Improved community structure discovery algorithm based on combined clique percolation method and K-means algorithm
Research on the community structure of networks is beneficial for understanding the structure of networks, analyzing their characteristics and discovering the rules hidden in these networks. To address issues from previous community mining algorithms, such as the low rate of convergence and high tim...
        Saved in:
      
    
          | Published in | Peer-to-peer networking and applications Vol. 13; no. 6; pp. 2224 - 2233 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.11.2020
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1936-6442 1936-6450  | 
| DOI | 10.1007/s12083-020-00902-9 | 
Cover
| Abstract | Research on the community structure of networks is beneficial for understanding the structure of networks, analyzing their characteristics and discovering the rules hidden in these networks. To address issues from previous community mining algorithms, such as the low rate of convergence and high time complexity, this study proposes an improved community structure discovery algorithm named CPMK-Means algorithm. The main idea of this algorithm can be summarised as follows. The clique percolation method (CPM) algorithm generates the maximum number of cliques by combining depth-first search with breadth-first search so that the number of cluster centres is determined. Then, the k centres are selected based on the principle of the maximum degree of centres and minimum similarity between different centres. Afterwards, nodes in the network are assigned to the communities formed by the k centres, and the iterations are performed repeatedly until the centres become stable. Finally, the overlapping communities are merged. Experiments are carried out on standard data sets Football and Collins to evaluate the performance of the CPMK-Means algorithm. Results indicate that the CPMK-Means algorithm can achieve better community mining and higher execution efficiency compared with other algorithms. Furthermore, it is superior to other algorithms in terms of precision, recall, accuracy, F-measure and separation. | 
    
|---|---|
| AbstractList | Research on the community structure of networks is beneficial for understanding the structure of networks, analyzing their characteristics and discovering the rules hidden in these networks. To address issues from previous community mining algorithms, such as the low rate of convergence and high time complexity, this study proposes an improved community structure discovery algorithm named CPMK-Means algorithm. The main idea of this algorithm can be summarised as follows. The clique percolation method (CPM) algorithm generates the maximum number of cliques by combining depth-first search with breadth-first search so that the number of cluster centres is determined. Then, the k centres are selected based on the principle of the maximum degree of centres and minimum similarity between different centres. Afterwards, nodes in the network are assigned to the communities formed by the k centres, and the iterations are performed repeatedly until the centres become stable. Finally, the overlapping communities are merged. Experiments are carried out on standard data sets Football and Collins to evaluate the performance of the CPMK-Means algorithm. Results indicate that the CPMK-Means algorithm can achieve better community mining and higher execution efficiency compared with other algorithms. Furthermore, it is superior to other algorithms in terms of precision, recall, accuracy, F-measure and separation. | 
    
| Author | Zhou, Zhou Deng, WeiHong Xiao, Zhuopeng  | 
    
| Author_xml | – sequence: 1 givenname: Zhou surname: Zhou fullname: Zhou, Zhou organization: Department of Mathematics and Computer Science, Changsha University – sequence: 2 givenname: Zhuopeng surname: Xiao fullname: Xiao, Zhuopeng organization: Information Engineering Department, Zhangjiajie Institute of Aeronautical Engineering – sequence: 3 givenname: WeiHong surname: Deng fullname: Deng, WeiHong email: teddy_mail@126.com organization: Information Engineering Department, Zhangjiajie Institute of Aeronautical Engineering  | 
    
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6uTZD-PUvwoFrzoOWSz2TZlN6lJVui_N-2KBQ89zcC8z8y87wxNjDUKoVsC9wSgePCEQskSoJAAVECT6gJNScXyJE8zmPz1Kb1CM--3ADlhGZ0it-x3zn6rBkvb94PRYY99cIMMg1O40V7Godtj0a2t02HT41r4qLbmANTaHMhOfw0K75STthNBx1mvwsY2WJgGvyW9EsafNlyjy1Z0Xt381jn6fH76WLwmq_eX5eJxlUhGqpC0bSlyWaSM5lLQimSSEFKKOmXQUAkiOhCCsbpQpcwgS1VLWtI0TJCqZjUTbI7uxr3RYPzPB761gzPxJKdpQTKSASuiio4q6az3TrV853Qv3J4T4Ids-Zgtj9nyY7a8ilD5D5I6HJ0HJ3R3HmUj6uMds1bu9NUZ6gdPnpJn | 
    
| CitedBy_id | crossref_primary_10_1155_2022_1211515 crossref_primary_10_1016_j_ins_2023_118999 crossref_primary_10_3390_math9212674 crossref_primary_10_1142_S0129183123501139 crossref_primary_10_1155_2022_9993589 crossref_primary_10_1155_2021_8690662 crossref_primary_10_1145_3604807 crossref_primary_10_2166_aqua_2023_301 crossref_primary_10_1007_s12293_021_00342_9  | 
    
| Cites_doi | 10.1145/2488388.2488483 10.1103/PhysRevE.69.066133 10.1016/j.jcss.2013.03.012 10.1007/s11280-009-0060-x 10.1016/j.knosys.2016.07.007 10.1109/ICDM.2012.139 10.1007/s11227-016-1790-z 10.1038/nature03607 10.1016/j.datak.2013.05.004 10.1145/2566486.2568010 10.1109/TKDE.2016.2518687 10.1109/TCCN.2018.2828854 10.1073/pnas.122653799  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020.  | 
    
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- L7M L~C L~D M0N M2O M2P MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U  | 
    
| DOI | 10.1007/s12083-020-00902-9 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Databases Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Research Library Science Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | Research Library Prep | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1936-6450 | 
    
| EndPage | 2233 | 
    
| ExternalDocumentID | 10_1007_s12083_020_00902_9 | 
    
| GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2018M642974 funderid: http://dx.doi.org/10.13039/501100002858 – fundername: The Natural Science Foundation of Hunan Province grantid: 2019JJ50689 – fundername: The scientific research project of education department of Hunan Province grantid: 18B412  | 
    
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .4S .86 .DC 06D 0R~ 0VY 123 1N0 203 29O 29~ 2JN 2JY 2KG 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 5VS 67Z 6NX 875 88I 8AO 8FE 8FG 8G5 8TC 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARCSS AUKKA AXYYD AYJHY AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KOV LLZTM M0N M2O M2P M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P62 P9P PQQKQ PROAC PT4 Q2X QOS R89 RIG RLLFE RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TH9 TSG TSK TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-c319t-ff8a6c74326ca2915c1118ab430d2c0a061aa33b7e8c5054ef1f1dd3a19b3b3a3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1936-6442 | 
    
| IngestDate | Fri Jul 25 06:33:47 EDT 2025 Wed Oct 01 02:13:07 EDT 2025 Thu Apr 24 22:59:59 EDT 2025 Fri Feb 21 02:34:39 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | Community structure Execution efficiency Parallel computing Big data Mining algorithm  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c319t-ff8a6c74326ca2915c1118ab430d2c0a061aa33b7e8c5054ef1f1dd3a19b3b3a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2471515037 | 
    
| PQPubID | 54523 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_journals_2471515037 crossref_primary_10_1007_s12083_020_00902_9 crossref_citationtrail_10_1007_s12083_020_00902_9 springer_journals_10_1007_s12083_020_00902_9  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20201100 2020-11-00 20201101  | 
    
| PublicationDateYYYYMMDD | 2020-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2020 text: 20201100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Norwell  | 
    
| PublicationTitle | Peer-to-peer networking and applications | 
    
| PublicationTitleAbbrev | Peer-to-Peer Netw. Appl | 
    
| PublicationYear | 2020 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Chih-HsiuZKwang-ChengCSocial network analysis facilitates cognition in large wireless networks: clustering coefficient aided geographical routingIEEE Trans Cogn Commun Netw20184361863410.1109/TCCN.2018.2828854 PallaGDerényiIFarkasIVicsekTUncovering the overlapping community structure of complex networks in nature and societyNature2005435704381481810.1038/nature03607 HoweBHoweBHoweBScalable and efficient flow-based community detection for large-scale graph analysisACM Trans Knowl Discov Data20171133262 GirvanMNewmanMEJCommunity structure in social and biological networksProc Natl Acad Sci U S A20021278217826190807310.1073/pnas.122653799 WuHGaoLDongJDetecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networksPLoS One201493113 WenXChenWNLinYA maximal clique based multi-objective evolutionary algorithm for overlapping community detectionIEEE Trans Evol Comput2017213363377 MoonSLeeJGKangMParallel community detection on large graphs with MapReduce and GraphChiData Knowl Eng201510411731 NewmanMEFast algorithm for detecting community structure in networksPhys Rev E Stat Nonlinear Soft Matter Phys200369610.1103/PhysRevE.69.066133 MeoPDFerraraEFiumaraGMixing local and global information for community detection in large networksJ Comput Syst Sci20138017287310590910.1016/j.jcss.2013.03.012 ShiCCaiYFuDA link clustering based overlapping community detection algorithmData Knowl Eng201387939440410.1016/j.datak.2013.05.004 WangQDaiHNWuDData analysis on video streaming QoE over mobile networksEURASIP J Wirel Commun Netw20182018173110 Hollocou A, Maudet J, Bonald T et al (2017) A linear streaming algorithm for community detection in very large networks. In: Proceedings of Knowledge Discovery and Data Mining (KDD’ 2017), Halifax-Canada, pp 1–9 XuYXuHZhangDFinding overlapping community from social networks based on community forest modelKnowl-Based Syst2016109123825510.1016/j.knosys.2016.07.007 Arnau P, Dominguez-Sal D, Larriba-Pey JL (2014) High quality, scalable and parallel community detection for large real graphs. In: Proceedings of the 23rd International Conference on World Wide Web. ACM, pp 225–236. https://doi.org/10.1145/2566486.2568010 WhangJJGleichDFDhillonISOverlapping community detection using neighborhood-inflated seed expansionIEEE Trans Knowl Data Eng20162851272128410.1109/TKDE.2016.2518687 SalehanMKimDJKooCA study of the effect of social trust, trust in social networking services, and sharing attitude, on two dimensions of personal information sharing behaviorJ Supercomput20187483596361910.1007/s11227-016-1790-z WangZXLiZCDingXFOverlapping community detection based on node location analysisKnowl-Based Syst20161051225235 Statistic on the number of monthly active Facebook users. http://www.facebook.com WeiFQianWWangCDetecting overlapping community structures in networksWorld Wide Web Internet Web Inf Syst200912223526110.1007/s11280-009-0060-x Yang J, Leskovec J (2013) Community-affiliation graph model for overlapping network community detection. In: IEEE 12th International Conference on Data Mining. IEEE, pp 1170–1175. https://doi.org/10.1109/ICDM.2012.139 Ruan Y, Fuhry D, Parthasarathy S (2013) Efficient community detection in large networks using content and links. In: Proceedings of the 22nd International Conference on World Wide Web. ACM, pp 1089–1098. https://doi.org/10.1145/2488388.2488483 JJ Whang (902_CR11) 2016; 28 B Howe (902_CR20) 2017; 11 C Shi (902_CR9) 2013; 87 902_CR19 902_CR17 ME Newman (902_CR7) 2003; 69 902_CR1 902_CR10 Y Xu (902_CR12) 2016; 109 ZX Wang (902_CR13) 2016; 105 M Girvan (902_CR4) 2002; 12 902_CR15 F Wei (902_CR8) 2009; 12 M Salehan (902_CR5) 2018; 74 Q Wang (902_CR3) 2018; 2018 G Palla (902_CR6) 2005; 435 PD Meo (902_CR16) 2013; 80 H Wu (902_CR21) 2014; 9 S Moon (902_CR18) 2015; 104 Z Chih-Hsiu (902_CR2) 2018; 4 X Wen (902_CR14) 2017; 21  | 
    
| References_xml | – reference: MeoPDFerraraEFiumaraGMixing local and global information for community detection in large networksJ Comput Syst Sci20138017287310590910.1016/j.jcss.2013.03.012 – reference: MoonSLeeJGKangMParallel community detection on large graphs with MapReduce and GraphChiData Knowl Eng201510411731 – reference: GirvanMNewmanMEJCommunity structure in social and biological networksProc Natl Acad Sci U S A20021278217826190807310.1073/pnas.122653799 – reference: Chih-HsiuZKwang-ChengCSocial network analysis facilitates cognition in large wireless networks: clustering coefficient aided geographical routingIEEE Trans Cogn Commun Netw20184361863410.1109/TCCN.2018.2828854 – reference: WangZXLiZCDingXFOverlapping community detection based on node location analysisKnowl-Based Syst20161051225235 – reference: WeiFQianWWangCDetecting overlapping community structures in networksWorld Wide Web Internet Web Inf Syst200912223526110.1007/s11280-009-0060-x – reference: WuHGaoLDongJDetecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networksPLoS One201493113 – reference: NewmanMEFast algorithm for detecting community structure in networksPhys Rev E Stat Nonlinear Soft Matter Phys200369610.1103/PhysRevE.69.066133 – reference: Yang J, Leskovec J (2013) Community-affiliation graph model for overlapping network community detection. In: IEEE 12th International Conference on Data Mining. IEEE, pp 1170–1175. https://doi.org/10.1109/ICDM.2012.139 – reference: Arnau P, Dominguez-Sal D, Larriba-Pey JL (2014) High quality, scalable and parallel community detection for large real graphs. In: Proceedings of the 23rd International Conference on World Wide Web. ACM, pp 225–236. https://doi.org/10.1145/2566486.2568010 – reference: WenXChenWNLinYA maximal clique based multi-objective evolutionary algorithm for overlapping community detectionIEEE Trans Evol Comput2017213363377 – reference: ShiCCaiYFuDA link clustering based overlapping community detection algorithmData Knowl Eng201387939440410.1016/j.datak.2013.05.004 – reference: PallaGDerényiIFarkasIVicsekTUncovering the overlapping community structure of complex networks in nature and societyNature2005435704381481810.1038/nature03607 – reference: Hollocou A, Maudet J, Bonald T et al (2017) A linear streaming algorithm for community detection in very large networks. In: Proceedings of Knowledge Discovery and Data Mining (KDD’ 2017), Halifax-Canada, pp 1–9 – reference: Statistic on the number of monthly active Facebook users. http://www.facebook.com – reference: WangQDaiHNWuDData analysis on video streaming QoE over mobile networksEURASIP J Wirel Commun Netw20182018173110 – reference: XuYXuHZhangDFinding overlapping community from social networks based on community forest modelKnowl-Based Syst2016109123825510.1016/j.knosys.2016.07.007 – reference: Ruan Y, Fuhry D, Parthasarathy S (2013) Efficient community detection in large networks using content and links. In: Proceedings of the 22nd International Conference on World Wide Web. ACM, pp 1089–1098. https://doi.org/10.1145/2488388.2488483 – reference: HoweBHoweBHoweBScalable and efficient flow-based community detection for large-scale graph analysisACM Trans Knowl Discov Data20171133262 – reference: SalehanMKimDJKooCA study of the effect of social trust, trust in social networking services, and sharing attitude, on two dimensions of personal information sharing behaviorJ Supercomput20187483596361910.1007/s11227-016-1790-z – reference: WhangJJGleichDFDhillonISOverlapping community detection using neighborhood-inflated seed expansionIEEE Trans Knowl Data Eng20162851272128410.1109/TKDE.2016.2518687 – volume: 9 start-page: 1 issue: 3 year: 2014 ident: 902_CR21 publication-title: PLoS One – ident: 902_CR15 doi: 10.1145/2488388.2488483 – volume: 69 issue: 6 year: 2003 ident: 902_CR7 publication-title: Phys Rev E Stat Nonlinear Soft Matter Phys doi: 10.1103/PhysRevE.69.066133 – volume: 80 start-page: 72 issue: 1 year: 2013 ident: 902_CR16 publication-title: J Comput Syst Sci doi: 10.1016/j.jcss.2013.03.012 – volume: 12 start-page: 235 issue: 2 year: 2009 ident: 902_CR8 publication-title: World Wide Web Internet Web Inf Syst doi: 10.1007/s11280-009-0060-x – volume: 109 start-page: 238 issue: 1 year: 2016 ident: 902_CR12 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2016.07.007 – volume: 2018 start-page: 1 issue: 173 year: 2018 ident: 902_CR3 publication-title: EURASIP J Wirel Commun Netw – ident: 902_CR10 doi: 10.1109/ICDM.2012.139 – volume: 21 start-page: 363 issue: 3 year: 2017 ident: 902_CR14 publication-title: IEEE Trans Evol Comput – volume: 74 start-page: 3596 issue: 8 year: 2018 ident: 902_CR5 publication-title: J Supercomput doi: 10.1007/s11227-016-1790-z – volume: 435 start-page: 814 issue: 7043 year: 2005 ident: 902_CR6 publication-title: Nature doi: 10.1038/nature03607 – volume: 11 start-page: 32 issue: 3 year: 2017 ident: 902_CR20 publication-title: ACM Trans Knowl Discov Data – volume: 87 start-page: 394 issue: 9 year: 2013 ident: 902_CR9 publication-title: Data Knowl Eng doi: 10.1016/j.datak.2013.05.004 – volume: 105 start-page: 225 issue: 1 year: 2016 ident: 902_CR13 publication-title: Knowl-Based Syst – ident: 902_CR17 doi: 10.1145/2566486.2568010 – volume: 104 start-page: 17 issue: 1 year: 2015 ident: 902_CR18 publication-title: Data Knowl Eng – ident: 902_CR19 – ident: 902_CR1 – volume: 28 start-page: 1272 issue: 5 year: 2016 ident: 902_CR11 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2016.2518687 – volume: 4 start-page: 618 issue: 3 year: 2018 ident: 902_CR2 publication-title: IEEE Trans Cogn Commun Netw doi: 10.1109/TCCN.2018.2828854 – volume: 12 start-page: 7821 year: 2002 ident: 902_CR4 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.122653799  | 
    
| SSID | ssj0061352 | 
    
| Score | 2.2414243 | 
    
| Snippet | Research on the community structure of networks is beneficial for understanding the structure of networks, analyzing their characteristics and discovering the... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 2224 | 
    
| SubjectTerms | Algorithms Communications Engineering Computer Communication Networks Engineering Information Systems and Communication Service Networks Percolation Signal,Image and Speech Processing Standard data  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqJQkAc2sORHnmOFqCoQTFTqFvkVQGrTKg1D_z1nJyGAAIk1iT3cnf19ju--Q-gyEbkxLi8MwDMgAaeWpEJFBJ5SlcdCaX97_vAYjSfB3TScNkVhqzbbvb2S9Dt1V-zGgS4Qd9yhLpmQpJtoK3RyXhDFEz5s91_AJ99nB5hJRADteVMq8_McX-Go45jfrkU92oz20G5DE_Gw9us-2rDFAdr5JB54iMr6f4A1WNdFHtUa12qwb6XFrtrWZWeusZw9L8rX6mWOHWIZvCjcADgQu5EzJ9-Kl7aEePA-wnVLaSwLg-_J3AKSdTMcocno9ulmTJoOCkTD0qpInicy0kASeKQlT1moYWtLpAoENVxTCcaSUggV20QDFQpsznJmjJAsVUIJKY5Rr1gU9gRhDWefmNNYu-JTyYVMmVRMgEeZSsNQ9RFrDZnpRl7cdbmYZZ0wsjN-BsbPvPGztI-uPsYsa3GNP78etP7JmoW2yjiAK1AyKuI-um591r3-fbbT_31-hra5CxtfhThAPXCnPQc6UqkLH33vQYPWdA priority: 102 providerName: Springer Nature  | 
    
| Title | Improved community structure discovery algorithm based on combined clique percolation method and K-means algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s12083-020-00902-9 https://www.proquest.com/docview/2471515037  | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1936-6450 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0061352 issn: 1936-6442 databaseCode: ADMLS dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1936-6450 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061352 issn: 1936-6442 databaseCode: AFBBN dateStart: 20080301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1936-6450 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0061352 issn: 1936-6442 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1936-6450 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061352 issn: 1936-6442 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1936-6450 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061352 issn: 1936-6442 databaseCode: U2A dateStart: 20080307 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB6F5FIOqKWtSEujPXCDVe1dPw9VlaKEiIgIVY2Unqx9GQ7BSYN74N93xg9MkeC69q7kmdmZb70z3wCcJDK3lvLCMHgGPBCe46nUEcdRT-ex1Ka6Pb9aRLNlcLkKVz1YtLUwlFbZ-sTKUduNoX_kXwV6UYy9noy_b_9w6hpFt6ttCw3VtFaw3yqKsT0YCGLG6sPgx2Rx_bP1zRi7qh48iFoijkhANGU0dTGdQDjC6TjlUbIiT_8PVR3-fHZlWkWi6Vs4aCAkG9c6fwc9VxzC_hNiwfewq_8VOMtMXQBSPrCaKfbvzjGqxKXMzQem1jf4jeXtHaNoZtmmoAl4WKaZa6J2ZVu3Q1up9MfqdtNMFZbN-Z3DKNet8AGW08mv8xlvuitwg9uu5HmeqMgggBCRUSL1Q4NuL1E6kJ4VxlMoLKWk1LFLDMKkwOV-7lsrlZ9qqaWSH6FfbAp3BMzguSgWXmyoMFUJqVJfaV-itn2dhqEegt8KMjMN9Th1wFhnHWkyCT9D4WeV8LN0CKePc7Y18carbx-3-smaTXifdSYzhLNWZ93jl1f79Ppqn-GNIDOpKhKPoY_qc18QmpR6BHvJ9GIEg_HF7_lk1Fgfji7F-B_zVON3 | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6l4UB7qEoLIiUteygnWGHvOnZ8iKq2gEIDEUJEys3sy-0hcUKSqsqf62_rjB91QYIbV9s7h5lv95vxzgPgU1em1lJeGJJnwAPhOR5LHXJ86uk0ktrkt-eXw7A_Cr6PO-MG_KlqYSitsjoT84Pazgz9Iz8WeIoi93oy-jy_4zQ1im5XqxEaqhytYHt5i7GysGPg1r8xhFv2zk_Q3gdCnJ3efOvzcsoANwi_FU_TrgoNEqkIjRKx3zG4_btKB9KzwngKCU8pKXXkugbdhcClfupbK5Ufa6mlkij3BWwEMogx-Nv4ejq8uq64ALkyn_mDXlLI0fMQZdlOUbwn0P3hFL55lBzJ4_vUWPu7D65oc-Y7ewOvS5eVfSkwtgUNl72FV_81MnwHi-LfhLPMFAUnqzUrOtP-WjhGlb-UKbpmavIDdbr6OWXEnpbNMlqAwTmtnFArWTZ3C8RmjhdWjLdmKrNswKcOWbWWsA2jZ9HzDjSzWeZ2gRmMwyLhRYYKYZWQKvaV9iWiy9dxp6Nb4FeKTEzZ6pwmbkySukkzKT9B5Se58pO4BYf_1syLRh9Pft2u7JOUm36Z1BBtwVFls_r149LePy1tHzb7N5cXycX5cLAHLwVBJq-GbEMTTek-oFu00h9L7DG4fW64_wVm0B1D | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T-NAEB5BkBAUiOMhAuFuC6hghb3r2HFxOiG48AggCpDozL4MRXBCCEL5a_w6ZvzAcNLR0dreKWa-3W_GOw-ArY5MraW8MCTPgAfCczyWOuT41NNpJLXJb8_PL8Lj6-D0pn0zBa9VLQylVVZnYn5Q24Ghf-R7Ak9R5F7qx5OWaRGXh90_w0dOE6ToprUap1FApOcmLxi-Pf0-OURbbwvR_Xt1cMzLCQPcIPTGPE07KjRIoiI0SsR-2-DW7ygdSM8K4ykkO6Wk1JHrGHQVApf6qW-tVH6spZZKotxpmImoiztVqXePKhZAlsyn_aB_FHL0OURZsFOU7Ql0fDgFbh6lRfL4MynWnu4_l7M553UXYaF0Vtl-ga4fMOWyJZj_0MJwGUbFXwlnmSlKTcYTVvSkfR45RjW_lCM6Yap_hxoc3z8w4k3LBhktwLCcVvapiSwbuhGiMkcKKwZbM5VZ1uMPDvm0lrAC19-i5VVoZIPMrQEzGIFFwosMlcAqIVXsK-1LxJWv43ZbN8GvFJmYssk5zdroJ3V7ZlJ-gspPcuUncRN23tcMixYfX37dquyTlNv9KanB2YTdymb16_9LW_9a2i-YRZAnZycXvQ2YE4SYvAyyBQ20pNtEf2isf-bAY3D73Uh_A5DNGt0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+community+structure+discovery+algorithm+based+on+combined+clique+percolation+method+and+K-means+algorithm&rft.jtitle=Peer-to-peer+networking+and+applications&rft.au=Zhou%2C+Zhou&rft.au=Xiao+Zhuopeng&rft.au=Deng+WeiHong&rft.date=2020-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1936-6442&rft.eissn=1936-6450&rft.volume=13&rft.issue=6&rft.spage=2224&rft.epage=2233&rft_id=info:doi/10.1007%2Fs12083-020-00902-9&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-6442&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-6442&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-6442&client=summon |