Automatic detection of face mask wearing based on polarization imaging
Amidst the global health crisis sparked by the coronavirus pandemic, the proliferation of respiratory illnesses has captured worldwide attention. An increasing number of individuals wear masks to mitigate the risk of viral transmission. This trend has posed a critical challenge for the development o...
Saved in:
| Published in | Optics express Vol. 32; no. 20; p. 34678 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
23.09.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1094-4087 1094-4087 |
| DOI | 10.1364/OE.528929 |
Cover
| Abstract | Amidst the global health crisis sparked by the coronavirus pandemic, the proliferation of respiratory illnesses has captured worldwide attention. An increasing number of individuals wear masks to mitigate the risk of viral transmission. This trend has posed a critical challenge for the development of automatic face mask wearing detection systems. In response, this paper proposed what we believe is a novel face mask wearing detection framework DOLP-YOLOv5, which innovatively employs polarization imaging to enhance the detection of face mask by leveraging the unique characteristics of mask surfaces. For extracting essential semantic details of masks and diminish the impact of background noise, the lightweight shuffle attention (SA) mechanism is integrated in the backbone. Further, a Content-Aware Bidirectional Feature Pyramid Network (CA-BiFPN) is applied for feature fusion, sufficiently integrating the information at each stage and improving the ability of the feature presentation. Moreover, Focal-EIoU loss is utilized for the bounding box regression to improve the accuracy and efficiency of detection. Benchmark evaluation is performed on the self-constructed polarization face mask (PFM) dataset compared with five other mainstream algorithms. The mAP50-95 of DOLP-YOLOv5 reached 63.5%, with 3.08% and 4.44% improvements over the YOLOv8s and YOLOv9s, and achieved a response speed of 384.6f/s. This research not only demonstrates the superiority of DOLP-YOLOv5 in face mask wearing detection, but also has certain reference significance for other detection of polarization imaging. |
|---|---|
| AbstractList | Amidst the global health crisis sparked by the coronavirus pandemic, the proliferation of respiratory illnesses has captured worldwide attention. An increasing number of individuals wear masks to mitigate the risk of viral transmission. This trend has posed a critical challenge for the development of automatic face mask wearing detection systems. In response, this paper proposed what we believe is a novel face mask wearing detection framework DOLP-YOLOv5, which innovatively employs polarization imaging to enhance the detection of face mask by leveraging the unique characteristics of mask surfaces. For extracting essential semantic details of masks and diminish the impact of background noise, the lightweight shuffle attention (SA) mechanism is integrated in the backbone. Further, a Content-Aware Bidirectional Feature Pyramid Network (CA-BiFPN) is applied for feature fusion, sufficiently integrating the information at each stage and improving the ability of the feature presentation. Moreover, Focal-EIoU loss is utilized for the bounding box regression to improve the accuracy and efficiency of detection. Benchmark evaluation is performed on the self-constructed polarization face mask (PFM) dataset compared with five other mainstream algorithms. The mAP50-95 of DOLP-YOLOv5 reached 63.5%, with 3.08% and 4.44% improvements over the YOLOv8s and YOLOv9s, and achieved a response speed of 384.6f/s. This research not only demonstrates the superiority of DOLP-YOLOv5 in face mask wearing detection, but also has certain reference significance for other detection of polarization imaging.Amidst the global health crisis sparked by the coronavirus pandemic, the proliferation of respiratory illnesses has captured worldwide attention. An increasing number of individuals wear masks to mitigate the risk of viral transmission. This trend has posed a critical challenge for the development of automatic face mask wearing detection systems. In response, this paper proposed what we believe is a novel face mask wearing detection framework DOLP-YOLOv5, which innovatively employs polarization imaging to enhance the detection of face mask by leveraging the unique characteristics of mask surfaces. For extracting essential semantic details of masks and diminish the impact of background noise, the lightweight shuffle attention (SA) mechanism is integrated in the backbone. Further, a Content-Aware Bidirectional Feature Pyramid Network (CA-BiFPN) is applied for feature fusion, sufficiently integrating the information at each stage and improving the ability of the feature presentation. Moreover, Focal-EIoU loss is utilized for the bounding box regression to improve the accuracy and efficiency of detection. Benchmark evaluation is performed on the self-constructed polarization face mask (PFM) dataset compared with five other mainstream algorithms. The mAP50-95 of DOLP-YOLOv5 reached 63.5%, with 3.08% and 4.44% improvements over the YOLOv8s and YOLOv9s, and achieved a response speed of 384.6f/s. This research not only demonstrates the superiority of DOLP-YOLOv5 in face mask wearing detection, but also has certain reference significance for other detection of polarization imaging. Amidst the global health crisis sparked by the coronavirus pandemic, the proliferation of respiratory illnesses has captured worldwide attention. An increasing number of individuals wear masks to mitigate the risk of viral transmission. This trend has posed a critical challenge for the development of automatic face mask wearing detection systems. In response, this paper proposed what we believe is a novel face mask wearing detection framework DOLP-YOLOv5, which innovatively employs polarization imaging to enhance the detection of face mask by leveraging the unique characteristics of mask surfaces. For extracting essential semantic details of masks and diminish the impact of background noise, the lightweight shuffle attention (SA) mechanism is integrated in the backbone. Further, a Content-Aware Bidirectional Feature Pyramid Network (CA-BiFPN) is applied for feature fusion, sufficiently integrating the information at each stage and improving the ability of the feature presentation. Moreover, Focal-EIoU loss is utilized for the bounding box regression to improve the accuracy and efficiency of detection. Benchmark evaluation is performed on the self-constructed polarization face mask (PFM) dataset compared with five other mainstream algorithms. The mAP50-95 of DOLP-YOLOv5 reached 63.5%, with 3.08% and 4.44% improvements over the YOLOv8s and YOLOv9s, and achieved a response speed of 384.6f/s. This research not only demonstrates the superiority of DOLP-YOLOv5 in face mask wearing detection, but also has certain reference significance for other detection of polarization imaging. |
| Author | Li, Yahong Ouyang, Mingzhao Fu, Yuegang Li, Kexian Jia, Wentao Li, Bosong |
| Author_xml | – sequence: 1 givenname: Bosong orcidid: 0009-0006-2492-9131 surname: Li fullname: Li, Bosong – sequence: 2 givenname: Yahong orcidid: 0000-0003-1222-3095 surname: Li fullname: Li, Yahong – sequence: 3 givenname: Kexian surname: Li fullname: Li, Kexian – sequence: 4 givenname: Yuegang orcidid: 0000-0003-0601-6516 surname: Fu fullname: Fu, Yuegang – sequence: 5 givenname: Mingzhao surname: Ouyang fullname: Ouyang, Mingzhao – sequence: 6 givenname: Wentao surname: Jia fullname: Jia, Wentao |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40514844$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkE1PwzAMhiM0xD7gwB9APQJSt6RNm-Q4TRsgTdoFzpWbplOhbUqTahq_nrCODwEX27Ifv7beMRrUulYIXRI8JWFMZ5vlNAq4CMQJGhEsqE8xZ4Mf9RCNjXnGmFAm2BkaUhwRyikdodW8s7oCW0gvU1ZJW-ja07mXg1ReBebF2yloi3rrpWBU5rlpo0vXeYMDWlSwddNzdJpDadTFMU_Q02r5uLj315u7h8V87cswwNYPqeAYZxwyHjKIBQQYRBTQII9SylLBIYcQXOAqwiRPY8EI4TKTMU8JYBlO0G2v29UN7HdQlknTuh_afUJw8mFGolXSm-Hg6x5uWv3aKWOTqjBSlSXUSncmCQPCGSMcM4deHdEurVT2JfpplANuekC22phW5X_ubpbfd2e_WFnYg122haL8Z-Md2XqGpA |
| CitedBy_id | crossref_primary_10_1364_OL_545263 |
| Cites_doi | 10.1016/j.eswa.2022.116823 10.1364/OE.450999 10.1109/JPHOT.2021.3103866 10.1007/s11042-022-12999-6 10.1007/s11263-019-01228-7 10.1364/OE.463332 10.1016/S0140-6736(22)01585-9 10.1186/s40537-021-00434-w 10.1016/j.imavis.2021.104341 10.22075/IJNAA.2022.6166 10.3390/s23094415 10.1364/OE.27.003629 10.1016/j.scs.2020.102692 10.1364/OE.491831 10.1016/j.neucom.2022.07.042 10.1109/TCYB.2021.3095305 10.1364/OE.432432 10.1038/s41377-021-00639-x 10.29026/oes.2024.230042 10.1364/AO.51.005392 10.1016/j.patcog.2021.108045 10.1109/TPAMI.2021.3074370 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1364/OE.528929 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1094-4087 |
| ExternalDocumentID | 10.1364/oe.528929 40514844 10_1364_OE_528929 |
| Genre | Journal Article |
| GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB CGR CUY CVF ECM EIF NPM 7X8 ADTOC C1A EJD UNPAY |
| ID | FETCH-LOGICAL-c320t-349800d8ad837a69a20a95242f5b47b98afa3aafa8e501fb697118cdc68b1a0c3 |
| IEDL.DBID | UNPAY |
| ISSN | 1094-4087 |
| IngestDate | Tue Aug 19 22:04:57 EDT 2025 Wed Jul 02 02:40:32 EDT 2025 Mon Jul 21 05:36:20 EDT 2025 Thu Apr 24 23:05:32 EDT 2025 Tue Jul 01 04:02:04 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c320t-349800d8ad837a69a20a95242f5b47b98afa3aafa8e501fb697118cdc68b1a0c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0601-6516 0000-0003-1222-3095 0009-0006-2492-9131 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1364/oe.528929 |
| PMID | 40514844 |
| PQID | 3218771807 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1364_oe_528929 proquest_miscellaneous_3218771807 pubmed_primary_40514844 crossref_primary_10_1364_OE_528929 crossref_citationtrail_10_1364_OE_528929 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-23 2024-Sep-23 20240923 |
| PublicationDateYYYYMMDD | 2024-09-23 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Optics express |
| PublicationTitleAlternate | Opt Express |
| PublicationYear | 2024 |
| References | Wang (oe-32-20-34678-R26) 2021; 44 Su (oe-32-20-34678-R17) 2021; 29 Huang (oe-32-20-34678-R13) 2023; 31 Shen (oe-32-20-34678-R21) 2021; 13 Liu (oe-32-20-34678-R16) 2019; 27 Selvaraju (oe-32-20-34678-R29) 2020; 128 Wu (oe-32-20-34678-R10) 2022; 117 He (oe-32-20-34678-R14) 2021; 10 Vibhuti (oe-32-20-34678-R4) 2022; 81 Gupta (oe-32-20-34678-R9) 2022; 198 Nagrath (oe-32-20-34678-R11) 2021; 66 Zhang (oe-32-20-34678-R15) 2021; 118 Yang (oe-32-20-34678-R18) 2024; 3 Lin (oe-32-20-34678-R12) 2022; 30 Zhang (oe-32-20-34678-R28) 2022; 506 Sachs (oe-32-20-34678-R1) 2022; 400 Srivastava (oe-32-20-34678-R8) 2021; 8 Wang (oe-32-20-34678-R19) 2023; 23 York (oe-32-20-34678-R22) 2012; 51 Mohammed Ali (oe-32-20-34678-R3) 2022; 13 Song (oe-32-20-34678-R20) 2022; 30 Zheng (oe-32-20-34678-R27) 2022; 52 Liu (oe-32-20-34678-R6) 2016 |
| References_xml | – volume: 198 start-page: 116823 year: 2022 ident: oe-32-20-34678-R9 publication-title: Expert Systems with Appl. doi: 10.1016/j.eswa.2022.116823 – volume: 30 start-page: 5657 year: 2022 ident: oe-32-20-34678-R20 publication-title: Opt. Express doi: 10.1364/OE.450999 – volume: 13 start-page: 1 year: 2021 ident: oe-32-20-34678-R21 publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2021.3103866 – volume: 81 start-page: 40013 year: 2022 ident: oe-32-20-34678-R4 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-12999-6 – volume: 128 start-page: 336 year: 2020 ident: oe-32-20-34678-R29 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01228-7 – start-page: 21 year: 2016 ident: oe-32-20-34678-R6 article-title: SSD: Single Shot MultiBox Detector – volume: 30 start-page: 39234 year: 2022 ident: oe-32-20-34678-R12 publication-title: Opt. Express doi: 10.1364/OE.463332 – volume: 400 start-page: 1224 year: 2022 ident: oe-32-20-34678-R1 publication-title: The Lancet doi: 10.1016/S0140-6736(22)01585-9 – volume: 8 start-page: 66 year: 2021 ident: oe-32-20-34678-R8 publication-title: J. Big Data doi: 10.1186/s40537-021-00434-w – volume: 117 start-page: 104341 year: 2022 ident: oe-32-20-34678-R10 publication-title: Image and Vis. Computing doi: 10.1016/j.imavis.2021.104341 – volume: 13 start-page: 3811 year: 2022 ident: oe-32-20-34678-R3 publication-title: International Journal of Nonlinear Analysis and Applications doi: 10.22075/IJNAA.2022.6166 – volume: 23 start-page: 4415 year: 2023 ident: oe-32-20-34678-R19 publication-title: Sensors doi: 10.3390/s23094415 – volume: 27 start-page: 3629 year: 2019 ident: oe-32-20-34678-R16 publication-title: Opt. Express doi: 10.1364/OE.27.003629 – volume: 66 start-page: 102692 year: 2021 ident: oe-32-20-34678-R11 publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2020.102692 – volume: 31 start-page: 25527 year: 2023 ident: oe-32-20-34678-R13 publication-title: Opt. Express doi: 10.1364/OE.491831 – volume: 506 start-page: 146 year: 2022 ident: oe-32-20-34678-R28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.07.042 – volume: 52 start-page: 8574 year: 2022 ident: oe-32-20-34678-R27 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3095305 – volume: 29 start-page: 27830 year: 2021 ident: oe-32-20-34678-R17 publication-title: Opt. Express doi: 10.1364/OE.432432 – volume: 10 start-page: 194 year: 2021 ident: oe-32-20-34678-R14 publication-title: Light: Sci. Appl. doi: 10.1038/s41377-021-00639-x – volume: 3 start-page: 230042 year: 2024 ident: oe-32-20-34678-R18 publication-title: Opto-Electron. Sci. doi: 10.29026/oes.2024.230042 – volume: 51 start-page: 5392 year: 2012 ident: oe-32-20-34678-R22 publication-title: Appl. Opt. doi: 10.1364/AO.51.005392 – volume: 118 start-page: 108045 year: 2021 ident: oe-32-20-34678-R15 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108045 – volume: 44 start-page: 4674 year: 2021 ident: oe-32-20-34678-R26 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3074370 |
| SSID | ssj0014797 |
| Score | 2.4728322 |
| Snippet | Amidst the global health crisis sparked by the coronavirus pandemic, the proliferation of respiratory illnesses has captured worldwide attention. An increasing... |
| SourceID | unpaywall proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 34678 |
| SubjectTerms | Algorithms COVID-19 - prevention & control Face - diagnostic imaging Humans Image Processing, Computer-Assisted - methods Masks SARS-CoV-2 |
| Title | Automatic detection of face mask wearing based on polarization imaging |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40514844 https://www.proquest.com/docview/3218771807 https://doi.org/10.1364/oe.528929 |
| UnpaywallVersion | publishedVersion |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: DOA dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: DIK dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5BUIU40PIoBFG0FA5cnDr2eh_HqEqEKkE5NBI9WbvrXQklsSNiK4IDv53xIyE0VdXLXjzatXZm9c1oZr4BuAxoyZEeOE8aoTBAceWT4oHHIse7Vkrti7Lf-eaWXQ_pj_vofgPOF70wq_n7kNFvme1EGBMEchO2WITudgu2hrd3vd9VFlNS3F7whjHonfx7nFlzHndgu0in6mmuxuMVQBl8fGvLqetIRp0i1x3z_AdL4z__9RPsNu4k6dX634MNm-7Dh6qs08wOYNAr8qwiZSWJzauqq5RkjjhlLJmo2YjM0dIRvUiJZgnBr9My1m2aM8nDpBpidAjDQf_X92uvmZzgmTDwcy-kEh3BRKgE40_FpAp8JSNEYxdpyrUUyqlQ4SJs5HedZpJjoGESw4TuKt-En6GVZqk9BiK50l3HTSJkQnVgZWjDSBvUheNWCNaGq8U9x6ahFS-nW4zjKlfGaPyzH9fX0oavS9FpzaXxN6HzhbJitPQyfaFSmxWzOERvhCOU-rwNR7UWl9vQksZdUNqGi6Va187IbHPGyX9JnUIrfyzsF3Q6cn1WBeu43rz0zxoTfAWz8tas |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB4SmxB66COPxqUp67aHXuTqsdrH0RSbUKjbQw3OSeyudqHElkwsYdJf39HDrh2H0osuGnbFzojvG2bnG4CPIa000kPnSSMUJiiu-qV46LHY8cBKqX1R9Tt_m7CbKf06i2dH0N_0wuzW7yNGP-d2EGNOEMpj6LIY6XYHutPJj-FtXcWUFJcXvFUM2rPfx5kD8vgMTstsqR7Waj7fAZTxi79tOc09krtBWeiB-f1IpfGf3_oSnrd0kgwb_7-CI5udwUl9rdOszmE8LIu8FmUlqS3qW1cZyR1xyliyUKs7ssZIR_QiFZqlBN8uq1y3bc4kvxb1EKMLmI5HP7_ceO3kBM9EoV94EZVIBFOhUsw_FZMq9JWMEY1drCnXUiinIoUPYWM_cJpJjomGSQ0TOlC-iS6hk-WZvQIiudKB4yYVMqU6tDKyUawN-sJxKwTrwafNOSemlRWvplvMk7pWxmjyfZQ0x9KD91vTZaOl8ZRRf-OsBCO9Kl-ozOblKomQjXCEUp_34HXjxe0ytJJxF5T24MPWrQd75Lbd481_Wb2FTnFf2mskHYV-14bdH7UT1IY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+detection+of+face+mask+wearing+based+on+polarization+imaging&rft.jtitle=Optics+express&rft.au=Li%2C+Bosong&rft.au=Li%2C+Yahong&rft.au=Li%2C+Kexian&rft.au=Fu%2C+Yuegang&rft.date=2024-09-23&rft.eissn=1094-4087&rft.volume=32&rft.issue=20&rft.spage=34678&rft_id=info:doi/10.1364%2FOE.528929&rft_id=info%3Apmid%2F40514844&rft.externalDocID=40514844 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |