xZ4Mf9RCNjXnGmFAm2BkaUhwRyikdodW8s7oCW0gvU1ZJW-ja07mXg1ReBebF2yloi3rrpWBU5rlpo0vXeYMDWlSwddNzdJpDadTFMU_Q02r5uLj315u7h8V87cswwNYPqeAYZxwyHjKIBQQYRBTQII9SylLBIYcQXOAqwiRPY8EI4TKTMU8JYBlO0G2v29UN7HdQlknTuh_afUJw8mFGolXSm-Hg6x5uWv3aKWOTqjBSlSXUSncmCQPCGSMcM4deHdEurVT2JfpplANuekC22phW5X_ubpbfd2e_WFnYg122haL8Z-Md2XqGpA
CitedBy_id crossref_primary_10_1364_OL_545263
Cites_doi 10.1016/j.eswa.2022.116823
10.1364/OE.450999
10.1109/JPHOT.2021.3103866
10.1007/s11042-022-12999-6
10.1007/s11263-019-01228-7
10.1364/OE.463332
10.1016/S0140-6736(22)01585-9
10.1186/s40537-021-00434-w
10.1016/j.imavis.2021.104341
10.22075/IJNAA.2022.6166
10.3390/s23094415
10.1364/OE.27.003629
10.1016/j.scs.2020.102692
10.1364/OE.491831
10.1016/j.neucom.2022.07.042
10.1109/TCYB.2021.3095305
10.1364/OE.432432
10.1038/s41377-021-00639-x
10.29026/oes.2024.230042
10.1364/AO.51.005392
10.1016/j.patcog.2021.108045
10.1109/TPAMI.2021.3074370
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1364/OE.528929
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 10.1364/oe.528929
40514844
10_1364_OE_528929
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
C1A
EJD
UNPAY
ID FETCH-LOGICAL-c320t-349800d8ad837a69a20a95242f5b47b98afa3aafa8e501fb697118cdc68b1a0c3
IEDL.DBID UNPAY
ISSN 1094-4087
IngestDate Tue Aug 19 22:04:57 EDT 2025
Wed Jul 02 02:40:32 EDT 2025
Mon Jul 21 05:36:20 EDT 2025
Thu Apr 24 23:05:32 EDT 2025
Tue Jul 01 04:02:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c320t-349800d8ad837a69a20a95242f5b47b98afa3aafa8e501fb697118cdc68b1a0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0601-6516
0000-0003-1222-3095
0009-0006-2492-9131
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1364/oe.528929
PMID 40514844
PQID 3218771807
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1364_oe_528929
proquest_miscellaneous_3218771807
pubmed_primary_40514844
crossref_primary_10_1364_OE_528929
crossref_citationtrail_10_1364_OE_528929
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-23
2024-Sep-23
20240923
PublicationDateYYYYMMDD 2024-09-23
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2024
References Wang (oe-32-20-34678-R26) 2021; 44
Su (oe-32-20-34678-R17) 2021; 29
Huang (oe-32-20-34678-R13) 2023; 31
Shen (oe-32-20-34678-R21) 2021; 13
Liu (oe-32-20-34678-R16) 2019; 27
Selvaraju (oe-32-20-34678-R29) 2020; 128
Wu (oe-32-20-34678-R10) 2022; 117
He (oe-32-20-34678-R14) 2021; 10
Vibhuti (oe-32-20-34678-R4) 2022; 81
Gupta (oe-32-20-34678-R9) 2022; 198
Nagrath (oe-32-20-34678-R11) 2021; 66
Zhang (oe-32-20-34678-R15) 2021; 118
Yang (oe-32-20-34678-R18) 2024; 3
Lin (oe-32-20-34678-R12) 2022; 30
Zhang (oe-32-20-34678-R28) 2022; 506
Sachs (oe-32-20-34678-R1) 2022; 400
Srivastava (oe-32-20-34678-R8) 2021; 8
Wang (oe-32-20-34678-R19) 2023; 23
York (oe-32-20-34678-R22) 2012; 51
Mohammed Ali (oe-32-20-34678-R3) 2022; 13
Song (oe-32-20-34678-R20) 2022; 30
Zheng (oe-32-20-34678-R27) 2022; 52
Liu (oe-32-20-34678-R6) 2016
References_xml – volume: 198
  start-page: 116823
  year: 2022
  ident: oe-32-20-34678-R9
  publication-title: Expert Systems with Appl.
  doi: 10.1016/j.eswa.2022.116823
– volume: 30
  start-page: 5657
  year: 2022
  ident: oe-32-20-34678-R20
  publication-title: Opt. Express
  doi: 10.1364/OE.450999
– volume: 13
  start-page: 1
  year: 2021
  ident: oe-32-20-34678-R21
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2021.3103866
– volume: 81
  start-page: 40013
  year: 2022
  ident: oe-32-20-34678-R4
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12999-6
– volume: 128
  start-page: 336
  year: 2020
  ident: oe-32-20-34678-R29
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01228-7
– start-page: 21
  year: 2016
  ident: oe-32-20-34678-R6
  article-title: SSD: Single Shot MultiBox Detector
– volume: 30
  start-page: 39234
  year: 2022
  ident: oe-32-20-34678-R12
  publication-title: Opt. Express
  doi: 10.1364/OE.463332
– volume: 400
  start-page: 1224
  year: 2022
  ident: oe-32-20-34678-R1
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(22)01585-9
– volume: 8
  start-page: 66
  year: 2021
  ident: oe-32-20-34678-R8
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00434-w
– volume: 117
  start-page: 104341
  year: 2022
  ident: oe-32-20-34678-R10
  publication-title: Image and Vis. Computing
  doi: 10.1016/j.imavis.2021.104341
– volume: 13
  start-page: 3811
  year: 2022
  ident: oe-32-20-34678-R3
  publication-title: International Journal of Nonlinear Analysis and Applications
  doi: 10.22075/IJNAA.2022.6166
– volume: 23
  start-page: 4415
  year: 2023
  ident: oe-32-20-34678-R19
  publication-title: Sensors
  doi: 10.3390/s23094415
– volume: 27
  start-page: 3629
  year: 2019
  ident: oe-32-20-34678-R16
  publication-title: Opt. Express
  doi: 10.1364/OE.27.003629
– volume: 66
  start-page: 102692
  year: 2021
  ident: oe-32-20-34678-R11
  publication-title: Sustainable Cities and Society
  doi: 10.1016/j.scs.2020.102692
– volume: 31
  start-page: 25527
  year: 2023
  ident: oe-32-20-34678-R13
  publication-title: Opt. Express
  doi: 10.1364/OE.491831
– volume: 506
  start-page: 146
  year: 2022
  ident: oe-32-20-34678-R28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.07.042
– volume: 52
  start-page: 8574
  year: 2022
  ident: oe-32-20-34678-R27
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3095305
– volume: 29
  start-page: 27830
  year: 2021
  ident: oe-32-20-34678-R17
  publication-title: Opt. Express
  doi: 10.1364/OE.432432
– volume: 10
  start-page: 194
  year: 2021
  ident: oe-32-20-34678-R14
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-021-00639-x
– volume: 3
  start-page: 230042
  year: 2024
  ident: oe-32-20-34678-R18
  publication-title: Opto-Electron. Sci.
  doi: 10.29026/oes.2024.230042
– volume: 51
  start-page: 5392
  year: 2012
  ident: oe-32-20-34678-R22
  publication-title: Appl. Opt.
  doi: 10.1364/AO.51.005392
– volume: 118
  start-page: 108045
  year: 2021
  ident: oe-32-20-34678-R15
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108045
– volume: 44
  start-page: 4674
  year: 2021
  ident: oe-32-20-34678-R26
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3074370
SSID ssj0014797
Score 2.4728322
Snippet Amidst the global health crisis sparked by the coronavirus pandemic, the proliferation of respiratory illnesses has captured worldwide attention. An increasing...
SourceID unpaywall
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 34678
SubjectTerms Algorithms
COVID-19 - prevention & control
Face - diagnostic imaging
Humans
Image Processing, Computer-Assisted - methods
Masks
SARS-CoV-2
Title Automatic detection of face mask wearing based on polarization imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/40514844
https://www.proquest.com/docview/3218771807
https://doi.org/10.1364/oe.528929
UnpaywallVersion publishedVersion
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DOA
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DIK
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5BUIU40PIoBFG0FA5cnDr2eh_HqEqEKkE5NBI9WbvrXQklsSNiK4IDv53xIyE0VdXLXjzatXZm9c1oZr4BuAxoyZEeOE8aoTBAceWT4oHHIse7Vkrti7Lf-eaWXQ_pj_vofgPOF70wq_n7kNFvme1EGBMEchO2WITudgu2hrd3vd9VFlNS3F7whjHonfx7nFlzHndgu0in6mmuxuMVQBl8fGvLqetIRp0i1x3z_AdL4z__9RPsNu4k6dX634MNm-7Dh6qs08wOYNAr8qwiZSWJzauqq5RkjjhlLJmo2YjM0dIRvUiJZgnBr9My1m2aM8nDpBpidAjDQf_X92uvmZzgmTDwcy-kEh3BRKgE40_FpAp8JSNEYxdpyrUUyqlQ4SJs5HedZpJjoGESw4TuKt-En6GVZqk9BiK50l3HTSJkQnVgZWjDSBvUheNWCNaGq8U9x6ahFS-nW4zjKlfGaPyzH9fX0oavS9FpzaXxN6HzhbJitPQyfaFSmxWzOERvhCOU-rwNR7UWl9vQksZdUNqGi6Va187IbHPGyX9JnUIrfyzsF3Q6cn1WBeu43rz0zxoTfAWz8tas
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB4SmxB66COPxqUp67aHXuTqsdrH0RSbUKjbQw3OSeyudqHElkwsYdJf39HDrh2H0osuGnbFzojvG2bnG4CPIa000kPnSSMUJiiu-qV46LHY8cBKqX1R9Tt_m7CbKf06i2dH0N_0wuzW7yNGP-d2EGNOEMpj6LIY6XYHutPJj-FtXcWUFJcXvFUM2rPfx5kD8vgMTstsqR7Waj7fAZTxi79tOc09krtBWeiB-f1IpfGf3_oSnrd0kgwb_7-CI5udwUl9rdOszmE8LIu8FmUlqS3qW1cZyR1xyliyUKs7ssZIR_QiFZqlBN8uq1y3bc4kvxb1EKMLmI5HP7_ceO3kBM9EoV94EZVIBFOhUsw_FZMq9JWMEY1drCnXUiinIoUPYWM_cJpJjomGSQ0TOlC-iS6hk-WZvQIiudKB4yYVMqU6tDKyUawN-sJxKwTrwafNOSemlRWvplvMk7pWxmjyfZQ0x9KD91vTZaOl8ZRRf-OsBCO9Kl-ozOblKomQjXCEUp_34HXjxe0ytJJxF5T24MPWrQd75Lbd481_Wb2FTnFf2mskHYV-14bdH7UT1IY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+detection+of+face+mask+wearing+based+on+polarization+imaging&rft.jtitle=Optics+express&rft.au=Li%2C+Bosong&rft.au=Li%2C+Yahong&rft.au=Li%2C+Kexian&rft.au=Fu%2C+Yuegang&rft.date=2024-09-23&rft.eissn=1094-4087&rft.volume=32&rft.issue=20&rft.spage=34678&rft_id=info:doi/10.1364%2FOE.528929&rft_id=info%3Apmid%2F40514844&rft.externalDocID=40514844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon