Improved community structure discovery algorithm based on combined clique percolation method and K-means algorithm

Research on the community structure of networks is beneficial for understanding the structure of networks, analyzing their characteristics and discovering the rules hidden in these networks. To address issues from previous community mining algorithms, such as the low rate of convergence and high tim...

Full description

Saved in:
Bibliographic Details
Published inPeer-to-peer networking and applications Vol. 13; no. 6; pp. 2224 - 2233
Main Authors Zhou, Zhou, Xiao, Zhuopeng, Deng, WeiHong
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1936-6442
1936-6450
DOI10.1007/s12083-020-00902-9

Cover

Abstract Research on the community structure of networks is beneficial for understanding the structure of networks, analyzing their characteristics and discovering the rules hidden in these networks. To address issues from previous community mining algorithms, such as the low rate of convergence and high time complexity, this study proposes an improved community structure discovery algorithm named CPMK-Means algorithm. The main idea of this algorithm can be summarised as follows. The clique percolation method (CPM) algorithm generates the maximum number of cliques by combining depth-first search with breadth-first search so that the number of cluster centres is determined. Then, the k centres are selected based on the principle of the maximum degree of centres and minimum similarity between different centres. Afterwards, nodes in the network are assigned to the communities formed by the k centres, and the iterations are performed repeatedly until the centres become stable. Finally, the overlapping communities are merged. Experiments are carried out on standard data sets Football and Collins to evaluate the performance of the CPMK-Means algorithm. Results indicate that the CPMK-Means algorithm can achieve better community mining and higher execution efficiency compared with other algorithms. Furthermore, it is superior to other algorithms in terms of precision, recall, accuracy, F-measure and separation.
AbstractList Research on the community structure of networks is beneficial for understanding the structure of networks, analyzing their characteristics and discovering the rules hidden in these networks. To address issues from previous community mining algorithms, such as the low rate of convergence and high time complexity, this study proposes an improved community structure discovery algorithm named CPMK-Means algorithm. The main idea of this algorithm can be summarised as follows. The clique percolation method (CPM) algorithm generates the maximum number of cliques by combining depth-first search with breadth-first search so that the number of cluster centres is determined. Then, the k centres are selected based on the principle of the maximum degree of centres and minimum similarity between different centres. Afterwards, nodes in the network are assigned to the communities formed by the k centres, and the iterations are performed repeatedly until the centres become stable. Finally, the overlapping communities are merged. Experiments are carried out on standard data sets Football and Collins to evaluate the performance of the CPMK-Means algorithm. Results indicate that the CPMK-Means algorithm can achieve better community mining and higher execution efficiency compared with other algorithms. Furthermore, it is superior to other algorithms in terms of precision, recall, accuracy, F-measure and separation.
Author Zhou, Zhou
Deng, WeiHong
Xiao, Zhuopeng
Author_xml – sequence: 1
  givenname: Zhou
  surname: Zhou
  fullname: Zhou, Zhou
  organization: Department of Mathematics and Computer Science, Changsha University
– sequence: 2
  givenname: Zhuopeng
  surname: Xiao
  fullname: Xiao, Zhuopeng
  organization: Information Engineering Department, Zhangjiajie Institute of Aeronautical Engineering
– sequence: 3
  givenname: WeiHong
  surname: Deng
  fullname: Deng, WeiHong
  email: teddy_mail@126.com
  organization: Information Engineering Department, Zhangjiajie Institute of Aeronautical Engineering
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6uTZD-PUvwoFrzoOWSz2TZlN6lJVui_N-2KBQ89zcC8z8y87wxNjDUKoVsC9wSgePCEQskSoJAAVECT6gJNScXyJE8zmPz1Kb1CM--3ADlhGZ0it-x3zn6rBkvb94PRYY99cIMMg1O40V7Godtj0a2t02HT41r4qLbmANTaHMhOfw0K75STthNBx1mvwsY2WJgGvyW9EsafNlyjy1Z0Xt381jn6fH76WLwmq_eX5eJxlUhGqpC0bSlyWaSM5lLQimSSEFKKOmXQUAkiOhCCsbpQpcwgS1VLWtI0TJCqZjUTbI7uxr3RYPzPB761gzPxJKdpQTKSASuiio4q6az3TrV853Qv3J4T4Ids-Zgtj9nyY7a8ilD5D5I6HJ0HJ3R3HmUj6uMds1bu9NUZ6gdPnpJn
CitedBy_id crossref_primary_10_1155_2022_1211515
crossref_primary_10_1016_j_ins_2023_118999
crossref_primary_10_3390_math9212674
crossref_primary_10_1142_S0129183123501139
crossref_primary_10_1155_2022_9993589
crossref_primary_10_1155_2021_8690662
crossref_primary_10_1145_3604807
crossref_primary_10_2166_aqua_2023_301
crossref_primary_10_1007_s12293_021_00342_9
Cites_doi 10.1145/2488388.2488483
10.1103/PhysRevE.69.066133
10.1016/j.jcss.2013.03.012
10.1007/s11280-009-0060-x
10.1016/j.knosys.2016.07.007
10.1109/ICDM.2012.139
10.1007/s11227-016-1790-z
10.1038/nature03607
10.1016/j.datak.2013.05.004
10.1145/2566486.2568010
10.1109/TKDE.2016.2518687
10.1109/TCCN.2018.2828854
10.1073/pnas.122653799
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2O
M2P
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s12083-020-00902-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Databases
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library
Science Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-6450
EndPage 2233
ExternalDocumentID 10_1007_s12083_020_00902_9
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2018M642974
  funderid: http://dx.doi.org/10.13039/501100002858
– fundername: The Natural Science Foundation of Hunan Province
  grantid: 2019JJ50689
– fundername: The scientific research project of education department of Hunan Province
  grantid: 18B412
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
06D
0R~
0VY
123
1N0
203
29O
29~
2JN
2JY
2KG
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
5VS
67Z
6NX
875
88I
8AO
8FE
8FG
8G5
8TC
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARCSS
AUKKA
AXYYD
AYJHY
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KOV
LLZTM
M0N
M2O
M2P
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P62
P9P
PQQKQ
PROAC
PT4
Q2X
QOS
R89
RIG
RLLFE
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TH9
TSG
TSK
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-ff8a6c74326ca2915c1118ab430d2c0a061aa33b7e8c5054ef1f1dd3a19b3b3a3
IEDL.DBID BENPR
ISSN 1936-6442
IngestDate Fri Jul 25 06:33:47 EDT 2025
Wed Oct 01 02:13:07 EDT 2025
Thu Apr 24 22:59:59 EDT 2025
Fri Feb 21 02:34:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Community structure
Execution efficiency
Parallel computing
Big data
Mining algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ff8a6c74326ca2915c1118ab430d2c0a061aa33b7e8c5054ef1f1dd3a19b3b3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2471515037
PQPubID 54523
PageCount 10
ParticipantIDs proquest_journals_2471515037
crossref_primary_10_1007_s12083_020_00902_9
crossref_citationtrail_10_1007_s12083_020_00902_9
springer_journals_10_1007_s12083_020_00902_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201100
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Norwell
PublicationTitle Peer-to-peer networking and applications
PublicationTitleAbbrev Peer-to-Peer Netw. Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Chih-HsiuZKwang-ChengCSocial network analysis facilitates cognition in large wireless networks: clustering coefficient aided geographical routingIEEE Trans Cogn Commun Netw20184361863410.1109/TCCN.2018.2828854
PallaGDerényiIFarkasIVicsekTUncovering the overlapping community structure of complex networks in nature and societyNature2005435704381481810.1038/nature03607
HoweBHoweBHoweBScalable and efficient flow-based community detection for large-scale graph analysisACM Trans Knowl Discov Data20171133262
GirvanMNewmanMEJCommunity structure in social and biological networksProc Natl Acad Sci U S A20021278217826190807310.1073/pnas.122653799
WuHGaoLDongJDetecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networksPLoS One201493113
WenXChenWNLinYA maximal clique based multi-objective evolutionary algorithm for overlapping community detectionIEEE Trans Evol Comput2017213363377
MoonSLeeJGKangMParallel community detection on large graphs with MapReduce and GraphChiData Knowl Eng201510411731
NewmanMEFast algorithm for detecting community structure in networksPhys Rev E Stat Nonlinear Soft Matter Phys200369610.1103/PhysRevE.69.066133
MeoPDFerraraEFiumaraGMixing local and global information for community detection in large networksJ Comput Syst Sci20138017287310590910.1016/j.jcss.2013.03.012
ShiCCaiYFuDA link clustering based overlapping community detection algorithmData Knowl Eng201387939440410.1016/j.datak.2013.05.004
WangQDaiHNWuDData analysis on video streaming QoE over mobile networksEURASIP J Wirel Commun Netw20182018173110
Hollocou A, Maudet J, Bonald T et al (2017) A linear streaming algorithm for community detection in very large networks. In: Proceedings of Knowledge Discovery and Data Mining (KDD’ 2017), Halifax-Canada, pp 1–9
XuYXuHZhangDFinding overlapping community from social networks based on community forest modelKnowl-Based Syst2016109123825510.1016/j.knosys.2016.07.007
Arnau P, Dominguez-Sal D, Larriba-Pey JL (2014) High quality, scalable and parallel community detection for large real graphs. In: Proceedings of the 23rd International Conference on World Wide Web. ACM, pp 225–236. https://doi.org/10.1145/2566486.2568010
WhangJJGleichDFDhillonISOverlapping community detection using neighborhood-inflated seed expansionIEEE Trans Knowl Data Eng20162851272128410.1109/TKDE.2016.2518687
SalehanMKimDJKooCA study of the effect of social trust, trust in social networking services, and sharing attitude, on two dimensions of personal information sharing behaviorJ Supercomput20187483596361910.1007/s11227-016-1790-z
WangZXLiZCDingXFOverlapping community detection based on node location analysisKnowl-Based Syst20161051225235
Statistic on the number of monthly active Facebook users. http://www.facebook.com
WeiFQianWWangCDetecting overlapping community structures in networksWorld Wide Web Internet Web Inf Syst200912223526110.1007/s11280-009-0060-x
Yang J, Leskovec J (2013) Community-affiliation graph model for overlapping network community detection. In: IEEE 12th International Conference on Data Mining. IEEE, pp 1170–1175. https://doi.org/10.1109/ICDM.2012.139
Ruan Y, Fuhry D, Parthasarathy S (2013) Efficient community detection in large networks using content and links. In: Proceedings of the 22nd International Conference on World Wide Web. ACM, pp 1089–1098. https://doi.org/10.1145/2488388.2488483
JJ Whang (902_CR11) 2016; 28
B Howe (902_CR20) 2017; 11
C Shi (902_CR9) 2013; 87
902_CR19
902_CR17
ME Newman (902_CR7) 2003; 69
902_CR1
902_CR10
Y Xu (902_CR12) 2016; 109
ZX Wang (902_CR13) 2016; 105
M Girvan (902_CR4) 2002; 12
902_CR15
F Wei (902_CR8) 2009; 12
M Salehan (902_CR5) 2018; 74
Q Wang (902_CR3) 2018; 2018
G Palla (902_CR6) 2005; 435
PD Meo (902_CR16) 2013; 80
H Wu (902_CR21) 2014; 9
S Moon (902_CR18) 2015; 104
Z Chih-Hsiu (902_CR2) 2018; 4
X Wen (902_CR14) 2017; 21
References_xml – reference: MeoPDFerraraEFiumaraGMixing local and global information for community detection in large networksJ Comput Syst Sci20138017287310590910.1016/j.jcss.2013.03.012
– reference: MoonSLeeJGKangMParallel community detection on large graphs with MapReduce and GraphChiData Knowl Eng201510411731
– reference: GirvanMNewmanMEJCommunity structure in social and biological networksProc Natl Acad Sci U S A20021278217826190807310.1073/pnas.122653799
– reference: Chih-HsiuZKwang-ChengCSocial network analysis facilitates cognition in large wireless networks: clustering coefficient aided geographical routingIEEE Trans Cogn Commun Netw20184361863410.1109/TCCN.2018.2828854
– reference: WangZXLiZCDingXFOverlapping community detection based on node location analysisKnowl-Based Syst20161051225235
– reference: WeiFQianWWangCDetecting overlapping community structures in networksWorld Wide Web Internet Web Inf Syst200912223526110.1007/s11280-009-0060-x
– reference: WuHGaoLDongJDetecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networksPLoS One201493113
– reference: NewmanMEFast algorithm for detecting community structure in networksPhys Rev E Stat Nonlinear Soft Matter Phys200369610.1103/PhysRevE.69.066133
– reference: Yang J, Leskovec J (2013) Community-affiliation graph model for overlapping network community detection. In: IEEE 12th International Conference on Data Mining. IEEE, pp 1170–1175. https://doi.org/10.1109/ICDM.2012.139
– reference: Arnau P, Dominguez-Sal D, Larriba-Pey JL (2014) High quality, scalable and parallel community detection for large real graphs. In: Proceedings of the 23rd International Conference on World Wide Web. ACM, pp 225–236. https://doi.org/10.1145/2566486.2568010
– reference: WenXChenWNLinYA maximal clique based multi-objective evolutionary algorithm for overlapping community detectionIEEE Trans Evol Comput2017213363377
– reference: ShiCCaiYFuDA link clustering based overlapping community detection algorithmData Knowl Eng201387939440410.1016/j.datak.2013.05.004
– reference: PallaGDerényiIFarkasIVicsekTUncovering the overlapping community structure of complex networks in nature and societyNature2005435704381481810.1038/nature03607
– reference: Hollocou A, Maudet J, Bonald T et al (2017) A linear streaming algorithm for community detection in very large networks. In: Proceedings of Knowledge Discovery and Data Mining (KDD’ 2017), Halifax-Canada, pp 1–9
– reference: Statistic on the number of monthly active Facebook users. http://www.facebook.com
– reference: WangQDaiHNWuDData analysis on video streaming QoE over mobile networksEURASIP J Wirel Commun Netw20182018173110
– reference: XuYXuHZhangDFinding overlapping community from social networks based on community forest modelKnowl-Based Syst2016109123825510.1016/j.knosys.2016.07.007
– reference: Ruan Y, Fuhry D, Parthasarathy S (2013) Efficient community detection in large networks using content and links. In: Proceedings of the 22nd International Conference on World Wide Web. ACM, pp 1089–1098. https://doi.org/10.1145/2488388.2488483
– reference: HoweBHoweBHoweBScalable and efficient flow-based community detection for large-scale graph analysisACM Trans Knowl Discov Data20171133262
– reference: SalehanMKimDJKooCA study of the effect of social trust, trust in social networking services, and sharing attitude, on two dimensions of personal information sharing behaviorJ Supercomput20187483596361910.1007/s11227-016-1790-z
– reference: WhangJJGleichDFDhillonISOverlapping community detection using neighborhood-inflated seed expansionIEEE Trans Knowl Data Eng20162851272128410.1109/TKDE.2016.2518687
– volume: 9
  start-page: 1
  issue: 3
  year: 2014
  ident: 902_CR21
  publication-title: PLoS One
– ident: 902_CR15
  doi: 10.1145/2488388.2488483
– volume: 69
  issue: 6
  year: 2003
  ident: 902_CR7
  publication-title: Phys Rev E Stat Nonlinear Soft Matter Phys
  doi: 10.1103/PhysRevE.69.066133
– volume: 80
  start-page: 72
  issue: 1
  year: 2013
  ident: 902_CR16
  publication-title: J Comput Syst Sci
  doi: 10.1016/j.jcss.2013.03.012
– volume: 12
  start-page: 235
  issue: 2
  year: 2009
  ident: 902_CR8
  publication-title: World Wide Web Internet Web Inf Syst
  doi: 10.1007/s11280-009-0060-x
– volume: 109
  start-page: 238
  issue: 1
  year: 2016
  ident: 902_CR12
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2016.07.007
– volume: 2018
  start-page: 1
  issue: 173
  year: 2018
  ident: 902_CR3
  publication-title: EURASIP J Wirel Commun Netw
– ident: 902_CR10
  doi: 10.1109/ICDM.2012.139
– volume: 21
  start-page: 363
  issue: 3
  year: 2017
  ident: 902_CR14
  publication-title: IEEE Trans Evol Comput
– volume: 74
  start-page: 3596
  issue: 8
  year: 2018
  ident: 902_CR5
  publication-title: J Supercomput
  doi: 10.1007/s11227-016-1790-z
– volume: 435
  start-page: 814
  issue: 7043
  year: 2005
  ident: 902_CR6
  publication-title: Nature
  doi: 10.1038/nature03607
– volume: 11
  start-page: 32
  issue: 3
  year: 2017
  ident: 902_CR20
  publication-title: ACM Trans Knowl Discov Data
– volume: 87
  start-page: 394
  issue: 9
  year: 2013
  ident: 902_CR9
  publication-title: Data Knowl Eng
  doi: 10.1016/j.datak.2013.05.004
– volume: 105
  start-page: 225
  issue: 1
  year: 2016
  ident: 902_CR13
  publication-title: Knowl-Based Syst
– ident: 902_CR17
  doi: 10.1145/2566486.2568010
– volume: 104
  start-page: 17
  issue: 1
  year: 2015
  ident: 902_CR18
  publication-title: Data Knowl Eng
– ident: 902_CR19
– ident: 902_CR1
– volume: 28
  start-page: 1272
  issue: 5
  year: 2016
  ident: 902_CR11
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2016.2518687
– volume: 4
  start-page: 618
  issue: 3
  year: 2018
  ident: 902_CR2
  publication-title: IEEE Trans Cogn Commun Netw
  doi: 10.1109/TCCN.2018.2828854
– volume: 12
  start-page: 7821
  year: 2002
  ident: 902_CR4
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.122653799
SSID ssj0061352
Score 2.2414243
Snippet Research on the community structure of networks is beneficial for understanding the structure of networks, analyzing their characteristics and discovering the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2224
SubjectTerms Algorithms
Communications Engineering
Computer Communication Networks
Engineering
Information Systems and Communication Service
Networks
Percolation
Signal,Image and Speech Processing
Standard data
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDAgnqJQkAc2sORHnmOFqCoQTFTqFvkVQGrTKg1D_z1nJyGAAIk1iT3cnf19ju--Q-gyEbkxLi8MwDMgAaeWpEJFBJ5SlcdCaX97_vAYjSfB3TScNkVhqzbbvb2S9Dt1V-zGgS4Qd9yhLpmQpJtoK3RyXhDFEz5s91_AJ99nB5hJRADteVMq8_McX-Go45jfrkU92oz20G5DE_Gw9us-2rDFAdr5JB54iMr6f4A1WNdFHtUa12qwb6XFrtrWZWeusZw9L8rX6mWOHWIZvCjcADgQu5EzJ9-Kl7aEePA-wnVLaSwLg-_J3AKSdTMcocno9ulmTJoOCkTD0qpInicy0kASeKQlT1moYWtLpAoENVxTCcaSUggV20QDFQpsznJmjJAsVUIJKY5Rr1gU9gRhDWefmNNYu-JTyYVMmVRMgEeZSsNQ9RFrDZnpRl7cdbmYZZ0wsjN-BsbPvPGztI-uPsYsa3GNP78etP7JmoW2yjiAK1AyKuI-um591r3-fbbT_31-hra5CxtfhThAPXCnPQc6UqkLH33vQYPWdA
  priority: 102
  providerName: Springer Nature
Title Improved community structure discovery algorithm based on combined clique percolation method and K-means algorithm
URI https://link.springer.com/article/10.1007/s12083-020-00902-9
https://www.proquest.com/docview/2471515037
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1936-6450
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0061352
  issn: 1936-6442
  databaseCode: ADMLS
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1936-6450
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061352
  issn: 1936-6442
  databaseCode: AFBBN
  dateStart: 20080301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1936-6450
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0061352
  issn: 1936-6442
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1936-6450
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061352
  issn: 1936-6442
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1936-6450
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061352
  issn: 1936-6442
  databaseCode: U2A
  dateStart: 20080307
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB6F5FIOqKWtSEujPXCDVe1dPw9VlaKEiIgIVY2Unqx9GQ7BSYN74N93xg9MkeC69q7kmdmZb70z3wCcJDK3lvLCMHgGPBCe46nUEcdRT-ex1Ka6Pb9aRLNlcLkKVz1YtLUwlFbZ-sTKUduNoX_kXwV6UYy9noy_b_9w6hpFt6ttCw3VtFaw3yqKsT0YCGLG6sPgx2Rx_bP1zRi7qh48iFoijkhANGU0dTGdQDjC6TjlUbIiT_8PVR3-fHZlWkWi6Vs4aCAkG9c6fwc9VxzC_hNiwfewq_8VOMtMXQBSPrCaKfbvzjGqxKXMzQem1jf4jeXtHaNoZtmmoAl4WKaZa6J2ZVu3Q1up9MfqdtNMFZbN-Z3DKNet8AGW08mv8xlvuitwg9uu5HmeqMgggBCRUSL1Q4NuL1E6kJ4VxlMoLKWk1LFLDMKkwOV-7lsrlZ9qqaWSH6FfbAp3BMzguSgWXmyoMFUJqVJfaV-itn2dhqEegt8KMjMN9Th1wFhnHWkyCT9D4WeV8LN0CKePc7Y18carbx-3-smaTXifdSYzhLNWZ93jl1f79Ppqn-GNIDOpKhKPoY_qc18QmpR6BHvJ9GIEg_HF7_lk1Fgfji7F-B_zVON3
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6l4UB7qEoLIiUteygnWGHvOnZ8iKq2gEIDEUJEys3sy-0hcUKSqsqf62_rjB91QYIbV9s7h5lv95vxzgPgU1em1lJeGJJnwAPhOR5LHXJ86uk0ktrkt-eXw7A_Cr6PO-MG_KlqYSitsjoT84Pazgz9Iz8WeIoi93oy-jy_4zQ1im5XqxEaqhytYHt5i7GysGPg1r8xhFv2zk_Q3gdCnJ3efOvzcsoANwi_FU_TrgoNEqkIjRKx3zG4_btKB9KzwngKCU8pKXXkugbdhcClfupbK5Ufa6mlkij3BWwEMogx-Nv4ejq8uq64ALkyn_mDXlLI0fMQZdlOUbwn0P3hFL55lBzJ4_vUWPu7D65oc-Y7ewOvS5eVfSkwtgUNl72FV_81MnwHi-LfhLPMFAUnqzUrOtP-WjhGlb-UKbpmavIDdbr6OWXEnpbNMlqAwTmtnFArWTZ3C8RmjhdWjLdmKrNswKcOWbWWsA2jZ9HzDjSzWeZ2gRmMwyLhRYYKYZWQKvaV9iWiy9dxp6Nb4FeKTEzZ6pwmbkySukkzKT9B5Se58pO4BYf_1syLRh9Pft2u7JOUm36Z1BBtwVFls_r149LePy1tHzb7N5cXycX5cLAHLwVBJq-GbEMTTek-oFu00h9L7DG4fW64_wVm0B1D
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T-NAEB5BkBAUiOMhAuFuC6hghb3r2HFxOiG48AggCpDozL4MRXBCCEL5a_w6ZvzAcNLR0dreKWa-3W_GOw-ArY5MraW8MCTPgAfCczyWOuT41NNpJLXJb8_PL8Lj6-D0pn0zBa9VLQylVVZnYn5Q24Ghf-R7Ak9R5F7qx5OWaRGXh90_w0dOE6ToprUap1FApOcmLxi-Pf0-OURbbwvR_Xt1cMzLCQPcIPTGPE07KjRIoiI0SsR-2-DW7ygdSM8K4ykkO6Wk1JHrGHQVApf6qW-tVH6spZZKotxpmImoiztVqXePKhZAlsyn_aB_FHL0OURZsFOU7Ql0fDgFbh6lRfL4MynWnu4_l7M553UXYaF0Vtl-ga4fMOWyJZj_0MJwGUbFXwlnmSlKTcYTVvSkfR45RjW_lCM6Yap_hxoc3z8w4k3LBhktwLCcVvapiSwbuhGiMkcKKwZbM5VZ1uMPDvm0lrAC19-i5VVoZIPMrQEzGIFFwosMlcAqIVXsK-1LxJWv43ZbN8GvFJmYssk5zdroJ3V7ZlJ-gspPcuUncRN23tcMixYfX37dquyTlNv9KanB2YTdymb16_9LW_9a2i-YRZAnZycXvQ2YE4SYvAyyBQ20pNtEf2isf-bAY3D73Uh_A5DNGt0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+community+structure+discovery+algorithm+based+on+combined+clique+percolation+method+and+K-means+algorithm&rft.jtitle=Peer-to-peer+networking+and+applications&rft.au=Zhou%2C+Zhou&rft.au=Xiao+Zhuopeng&rft.au=Deng+WeiHong&rft.date=2020-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1936-6442&rft.eissn=1936-6450&rft.volume=13&rft.issue=6&rft.spage=2224&rft.epage=2233&rft_id=info:doi/10.1007%2Fs12083-020-00902-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-6442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-6442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-6442&client=summon