Impact of molten salt inflow on the temperature distribution in thermal energy storage tanks at startup for central receiver concentrating solar power plants
Concentrating Solar Power (CSP) systems with molten salt thermal energy storage (TES) tanks are one of the most promising, renewable-based energy conversion technologies for larger-scale power generation. The TES tank is one of the most critical components in CSP plants due to its high-temperature o...
Saved in:
Published in | Journal of energy storage Vol. 117; p. 116069 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.05.2025
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2352-152X |
DOI | 10.1016/j.est.2025.116069 |
Cover
Abstract | Concentrating Solar Power (CSP) systems with molten salt thermal energy storage (TES) tanks are one of the most promising, renewable-based energy conversion technologies for larger-scale power generation. The TES tank is one of the most critical components in CSP plants due to its high-temperature operation (up to 565 °C), daily thermal cycling, and intermittent solar radiation conditions. The plant startup is one of the most challenging operation conditions that could lead to damaging thermal gradients due to low salt inventory levels. In this study an analytical model for the sparger ring was developed and integrated with a detailed computational fluid dynamics model of a commercial-scaled molten salt tank. The integrated model allows an accurate representation of the tank operation to evaluate the effect of molten salt inflow on the mixing process. The tank filling process during plant startup was analyzed considering sparger rings with variations in design features, including inlet orifice configurations, number of orifices, direction of the inlets, and orifice diameter. The results demonstrated that higher temperature gradients are obtained in the tank floor during the plant startup. A sparger ring configuration with a predetermined orifice inlet inclination (30°, 45° and 60°) leads to significant temperature differences in the floor, between 57 °C and 62 °C, but better homogeneity in the temperature of the salt inventory. Lower salt inflow velocities result in a more homogeneous floor temperature, with maximum temperature differences under 38 °C. The sparger ring configuration with 52 orifices of 1-in. diameter and vertical flow showed better homogeneity in the temperature differences as a function of the salt level and lower temperature gradients in the tank floor. Because large temperature gradients in the tank's floor have been identified as one of the main factors contributing to tank failures, assessing various sparger ring design features is fundamental to determining proper inflow conditions that lead to low-temperature gradients and reducing failure susceptibility.
•Concentrated power systems have been subject to tank failures•The sparger ring configuration affects the temperature gradients at plant startup•The higher temperature gradients are obtained in the tank floor than the tank wall•A flow inlet inclination leads to high temperature differences in the tank floor•Lower salt inflow velocities result in a more homogeneous floor temperature |
---|---|
AbstractList | Concentrating Solar Power (CSP) systems with molten salt thermal energy storage (TES) tanks are one of the most promising, renewable-based energy conversion technologies for larger-scale power generation. The TES tank is one of the most critical components in CSP plants due to its high-temperature operation (up to 565 °C), daily thermal cycling, and intermittent solar radiation conditions. The plant startup is one of the most challenging operation conditions that could lead to damaging thermal gradients due to low salt inventory levels. In this study an analytical model for the sparger ring was developed and integrated with a detailed computational fluid dynamics model of a commercial-scaled molten salt tank. The integrated model allows an accurate representation of the tank operation to evaluate the effect of molten salt inflow on the mixing process. The tank filling process during plant startup was analyzed considering sparger rings with variations in design features, including inlet orifice configurations, number of orifices, direction of the inlets, and orifice diameter. The results demonstrated that higher temperature gradients are obtained in the tank floor during the plant startup. A sparger ring configuration with a predetermined orifice inlet inclination (30°, 45° and 60°) leads to significant temperature differences in the floor, between 57 °C and 62 °C, but better homogeneity in the temperature of the salt inventory. Lower salt inflow velocities result in a more homogeneous floor temperature, with maximum temperature differences under 38 °C. The sparger ring configuration with 52 orifices of 1-in. diameter and vertical flow showed better homogeneity in the temperature differences as a function of the salt level and lower temperature gradients in the tank floor. Because large temperature gradients in the tank's floor have been identified as one of the main factors contributing to tank failures, assessing various sparger ring design features is fundamental to determining proper inflow conditions that lead to low-temperature gradients and reducing failure susceptibility.
•Concentrated power systems have been subject to tank failures•The sparger ring configuration affects the temperature gradients at plant startup•The higher temperature gradients are obtained in the tank floor than the tank wall•A flow inlet inclination leads to high temperature differences in the tank floor•Lower salt inflow velocities result in a more homogeneous floor temperature Concentrating Solar Power (CSP) systems with molten salt thermal energy storage (TES) tanks are one of the most promising, renewable-based energy conversion technologies for larger-scale power generation. The TES tank is one of the most critical components in CSP plants due to its high-temperature operation (up to 565 °C), daily thermal cycling, and intermittent solar radiation conditions. The plant startup is one of the most challenging operation conditions that could lead to damaging thermal gradients due to low salt inventory levels. In this study an analytical model for the sparger ring was developed and integrated with a detailed computational fluid dynamics model of a commercial-scaled molten salt tank. The integrated model allows an accurate representation of the tank operation to evaluate the effect of molten salt inflow on the mixing process. The tank filling process during plant startup was analyzed considering sparger rings with variations in design features, including inlet orifice configurations, number of orifices, direction of the inlets, and orifice diameter. The results demonstrated that higher temperature gradients are obtained in the tank floor during the plant startup. A sparger ring configuration with a predetermined orifice inlet inclination (30°, 45° and 60°) leads to significant temperature differences in the floor, between 57 °C and 62 °C, but better homogeneity in the temperature of the salt inventory. Lower salt inflow velocities result in a more homogeneous floor temperature, with maximum temperature differences under 38 °C. The sparger ring configuration with 52 orifices of 1-in. diameter and vertical flow showed better homogeneity in the temperature differences as a function of the salt level and lower temperature gradients in the tank floor. Because large temperature gradients in the tank's floor have been identified as one of the main factors contributing to tank failures, assessing various sparger ring design features is fundamental to determining proper inflow conditions that lead to low-temperature gradients and reducing failure susceptibility. |
ArticleNumber | 116069 |
Author | Ordonez, Juan C. Nieto-Londoño, César Torres-Madroñero, José L. Osorio, Julian D. |
Author_xml | – sequence: 1 givenname: José L. surname: Torres-Madroñero fullname: Torres-Madroñero, José L. organization: Grupo de Energía y Termodinámica, Escuela de Ingenierías, Universidad Pontificia Bolivariana, Medellín 050031, Colombia – sequence: 2 givenname: Julian D. surname: Osorio fullname: Osorio, Julian D. email: Julian.Osorio@nrel.gov organization: Center for Energy Conversion & Storage, National Renewable Energy Laboratory, Golden, CO 80401, USA – sequence: 3 givenname: César surname: Nieto-Londoño fullname: Nieto-Londoño, César organization: Grupo de Energía y Termodinámica, Escuela de Ingenierías, Universidad Pontificia Bolivariana, Medellín 050031, Colombia – sequence: 4 givenname: Juan C. surname: Ordonez fullname: Ordonez, Juan C. organization: Departament of Mechanical Engineering, Center for Advance Power Systems, Florida State University, Tallahassee, FL 32310, USA |
BackLink | https://www.osti.gov/servlets/purl/2546936$$D View this record in Osti.gov |
BookMark | eNp9UMlOwzAQ9QEk1g_gZnFvsZPGbcQJITYJiQtI3KxJMi4uiR2NpyA-hn_FJZw5PeltmnlHYi_EgEKcaTXXSpuLzRwTzwtVVHOtjTL1njgsyqqY6ap4PRCnKW2UysZK69ociu-HYYSWZXRyiD1jkAl6lj64Pn7KGCS_oWQcRiTgLaHsfGLyzZZ9Fv2vTgP0EgPS-ksmjgTrHIHwniRwJoB4O0oXSbYYmLKXsEX_gZmIYeLYh7VMsQeSY_zMythD4HQi9h30CU__8Fi83N48X9_PHp_uHq6vHmdtqWueOZdBdXWxUKBWpuw6XDTYKI3arKplB4hFiW6xbBygWYGpoVyumga6WisAVx6L86k3JvY2tZ6xfcvHBWzZFtXC1KXJJj2ZWoopETo7kh-AvqxWdre93di8vd1tb6ftc-ZyymC-_sMj7coxP9152nV30f-T_gFbApWq |
Cites_doi | 10.1016/j.enss.2023.08.003 10.1016/j.csite.2022.102520 10.1016/B978-0-12-819970-1.00020-7 10.1016/j.solmat.2021.111048 10.1016/j.egypro.2015.03.221 10.1016/j.actaastro.2023.06.007 10.1016/j.enconman.2018.04.113 10.1016/B978-0-12-382088-4.00013-X 10.1016/j.jmrt.2023.01.211 10.1063/1.4959400 10.1016/j.est.2023.107808 10.1016/j.est.2023.107893 10.1016/j.rser.2022.113124 10.1016/j.est.2022.105860 10.1016/j.applthermaleng.2023.120164 10.1016/j.egypro.2013.12.034 10.3233/FAIA210397 10.1016/j.applthermaleng.2019.114775 10.1007/s12206-016-0333-0 10.1016/j.renene.2020.11.004 10.1016/B978-008044046-0.50225-6 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
CorporateAuthor | National Renewable Energy Laboratory (NREL), Golden, CO (United States) |
CorporateAuthor_xml | – name: National Renewable Energy Laboratory (NREL), Golden, CO (United States) |
DBID | 6I. AAFTH AAYXX CITATION OIOZB OTOTI |
DOI | 10.1016/j.est.2025.116069 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 2546936 10_1016_j_est_2025_116069 S2352152X25007820 |
GroupedDBID | --M 0R~ 457 4G. 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAHCO AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AFJKZ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM AXJTR BELTK BJAXD BKOJK BLXMC BNPGV EBS EFJIC FDB FIRID FYGXN KOM O9- OAUVE ROL SPC SPCBC SSB SSD SSH SSR SST SSZ T5K ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION EJD OIOZB OTOTI |
ID | FETCH-LOGICAL-c319t-ff3190d9240a0863dde4beb01e16857daee23ef47bfae68a69a378bbad910aaf3 |
IEDL.DBID | AIKHN |
ISSN | 2352-152X |
IngestDate | Mon Apr 14 02:30:56 EDT 2025 Tue Jul 01 05:13:10 EDT 2025 Sat Apr 05 15:39:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal energy storage Startup operation conditions Concentrating solar power Sparger ring design Molten salt storage tank Temperature gradients |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-ff3190d9240a0863dde4beb01e16857daee23ef47bfae68a69a378bbad910aaf3 |
Notes | NREL/JA-5700-91359 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office AC36-08GO28308 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2352152X25007820 |
ParticipantIDs | osti_scitechconnect_2546936 crossref_primary_10_1016_j_est_2025_116069 elsevier_sciencedirect_doi_10_1016_j_est_2025_116069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of energy storage |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Nikiforova, Savytskyi, Limam, Bosschaerts, Belarbi (bb0165) 2013; 42 J. D. Osorio, “Addressing failures in molten salt thermal energy storage tank for central receiver concentrating solar power plants.” 6th Thermal-Mechanical- Chemical Energy Storage Workshop Charlotte, NC, July 31 - August 1, 2024, NREL/PR-5700-90714. F. Opoku, M. N. Uddin, and M. Atkinson, “A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach,” Mar. 01, 2023, Elsevier Ltd. doi Yang, Jin, Qi, Cai (bb0155) 2023; 211 IOS Press BV, Dec. 2021, pp. 132–140. doi Price (bb0020) 2021; no. June Liu, Yue, Lu (bb0080) 2021; 165 Fanchi (bb0105) 2010 Ansys, “Ansys.” [Online]. Available Li, Yan, Wei, Wang, Ni (bb0135) 2022; 40 Gage, Bailey, Finegan, Brett, Shearing, Turchi (bb0025) 2021; 225 Hosseinnia, Akbari, Sorin (bb0125) 2021; 40, no. May M. I. Khan, F. Asfand, and S. G. Al-Ghamdi, “Progress in research and technological advancements of thermal energy storage systems for concentrated solar power,” Nov. 30, 2022, Elsevier Ltd. doi Idelchik, Ginevskiy (bb0095) 2007 H. K. Versteeg and W. Malalasekera, “An Introduction to Computational Fluid Dynamics Second Edition.” [Online]. Available D. Code, “Superwool ® Blankets,” pp. 11–12, 2009. vol. 167, no. December 2019, p. 114775, 2020, doi Tang, Tao (bb0030) 2023; 2 Osorio, Mehos, Imponenti, Kelly, Price, Torres-Madronero, Rivera-Alvarez, Nieto, Ni, Yu, Hamilton, Martinek (bb0045) 2024 Mekhermeche, Kriker, Dahmani (bb0175) 2016; 1758 Gage (bb0010) 2021; 226, no. April T. Pickle, Y. Hong, C. Augustine, J. Vidal, and Z. Yu, “Stress Relaxation Cracking of Alloys at Temperatures Higher Than 540°C,” 2024. [Online]. Available F. ANSYS, “Equations of Motion for Particles.” Accessed: May 16, 2024. [Online]. Available Incropera, Dewitt (bb0195) 2002 NREL and National Renewable Energy Laboratory, “Concentrating Solar Power Projects, Power Tower Projects.” Accessed: Jun. 10, 2024. [Online]. Available Rohsenow, Hartnett (bb0090) 1999; 36 Kim, Kim, Lee, Yoo (bb0185) 2016; 30 Gas (bb0100) 2020; 2 ANSYS, “Volume of Fluid (VOF) Model Theory.” Accessed: May 16, 2024. [Online]. Available Zhao, Wu, Zhang (bb0160) 2023; 23 SolarPaces, “High Temperature Salt Tank Buckling Failure,” 2022. H. Xi, Q. Wu, X. Xie, R. Zhang, B. Yang, and Q. Liu, “Analysis of Current Production Status and Key Existing Problems of Tower-Shaped Solar Molten Salt Storage Tank,” in . Iranzo, Suàrez, Guerra (bb0050) 2018; 168 Elsevier Ltd, May 2015, pp. 2072–2080. doi T. Chekifi and M. Boukraa, “CFD applications for sensible heat storage: A comprehensive review of numerical studies,” Sep. 15, 2023, Elsevier Ltd. doi Yamaç, Koca (bb0130) 2023; 225 Arsenovic, Lalic, Radojevic (bb0170) 2010; II J. D. Osorio, “Modeling of Stress Distribution in Molten Salt Thermal Energy Storage Tanks for In-Service Central Receiver Power Plants,” 5th Thermal-Mechanical-Chemical Energy Storage Workshop, San Antonio, TX, August 1 and 2, 2023, NREL/PR-5700-87158. Z. Wan, J. Wei, M. A. Qaisrani, J. Fang, and N. Tu, “Evaluation on thermal and mechanical performance of the hot tank in the two-tank molten salt heat storage system,” Kosky, Balmer, Keat, Wise (bb0190) 2013 Guo, Du, Xu, Lei (bb0075) 2023; 68 J. Shan, J. Ding, and J. Lu, “Numerical Investigation of High-temperature Molten Salt Leakage,” in D. Greif ^’, B. Wiesler”, and A. Alajbegovic’=, “Two-phase tank filling simulations of an automobile tank system,” 2003. Price (10.1016/j.est.2025.116069_bb0020) 2021; no. June 10.1016/j.est.2025.116069_bb0005 Li (10.1016/j.est.2025.116069_bb0135) 2022; 40 Osorio (10.1016/j.est.2025.116069_bb0045) 2024 Mekhermeche (10.1016/j.est.2025.116069_bb0175) 2016; 1758 Incropera (10.1016/j.est.2025.116069_bb0195) 2002 Arsenovic (10.1016/j.est.2025.116069_bb0170) 2010; II Guo (10.1016/j.est.2025.116069_bb0075) 2023; 68 Rohsenow (10.1016/j.est.2025.116069_bb0090) 1999; 36 10.1016/j.est.2025.116069_bb0070 Gas (10.1016/j.est.2025.116069_bb0100) 2020; 2 10.1016/j.est.2025.116069_bb0055 10.1016/j.est.2025.116069_bb0110 Liu (10.1016/j.est.2025.116069_bb0080) 2021; 165 10.1016/j.est.2025.116069_bb0035 10.1016/j.est.2025.116069_bb0150 Gage (10.1016/j.est.2025.116069_bb0010) 2021; 226, no. April Gage (10.1016/j.est.2025.116069_bb0025) 2021; 225 Idelchik (10.1016/j.est.2025.116069_bb0095) 2007 10.1016/j.est.2025.116069_bb0015 10.1016/j.est.2025.116069_bb0115 Kim (10.1016/j.est.2025.116069_bb0185) 2016; 30 Kosky (10.1016/j.est.2025.116069_bb0190) 2013 Fanchi (10.1016/j.est.2025.116069_bb0105) 2010 Hosseinnia (10.1016/j.est.2025.116069_bb0125) 2021; 40, no. May Yamaç (10.1016/j.est.2025.116069_bb0130) 2023; 225 Yang (10.1016/j.est.2025.116069_bb0155) 2023; 211 Nikiforova (10.1016/j.est.2025.116069_bb0165) 2013; 42 10.1016/j.est.2025.116069_bb0060 10.1016/j.est.2025.116069_bb0180 Tang (10.1016/j.est.2025.116069_bb0030) 2023; 2 Iranzo (10.1016/j.est.2025.116069_bb0050) 2018; 168 Zhao (10.1016/j.est.2025.116069_bb0160) 2023; 23 10.1016/j.est.2025.116069_bb0065 10.1016/j.est.2025.116069_bb0120 10.1016/j.est.2025.116069_bb0145 10.1016/j.est.2025.116069_bb0200 10.1016/j.est.2025.116069_bb0040 10.1016/j.est.2025.116069_bb0085 10.1016/j.est.2025.116069_bb0140 |
References_xml | – reference: D. Greif ^’, B. Wiesler”, and A. Alajbegovic’=, “Two-phase tank filling simulations of an automobile tank system,” 2003. – reference: M. I. Khan, F. Asfand, and S. G. Al-Ghamdi, “Progress in research and technological advancements of thermal energy storage systems for concentrated solar power,” Nov. 30, 2022, Elsevier Ltd. doi: – reference: SolarPaces, “High Temperature Salt Tank Buckling Failure,” 2022. – reference: NREL and National Renewable Energy Laboratory, “Concentrating Solar Power Projects, Power Tower Projects.” Accessed: Jun. 10, 2024. [Online]. Available: – year: 2024 ident: bb0045 article-title: Failure Analysis for Molten Salt Thermal Energy Storage Tanks for in-Service CSP Plants – volume: 225 year: 2023 ident: bb0130 article-title: Investigation of water flow window with/without energy storage tank during winter season publication-title: Appl. Therm. Eng. – start-page: 259 year: 2013 end-page: 281 ident: bb0190 article-title: Chapter 12 - mechanical engineering publication-title: Exploring Engineering – reference: T. Pickle, Y. Hong, C. Augustine, J. Vidal, and Z. Yu, “Stress Relaxation Cracking of Alloys at Temperatures Higher Than 540°C,” 2024. [Online]. Available: – year: 2007 ident: bb0095 article-title: Handbook of Hydraulic Resistance – reference: , vol. 167, no. December 2019, p. 114775, 2020, doi: – volume: no. June start-page: 725 year: 2021 end-page: 757 ident: bb0020 article-title: Concentrating solar power best practices publication-title: Concentrating Solar Power Technology – reference: Ansys, “Ansys.” [Online]. Available: – volume: 40, no. May year: 2021 ident: bb0125 article-title: Numerical analysis of thermocline evolution during charging phase in a stratified thermal energy storage tank publication-title: J. Energy Storage – year: 2002 ident: bb0195 article-title: Fundamentals of Heat and Mass Transfer – volume: 225 year: 2021 ident: bb0025 article-title: Internal insulation and corrosion control of molten chloride thermal energy storage tanks publication-title: Sol. Energy Mater. Sol. Cells – reference: J. D. Osorio, “Addressing failures in molten salt thermal energy storage tank for central receiver concentrating solar power plants.” 6th Thermal-Mechanical- Chemical Energy Storage Workshop Charlotte, NC, July 31 - August 1, 2024, NREL/PR-5700-90714. – volume: 165 start-page: 25 year: 2021 end-page: 36 ident: bb0080 article-title: A new method for optimizing the preheating characteristics of storage tanks publication-title: Renew. Energy – start-page: 223 year: 2010 end-page: 241 ident: bb0105 article-title: Reservoir simulation publication-title: Integrated Reservoir Asset Management – reference: H. K. Versteeg and W. Malalasekera, “An Introduction to Computational Fluid Dynamics Second Edition.” [Online]. Available: – volume: 211 start-page: 447 year: 2023 end-page: 460 ident: bb0155 article-title: Effect of inlet mass flow rate oscillation on simplex swirl injector flow based on VOF-to-DPM model publication-title: Acta Astronaut. – reference: , Elsevier Ltd, May 2015, pp. 2072–2080. doi: – volume: 23 start-page: 3651 year: 2023 end-page: 3664 ident: bb0160 article-title: Thermodynamics-CFD-DPM modeling of dross formation and diffusion in a Zn-0.3Al galvanizing bath publication-title: J. Mater. Res. Technol. – volume: 30 start-page: 1773 year: 2016 end-page: 1779 ident: bb0185 article-title: Welding residual stress analysis of 347H austenitic stainless steel boiler tubes using experimental and numerical approaches publication-title: J. Mech. Sci. Technol. – volume: 2 start-page: 127 year: 2020 end-page: 166 ident: bb0100 article-title: Flow of fluids publication-title: Combustion Engineering and Gas Utilisation – reference: D. Code, “Superwool ® Blankets,” pp. 11–12, 2009. – volume: 1758 year: 2016 ident: bb0175 article-title: Contribution to the study of thermal properties of clay bricks reinforced by date palm fiber publication-title: AIP Conf. Proc. – volume: 68 year: 2023 ident: bb0075 article-title: Effects of EPCM particle properties on creep damage of the molten salt packed-bed thermal energy storage system publication-title: J. Energy Storage – volume: 2 start-page: 571 year: 2023 end-page: 577 ident: bb0030 article-title: Strength analysis of molten salt tanks for concentrating solar power plants publication-title: Energy Storage and Saving – volume: 36 year: 1999 ident: bb0090 publication-title: Handbook of heat transfer – volume: 168 start-page: 320 year: 2018 end-page: 328 ident: bb0050 article-title: Mixing enhancement in thermal energy storage molten salt tanks publication-title: Energy Convers. Manag. – volume: II start-page: 2067 year: 2010 end-page: 3604 ident: bb0170 article-title: Clay brick walls - thermal properties publication-title: Int. J. Modern Manuf. Technol. – reference: . – reference: ANSYS, “Volume of Fluid (VOF) Model Theory.” Accessed: May 16, 2024. [Online]. Available: – volume: 40 year: 2022 ident: bb0135 article-title: Numerical simulation on the thermal dynamic behavior of liquid hydrogen in a storage tank for trailers publication-title: Case Stud. Therm. Eng. – volume: 42 start-page: 775 year: 2013 end-page: 783 ident: bb0165 article-title: Methods and results of experimental researches of thermal conductivity of soils publication-title: Energy Procedia – reference: T. Chekifi and M. Boukraa, “CFD applications for sensible heat storage: A comprehensive review of numerical studies,” Sep. 15, 2023, Elsevier Ltd. doi: – reference: , IOS Press BV, Dec. 2021, pp. 132–140. doi: – reference: J. D. Osorio, “Modeling of Stress Distribution in Molten Salt Thermal Energy Storage Tanks for In-Service Central Receiver Power Plants,” 5th Thermal-Mechanical-Chemical Energy Storage Workshop, San Antonio, TX, August 1 and 2, 2023, NREL/PR-5700-87158. – reference: F. Opoku, M. N. Uddin, and M. Atkinson, “A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach,” Mar. 01, 2023, Elsevier Ltd. doi: – reference: F. ANSYS, “Equations of Motion for Particles.” Accessed: May 16, 2024. [Online]. Available: – reference: H. Xi, Q. Wu, X. Xie, R. Zhang, B. Yang, and Q. Liu, “Analysis of Current Production Status and Key Existing Problems of Tower-Shaped Solar Molten Salt Storage Tank,” in – reference: J. Shan, J. Ding, and J. Lu, “Numerical Investigation of High-temperature Molten Salt Leakage,” in – reference: Z. Wan, J. Wei, M. A. Qaisrani, J. Fang, and N. Tu, “Evaluation on thermal and mechanical performance of the hot tank in the two-tank molten salt heat storage system,” – volume: 226, no. April year: 2021 ident: bb0010 article-title: Technical and economic feasibility of molten chloride salt thermal energy storage systems publication-title: Sol. Energy Mater. Sol. Cells – volume: 40, no. May year: 2021 ident: 10.1016/j.est.2025.116069_bb0125 article-title: Numerical analysis of thermocline evolution during charging phase in a stratified thermal energy storage tank publication-title: J. Energy Storage – volume: 2 start-page: 571 issue: 4 year: 2023 ident: 10.1016/j.est.2025.116069_bb0030 article-title: Strength analysis of molten salt tanks for concentrating solar power plants publication-title: Energy Storage and Saving doi: 10.1016/j.enss.2023.08.003 – ident: 10.1016/j.est.2025.116069_bb0065 – volume: 40 year: 2022 ident: 10.1016/j.est.2025.116069_bb0135 article-title: Numerical simulation on the thermal dynamic behavior of liquid hydrogen in a storage tank for trailers publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.102520 – volume: no. June start-page: 725 year: 2021 ident: 10.1016/j.est.2025.116069_bb0020 article-title: Concentrating solar power best practices publication-title: Concentrating Solar Power Technology doi: 10.1016/B978-0-12-819970-1.00020-7 – volume: 225 year: 2021 ident: 10.1016/j.est.2025.116069_bb0025 article-title: Internal insulation and corrosion control of molten chloride thermal energy storage tanks publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2021.111048 – ident: 10.1016/j.est.2025.116069_bb0085 doi: 10.1016/j.egypro.2015.03.221 – volume: 211 start-page: 447 year: 2023 ident: 10.1016/j.est.2025.116069_bb0155 article-title: Effect of inlet mass flow rate oscillation on simplex swirl injector flow based on VOF-to-DPM model publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2023.06.007 – start-page: 259 year: 2013 ident: 10.1016/j.est.2025.116069_bb0190 article-title: Chapter 12 - mechanical engineering – volume: 168 start-page: 320 year: 2018 ident: 10.1016/j.est.2025.116069_bb0050 article-title: Mixing enhancement in thermal energy storage molten salt tanks publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.04.113 – volume: II start-page: 2067 issue: 1 year: 2010 ident: 10.1016/j.est.2025.116069_bb0170 article-title: Clay brick walls - thermal properties publication-title: Int. J. Modern Manuf. Technol. – ident: 10.1016/j.est.2025.116069_bb0055 – start-page: 223 year: 2010 ident: 10.1016/j.est.2025.116069_bb0105 article-title: Reservoir simulation publication-title: Integrated Reservoir Asset Management doi: 10.1016/B978-0-12-382088-4.00013-X – volume: 2 start-page: 127 year: 2020 ident: 10.1016/j.est.2025.116069_bb0100 article-title: Flow of fluids publication-title: Combustion Engineering and Gas Utilisation – volume: 23 start-page: 3651 year: 2023 ident: 10.1016/j.est.2025.116069_bb0160 article-title: Thermodynamics-CFD-DPM modeling of dross formation and diffusion in a Zn-0.3Al galvanizing bath publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.01.211 – ident: 10.1016/j.est.2025.116069_bb0120 – year: 2007 ident: 10.1016/j.est.2025.116069_bb0095 – ident: 10.1016/j.est.2025.116069_bb0150 – volume: 1758 issue: July year: 2016 ident: 10.1016/j.est.2025.116069_bb0175 article-title: Contribution to the study of thermal properties of clay bricks reinforced by date palm fiber publication-title: AIP Conf. Proc. doi: 10.1063/1.4959400 – ident: 10.1016/j.est.2025.116069_bb0060 – volume: 68 year: 2023 ident: 10.1016/j.est.2025.116069_bb0075 article-title: Effects of EPCM particle properties on creep damage of the molten salt packed-bed thermal energy storage system publication-title: J. Energy Storage doi: 10.1016/j.est.2023.107808 – ident: 10.1016/j.est.2025.116069_bb0200 doi: 10.1016/j.est.2023.107893 – ident: 10.1016/j.est.2025.116069_bb0110 doi: 10.1016/j.rser.2022.113124 – ident: 10.1016/j.est.2025.116069_bb0070 – ident: 10.1016/j.est.2025.116069_bb0035 doi: 10.1016/j.est.2022.105860 – volume: 225 year: 2023 ident: 10.1016/j.est.2025.116069_bb0130 article-title: Investigation of water flow window with/without energy storage tank during winter season publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.120164 – ident: 10.1016/j.est.2025.116069_bb0115 – volume: 36 issue: 06 year: 1999 ident: 10.1016/j.est.2025.116069_bb0090 publication-title: Handbook of heat transfer – year: 2024 ident: 10.1016/j.est.2025.116069_bb0045 – volume: 42 start-page: 775 issue: December year: 2013 ident: 10.1016/j.est.2025.116069_bb0165 article-title: Methods and results of experimental researches of thermal conductivity of soils publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.12.034 – ident: 10.1016/j.est.2025.116069_bb0040 doi: 10.3233/FAIA210397 – volume: 226, no. April year: 2021 ident: 10.1016/j.est.2025.116069_bb0010 article-title: Technical and economic feasibility of molten chloride salt thermal energy storage systems publication-title: Sol. Energy Mater. Sol. Cells – ident: 10.1016/j.est.2025.116069_bb0005 – ident: 10.1016/j.est.2025.116069_bb0015 doi: 10.1016/j.applthermaleng.2019.114775 – ident: 10.1016/j.est.2025.116069_bb0180 – volume: 30 start-page: 1773 issue: 4 year: 2016 ident: 10.1016/j.est.2025.116069_bb0185 article-title: Welding residual stress analysis of 347H austenitic stainless steel boiler tubes using experimental and numerical approaches publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-016-0333-0 – ident: 10.1016/j.est.2025.116069_bb0140 – year: 2002 ident: 10.1016/j.est.2025.116069_bb0195 – volume: 165 start-page: 25 year: 2021 ident: 10.1016/j.est.2025.116069_bb0080 article-title: A new method for optimizing the preheating characteristics of storage tanks publication-title: Renew. Energy doi: 10.1016/j.renene.2020.11.004 – ident: 10.1016/j.est.2025.116069_bb0145 doi: 10.1016/B978-008044046-0.50225-6 |
SSID | ssj0001651196 |
Score | 2.335926 |
Snippet | Concentrating Solar Power (CSP) systems with molten salt thermal energy storage (TES) tanks are one of the most promising, renewable-based energy conversion... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Index Database Publisher |
StartPage | 116069 |
SubjectTerms | Concentrating solar power Molten salt storage tank SOLAR ENERGY Sparger ring design Startup operation conditions Temperature gradients Thermal energy storage |
Title | Impact of molten salt inflow on the temperature distribution in thermal energy storage tanks at startup for central receiver concentrating solar power plants |
URI | https://dx.doi.org/10.1016/j.est.2025.116069 https://www.osti.gov/servlets/purl/2546936 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier Freedom Collection issn: 2352-152X databaseCode: ACRLP dateStart: 20150601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001651196 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection issn: 2352-152X databaseCode: AIKHN dateStart: 20150601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001651196 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 2352-152X databaseCode: AKRWK dateStart: 20150601 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001651196 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXa7YUeEFAQpYDmwKlStJvE8SbHqqLatmovUGlvkb0Zo0JIIjYVv6b_tW8SR5QDHHqK8uEo8tgzb-LnN0p90pWJPZBIlGRsI41BE1ltbcSp0ZVDDNSDmM7VtVnd6It1tt5Rp9NeGKFVBt8_-vTBW4cr89Cb8-72dv4lAXZA9FkjiA-qb7tqL0G0Rwa2d3J-ubr-86vFyGLZWGYuSyJpM61vDkwvuF8kikkG9wE4X_wrQs1aTLpHwefshXoeUCOdjB_2Uu1w80rtP9ISPFD358N-R2o9_WxrIGHa2ronDKC6_U1tQ0B6JEJUQUWZKpHMDdWu8Jjch5OuiYfdgCSsSfgaAnj8sSXb4wL65a4joFwKlE5C17EQO2gjux-bQYK3-UZbyZepkwJs1NXCtHmtbs4-fz1dRaH2QrTBpOwj73FYVMjOFhZZTwovqB27RcyxybNlZZmTlL1eOm_Z5NYUNl3mztkK-MNan75Rs6Zt-K0i5zhOPBdSClAv2RdsskTnsc0Z6G3Bh-p46u-yGyU2yol79r2EcUoxTjka51DpySLlX-OkRAj4X7MjsZ40EW3cjZCI0EaKARSpefe0lx6pZ3I20h_fq1n_644_AKL07mMYgg9BPuhT |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3Bcig9oH6hUiidA6dK0W4Sx5scEQLt8rEXQNpbZG_GFZAmUTeIX8N_7UziqHBoDz1FSuIo8jhvnuPnNwBHqtChYyYSRAmZQPGgCYwyJqBYq8JyDlSdmc7VQs9u1fkyWW7AybAXRmSVHvt7TO_Q2p8Z-94cN3d34-uIuQNnnyUn8c71bRO2VMKYPIKt4_nFbPHnV4uWxbK-zFwSBdJmWN_slF4MvzxRjBKGD6bz2d8y1Kjmj-5F8jl7BzueNeJx_2LvYYOqD_D2hZfgR3ied_sdsXb4sy6ZCePalC3yACrrJ6wrZKaHYkTlXZSxEMtcX-2Kb5PrDNIlUrcbEEU1yViDTB4f1mhaPsH98tggs1z0kk7kriMRduBKdj9WnQVv9QPXMl_GRgqwYVOK0uYT3J6d3pzMAl97IVjxR9kGzvFhUvDsbGJ41hMzCipLdhJSqNNkWhiiKCanptYZ0qnRmYmnqbWmYP5hjIt3YVTVFX0GtJbCyFEmpQDVlFxGOolUGpqUmL1NaA--D_2dN73FRj5oz-5zDk4uwcn74OyBGiKSvxonOaeAfzXbl-hJE_HGXYmIiNtIMYAs1l_-76Hf4M3s5uoyv5wvLvZhW670UsgDGLW_Hukr05XWHvrh-Bs2IOs3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+molten+salt+inflow+on+the+temperature+distribution+in+thermal+energy+storage+tanks+at+startup+for+central+receiver+concentrating+solar+power+plants&rft.jtitle=Journal+of+energy+storage&rft.au=Torres-Madro%C3%B1ero%2C+Jos%C3%A9+L.&rft.au=Osorio%2C+Julian+D.&rft.au=Nieto-Londo%C3%B1o%2C+C%C3%A9sar&rft.au=Ordonez%2C+Juan+C.&rft.date=2025-05-01&rft.pub=Elsevier+Ltd&rft.issn=2352-152X&rft.volume=117&rft_id=info:doi/10.1016%2Fj.est.2025.116069&rft.externalDocID=S2352152X25007820 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon |