Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare
The integration of artificial intelligence (AI) into healthcare promises groundbreaking advancements in patient care, revolutionizing clinical diagnosis, predictive medicine, and decision-making. This transformative technology uses machine learning, natural language processing, and large language mo...
Saved in:
| Published in | Curēus (Palo Alto, CA) Vol. 15; no. 8; p. e43262 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Palo Alto
Springer Nature B.V
10.08.2023
Cureus |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-8184 2168-8184 |
| DOI | 10.7759/cureus.43262 |
Cover
| Abstract | The integration of artificial intelligence (AI) into healthcare promises groundbreaking advancements in patient care, revolutionizing clinical diagnosis, predictive medicine, and decision-making. This transformative technology uses machine learning, natural language processing, and large language models (LLMs) to process and reason like human intelligence. OpenAI's ChatGPT, a sophisticated LLM, holds immense potential in medical practice, research, and education. However, as AI in healthcare gains momentum, it brings forth profound ethical challenges that demand careful consideration. This comprehensive review explores key ethical concerns in the domain, including privacy, transparency, trust, responsibility, bias, and data quality. Protecting patient privacy in data-driven healthcare is crucial, with potential implications for psychological well-being and data sharing. Strategies like homomorphic encryption (HE) and secure multiparty computation (SMPC) are vital to preserving confidentiality. Transparency and trustworthiness of AI systems are essential, particularly in high-risk decision-making scenarios. Explainable AI (XAI) emerges as a critical aspect, ensuring a clear understanding of AI-generated predictions. Cybersecurity becomes a pressing concern as AI's complexity creates vulnerabilities for potential breaches. Determining responsibility in AI-driven outcomes raises important questions, with debates on AI's moral agency and human accountability. Shifting from data ownership to data stewardship enables responsible data management in compliance with regulations. Addressing bias in healthcare data is crucial to avoid AI-driven inequities. Biases present in data collection and algorithm development can perpetuate healthcare disparities. A public-health approach is advocated to address inequalities and promote diversity in AI research and the workforce. Maintaining data quality is imperative in AI applications, with convolutional neural networks showing promise in multi-input/mixed data models, offering a comprehensive patient perspective. In this ever-evolving landscape, it is imperative to adopt a multidimensional approach involving policymakers, developers, healthcare practitioners, and patients to mitigate ethical concerns. By understanding and addressing these challenges, we can harness the full potential of AI in healthcare while ensuring ethical and equitable outcomes. |
|---|---|
| AbstractList | The integration of artificial intelligence (AI) into healthcare promises groundbreaking advancements in patient care, revolutionizing clinical diagnosis, predictive medicine, and decision-making. This transformative technology uses machine learning, natural language processing, and large language models (LLMs) to process and reason like human intelligence. OpenAI's ChatGPT, a sophisticated LLM, holds immense potential in medical practice, research, and education. However, as AI in healthcare gains momentum, it brings forth profound ethical challenges that demand careful consideration. This comprehensive review explores key ethical concerns in the domain, including privacy, transparency, trust, responsibility, bias, and data quality. Protecting patient privacy in data-driven healthcare is crucial, with potential implications for psychological well-being and data sharing. Strategies like homomorphic encryption (HE) and secure multiparty computation (SMPC) are vital to preserving confidentiality. Transparency and trustworthiness of AI systems are essential, particularly in high-risk decision-making scenarios. Explainable AI (XAI) emerges as a critical aspect, ensuring a clear understanding of AI-generated predictions. Cybersecurity becomes a pressing concern as AI's complexity creates vulnerabilities for potential breaches. Determining responsibility in AI-driven outcomes raises important questions, with debates on AI's moral agency and human accountability. Shifting from data ownership to data stewardship enables responsible data management in compliance with regulations. Addressing bias in healthcare data is crucial to avoid AI-driven inequities. Biases present in data collection and algorithm development can perpetuate healthcare disparities. A public-health approach is advocated to address inequalities and promote diversity in AI research and the workforce. Maintaining data quality is imperative in AI applications, with convolutional neural networks showing promise in multi-input/mixed data models, offering a comprehensive patient perspective. In this ever-evolving landscape, it is imperative to adopt a multidimensional approach involving policymakers, developers, healthcare practitioners, and patients to mitigate ethical concerns. By understanding and addressing these challenges, we can harness the full potential of AI in healthcare while ensuring ethical and equitable outcomes. The integration of artificial intelligence (AI) into healthcare promises groundbreaking advancements in patient care, revolutionizing clinical diagnosis, predictive medicine, and decision-making. This transformative technology uses machine learning, natural language processing, and large language models (LLMs) to process and reason like human intelligence. OpenAI's ChatGPT, a sophisticated LLM, holds immense potential in medical practice, research, and education. However, as AI in healthcare gains momentum, it brings forth profound ethical challenges that demand careful consideration. This comprehensive review explores key ethical concerns in the domain, including privacy, transparency, trust, responsibility, bias, and data quality. Protecting patient privacy in data-driven healthcare is crucial, with potential implications for psychological well-being and data sharing. Strategies like homomorphic encryption (HE) and secure multiparty computation (SMPC) are vital to preserving confidentiality. Transparency and trustworthiness of AI systems are essential, particularly in high-risk decision-making scenarios. Explainable AI (XAI) emerges as a critical aspect, ensuring a clear understanding of AI-generated predictions. Cybersecurity becomes a pressing concern as AI's complexity creates vulnerabilities for potential breaches. Determining responsibility in AI-driven outcomes raises important questions, with debates on AI's moral agency and human accountability. Shifting from data ownership to data stewardship enables responsible data management in compliance with regulations. Addressing bias in healthcare data is crucial to avoid AI-driven inequities. Biases present in data collection and algorithm development can perpetuate healthcare disparities. A public-health approach is advocated to address inequalities and promote diversity in AI research and the workforce. Maintaining data quality is imperative in AI applications, with convolutional neural networks showing promise in multi-input/mixed data models, offering a comprehensive patient perspective. In this ever-evolving landscape, it is imperative to adopt a multidimensional approach involving policymakers, developers, healthcare practitioners, and patients to mitigate ethical concerns. By understanding and addressing these challenges, we can harness the full potential of AI in healthcare while ensuring ethical and equitable outcomes.The integration of artificial intelligence (AI) into healthcare promises groundbreaking advancements in patient care, revolutionizing clinical diagnosis, predictive medicine, and decision-making. This transformative technology uses machine learning, natural language processing, and large language models (LLMs) to process and reason like human intelligence. OpenAI's ChatGPT, a sophisticated LLM, holds immense potential in medical practice, research, and education. However, as AI in healthcare gains momentum, it brings forth profound ethical challenges that demand careful consideration. This comprehensive review explores key ethical concerns in the domain, including privacy, transparency, trust, responsibility, bias, and data quality. Protecting patient privacy in data-driven healthcare is crucial, with potential implications for psychological well-being and data sharing. Strategies like homomorphic encryption (HE) and secure multiparty computation (SMPC) are vital to preserving confidentiality. Transparency and trustworthiness of AI systems are essential, particularly in high-risk decision-making scenarios. Explainable AI (XAI) emerges as a critical aspect, ensuring a clear understanding of AI-generated predictions. Cybersecurity becomes a pressing concern as AI's complexity creates vulnerabilities for potential breaches. Determining responsibility in AI-driven outcomes raises important questions, with debates on AI's moral agency and human accountability. Shifting from data ownership to data stewardship enables responsible data management in compliance with regulations. Addressing bias in healthcare data is crucial to avoid AI-driven inequities. Biases present in data collection and algorithm development can perpetuate healthcare disparities. A public-health approach is advocated to address inequalities and promote diversity in AI research and the workforce. Maintaining data quality is imperative in AI applications, with convolutional neural networks showing promise in multi-input/mixed data models, offering a comprehensive patient perspective. In this ever-evolving landscape, it is imperative to adopt a multidimensional approach involving policymakers, developers, healthcare practitioners, and patients to mitigate ethical concerns. By understanding and addressing these challenges, we can harness the full potential of AI in healthcare while ensuring ethical and equitable outcomes. |
| Author | Balaji, Sangeetha Jeyaraman, Naveen Jeyaraman, Madhan Yadav, Sankalp |
| AuthorAffiliation | 1 Orthopedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND 2 Orthopedics, Government Medical College, Omandurar Government Estate, Chennai, IND 3 Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND |
| AuthorAffiliation_xml | – name: 1 Orthopedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, IND – name: 3 Medicine, Shri Madan Lal Khurana Chest Clinic, New Delhi, IND – name: 2 Orthopedics, Government Medical College, Omandurar Government Estate, Chennai, IND |
| Author_xml | – sequence: 1 givenname: Madhan surname: Jeyaraman fullname: Jeyaraman, Madhan – sequence: 2 givenname: Sangeetha surname: Balaji fullname: Balaji, Sangeetha – sequence: 3 givenname: Naveen surname: Jeyaraman fullname: Jeyaraman, Naveen – sequence: 4 givenname: Sankalp surname: Yadav fullname: Yadav, Sankalp |
| BookMark | eNp9kMFqGzEQhkVIoGmSWx9gIZceuqmkXWu1uZTgOHHA0EtzFrOzs7aMrHW02hS_feXY0DbQnjRovvml-T6yU997YuyT4DdVNam_4hhoHG7KQip5ws6lUDrXQpenf9Qf2NUwrDnngleSV_yc3T_7AK_krF9mcUXZLK4sgstm3i43cJvdhWg7izZdPflIztkleaTM-mxO4OIKIdAlO-vADXR1PC_Y88Psx3SeL74_Pk3vFjkWksdcqBawmiC21BZYCyhRyIYaRC21rGXXNqUsW6h1x5taJ3DSISngquOl4kVxwfJD7ui3sPsJzpltsBsIOyO42VswBwvmzULivx347dhsqEXyMcDvmR6s-bvj7cos-9eUVtZSSp4SPh8TQv8y0hDNxg6YNICnPr0jtSoqVQo9Sej1O3Tdj8EnH4mquFK6FlWi5IHC0A9DoM6gjRBtv_-Adf_a48u7of-u_Qvy36Wh |
| CitedBy_id | crossref_primary_10_20515_otd_1485535 crossref_primary_10_1093_bmb_ldae025 crossref_primary_10_5662_wjm_v14_i4_92802 crossref_primary_10_3390_jcm13102950 crossref_primary_10_3748_wjg_v31_i10_102725 crossref_primary_10_18203_2394_6040_ijcmph20250656 crossref_primary_10_1007_s10943_024_02206_1 crossref_primary_10_61186_ist_202401_01_12 crossref_primary_10_3389_fpsyt_2024_1403094 crossref_primary_10_7759_cureus_74681 crossref_primary_10_1002_acm2_14273 crossref_primary_10_3389_fmed_2024_1510792 crossref_primary_10_1111_inr_13059 crossref_primary_10_1007_s00238_024_02235_9 crossref_primary_10_7759_cureus_49366 crossref_primary_10_1002_clc_70087 crossref_primary_10_1159_000542288 crossref_primary_10_1016_j_heliyon_2024_e36702 crossref_primary_10_7759_cureus_50629 crossref_primary_10_3389_frai_2024_1442254 crossref_primary_10_1186_s12875_025_02773_6 crossref_primary_10_1007_s40670_024_02181_y crossref_primary_10_1016_j_jrt_2025_100108 crossref_primary_10_3390_biomedicines13010167 crossref_primary_10_1080_0142159X_2024_2418936 crossref_primary_10_1177_00469580241266364 crossref_primary_10_18231_j_ijmi_2024_019 crossref_primary_10_4236_ijis_2025_151002 crossref_primary_10_7759_cureus_80852 crossref_primary_10_1007_s00737_024_01474_w crossref_primary_10_7180_kmj_24_140 crossref_primary_10_1111_jocn_17584 crossref_primary_10_1177_10225536241263658 crossref_primary_10_3389_fdgth_2024_1495999 crossref_primary_10_1002_cre2_925 crossref_primary_10_7759_cureus_68134 crossref_primary_10_7759_cureus_65083 crossref_primary_10_7759_cureus_49756 crossref_primary_10_1007_s12553_024_00904_0 crossref_primary_10_1080_1061186X_2024_2448711 crossref_primary_10_25259_SRJHS_16_2024 crossref_primary_10_1177_10783903241245423 crossref_primary_10_2174_0113816128309440240427102903 crossref_primary_10_37126_aige_v5_i2_91424 crossref_primary_10_1016_j_csbj_2023_11_058 crossref_primary_10_3389_fpsyt_2024_1422807 crossref_primary_10_7759_cureus_54759 |
| Cites_doi | 10.1186/s12911-021-01488-9 10.1007/s10462-023-10454-y 10.1001/jamacardio.2022.1900 10.1055/s-0039-1677913 10.3390/s23020634 10.1007/s12021-022-09572-9 10.1155/2022/4653923 10.1007/s12525-021-00475-2 10.1371/journal.pmed.1002707 10.3390/ai4010003 10.2196/39748 10.1038/s41591-018-0272-7 10.1038/d41586-023-00107-z 10.1007/s11948-020-00228-y 10.1093/schbul/sbac092 10.1161/JAHA.122.026014 10.1186/s12911-020-01332-6 10.1016/j.cose.2022.102821 10.1186/s13054-023-04393-x 10.2196/13216 10.3390/healthcare11060887 10.3390/cancers14061524 10.1016/j.neucom.2019.11.041 10.1007/s13347-022-00506-6 10.17159/sajs.2023/14889 10.1056/NEJM199902253400806 10.7759/cureus.39305 10.1016/j.ejmp.2021.04.016 10.3390/s22249916 10.3390/jpm12040509 10.3390/jpm12111914 10.1007/s44248-023-00003-x 10.1109/RBME.2020.3013489 10.3389/fdata.2021.583723 10.1097/ALN.0000000000002960 10.3390/healthcare10101923 10.1007/s43681-022-00135-x 10.1007/s11948-019-00146-8 10.1016/j.gim.2022.04.009 10.1001/jama.291.22.2720 10.1213/ANE.0000000000004728 |
| ContentType | Journal Article |
| Copyright | Copyright © 2023, Jeyaraman et al. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2023, Jeyaraman et al. Copyright © 2023, Jeyaraman et al. 2023 Jeyaraman et al. |
| Copyright_xml | – notice: Copyright © 2023, Jeyaraman et al. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2023, Jeyaraman et al. – notice: Copyright © 2023, Jeyaraman et al. 2023 Jeyaraman et al. |
| DBID | AAYXX CITATION 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| DOI | 10.7759/cureus.43262 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest One Health & Nursing ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 2168-8184 |
| ExternalDocumentID | 10.7759/cureus.43262 PMC10492220 10_7759_cureus_43262 |
| GroupedDBID | 53G 5VS 7X7 8FI 8FJ AAYXX ABUWG ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BPHCQ BVXVI CCPQU CITATION FYUFA HMCUK HYE KQ8 M48 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PUEGO RPM UKHRP 3V. 7XB 8FK AZQEC COVID DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM ADRAZ ADTOC UNPAY |
| ID | FETCH-LOGICAL-c320t-16dac75ccded3c91a4c12bebcc828292fdb424da98f0b985cc5fce6a06f046033 |
| IEDL.DBID | M48 |
| ISSN | 2168-8184 |
| IngestDate | Sun Oct 26 04:01:54 EDT 2025 Tue Sep 30 17:25:01 EDT 2025 Thu Sep 04 15:35:29 EDT 2025 Tue Oct 07 07:47:40 EDT 2025 Wed Oct 01 03:30:41 EDT 2025 Thu Apr 24 23:10:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c320t-16dac75ccded3c91a4c12bebcc828292fdb424da98f0b985cc5fce6a06f046033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://assets.cureus.com/uploads/review_article/pdf/178557/20230810-7795-1otiewn.pdf |
| PQID | 2870668917 |
| PQPubID | 2045583 |
| ParticipantIDs | unpaywall_primary_10_7759_cureus_43262 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10492220 proquest_miscellaneous_2863764185 proquest_journals_2870668917 crossref_citationtrail_10_7759_cureus_43262 crossref_primary_10_7759_cureus_43262 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-10 |
| PublicationDateYYYYMMDD | 2023-08-10 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Palo Alto |
| PublicationPlace_xml | – name: Palo Alto – name: Palo Alto (CA) |
| PublicationTitle | Curēus (Palo Alto, CA) |
| PublicationYear | 2023 |
| Publisher | Springer Nature B.V Cureus |
| Publisher_xml | – name: Springer Nature B.V – name: Cureus |
| References | Chaddad A (ref31) 2023; 23 Mvula PK (ref34) 2023; 1 Istasy P (ref43) 2022; 24 Barragán-Montero A (ref8) 2021; 83 Bleher H (ref37) 2022; 2 Marder SR (ref4) 2022; 48 Yasaka K (ref10) 2018; 15 Obasa AE (ref25) 2023; 119 Stokel-Walker C (ref39) 2023; 613 Schulman KA (ref41) 1999; 340 Segar MW (ref12) 2022; 7 Secinaro S (ref1) 2021; 21 Azamfirei R (ref45) 2023; 27 Hagos DH (ref27) 2022; 22 Coeckelbergh M (ref36) 2020; 26 Janiesch C (ref2) 2021; 31 Khoury MJ (ref40) 2022; 24 Murthy VH (ref42) 2004; 291 ref24 Hashimoto DA (ref26) 2020; 132 Grobler M (ref35) 2021; 4 Prakash S (ref16) 2022; 12 Ashburner JM (ref3) 2022; 11 Qayyum A (ref23) 2021; 14 Kumar R (ref33) 2022; 120 Fiske A (ref13) 2019; 21 Stanfill MH (ref21) 2019; 28 Li F (ref17) 2023; 4 Fehr J (ref29) 2022; 10 Yadav A (ref32) 2023 Singh NM (ref11) 2022; 20 Boulemtafes A (ref19) 2020; 384 Price WN 2nd (ref20) 2019; 25 Karabacak M (ref15) 2023; 15 ref7 ref6 Amann J (ref30) 2020; 20 Verdicchio M (ref38) 2022; 35 ref5 Sabry F (ref22) 2022; 2022 Saravi B (ref44) 2022; 12 Sallam M (ref14) 2023; 11 Ryan M (ref28) 2020; 26 Hunter B (ref9) 2022; 14 Canales C (ref18) 2020; 130 |
| References_xml | – volume: 21 year: 2021 ident: ref1 article-title: The role of artificial intelligence in healthcare: a structured literature review publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-021-01488-9 – year: 2023 ident: ref32 article-title: Open-source intelligence: a comprehensive review of the current state, applications and future perspectives in cyber security publication-title: Artif Intell Rev doi: 10.1007/s10462-023-10454-y – volume: 7 year: 2022 ident: ref12 article-title: Machine learning-based models incorporating social determinants of health vs traditional models for predicting in-hospital mortality in patients with heart failure publication-title: JAMA Cardiol doi: 10.1001/jamacardio.2022.1900 – volume: 28 year: 2019 ident: ref21 article-title: Health information management: implications of artificial intelligence on healthcare data and information management publication-title: Yearb Med Inform doi: 10.1055/s-0039-1677913 – volume: 23 year: 2023 ident: ref31 article-title: Survey of explainable AI techniques in healthcare publication-title: Sensors (Basel) doi: 10.3390/s23020634 – ident: ref5 – ident: ref7 – volume: 20 year: 2022 ident: ref11 article-title: How machine learning is powering neuroimaging to improve brain health publication-title: Neuroinformatics doi: 10.1007/s12021-022-09572-9 – volume: 2022 year: 2022 ident: ref22 article-title: Machine learning for healthcare wearable devices: the big picture publication-title: J Healthc Eng doi: 10.1155/2022/4653923 – volume: 31 year: 2021 ident: ref2 article-title: Machine learning and deep learning publication-title: Electron Mark doi: 10.1007/s12525-021-00475-2 – volume: 15 year: 2018 ident: ref10 article-title: Deep learning and artificial intelligence in radiology: current applications and future directions publication-title: PLoS Med doi: 10.1371/journal.pmed.1002707 – volume: 4 year: 2023 ident: ref17 article-title: Ethics & ai: a systematic review on ethical concerns and related strategies for designing with ai in healthcare publication-title: AI doi: 10.3390/ai4010003 – ident: ref24 – volume: 24 year: 2022 ident: ref43 article-title: The impact of artificial intelligence on health equity in oncology: scoping review publication-title: J Med Internet Res doi: 10.2196/39748 – volume: 25 year: 2019 ident: ref20 article-title: Privacy in the age of medical big data publication-title: Nat Med doi: 10.1038/s41591-018-0272-7 – volume: 613 year: 2023 ident: ref39 article-title: ChatGPT listed as author on research papers: many scientists disapprove publication-title: Nature doi: 10.1038/d41586-023-00107-z – volume: 26 year: 2020 ident: ref28 article-title: In AIwe trust: ethics, artificial intelligence, and reliability publication-title: Sci Eng Ethics doi: 10.1007/s11948-020-00228-y – volume: 48 year: 2022 ident: ref4 article-title: Natural language processing: its potential role in clinical care and clinical research publication-title: Schizophr Bull doi: 10.1093/schbul/sbac092 – volume: 11 year: 2022 ident: ref3 article-title: Natural language processing to improve prediction of incident atrial fibrillation using electronic health records publication-title: J Am Heart Assoc doi: 10.1161/JAHA.122.026014 – volume: 20 year: 2020 ident: ref30 article-title: Explainability for artificial intelligence in healthcare: a multidisciplinary perspective publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-020-01332-6 – volume: 120 year: 2022 ident: ref33 article-title: What changed in the cyber-security after COVID-19? publication-title: Comput Secur doi: 10.1016/j.cose.2022.102821 – volume: 27 year: 2023 ident: ref45 article-title: Large language models and the perils of their hallucinations publication-title: Crit Care doi: 10.1186/s13054-023-04393-x – volume: 21 year: 2019 ident: ref13 article-title: Your robot therapist will see you now: ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy publication-title: J Med Internet Res doi: 10.2196/13216 – volume: 11 year: 2023 ident: ref14 article-title: ChatGPT utility in healthcare education, research, and practice: systematic review on the promising perspectives and valid concerns publication-title: Healthcare (Basel) doi: 10.3390/healthcare11060887 – volume: 14 year: 2022 ident: ref9 article-title: The role of artificial intelligence in early cancer diagnosis publication-title: Cancers (Basel) doi: 10.3390/cancers14061524 – volume: 384 year: 2020 ident: ref19 article-title: A review of privacy-preserving techniques for deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.041 – volume: 35 year: 2022 ident: ref38 article-title: When doctors and ai interact: on human responsibility for artificial risks publication-title: Philos Technol doi: 10.1007/s13347-022-00506-6 – volume: 119 year: 2023 ident: ref25 article-title: Responsible application of artificial intelligence in health care publication-title: S Afr J Sci doi: 10.17159/sajs.2023/14889 – ident: ref6 – volume: 340 year: 1999 ident: ref41 article-title: The effect of race and sex on physicians' recommendations for cardiac catheterization publication-title: N Engl J Med doi: 10.1056/NEJM199902253400806 – volume: 15 year: 2023 ident: ref15 article-title: Embracing large language models for medical applications: opportunities and challenges publication-title: Cureus doi: 10.7759/cureus.39305 – volume: 83 year: 2021 ident: ref8 article-title: Artificial intelligence and machine learning for medical imaging: a technology review publication-title: Phys Med doi: 10.1016/j.ejmp.2021.04.016 – volume: 22 year: 2022 ident: ref27 article-title: Recent advances in artificial intelligence and tactical autonomy: current status, challenges, and perspectives publication-title: Sensors (Basel) doi: 10.3390/s22249916 – volume: 12 year: 2022 ident: ref44 article-title: Artificial intelligence-driven prediction modeling and decision making in spine surgery using hybrid machine learning models publication-title: J Pers Med doi: 10.3390/jpm12040509 – volume: 12 year: 2022 ident: ref16 article-title: Ethical conundrums in the application of artificial intelligence (AI) in healthcare—a scoping review of reviews publication-title: J Pers Med doi: 10.3390/jpm12111914 – volume: 1 year: 2023 ident: ref34 article-title: A systematic literature review of cyber-security data repositories and performance assessment metrics for semi-supervised learning publication-title: Discov Data doi: 10.1007/s44248-023-00003-x – volume: 14 year: 2021 ident: ref23 article-title: Secure and robust machine learning for healthcare: a survey publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2020.3013489 – volume: 4 year: 2021 ident: ref35 article-title: User, usage and usability: redefining human centric cyber security publication-title: Front Big Data doi: 10.3389/fdata.2021.583723 – volume: 132 year: 2020 ident: ref26 article-title: Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations publication-title: Anesthesiology doi: 10.1097/ALN.0000000000002960 – volume: 10 year: 2022 ident: ref29 article-title: Piloting a survey-based assessment of transparency and trustworthiness with three medical AI tools publication-title: Healthcare (Basel) doi: 10.3390/healthcare10101923 – volume: 2 year: 2022 ident: ref37 article-title: Diffused responsibility: attributions of responsibility in the use of AI-driven clinical decision support systems publication-title: AI Ethics doi: 10.1007/s43681-022-00135-x – volume: 26 year: 2020 ident: ref36 article-title: Artificial intelligence, responsibility attribution, and a relational justification of explainability publication-title: Sci Eng Ethics doi: 10.1007/s11948-019-00146-8 – volume: 24 year: 2022 ident: ref40 article-title: Health equity in the implementation of genomics and precision medicine: a public health imperative publication-title: Genet Med doi: 10.1016/j.gim.2022.04.009 – volume: 291 year: 2004 ident: ref42 article-title: Participation in cancer clinical trials: race-, sex-, and age-based disparities publication-title: JAMA doi: 10.1001/jama.291.22.2720 – volume: 130 year: 2020 ident: ref18 article-title: Science without conscience is but the ruin of the soul: the ethics of big data and artificial intelligence in perioperative medicine publication-title: Anesth Analg doi: 10.1213/ANE.0000000000004728 |
| SSID | ssj0001072070 |
| Score | 2.545049 |
| SecondaryResourceType | review_article |
| Snippet | The integration of artificial intelligence (AI) into healthcare promises groundbreaking advancements in patient care, revolutionizing clinical diagnosis,... |
| SourceID | unpaywall pubmedcentral proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | e43262 |
| SubjectTerms | Algorithms Artificial intelligence Chatbots Clinical decision making Compliance Confidentiality Deep learning Epidemiology/Public Health Ethics Healthcare Technology Language Medical coding Medical equipment Medical imaging Natural language Patients Privacy Public Health R&D Research & development Trust Well being |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dixMxEB9qC6cvx3kqt3dVVlBfZO1uNpvNCnL40dITWg6x0Lclmw8t1LTXdhH_e5PsR1vBe91M2DCTTCaZye8H8IplCjHmkqwiCXAsVEApx4H5SkUWKRo7ENfJlIxn-Os8mXdg2ryFsWWVjU90jlqsuL0jH7iEHKHmdHG9vgssa5TNrjYUGqymVhAfHMTYA-ghi4zVhd6n4fT22_7WJUyRmeRVBXyaJtmAlxtZbt9hE8ag471pH3D-Wy75sNRr9uc3Wy4P9qLRGZzWQaT_sbL6Y-hIfQ4nkzpN_gS-zLRlFbIvzX0T4PmuqN10GOrFj1_svetYIUf4NweQnP5C--O2HuwpzEbD75_HQU2XEPAYhbsgIoLxNOFcSBHzLGKYR6iQBefUpkuREgVGWLCMqrDIqBFMFJeEhUTZ7GgcP4OuXml5AX7ESIwkDbGKOS5wQjkpTGCrjO5SxqXy4G2jqJzXWOKW0mKZmzOFVWteqTV3avXgdSu9rjA0_iPXb3Se1ytpm-_t7sHLttmsAZvYYFquSitDjJ-0MDwe0CNbtf-zKNrHLXrx06Fpm_NoZoKk0IM3rVnvHebl_cO8gkeWkj5wsLl96O42pXxuApdd8aKejX8BL2fzTA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrQS9QMtDhBYUpMIFeTcPx3F6q6DVgtSqByKVU-T4ASsW76pNiuDXM068abcSqAeu8ViOPbbnG834G4B9UZhEiC7IqjJCU2UI55IS_MpVERuediSuJ6dsWtJP59n5BpSrtzCIGHWDq91e6NbT_y3nC6EuJ_1Tjsov6GSpzMRVlkeH3lUAR8sWIVIsMhIvGpSzYxS4B5ssQ4g-gs3y9Ozwiys0FzNO0EjRPgk-z7Ni4gejiGSSdfN0jTlvZ0w-aO1S_Pop5vMb5uj4EVytJtJnoXwft009lr9vcTz-95luw0MPYMPDvtsObGj7GO6f-BD9E_hQWlfRyL1yDxFchl1CPXY4srOvP8RB17FnrQg_3qADDWc2nA65aE-hPD76_H5KfKkGItMkakjMlJB5JqXSKpVFLKiMk1rXUnIXqk2MqmlClSi4ieqCo2BmpGYiYsZFZtP0GYzswurnEMaCpYnmETWppDXNuGQ1gmqTRHkupDYBvFtpqJKex9yV05hX6M84fVb9kladPgN4M0gve_6Ov8jtrZRd-VN8WXVBYMbRow3g9dCM588FVYTVi9bJMLyjHQVQAHxtkwzjOQbv9RY7-9YxeaMvXCBAiwJ4O-ynf_7mi7sK7sKW2yykI-_dg1Fz0eqXCJ-a-pU_DH8A-A8g2w priority: 102 providerName: Unpaywall |
| Title | Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare |
| URI | https://www.proquest.com/docview/2870668917 https://www.proquest.com/docview/2863764185 https://pubmed.ncbi.nlm.nih.gov/PMC10492220 https://assets.cureus.com/uploads/review_article/pdf/178557/20230810-7795-1otiewn.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2168-8184 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001072070 issn: 2168-8184 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2168-8184 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001072070 issn: 2168-8184 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2168-8184 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001072070 issn: 2168-8184 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2168-8184 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001072070 issn: 2168-8184 databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2168-8184 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001072070 issn: 2168-8184 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2168-8184 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0001072070 issn: 2168-8184 databaseCode: M48 dateStart: 20121101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT9tAEB5xSKUvqC0gzBEZqeUFOfhYr9d9QbQNCpUSoaqWwpO1Xu-2kdINhFgt_76za8clbUE82jvrY_aYbzzjbwDe8lSFnNsgaxl7JCqVx5ggHp5lZRooFlkS18GQ9jPyeRSPVmBRbbRR4N1_XTtTTyqbTbq_bu_PcMEjfu0mSZyeimomq7suQSSCm_E62qjUFHEYNEDffm3xk9C3lePCgDIPrRSps-D_ucCyffoDOv9Omdyo9A2__8knkwf26OIVbDZA0j2vR_41rEj9Bl4MmlD5FnzKtKksZP42dxHkuTaxHTv09PjbD_7edqzZI9zLB7Sc7li7_TYnbBuyi97Xj32vKZngiSj0515ASy6SWIhSlpFIA05EEBayEIKZkGmoyoKEpOQpU36RMhSMlZCU-1SZCGkU7cCanmq5C27AaRRK5hMVCVKQmAlaILhVqMeEC6kcOFkoKhcNn7gpazHJ0a8was1rteZWrQ68a6Vvah6NR-QOFjrPF5Mht8FYytCzdOCobcZ1YIIbXMtpZWQo7pWGiscBtjRW7f0Mk_Zyix5_t4za6JOmCJR8B47bYX3yMfee-Tr78NLUp_csh-4BrM1nlTxEFDMvOrCajJIOrH_oDa--dOx0xaNseHV-_Rsf_PlZ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9Nm8R4QXyKwIAgMV5QWOI4iYM0TYN1atlaIbRKe8scf0Cl4pa10bR_jr-Ns_PRFYm97TU-K9bZZ__Od_4dwDuea8K5C7LKJKCx1AFjggb4lck80ix2JK7DUdof06_nyfkG_Gnfwti0ynZPdBu1nAl7R77nAnIpQ-_iYP47sFWjbHS1LaHBm9IKct9RjDUPO07U9RW6cIv9wRHO9y4hx72zL_2gqTIQiJiEyyBKJRdZIoRUMhZ5xKmISKlKIZiNMhItS0qo5DnTYZkzFEy0UCkPU22DivZCFI-ALRrTHJ2_rc-90bfvq1ueMCNoVHXGfZYl-Z6oLlW1-EgRNpH1s3AFcP9Nz9yuzJxfX_Hp9MbZd_wQHjSg1T-sV9kj2FDmMdwbNmH5J3A0NraKkX3Z7iOg9F0SPXbomcmPX_yT61gzVfiDGxSg_sT4_S7_7CmM70Rxz2DTzIx6Dn7E05goFlIdC1rShIm0RCCtUXcZF0p78KFVVCEa7nJbQmNaoA9j1VrUai2cWj3Y7aTnNWfHf-R2Wp0XjeUuitU68-Bt14w2ZwMp3KhZZWVS3Jct7Y8HbG2uuv9Z1u71FjP56di70f_NEZSFHrzvpvXWYb64fZhvYLt_NjwtTgejk5dwnyAICxxl7w5sLi8r9QpB07J83axMHy7u2hj-AnXaMjU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NmzR4QeNLhI0RJMYLCk0cJ3GQJoToqpaxiQcq9S04_hiVitutjab9a_x1nJ2Prkjsba_xWbHOd-c73_l3AG95rgnnLskqk4DGUgeMCRrgVybzSLPYgbienafDMf06SSZb8Kd9C2PLKlub6Ay1nAt7R95zCbmUYXTR001ZxPf-4NPiMrAdpGymtW2nUYvIqbq5xvBteTzq414fETI4-fFlGDQdBgIRk3AVRKnkIkuEkErGIo84FREpVSkEsxlGomVJCZU8Zzosc4aEiRYq5WGqbULRXoai-d_J4ji35YTZJFvf74QZQXWqa-2zLMl7orpS1fIDRYeJbJ6Ca9f238LMB5VZ8JtrPpvdOvUGe_CocVf9z7V8PYYtZZ7A7lmTkH8K_bGx_Yvsm3YfXUnflc_jhBMzvfjNP7qJNUaFP7oF_ulPjT_sKs-ewfhe2PYcts3cqBfgRzyNiWIh1bGgJU2YSEt0oTXyLuNCaQ_et4wqRINabptnzAqMXixbi5qthWOrB0cd9aJG6_gP3UHL86LR2WWxljAP3nTDqG02hcKNmleWJkWLbAF_PGAbe9X9z-J1b46Y6S-H242Rb47uWOjBu25b71zmy7uX-Rp2UQWKb6Pz0314SND7ChxW7wFsr64q9Qq9pVV56MTSh5_3rQd_ATchL88 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VrQS9QMtDhBYUpMIFeTcPx3F6q6DVgtSqByKVU-T4ASsW76pNiuDXM068abcSqAeu8ViOPbbnG834G4B9UZhEiC7IqjJCU2UI55IS_MpVERuediSuJ6dsWtJP59n5BpSrtzCIGHWDq91e6NbT_y3nC6EuJ_1Tjsov6GSpzMRVlkeH3lUAR8sWIVIsMhIvGpSzYxS4B5ssQ4g-gs3y9Ozwiys0FzNO0EjRPgk-z7Ni4gejiGSSdfN0jTlvZ0w-aO1S_Pop5vMb5uj4EVytJtJnoXwft009lr9vcTz-95luw0MPYMPDvtsObGj7GO6f-BD9E_hQWlfRyL1yDxFchl1CPXY4srOvP8RB17FnrQg_3qADDWc2nA65aE-hPD76_H5KfKkGItMkakjMlJB5JqXSKpVFLKiMk1rXUnIXqk2MqmlClSi4ieqCo2BmpGYiYsZFZtP0GYzswurnEMaCpYnmETWppDXNuGQ1gmqTRHkupDYBvFtpqJKex9yV05hX6M84fVb9kladPgN4M0gve_6Ov8jtrZRd-VN8WXVBYMbRow3g9dCM588FVYTVi9bJMLyjHQVQAHxtkwzjOQbv9RY7-9YxeaMvXCBAiwJ4O-ynf_7mi7sK7sKW2yykI-_dg1Fz0eqXCJ-a-pU_DH8A-A8g2w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+the+Ethical+Enigma%3A+Artificial+Intelligence+in+Healthcare&rft.jtitle=Cur%C4%93us+%28Palo+Alto%2C+CA%29&rft.au=Jeyaraman%2C+Madhan&rft.au=Balaji%2C+Sangeetha&rft.au=Jeyaraman%2C+Naveen&rft.au=Yadav%2C+Sankalp&rft.date=2023-08-10&rft.issn=2168-8184&rft.eissn=2168-8184&rft_id=info:doi/10.7759%2Fcureus.43262&rft.externalDBID=n%2Fa&rft.externalDocID=10_7759_cureus_43262 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-8184&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-8184&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-8184&client=summon |