Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare

The integration of artificial intelligence (AI) into healthcare promises groundbreaking advancements in patient care, revolutionizing clinical diagnosis, predictive medicine, and decision-making. This transformative technology uses machine learning, natural language processing, and large language mo...

Full description

Saved in:
Bibliographic Details
Published inCurēus (Palo Alto, CA) Vol. 15; no. 8; p. e43262
Main Authors Jeyaraman, Madhan, Balaji, Sangeetha, Jeyaraman, Naveen, Yadav, Sankalp
Format Journal Article
LanguageEnglish
Published Palo Alto Springer Nature B.V 10.08.2023
Cureus
Subjects
Online AccessGet full text
ISSN2168-8184
2168-8184
DOI10.7759/cureus.43262

Cover

Abstract The integration of artificial intelligence (AI) into healthcare promises groundbreaking advancements in patient care, revolutionizing clinical diagnosis, predictive medicine, and decision-making. This transformative technology uses machine learning, natural language processing, and large language models (LLMs) to process and reason like human intelligence. OpenAI's ChatGPT, a sophisticated LLM, holds immense potential in medical practice, research, and education. However, as AI in healthcare gains momentum, it brings forth profound ethical challenges that demand careful consideration. This comprehensive review explores key ethical concerns in the domain, including privacy, transparency, trust, responsibility, bias, and data quality. Protecting patient privacy in data-driven healthcare is crucial, with potential implications for psychological well-being and data sharing. Strategies like homomorphic encryption (HE) and secure multiparty computation (SMPC) are vital to preserving confidentiality. Transparency and trustworthiness of AI systems are essential, particularly in high-risk decision-making scenarios. Explainable AI (XAI) emerges as a critical aspect, ensuring a clear understanding of AI-generated predictions. Cybersecurity becomes a pressing concern as AI's complexity creates vulnerabilities for potential breaches. Determining responsibility in AI-driven outcomes raises important questions, with debates on AI's moral agency and human accountability. Shifting from data ownership to data stewardship enables responsible data management in compliance with regulations. Addressing bias in healthcare data is crucial to avoid AI-driven inequities. Biases present in data collection and algorithm development can perpetuate healthcare disparities. A public-health approach is advocated to address inequalities and promote diversity in AI research and the workforce. Maintaining data quality is imperative in AI applications, with convolutional neural networks showing promise in multi-input/mixed data models, offering a comprehensive patient perspective. In this ever-evolving landscape, it is imperative to adopt a multidimensional approach involving policymakers, developers, healthcare practitioners, and patients to mitigate ethical concerns. By understanding and addressing these challenges, we can harness the full potential of AI in healthcare while ensuring ethical and equitable outcomes.
AbstractList The integration of artificial intelligence (AI) into healthcare promises groundbreaking advancements in patient care, revolutionizing clinical diagnosis, predictive medicine, and decision-making. This transformative technology uses machine learning, natural language processing, and large language models (LLMs) to process and reason like human intelligence. OpenAI's ChatGPT, a sophisticated LLM, holds immense potential in medical practice, research, and education. However, as AI in healthcare gains momentum, it brings forth profound ethical challenges that demand careful consideration. This comprehensive review explores key ethical concerns in the domain, including privacy, transparency, trust, responsibility, bias, and data quality. Protecting patient privacy in data-driven healthcare is crucial, with potential implications for psychological well-being and data sharing. Strategies like homomorphic encryption (HE) and secure multiparty computation (SMPC) are vital to preserving confidentiality. Transparency and trustworthiness of AI systems are essential, particularly in high-risk decision-making scenarios. Explainable AI (XAI) emerges as a critical aspect, ensuring a clear understanding of AI-generated predictions. Cybersecurity becomes a pressing concern as AI's complexity creates vulnerabilities for potential breaches. Determining responsibility in AI-driven outcomes raises important questions, with debates on AI's moral agency and human accountability. Shifting from data ownership to data stewardship enables responsible data management in compliance with regulations. Addressing bias in healthcare data is crucial to avoid AI-driven inequities. Biases present in data collection and algorithm development can perpetuate healthcare disparities. A public-health approach is advocated to address inequalities and promote diversity in AI research and the workforce. Maintaining data quality is imperative in AI applications, with convolutional neural networks showing promise in multi-input/mixed data models, offering a comprehensive patient perspective. In this ever-evolving landscape, it is imperative to adopt a multidimensional approach involving policymakers, developers, healthcare practitioners, and patients to mitigate ethical concerns. By understanding and addressing these challenges, we can harness the full potential of AI in healthcare while ensuring ethical and equitable outcomes.
The integration of artificial intelligence (AI) into healthcare promises groundbreaking advancements in patient care, revolutionizing clinical diagnosis, predictive medicine, and decision-making. This transformative technology uses machine learning, natural language processing, and large language models (LLMs) to process and reason like human intelligence. OpenAI's ChatGPT, a sophisticated LLM, holds immense potential in medical practice, research, and education. However, as AI in healthcare gains momentum, it brings forth profound ethical challenges that demand careful consideration. This comprehensive review explores key ethical concerns in the domain, including privacy, transparency, trust, responsibility, bias, and data quality. Protecting patient privacy in data-driven healthcare is crucial, with potential implications for psychological well-being and data sharing. Strategies like homomorphic encryption (HE) and secure multiparty computation (SMPC) are vital to preserving confidentiality. Transparency and trustworthiness of AI systems are essential, particularly in high-risk decision-making scenarios. Explainable AI (XAI) emerges as a critical aspect, ensuring a clear understanding of AI-generated predictions. Cybersecurity becomes a pressing concern as AI's complexity creates vulnerabilities for potential breaches. Determining responsibility in AI-driven outcomes raises important questions, with debates on AI's moral agency and human accountability. Shifting from data ownership to data stewardship enables responsible data management in compliance with regulations. Addressing bias in healthcare data is crucial to avoid AI-driven inequities. Biases present in data collection and algorithm development can perpetuate healthcare disparities. A public-health approach is advocated to address inequalities and promote diversity in AI research and the workforce. Maintaining data quality is imperative in AI applications, with convolutional neural networks showing promise in multi-input/mixed data models, offering a comprehensive patient perspective. In this ever-evolving landscape, it is imperative to adopt a multidimensional approach involving policymakers, developers, healthcare practitioners, and patients to mitigate ethical concerns. By understanding and addressing these challenges, we can harness the full potential of AI in healthcare while ensuring ethical and equitable outcomes.The integration of artificial intelligence (AI) into healthcare promises groundbreaking advancements in patient care, revolutionizing clinical diagnosis, predictive medicine, and decision-making. This transformative technology uses machine learning, natural language processing, and large language models (LLMs) to process and reason like human intelligence. OpenAI's ChatGPT, a sophisticated LLM, holds immense potential in medical practice, research, and education. However, as AI in healthcare gains momentum, it brings forth profound ethical challenges that demand careful consideration. This comprehensive review explores key ethical concerns in the domain, including privacy, transparency, trust, responsibility, bias, and data quality. Protecting patient privacy in data-driven healthcare is crucial, with potential implications for psychological well-being and data sharing. Strategies like homomorphic encryption (HE) and secure multiparty computation (SMPC) are vital to preserving confidentiality. Transparency and trustworthiness of AI systems are essential, particularly in high-risk decision-making scenarios. Explainable AI (XAI) emerges as a critical aspect, ensuring a clear understanding of AI-generated predictions. Cybersecurity becomes a pressing concern as AI's complexity creates vulnerabilities for potential breaches. Determining responsibility in AI-driven outcomes raises important questions, with debates on AI's moral agency and human accountability. Shifting from data ownership to data stewardship enables responsible data management in compliance with regulations. Addressing bias in healthcare data is crucial to avoid AI-driven inequities. Biases present in data collection and algorithm development can perpetuate healthcare disparities. A public-health approach is advocated to address inequalities and promote diversity in AI research and the workforce. Maintaining data quality is imperative in AI applications, with convolutional neural networks showing promise in multi-input/mixed data models, offering a comprehensive patient perspective. In this ever-evolving landscape, it is imperative to adopt a multidimensional approach involving policymakers, developers, healthcare practitioners, and patients to mitigate ethical concerns. By understanding and addressing these challenges, we can harness the full potential of AI in healthcare while ensuring ethical and equitable outcomes.
Author Balaji, Sangeetha
Jeyaraman, Naveen
Jeyaraman, Madhan
Yadav, Sankalp
AuthorAffiliation 1 Orthopedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND
2 Orthopedics, Government Medical College, Omandurar Government Estate, Chennai, IND
3 Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND
AuthorAffiliation_xml – name: 1 Orthopedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND
– name: 3 Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND
– name: 2 Orthopedics, Government Medical College, Omandurar Government Estate, Chennai, IND
Author_xml – sequence: 1
  givenname: Madhan
  surname: Jeyaraman
  fullname: Jeyaraman, Madhan
– sequence: 2
  givenname: Sangeetha
  surname: Balaji
  fullname: Balaji, Sangeetha
– sequence: 3
  givenname: Naveen
  surname: Jeyaraman
  fullname: Jeyaraman, Naveen
– sequence: 4
  givenname: Sankalp
  surname: Yadav
  fullname: Yadav, Sankalp
BookMark eNp9kMFqGzEQhkVIoGmSWx9gIZceuqmkXWu1uZTgOHHA0EtzFrOzs7aMrHW02hS_feXY0DbQnjRovvml-T6yU997YuyT4DdVNam_4hhoHG7KQip5ws6lUDrXQpenf9Qf2NUwrDnngleSV_yc3T_7AK_krF9mcUXZLK4sgstm3i43cJvdhWg7izZdPflIztkleaTM-mxO4OIKIdAlO-vADXR1PC_Y88Psx3SeL74_Pk3vFjkWksdcqBawmiC21BZYCyhRyIYaRC21rGXXNqUsW6h1x5taJ3DSISngquOl4kVxwfJD7ui3sPsJzpltsBsIOyO42VswBwvmzULivx347dhsqEXyMcDvmR6s-bvj7cos-9eUVtZSSp4SPh8TQv8y0hDNxg6YNICnPr0jtSoqVQo9Sej1O3Tdj8EnH4mquFK6FlWi5IHC0A9DoM6gjRBtv_-Adf_a48u7of-u_Qvy36Wh
CitedBy_id crossref_primary_10_20515_otd_1485535
crossref_primary_10_1093_bmb_ldae025
crossref_primary_10_5662_wjm_v14_i4_92802
crossref_primary_10_3390_jcm13102950
crossref_primary_10_3748_wjg_v31_i10_102725
crossref_primary_10_18203_2394_6040_ijcmph20250656
crossref_primary_10_1007_s10943_024_02206_1
crossref_primary_10_61186_ist_202401_01_12
crossref_primary_10_3389_fpsyt_2024_1403094
crossref_primary_10_7759_cureus_74681
crossref_primary_10_1002_acm2_14273
crossref_primary_10_3389_fmed_2024_1510792
crossref_primary_10_1111_inr_13059
crossref_primary_10_1007_s00238_024_02235_9
crossref_primary_10_7759_cureus_49366
crossref_primary_10_1002_clc_70087
crossref_primary_10_1159_000542288
crossref_primary_10_1016_j_heliyon_2024_e36702
crossref_primary_10_7759_cureus_50629
crossref_primary_10_3389_frai_2024_1442254
crossref_primary_10_1186_s12875_025_02773_6
crossref_primary_10_1007_s40670_024_02181_y
crossref_primary_10_1016_j_jrt_2025_100108
crossref_primary_10_3390_biomedicines13010167
crossref_primary_10_1080_0142159X_2024_2418936
crossref_primary_10_1177_00469580241266364
crossref_primary_10_18231_j_ijmi_2024_019
crossref_primary_10_4236_ijis_2025_151002
crossref_primary_10_7759_cureus_80852
crossref_primary_10_1007_s00737_024_01474_w
crossref_primary_10_7180_kmj_24_140
crossref_primary_10_1111_jocn_17584
crossref_primary_10_1177_10225536241263658
crossref_primary_10_3389_fdgth_2024_1495999
crossref_primary_10_1002_cre2_925
crossref_primary_10_7759_cureus_68134
crossref_primary_10_7759_cureus_65083
crossref_primary_10_7759_cureus_49756
crossref_primary_10_1007_s12553_024_00904_0
crossref_primary_10_1080_1061186X_2024_2448711
crossref_primary_10_25259_SRJHS_16_2024
crossref_primary_10_1177_10783903241245423
crossref_primary_10_2174_0113816128309440240427102903
crossref_primary_10_37126_aige_v5_i2_91424
crossref_primary_10_1016_j_csbj_2023_11_058
crossref_primary_10_3389_fpsyt_2024_1422807
crossref_primary_10_7759_cureus_54759
Cites_doi 10.1186/s12911-021-01488-9
10.1007/s10462-023-10454-y
10.1001/jamacardio.2022.1900
10.1055/s-0039-1677913
10.3390/s23020634
10.1007/s12021-022-09572-9
10.1155/2022/4653923
10.1007/s12525-021-00475-2
10.1371/journal.pmed.1002707
10.3390/ai4010003
10.2196/39748
10.1038/s41591-018-0272-7
10.1038/d41586-023-00107-z
10.1007/s11948-020-00228-y
10.1093/schbul/sbac092
10.1161/JAHA.122.026014
10.1186/s12911-020-01332-6
10.1016/j.cose.2022.102821
10.1186/s13054-023-04393-x
10.2196/13216
10.3390/healthcare11060887
10.3390/cancers14061524
10.1016/j.neucom.2019.11.041
10.1007/s13347-022-00506-6
10.17159/sajs.2023/14889
10.1056/NEJM199902253400806
10.7759/cureus.39305
10.1016/j.ejmp.2021.04.016
10.3390/s22249916
10.3390/jpm12040509
10.3390/jpm12111914
10.1007/s44248-023-00003-x
10.1109/RBME.2020.3013489
10.3389/fdata.2021.583723
10.1097/ALN.0000000000002960
10.3390/healthcare10101923
10.1007/s43681-022-00135-x
10.1007/s11948-019-00146-8
10.1016/j.gim.2022.04.009
10.1001/jama.291.22.2720
10.1213/ANE.0000000000004728
ContentType Journal Article
Copyright Copyright © 2023, Jeyaraman et al. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2023, Jeyaraman et al.
Copyright © 2023, Jeyaraman et al. 2023 Jeyaraman et al.
Copyright_xml – notice: Copyright © 2023, Jeyaraman et al. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2023, Jeyaraman et al.
– notice: Copyright © 2023, Jeyaraman et al. 2023 Jeyaraman et al.
DBID AAYXX
CITATION
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.7759/cureus.43262
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 2168-8184
ExternalDocumentID 10.7759/cureus.43262
PMC10492220
10_7759_cureus_43262
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AAYXX
ABUWG
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
FYUFA
HMCUK
HYE
KQ8
M48
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PUEGO
RPM
UKHRP
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ADRAZ
ADTOC
UNPAY
ID FETCH-LOGICAL-c320t-16dac75ccded3c91a4c12bebcc828292fdb424da98f0b985cc5fce6a06f046033
IEDL.DBID M48
ISSN 2168-8184
IngestDate Sun Oct 26 04:01:54 EDT 2025
Tue Sep 30 17:25:01 EDT 2025
Thu Sep 04 15:35:29 EDT 2025
Tue Oct 07 07:47:40 EDT 2025
Wed Oct 01 03:30:41 EDT 2025
Thu Apr 24 23:10:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c320t-16dac75ccded3c91a4c12bebcc828292fdb424da98f0b985cc5fce6a06f046033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://assets.cureus.com/uploads/review_article/pdf/178557/20230810-7795-1otiewn.pdf
PQID 2870668917
PQPubID 2045583
ParticipantIDs unpaywall_primary_10_7759_cureus_43262
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10492220
proquest_miscellaneous_2863764185
proquest_journals_2870668917
crossref_citationtrail_10_7759_cureus_43262
crossref_primary_10_7759_cureus_43262
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-10
PublicationDateYYYYMMDD 2023-08-10
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-10
  day: 10
PublicationDecade 2020
PublicationPlace Palo Alto
PublicationPlace_xml – name: Palo Alto
– name: Palo Alto (CA)
PublicationTitle Curēus (Palo Alto, CA)
PublicationYear 2023
Publisher Springer Nature B.V
Cureus
Publisher_xml – name: Springer Nature B.V
– name: Cureus
References Chaddad A (ref31) 2023; 23
Mvula PK (ref34) 2023; 1
Istasy P (ref43) 2022; 24
Barragán-Montero A (ref8) 2021; 83
Bleher H (ref37) 2022; 2
Marder SR (ref4) 2022; 48
Yasaka K (ref10) 2018; 15
Obasa AE (ref25) 2023; 119
Stokel-Walker C (ref39) 2023; 613
Schulman KA (ref41) 1999; 340
Segar MW (ref12) 2022; 7
Secinaro S (ref1) 2021; 21
Azamfirei R (ref45) 2023; 27
Hagos DH (ref27) 2022; 22
Coeckelbergh M (ref36) 2020; 26
Janiesch C (ref2) 2021; 31
Khoury MJ (ref40) 2022; 24
Murthy VH (ref42) 2004; 291
ref24
Hashimoto DA (ref26) 2020; 132
Grobler M (ref35) 2021; 4
Prakash S (ref16) 2022; 12
Ashburner JM (ref3) 2022; 11
Qayyum A (ref23) 2021; 14
Kumar R (ref33) 2022; 120
Fiske A (ref13) 2019; 21
Stanfill MH (ref21) 2019; 28
Li F (ref17) 2023; 4
Fehr J (ref29) 2022; 10
Yadav A (ref32) 2023
Singh NM (ref11) 2022; 20
Boulemtafes A (ref19) 2020; 384
Price WN 2nd (ref20) 2019; 25
Karabacak M (ref15) 2023; 15
ref7
ref6
Amann J (ref30) 2020; 20
Verdicchio M (ref38) 2022; 35
ref5
Sabry F (ref22) 2022; 2022
Saravi B (ref44) 2022; 12
Sallam M (ref14) 2023; 11
Ryan M (ref28) 2020; 26
Hunter B (ref9) 2022; 14
Canales C (ref18) 2020; 130
References_xml – volume: 21
  year: 2021
  ident: ref1
  article-title: The role of artificial intelligence in healthcare: a structured literature review
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-021-01488-9
– year: 2023
  ident: ref32
  article-title: Open-source intelligence: a comprehensive review of the current state, applications and future perspectives in cyber security
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-023-10454-y
– volume: 7
  year: 2022
  ident: ref12
  article-title: Machine learning-based models incorporating social determinants of health vs traditional models for predicting in-hospital mortality in patients with heart failure
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2022.1900
– volume: 28
  year: 2019
  ident: ref21
  article-title: Health information management: implications of artificial intelligence on healthcare data and information management
  publication-title: Yearb Med Inform
  doi: 10.1055/s-0039-1677913
– volume: 23
  year: 2023
  ident: ref31
  article-title: Survey of explainable AI techniques in healthcare
  publication-title: Sensors (Basel)
  doi: 10.3390/s23020634
– ident: ref5
– ident: ref7
– volume: 20
  year: 2022
  ident: ref11
  article-title: How machine learning is powering neuroimaging to improve brain health
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-022-09572-9
– volume: 2022
  year: 2022
  ident: ref22
  article-title: Machine learning for healthcare wearable devices: the big picture
  publication-title: J Healthc Eng
  doi: 10.1155/2022/4653923
– volume: 31
  year: 2021
  ident: ref2
  article-title: Machine learning and deep learning
  publication-title: Electron Mark
  doi: 10.1007/s12525-021-00475-2
– volume: 15
  year: 2018
  ident: ref10
  article-title: Deep learning and artificial intelligence in radiology: current applications and future directions
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002707
– volume: 4
  year: 2023
  ident: ref17
  article-title: Ethics & ai: a systematic review on ethical concerns and related strategies for designing with ai in healthcare
  publication-title: AI
  doi: 10.3390/ai4010003
– ident: ref24
– volume: 24
  year: 2022
  ident: ref43
  article-title: The impact of artificial intelligence on health equity in oncology: scoping review
  publication-title: J Med Internet Res
  doi: 10.2196/39748
– volume: 25
  year: 2019
  ident: ref20
  article-title: Privacy in the age of medical big data
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0272-7
– volume: 613
  year: 2023
  ident: ref39
  article-title: ChatGPT listed as author on research papers: many scientists disapprove
  publication-title: Nature
  doi: 10.1038/d41586-023-00107-z
– volume: 26
  year: 2020
  ident: ref28
  article-title: In AIwe trust: ethics, artificial intelligence, and reliability
  publication-title: Sci Eng Ethics
  doi: 10.1007/s11948-020-00228-y
– volume: 48
  year: 2022
  ident: ref4
  article-title: Natural language processing: its potential role in clinical care and clinical research
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbac092
– volume: 11
  year: 2022
  ident: ref3
  article-title: Natural language processing to improve prediction of incident atrial fibrillation using electronic health records
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.122.026014
– volume: 20
  year: 2020
  ident: ref30
  article-title: Explainability for artificial intelligence in healthcare: a multidisciplinary perspective
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-020-01332-6
– volume: 120
  year: 2022
  ident: ref33
  article-title: What changed in the cyber-security after COVID-19?
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2022.102821
– volume: 27
  year: 2023
  ident: ref45
  article-title: Large language models and the perils of their hallucinations
  publication-title: Crit Care
  doi: 10.1186/s13054-023-04393-x
– volume: 21
  year: 2019
  ident: ref13
  article-title: Your robot therapist will see you now: ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy
  publication-title: J Med Internet Res
  doi: 10.2196/13216
– volume: 11
  year: 2023
  ident: ref14
  article-title: ChatGPT utility in healthcare education, research, and practice: systematic review on the promising perspectives and valid concerns
  publication-title: Healthcare (Basel)
  doi: 10.3390/healthcare11060887
– volume: 14
  year: 2022
  ident: ref9
  article-title: The role of artificial intelligence in early cancer diagnosis
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14061524
– volume: 384
  year: 2020
  ident: ref19
  article-title: A review of privacy-preserving techniques for deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.041
– volume: 35
  year: 2022
  ident: ref38
  article-title: When doctors and ai interact: on human responsibility for artificial risks
  publication-title: Philos Technol
  doi: 10.1007/s13347-022-00506-6
– volume: 119
  year: 2023
  ident: ref25
  article-title: Responsible application of artificial intelligence in health care
  publication-title: S Afr J Sci
  doi: 10.17159/sajs.2023/14889
– ident: ref6
– volume: 340
  year: 1999
  ident: ref41
  article-title: The effect of race and sex on physicians' recommendations for cardiac catheterization
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199902253400806
– volume: 15
  year: 2023
  ident: ref15
  article-title: Embracing large language models for medical applications: opportunities and challenges
  publication-title: Cureus
  doi: 10.7759/cureus.39305
– volume: 83
  year: 2021
  ident: ref8
  article-title: Artificial intelligence and machine learning for medical imaging: a technology review
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2021.04.016
– volume: 22
  year: 2022
  ident: ref27
  article-title: Recent advances in artificial intelligence and tactical autonomy: current status, challenges, and perspectives
  publication-title: Sensors (Basel)
  doi: 10.3390/s22249916
– volume: 12
  year: 2022
  ident: ref44
  article-title: Artificial intelligence-driven prediction modeling and decision making in spine surgery using hybrid machine learning models
  publication-title: J Pers Med
  doi: 10.3390/jpm12040509
– volume: 12
  year: 2022
  ident: ref16
  article-title: Ethical conundrums in the application of artificial intelligence (AI) in healthcare—a scoping review of reviews
  publication-title: J Pers Med
  doi: 10.3390/jpm12111914
– volume: 1
  year: 2023
  ident: ref34
  article-title: A systematic literature review of cyber-security data repositories and performance assessment metrics for semi-supervised learning
  publication-title: Discov Data
  doi: 10.1007/s44248-023-00003-x
– volume: 14
  year: 2021
  ident: ref23
  article-title: Secure and robust machine learning for healthcare: a survey
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2020.3013489
– volume: 4
  year: 2021
  ident: ref35
  article-title: User, usage and usability: redefining human centric cyber security
  publication-title: Front Big Data
  doi: 10.3389/fdata.2021.583723
– volume: 132
  year: 2020
  ident: ref26
  article-title: Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000002960
– volume: 10
  year: 2022
  ident: ref29
  article-title: Piloting a survey-based assessment of transparency and trustworthiness with three medical AI tools
  publication-title: Healthcare (Basel)
  doi: 10.3390/healthcare10101923
– volume: 2
  year: 2022
  ident: ref37
  article-title: Diffused responsibility: attributions of responsibility in the use of AI-driven clinical decision support systems
  publication-title: AI Ethics
  doi: 10.1007/s43681-022-00135-x
– volume: 26
  year: 2020
  ident: ref36
  article-title: Artificial intelligence, responsibility attribution, and a relational justification of explainability
  publication-title: Sci Eng Ethics
  doi: 10.1007/s11948-019-00146-8
– volume: 24
  year: 2022
  ident: ref40
  article-title: Health equity in the implementation of genomics and precision medicine: a public health imperative
  publication-title: Genet Med
  doi: 10.1016/j.gim.2022.04.009
– volume: 291
  year: 2004
  ident: ref42
  article-title: Participation in cancer clinical trials: race-, sex-, and age-based disparities
  publication-title: JAMA
  doi: 10.1001/jama.291.22.2720
– volume: 130
  year: 2020
  ident: ref18
  article-title: Science without conscience is but the ruin of the soul: the ethics of big data and artificial intelligence in perioperative medicine
  publication-title: Anesth Analg
  doi: 10.1213/ANE.0000000000004728
SSID ssj0001072070
Score 2.545049
SecondaryResourceType review_article
Snippet The integration of artificial intelligence (AI) into healthcare promises groundbreaking advancements in patient care, revolutionizing clinical diagnosis,...
SourceID unpaywall
pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e43262
SubjectTerms Algorithms
Artificial intelligence
Chatbots
Clinical decision making
Compliance
Confidentiality
Deep learning
Epidemiology/Public Health
Ethics
Healthcare Technology
Language
Medical coding
Medical equipment
Medical imaging
Natural language
Patients
Privacy
Public Health
R&D
Research & development
Trust
Well being
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dixMxEB9qC6cvx3kqt3dVVlBfZO1uNpvNCnL40dITWg6x0Lclmw8t1LTXdhH_e5PsR1vBe91M2DCTTCaZye8H8IplCjHmkqwiCXAsVEApx4H5SkUWKRo7ENfJlIxn-Os8mXdg2ryFsWWVjU90jlqsuL0jH7iEHKHmdHG9vgssa5TNrjYUGqymVhAfHMTYA-ghi4zVhd6n4fT22_7WJUyRmeRVBXyaJtmAlxtZbt9hE8ag471pH3D-Wy75sNRr9uc3Wy4P9qLRGZzWQaT_sbL6Y-hIfQ4nkzpN_gS-zLRlFbIvzX0T4PmuqN10GOrFj1_svetYIUf4NweQnP5C--O2HuwpzEbD75_HQU2XEPAYhbsgIoLxNOFcSBHzLGKYR6iQBefUpkuREgVGWLCMqrDIqBFMFJeEhUTZ7GgcP4OuXml5AX7ESIwkDbGKOS5wQjkpTGCrjO5SxqXy4G2jqJzXWOKW0mKZmzOFVWteqTV3avXgdSu9rjA0_iPXb3Se1ytpm-_t7sHLttmsAZvYYFquSitDjJ-0MDwe0CNbtf-zKNrHLXrx06Fpm_NoZoKk0IM3rVnvHebl_cO8gkeWkj5wsLl96O42pXxuApdd8aKejX8BL2fzTA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrQS9QMtDhBYUpMIFeTcPx3F6q6DVgtSqByKVU-T4ASsW76pNiuDXM068abcSqAeu8ViOPbbnG834G4B9UZhEiC7IqjJCU2UI55IS_MpVERuediSuJ6dsWtJP59n5BpSrtzCIGHWDq91e6NbT_y3nC6EuJ_1Tjsov6GSpzMRVlkeH3lUAR8sWIVIsMhIvGpSzYxS4B5ssQ4g-gs3y9Ozwiys0FzNO0EjRPgk-z7Ni4gejiGSSdfN0jTlvZ0w-aO1S_Pop5vMb5uj4EVytJtJnoXwft009lr9vcTz-95luw0MPYMPDvtsObGj7GO6f-BD9E_hQWlfRyL1yDxFchl1CPXY4srOvP8RB17FnrQg_3qADDWc2nA65aE-hPD76_H5KfKkGItMkakjMlJB5JqXSKpVFLKiMk1rXUnIXqk2MqmlClSi4ieqCo2BmpGYiYsZFZtP0GYzswurnEMaCpYnmETWppDXNuGQ1gmqTRHkupDYBvFtpqJKex9yV05hX6M84fVb9kladPgN4M0gve_6Ov8jtrZRd-VN8WXVBYMbRow3g9dCM588FVYTVi9bJMLyjHQVQAHxtkwzjOQbv9RY7-9YxeaMvXCBAiwJ4O-ynf_7mi7sK7sKW2yykI-_dg1Fz0eqXCJ-a-pU_DH8A-A8g2w
  priority: 102
  providerName: Unpaywall
Title Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare
URI https://www.proquest.com/docview/2870668917
https://www.proquest.com/docview/2863764185
https://pubmed.ncbi.nlm.nih.gov/PMC10492220
https://assets.cureus.com/uploads/review_article/pdf/178557/20230810-7795-1otiewn.pdf
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2168-8184
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001072070
  issn: 2168-8184
  databaseCode: KQ8
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2168-8184
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001072070
  issn: 2168-8184
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2168-8184
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001072070
  issn: 2168-8184
  databaseCode: RPM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2168-8184
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001072070
  issn: 2168-8184
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2168-8184
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001072070
  issn: 2168-8184
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2168-8184
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0001072070
  issn: 2168-8184
  databaseCode: M48
  dateStart: 20121101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT9tAEB5xSKUvqC0gzBEZqeUFOfhYr9d9QbQNCpUSoaqWwpO1Xu-2kdINhFgt_76za8clbUE82jvrY_aYbzzjbwDe8lSFnNsgaxl7JCqVx5ggHp5lZRooFlkS18GQ9jPyeRSPVmBRbbRR4N1_XTtTTyqbTbq_bu_PcMEjfu0mSZyeimomq7suQSSCm_E62qjUFHEYNEDffm3xk9C3lePCgDIPrRSps-D_ucCyffoDOv9Omdyo9A2__8knkwf26OIVbDZA0j2vR_41rEj9Bl4MmlD5FnzKtKksZP42dxHkuTaxHTv09PjbD_7edqzZI9zLB7Sc7li7_TYnbBuyi97Xj32vKZngiSj0515ASy6SWIhSlpFIA05EEBayEIKZkGmoyoKEpOQpU36RMhSMlZCU-1SZCGkU7cCanmq5C27AaRRK5hMVCVKQmAlaILhVqMeEC6kcOFkoKhcNn7gpazHJ0a8was1rteZWrQ68a6Vvah6NR-QOFjrPF5Mht8FYytCzdOCobcZ1YIIbXMtpZWQo7pWGiscBtjRW7f0Mk_Zyix5_t4za6JOmCJR8B47bYX3yMfee-Tr78NLUp_csh-4BrM1nlTxEFDMvOrCajJIOrH_oDa--dOx0xaNseHV-_Rsf_PlZ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9Nm8R4QXyKwIAgMV5QWOI4iYM0TYN1atlaIbRKe8scf0Cl4pa10bR_jr-Ns_PRFYm97TU-K9bZZ__Od_4dwDuea8K5C7LKJKCx1AFjggb4lck80ix2JK7DUdof06_nyfkG_Gnfwti0ynZPdBu1nAl7R77nAnIpQ-_iYP47sFWjbHS1LaHBm9IKct9RjDUPO07U9RW6cIv9wRHO9y4hx72zL_2gqTIQiJiEyyBKJRdZIoRUMhZ5xKmISKlKIZiNMhItS0qo5DnTYZkzFEy0UCkPU22DivZCFI-ALRrTHJ2_rc-90bfvq1ueMCNoVHXGfZYl-Z6oLlW1-EgRNpH1s3AFcP9Nz9yuzJxfX_Hp9MbZd_wQHjSg1T-sV9kj2FDmMdwbNmH5J3A0NraKkX3Z7iOg9F0SPXbomcmPX_yT61gzVfiDGxSg_sT4_S7_7CmM70Rxz2DTzIx6Dn7E05goFlIdC1rShIm0RCCtUXcZF0p78KFVVCEa7nJbQmNaoA9j1VrUai2cWj3Y7aTnNWfHf-R2Wp0XjeUuitU68-Bt14w2ZwMp3KhZZWVS3Jct7Y8HbG2uuv9Z1u71FjP56di70f_NEZSFHrzvpvXWYb64fZhvYLt_NjwtTgejk5dwnyAICxxl7w5sLi8r9QpB07J83axMHy7u2hj-AnXaMjU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NmzR4QeNLhI0RJMYLCk0cJ3GQJoToqpaxiQcq9S04_hiVitutjab9a_x1nJ2Prkjsba_xWbHOd-c73_l3AG95rgnnLskqk4DGUgeMCRrgVybzSLPYgbienafDMf06SSZb8Kd9C2PLKlub6Ay1nAt7R95zCbmUYXTR001ZxPf-4NPiMrAdpGymtW2nUYvIqbq5xvBteTzq414fETI4-fFlGDQdBgIRk3AVRKnkIkuEkErGIo84FREpVSkEsxlGomVJCZU8Zzosc4aEiRYq5WGqbULRXoai-d_J4ji35YTZJFvf74QZQXWqa-2zLMl7orpS1fIDRYeJbJ6Ca9f238LMB5VZ8JtrPpvdOvUGe_CocVf9z7V8PYYtZZ7A7lmTkH8K_bGx_Yvsm3YfXUnflc_jhBMzvfjNP7qJNUaFP7oF_ulPjT_sKs-ewfhe2PYcts3cqBfgRzyNiWIh1bGgJU2YSEt0oTXyLuNCaQ_et4wqRINabptnzAqMXixbi5qthWOrB0cd9aJG6_gP3UHL86LR2WWxljAP3nTDqG02hcKNmleWJkWLbAF_PGAbe9X9z-J1b46Y6S-H242Rb47uWOjBu25b71zmy7uX-Rp2UQWKb6Pz0314SND7ChxW7wFsr64q9Qq9pVV56MTSh5_3rQd_ATchL88
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrQS9QMtDhBYUpMIFeTcPx3F6q6DVgtSqByKVU-T4ASsW76pNiuDXM068abcSqAeu8ViOPbbnG834G4B9UZhEiC7IqjJCU2UI55IS_MpVERuediSuJ6dsWtJP59n5BpSrtzCIGHWDq91e6NbT_y3nC6EuJ_1Tjsov6GSpzMRVlkeH3lUAR8sWIVIsMhIvGpSzYxS4B5ssQ4g-gs3y9Ozwiys0FzNO0EjRPgk-z7Ni4gejiGSSdfN0jTlvZ0w-aO1S_Pop5vMb5uj4EVytJtJnoXwft009lr9vcTz-95luw0MPYMPDvtsObGj7GO6f-BD9E_hQWlfRyL1yDxFchl1CPXY4srOvP8RB17FnrQg_3qADDWc2nA65aE-hPD76_H5KfKkGItMkakjMlJB5JqXSKpVFLKiMk1rXUnIXqk2MqmlClSi4ieqCo2BmpGYiYsZFZtP0GYzswurnEMaCpYnmETWppDXNuGQ1gmqTRHkupDYBvFtpqJKex9yV05hX6M84fVb9kladPgN4M0gve_6Ov8jtrZRd-VN8WXVBYMbRow3g9dCM588FVYTVi9bJMLyjHQVQAHxtkwzjOQbv9RY7-9YxeaMvXCBAiwJ4O-ynf_7mi7sK7sKW2yykI-_dg1Fz0eqXCJ-a-pU_DH8A-A8g2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+Ethical+Enigma%3A+Artificial+Intelligence+in+Healthcare&rft.jtitle=Cur%C4%93us+%28Palo+Alto%2C+CA%29&rft.au=Jeyaraman%2C+Madhan&rft.au=Balaji%2C+Sangeetha&rft.au=Jeyaraman%2C+Naveen&rft.au=Yadav%2C+Sankalp&rft.date=2023-08-10&rft.issn=2168-8184&rft.eissn=2168-8184&rft_id=info:doi/10.7759%2Fcureus.43262&rft.externalDBID=n%2Fa&rft.externalDocID=10_7759_cureus_43262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-8184&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-8184&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-8184&client=summon