Impact of molten salt inflow on the temperature distribution in thermal energy storage tanks at startup for central receiver concentrating solar power plants

Concentrating Solar Power (CSP) systems with molten salt thermal energy storage (TES) tanks are one of the most promising, renewable-based energy conversion technologies for larger-scale power generation. The TES tank is one of the most critical components in CSP plants due to its high-temperature o...

Full description

Saved in:
Bibliographic Details
Published inJournal of energy storage Vol. 117; p. 116069
Main Authors Torres-Madroñero, José L., Osorio, Julian D., Nieto-Londoño, César, Ordonez, Juan C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.05.2025
Elsevier
Subjects
Online AccessGet full text
ISSN2352-152X
DOI10.1016/j.est.2025.116069

Cover

Abstract Concentrating Solar Power (CSP) systems with molten salt thermal energy storage (TES) tanks are one of the most promising, renewable-based energy conversion technologies for larger-scale power generation. The TES tank is one of the most critical components in CSP plants due to its high-temperature operation (up to 565 °C), daily thermal cycling, and intermittent solar radiation conditions. The plant startup is one of the most challenging operation conditions that could lead to damaging thermal gradients due to low salt inventory levels. In this study an analytical model for the sparger ring was developed and integrated with a detailed computational fluid dynamics model of a commercial-scaled molten salt tank. The integrated model allows an accurate representation of the tank operation to evaluate the effect of molten salt inflow on the mixing process. The tank filling process during plant startup was analyzed considering sparger rings with variations in design features, including inlet orifice configurations, number of orifices, direction of the inlets, and orifice diameter. The results demonstrated that higher temperature gradients are obtained in the tank floor during the plant startup. A sparger ring configuration with a predetermined orifice inlet inclination (30°, 45° and 60°) leads to significant temperature differences in the floor, between 57 °C and 62 °C, but better homogeneity in the temperature of the salt inventory. Lower salt inflow velocities result in a more homogeneous floor temperature, with maximum temperature differences under 38 °C. The sparger ring configuration with 52 orifices of 1-in. diameter and vertical flow showed better homogeneity in the temperature differences as a function of the salt level and lower temperature gradients in the tank floor. Because large temperature gradients in the tank's floor have been identified as one of the main factors contributing to tank failures, assessing various sparger ring design features is fundamental to determining proper inflow conditions that lead to low-temperature gradients and reducing failure susceptibility. •Concentrated power systems have been subject to tank failures•The sparger ring configuration affects the temperature gradients at plant startup•The higher temperature gradients are obtained in the tank floor than the tank wall•A flow inlet inclination leads to high temperature differences in the tank floor•Lower salt inflow velocities result in a more homogeneous floor temperature
AbstractList Concentrating Solar Power (CSP) systems with molten salt thermal energy storage (TES) tanks are one of the most promising, renewable-based energy conversion technologies for larger-scale power generation. The TES tank is one of the most critical components in CSP plants due to its high-temperature operation (up to 565 °C), daily thermal cycling, and intermittent solar radiation conditions. The plant startup is one of the most challenging operation conditions that could lead to damaging thermal gradients due to low salt inventory levels. In this study an analytical model for the sparger ring was developed and integrated with a detailed computational fluid dynamics model of a commercial-scaled molten salt tank. The integrated model allows an accurate representation of the tank operation to evaluate the effect of molten salt inflow on the mixing process. The tank filling process during plant startup was analyzed considering sparger rings with variations in design features, including inlet orifice configurations, number of orifices, direction of the inlets, and orifice diameter. The results demonstrated that higher temperature gradients are obtained in the tank floor during the plant startup. A sparger ring configuration with a predetermined orifice inlet inclination (30°, 45° and 60°) leads to significant temperature differences in the floor, between 57 °C and 62 °C, but better homogeneity in the temperature of the salt inventory. Lower salt inflow velocities result in a more homogeneous floor temperature, with maximum temperature differences under 38 °C. The sparger ring configuration with 52 orifices of 1-in. diameter and vertical flow showed better homogeneity in the temperature differences as a function of the salt level and lower temperature gradients in the tank floor. Because large temperature gradients in the tank's floor have been identified as one of the main factors contributing to tank failures, assessing various sparger ring design features is fundamental to determining proper inflow conditions that lead to low-temperature gradients and reducing failure susceptibility. •Concentrated power systems have been subject to tank failures•The sparger ring configuration affects the temperature gradients at plant startup•The higher temperature gradients are obtained in the tank floor than the tank wall•A flow inlet inclination leads to high temperature differences in the tank floor•Lower salt inflow velocities result in a more homogeneous floor temperature
Concentrating Solar Power (CSP) systems with molten salt thermal energy storage (TES) tanks are one of the most promising, renewable-based energy conversion technologies for larger-scale power generation. The TES tank is one of the most critical components in CSP plants due to its high-temperature operation (up to 565 °C), daily thermal cycling, and intermittent solar radiation conditions. The plant startup is one of the most challenging operation conditions that could lead to damaging thermal gradients due to low salt inventory levels. In this study an analytical model for the sparger ring was developed and integrated with a detailed computational fluid dynamics model of a commercial-scaled molten salt tank. The integrated model allows an accurate representation of the tank operation to evaluate the effect of molten salt inflow on the mixing process. The tank filling process during plant startup was analyzed considering sparger rings with variations in design features, including inlet orifice configurations, number of orifices, direction of the inlets, and orifice diameter. The results demonstrated that higher temperature gradients are obtained in the tank floor during the plant startup. A sparger ring configuration with a predetermined orifice inlet inclination (30°, 45° and 60°) leads to significant temperature differences in the floor, between 57 °C and 62 °C, but better homogeneity in the temperature of the salt inventory. Lower salt inflow velocities result in a more homogeneous floor temperature, with maximum temperature differences under 38 °C. The sparger ring configuration with 52 orifices of 1-in. diameter and vertical flow showed better homogeneity in the temperature differences as a function of the salt level and lower temperature gradients in the tank floor. Because large temperature gradients in the tank's floor have been identified as one of the main factors contributing to tank failures, assessing various sparger ring design features is fundamental to determining proper inflow conditions that lead to low-temperature gradients and reducing failure susceptibility.
ArticleNumber 116069
Author Ordonez, Juan C.
Nieto-Londoño, César
Torres-Madroñero, José L.
Osorio, Julian D.
Author_xml – sequence: 1
  givenname: José L.
  surname: Torres-Madroñero
  fullname: Torres-Madroñero, José L.
  organization: Grupo de Energía y Termodinámica, Escuela de Ingenierías, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
– sequence: 2
  givenname: Julian D.
  surname: Osorio
  fullname: Osorio, Julian D.
  email: Julian.Osorio@nrel.gov
  organization: Center for Energy Conversion & Storage, National Renewable Energy Laboratory, Golden, CO 80401, USA
– sequence: 3
  givenname: César
  surname: Nieto-Londoño
  fullname: Nieto-Londoño, César
  organization: Grupo de Energía y Termodinámica, Escuela de Ingenierías, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
– sequence: 4
  givenname: Juan C.
  surname: Ordonez
  fullname: Ordonez, Juan C.
  organization: Departament of Mechanical Engineering, Center for Advance Power Systems, Florida State University, Tallahassee, FL 32310, USA
BackLink https://www.osti.gov/servlets/purl/2546936$$D View this record in Osti.gov
BookMark eNp9UMlOwzAQ9QEk1g_gZnFvsZPGbcQJITYJiQtI3KxJMi4uiR2NpyA-hn_FJZw5PeltmnlHYi_EgEKcaTXXSpuLzRwTzwtVVHOtjTL1njgsyqqY6ap4PRCnKW2UysZK69ociu-HYYSWZXRyiD1jkAl6lj64Pn7KGCS_oWQcRiTgLaHsfGLyzZZ9Fv2vTgP0EgPS-ksmjgTrHIHwniRwJoB4O0oXSbYYmLKXsEX_gZmIYeLYh7VMsQeSY_zMythD4HQi9h30CU__8Fi83N48X9_PHp_uHq6vHmdtqWueOZdBdXWxUKBWpuw6XDTYKI3arKplB4hFiW6xbBygWYGpoVyumga6WisAVx6L86k3JvY2tZ6xfcvHBWzZFtXC1KXJJj2ZWoopETo7kh-AvqxWdre93di8vd1tb6ftc-ZyymC-_sMj7coxP9152nV30f-T_gFbApWq
Cites_doi 10.1016/j.enss.2023.08.003
10.1016/j.csite.2022.102520
10.1016/B978-0-12-819970-1.00020-7
10.1016/j.solmat.2021.111048
10.1016/j.egypro.2015.03.221
10.1016/j.actaastro.2023.06.007
10.1016/j.enconman.2018.04.113
10.1016/B978-0-12-382088-4.00013-X
10.1016/j.jmrt.2023.01.211
10.1063/1.4959400
10.1016/j.est.2023.107808
10.1016/j.est.2023.107893
10.1016/j.rser.2022.113124
10.1016/j.est.2022.105860
10.1016/j.applthermaleng.2023.120164
10.1016/j.egypro.2013.12.034
10.3233/FAIA210397
10.1016/j.applthermaleng.2019.114775
10.1007/s12206-016-0333-0
10.1016/j.renene.2020.11.004
10.1016/B978-008044046-0.50225-6
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
CorporateAuthor National Renewable Energy Laboratory (NREL), Golden, CO (United States)
CorporateAuthor_xml – name: National Renewable Energy Laboratory (NREL), Golden, CO (United States)
DBID 6I.
AAFTH
AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1016/j.est.2025.116069
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 2546936
10_1016_j_est_2025_116069
S2352152X25007820
GroupedDBID --M
0R~
457
4G.
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AFJKZ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
EBS
EFJIC
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSD
SSH
SSR
SST
SSZ
T5K
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EJD
OIOZB
OTOTI
ID FETCH-LOGICAL-c319t-ff3190d9240a0863dde4beb01e16857daee23ef47bfae68a69a378bbad910aaf3
IEDL.DBID AIKHN
ISSN 2352-152X
IngestDate Mon Apr 14 02:30:56 EDT 2025
Tue Jul 01 05:13:10 EDT 2025
Sat Apr 05 15:39:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Thermal energy storage
Startup operation conditions
Concentrating solar power
Sparger ring design
Molten salt storage tank
Temperature gradients
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-ff3190d9240a0863dde4beb01e16857daee23ef47bfae68a69a378bbad910aaf3
Notes NREL/JA-5700-91359
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
AC36-08GO28308
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2352152X25007820
ParticipantIDs osti_scitechconnect_2546936
crossref_primary_10_1016_j_est_2025_116069
elsevier_sciencedirect_doi_10_1016_j_est_2025_116069
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of energy storage
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Nikiforova, Savytskyi, Limam, Bosschaerts, Belarbi (bb0165) 2013; 42
J. D. Osorio, “Addressing failures in molten salt thermal energy storage tank for central receiver concentrating solar power plants.” 6th Thermal-Mechanical- Chemical Energy Storage Workshop Charlotte, NC, July 31 - August 1, 2024, NREL/PR-5700-90714.
F. Opoku, M. N. Uddin, and M. Atkinson, “A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach,” Mar. 01, 2023, Elsevier Ltd. doi
Yang, Jin, Qi, Cai (bb0155) 2023; 211
IOS Press BV, Dec. 2021, pp. 132–140. doi
Price (bb0020) 2021; no. June
Liu, Yue, Lu (bb0080) 2021; 165
Fanchi (bb0105) 2010
Ansys, “Ansys.” [Online]. Available
Li, Yan, Wei, Wang, Ni (bb0135) 2022; 40
Gage, Bailey, Finegan, Brett, Shearing, Turchi (bb0025) 2021; 225
Hosseinnia, Akbari, Sorin (bb0125) 2021; 40, no. May
M. I. Khan, F. Asfand, and S. G. Al-Ghamdi, “Progress in research and technological advancements of thermal energy storage systems for concentrated solar power,” Nov. 30, 2022, Elsevier Ltd. doi
Idelchik, Ginevskiy (bb0095) 2007
H. K. Versteeg and W. Malalasekera, “An Introduction to Computational Fluid Dynamics Second Edition.” [Online]. Available
D. Code, “Superwool ® Blankets,” pp. 11–12, 2009.
vol. 167, no. December 2019, p. 114775, 2020, doi
Tang, Tao (bb0030) 2023; 2
Osorio, Mehos, Imponenti, Kelly, Price, Torres-Madronero, Rivera-Alvarez, Nieto, Ni, Yu, Hamilton, Martinek (bb0045) 2024
Mekhermeche, Kriker, Dahmani (bb0175) 2016; 1758
Gage (bb0010) 2021; 226, no. April
T. Pickle, Y. Hong, C. Augustine, J. Vidal, and Z. Yu, “Stress Relaxation Cracking of Alloys at Temperatures Higher Than 540°C,” 2024. [Online]. Available
F. ANSYS, “Equations of Motion for Particles.” Accessed: May 16, 2024. [Online]. Available
Incropera, Dewitt (bb0195) 2002
NREL and National Renewable Energy Laboratory, “Concentrating Solar Power Projects, Power Tower Projects.” Accessed: Jun. 10, 2024. [Online]. Available
Rohsenow, Hartnett (bb0090) 1999; 36
Kim, Kim, Lee, Yoo (bb0185) 2016; 30
Gas (bb0100) 2020; 2
ANSYS, “Volume of Fluid (VOF) Model Theory.” Accessed: May 16, 2024. [Online]. Available
Zhao, Wu, Zhang (bb0160) 2023; 23
SolarPaces, “High Temperature Salt Tank Buckling Failure,” 2022.
H. Xi, Q. Wu, X. Xie, R. Zhang, B. Yang, and Q. Liu, “Analysis of Current Production Status and Key Existing Problems of Tower-Shaped Solar Molten Salt Storage Tank,” in
.
Iranzo, Suàrez, Guerra (bb0050) 2018; 168
Elsevier Ltd, May 2015, pp. 2072–2080. doi
T. Chekifi and M. Boukraa, “CFD applications for sensible heat storage: A comprehensive review of numerical studies,” Sep. 15, 2023, Elsevier Ltd. doi
Yamaç, Koca (bb0130) 2023; 225
Arsenovic, Lalic, Radojevic (bb0170) 2010; II
J. D. Osorio, “Modeling of Stress Distribution in Molten Salt Thermal Energy Storage Tanks for In-Service Central Receiver Power Plants,” 5th Thermal-Mechanical-Chemical Energy Storage Workshop, San Antonio, TX, August 1 and 2, 2023, NREL/PR-5700-87158.
Z. Wan, J. Wei, M. A. Qaisrani, J. Fang, and N. Tu, “Evaluation on thermal and mechanical performance of the hot tank in the two-tank molten salt heat storage system,”
Kosky, Balmer, Keat, Wise (bb0190) 2013
Guo, Du, Xu, Lei (bb0075) 2023; 68
J. Shan, J. Ding, and J. Lu, “Numerical Investigation of High-temperature Molten Salt Leakage,” in
D. Greif ^’, B. Wiesler”, and A. Alajbegovic’=, “Two-phase tank filling simulations of an automobile tank system,” 2003.
Price (10.1016/j.est.2025.116069_bb0020) 2021; no. June
10.1016/j.est.2025.116069_bb0005
Li (10.1016/j.est.2025.116069_bb0135) 2022; 40
Osorio (10.1016/j.est.2025.116069_bb0045) 2024
Mekhermeche (10.1016/j.est.2025.116069_bb0175) 2016; 1758
Incropera (10.1016/j.est.2025.116069_bb0195) 2002
Arsenovic (10.1016/j.est.2025.116069_bb0170) 2010; II
Guo (10.1016/j.est.2025.116069_bb0075) 2023; 68
Rohsenow (10.1016/j.est.2025.116069_bb0090) 1999; 36
10.1016/j.est.2025.116069_bb0070
Gas (10.1016/j.est.2025.116069_bb0100) 2020; 2
10.1016/j.est.2025.116069_bb0055
10.1016/j.est.2025.116069_bb0110
Liu (10.1016/j.est.2025.116069_bb0080) 2021; 165
10.1016/j.est.2025.116069_bb0035
10.1016/j.est.2025.116069_bb0150
Gage (10.1016/j.est.2025.116069_bb0010) 2021; 226, no. April
Gage (10.1016/j.est.2025.116069_bb0025) 2021; 225
Idelchik (10.1016/j.est.2025.116069_bb0095) 2007
10.1016/j.est.2025.116069_bb0015
10.1016/j.est.2025.116069_bb0115
Kim (10.1016/j.est.2025.116069_bb0185) 2016; 30
Kosky (10.1016/j.est.2025.116069_bb0190) 2013
Fanchi (10.1016/j.est.2025.116069_bb0105) 2010
Hosseinnia (10.1016/j.est.2025.116069_bb0125) 2021; 40, no. May
Yamaç (10.1016/j.est.2025.116069_bb0130) 2023; 225
Yang (10.1016/j.est.2025.116069_bb0155) 2023; 211
Nikiforova (10.1016/j.est.2025.116069_bb0165) 2013; 42
10.1016/j.est.2025.116069_bb0060
10.1016/j.est.2025.116069_bb0180
Tang (10.1016/j.est.2025.116069_bb0030) 2023; 2
Iranzo (10.1016/j.est.2025.116069_bb0050) 2018; 168
Zhao (10.1016/j.est.2025.116069_bb0160) 2023; 23
10.1016/j.est.2025.116069_bb0065
10.1016/j.est.2025.116069_bb0120
10.1016/j.est.2025.116069_bb0145
10.1016/j.est.2025.116069_bb0200
10.1016/j.est.2025.116069_bb0040
10.1016/j.est.2025.116069_bb0085
10.1016/j.est.2025.116069_bb0140
References_xml – reference: D. Greif ^’, B. Wiesler”, and A. Alajbegovic’=, “Two-phase tank filling simulations of an automobile tank system,” 2003.
– reference: M. I. Khan, F. Asfand, and S. G. Al-Ghamdi, “Progress in research and technological advancements of thermal energy storage systems for concentrated solar power,” Nov. 30, 2022, Elsevier Ltd. doi:
– reference: SolarPaces, “High Temperature Salt Tank Buckling Failure,” 2022.
– reference: NREL and National Renewable Energy Laboratory, “Concentrating Solar Power Projects, Power Tower Projects.” Accessed: Jun. 10, 2024. [Online]. Available:
– year: 2024
  ident: bb0045
  article-title: Failure Analysis for Molten Salt Thermal Energy Storage Tanks for in-Service CSP Plants
– volume: 225
  year: 2023
  ident: bb0130
  article-title: Investigation of water flow window with/without energy storage tank during winter season
  publication-title: Appl. Therm. Eng.
– start-page: 259
  year: 2013
  end-page: 281
  ident: bb0190
  article-title: Chapter 12 - mechanical engineering
  publication-title: Exploring Engineering
– reference: T. Pickle, Y. Hong, C. Augustine, J. Vidal, and Z. Yu, “Stress Relaxation Cracking of Alloys at Temperatures Higher Than 540°C,” 2024. [Online]. Available:
– year: 2007
  ident: bb0095
  article-title: Handbook of Hydraulic Resistance
– reference: , vol. 167, no. December 2019, p. 114775, 2020, doi:
– volume: no. June
  start-page: 725
  year: 2021
  end-page: 757
  ident: bb0020
  article-title: Concentrating solar power best practices
  publication-title: Concentrating Solar Power Technology
– reference: Ansys, “Ansys.” [Online]. Available:
– volume: 40, no. May
  year: 2021
  ident: bb0125
  article-title: Numerical analysis of thermocline evolution during charging phase in a stratified thermal energy storage tank
  publication-title: J. Energy Storage
– year: 2002
  ident: bb0195
  article-title: Fundamentals of Heat and Mass Transfer
– volume: 225
  year: 2021
  ident: bb0025
  article-title: Internal insulation and corrosion control of molten chloride thermal energy storage tanks
  publication-title: Sol. Energy Mater. Sol. Cells
– reference: J. D. Osorio, “Addressing failures in molten salt thermal energy storage tank for central receiver concentrating solar power plants.” 6th Thermal-Mechanical- Chemical Energy Storage Workshop Charlotte, NC, July 31 - August 1, 2024, NREL/PR-5700-90714.
– volume: 165
  start-page: 25
  year: 2021
  end-page: 36
  ident: bb0080
  article-title: A new method for optimizing the preheating characteristics of storage tanks
  publication-title: Renew. Energy
– start-page: 223
  year: 2010
  end-page: 241
  ident: bb0105
  article-title: Reservoir simulation
  publication-title: Integrated Reservoir Asset Management
– reference: H. K. Versteeg and W. Malalasekera, “An Introduction to Computational Fluid Dynamics Second Edition.” [Online]. Available:
– volume: 211
  start-page: 447
  year: 2023
  end-page: 460
  ident: bb0155
  article-title: Effect of inlet mass flow rate oscillation on simplex swirl injector flow based on VOF-to-DPM model
  publication-title: Acta Astronaut.
– reference: , Elsevier Ltd, May 2015, pp. 2072–2080. doi:
– volume: 23
  start-page: 3651
  year: 2023
  end-page: 3664
  ident: bb0160
  article-title: Thermodynamics-CFD-DPM modeling of dross formation and diffusion in a Zn-0.3Al galvanizing bath
  publication-title: J. Mater. Res. Technol.
– volume: 30
  start-page: 1773
  year: 2016
  end-page: 1779
  ident: bb0185
  article-title: Welding residual stress analysis of 347H austenitic stainless steel boiler tubes using experimental and numerical approaches
  publication-title: J. Mech. Sci. Technol.
– volume: 2
  start-page: 127
  year: 2020
  end-page: 166
  ident: bb0100
  article-title: Flow of fluids
  publication-title: Combustion Engineering and Gas Utilisation
– reference: D. Code, “Superwool ® Blankets,” pp. 11–12, 2009.
– volume: 1758
  year: 2016
  ident: bb0175
  article-title: Contribution to the study of thermal properties of clay bricks reinforced by date palm fiber
  publication-title: AIP Conf. Proc.
– volume: 68
  year: 2023
  ident: bb0075
  article-title: Effects of EPCM particle properties on creep damage of the molten salt packed-bed thermal energy storage system
  publication-title: J. Energy Storage
– volume: 2
  start-page: 571
  year: 2023
  end-page: 577
  ident: bb0030
  article-title: Strength analysis of molten salt tanks for concentrating solar power plants
  publication-title: Energy Storage and Saving
– volume: 36
  year: 1999
  ident: bb0090
  publication-title: Handbook of heat transfer
– volume: 168
  start-page: 320
  year: 2018
  end-page: 328
  ident: bb0050
  article-title: Mixing enhancement in thermal energy storage molten salt tanks
  publication-title: Energy Convers. Manag.
– volume: II
  start-page: 2067
  year: 2010
  end-page: 3604
  ident: bb0170
  article-title: Clay brick walls - thermal properties
  publication-title: Int. J. Modern Manuf. Technol.
– reference: .
– reference: ANSYS, “Volume of Fluid (VOF) Model Theory.” Accessed: May 16, 2024. [Online]. Available:
– volume: 40
  year: 2022
  ident: bb0135
  article-title: Numerical simulation on the thermal dynamic behavior of liquid hydrogen in a storage tank for trailers
  publication-title: Case Stud. Therm. Eng.
– volume: 42
  start-page: 775
  year: 2013
  end-page: 783
  ident: bb0165
  article-title: Methods and results of experimental researches of thermal conductivity of soils
  publication-title: Energy Procedia
– reference: T. Chekifi and M. Boukraa, “CFD applications for sensible heat storage: A comprehensive review of numerical studies,” Sep. 15, 2023, Elsevier Ltd. doi:
– reference: , IOS Press BV, Dec. 2021, pp. 132–140. doi:
– reference: J. D. Osorio, “Modeling of Stress Distribution in Molten Salt Thermal Energy Storage Tanks for In-Service Central Receiver Power Plants,” 5th Thermal-Mechanical-Chemical Energy Storage Workshop, San Antonio, TX, August 1 and 2, 2023, NREL/PR-5700-87158.
– reference: F. Opoku, M. N. Uddin, and M. Atkinson, “A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach,” Mar. 01, 2023, Elsevier Ltd. doi:
– reference: F. ANSYS, “Equations of Motion for Particles.” Accessed: May 16, 2024. [Online]. Available:
– reference: H. Xi, Q. Wu, X. Xie, R. Zhang, B. Yang, and Q. Liu, “Analysis of Current Production Status and Key Existing Problems of Tower-Shaped Solar Molten Salt Storage Tank,” in
– reference: J. Shan, J. Ding, and J. Lu, “Numerical Investigation of High-temperature Molten Salt Leakage,” in
– reference: Z. Wan, J. Wei, M. A. Qaisrani, J. Fang, and N. Tu, “Evaluation on thermal and mechanical performance of the hot tank in the two-tank molten salt heat storage system,”
– volume: 226, no. April
  year: 2021
  ident: bb0010
  article-title: Technical and economic feasibility of molten chloride salt thermal energy storage systems
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 40, no. May
  year: 2021
  ident: 10.1016/j.est.2025.116069_bb0125
  article-title: Numerical analysis of thermocline evolution during charging phase in a stratified thermal energy storage tank
  publication-title: J. Energy Storage
– volume: 2
  start-page: 571
  issue: 4
  year: 2023
  ident: 10.1016/j.est.2025.116069_bb0030
  article-title: Strength analysis of molten salt tanks for concentrating solar power plants
  publication-title: Energy Storage and Saving
  doi: 10.1016/j.enss.2023.08.003
– ident: 10.1016/j.est.2025.116069_bb0065
– volume: 40
  year: 2022
  ident: 10.1016/j.est.2025.116069_bb0135
  article-title: Numerical simulation on the thermal dynamic behavior of liquid hydrogen in a storage tank for trailers
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2022.102520
– volume: no. June
  start-page: 725
  year: 2021
  ident: 10.1016/j.est.2025.116069_bb0020
  article-title: Concentrating solar power best practices
  publication-title: Concentrating Solar Power Technology
  doi: 10.1016/B978-0-12-819970-1.00020-7
– volume: 225
  year: 2021
  ident: 10.1016/j.est.2025.116069_bb0025
  article-title: Internal insulation and corrosion control of molten chloride thermal energy storage tanks
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2021.111048
– ident: 10.1016/j.est.2025.116069_bb0085
  doi: 10.1016/j.egypro.2015.03.221
– volume: 211
  start-page: 447
  year: 2023
  ident: 10.1016/j.est.2025.116069_bb0155
  article-title: Effect of inlet mass flow rate oscillation on simplex swirl injector flow based on VOF-to-DPM model
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2023.06.007
– start-page: 259
  year: 2013
  ident: 10.1016/j.est.2025.116069_bb0190
  article-title: Chapter 12 - mechanical engineering
– volume: 168
  start-page: 320
  year: 2018
  ident: 10.1016/j.est.2025.116069_bb0050
  article-title: Mixing enhancement in thermal energy storage molten salt tanks
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.04.113
– volume: II
  start-page: 2067
  issue: 1
  year: 2010
  ident: 10.1016/j.est.2025.116069_bb0170
  article-title: Clay brick walls - thermal properties
  publication-title: Int. J. Modern Manuf. Technol.
– ident: 10.1016/j.est.2025.116069_bb0055
– start-page: 223
  year: 2010
  ident: 10.1016/j.est.2025.116069_bb0105
  article-title: Reservoir simulation
  publication-title: Integrated Reservoir Asset Management
  doi: 10.1016/B978-0-12-382088-4.00013-X
– volume: 2
  start-page: 127
  year: 2020
  ident: 10.1016/j.est.2025.116069_bb0100
  article-title: Flow of fluids
  publication-title: Combustion Engineering and Gas Utilisation
– volume: 23
  start-page: 3651
  year: 2023
  ident: 10.1016/j.est.2025.116069_bb0160
  article-title: Thermodynamics-CFD-DPM modeling of dross formation and diffusion in a Zn-0.3Al galvanizing bath
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2023.01.211
– ident: 10.1016/j.est.2025.116069_bb0120
– year: 2007
  ident: 10.1016/j.est.2025.116069_bb0095
– ident: 10.1016/j.est.2025.116069_bb0150
– volume: 1758
  issue: July
  year: 2016
  ident: 10.1016/j.est.2025.116069_bb0175
  article-title: Contribution to the study of thermal properties of clay bricks reinforced by date palm fiber
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4959400
– ident: 10.1016/j.est.2025.116069_bb0060
– volume: 68
  year: 2023
  ident: 10.1016/j.est.2025.116069_bb0075
  article-title: Effects of EPCM particle properties on creep damage of the molten salt packed-bed thermal energy storage system
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.107808
– ident: 10.1016/j.est.2025.116069_bb0200
  doi: 10.1016/j.est.2023.107893
– ident: 10.1016/j.est.2025.116069_bb0110
  doi: 10.1016/j.rser.2022.113124
– ident: 10.1016/j.est.2025.116069_bb0070
– ident: 10.1016/j.est.2025.116069_bb0035
  doi: 10.1016/j.est.2022.105860
– volume: 225
  year: 2023
  ident: 10.1016/j.est.2025.116069_bb0130
  article-title: Investigation of water flow window with/without energy storage tank during winter season
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.120164
– ident: 10.1016/j.est.2025.116069_bb0115
– volume: 36
  issue: 06
  year: 1999
  ident: 10.1016/j.est.2025.116069_bb0090
  publication-title: Handbook of heat transfer
– year: 2024
  ident: 10.1016/j.est.2025.116069_bb0045
– volume: 42
  start-page: 775
  issue: December
  year: 2013
  ident: 10.1016/j.est.2025.116069_bb0165
  article-title: Methods and results of experimental researches of thermal conductivity of soils
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.12.034
– ident: 10.1016/j.est.2025.116069_bb0040
  doi: 10.3233/FAIA210397
– volume: 226, no. April
  year: 2021
  ident: 10.1016/j.est.2025.116069_bb0010
  article-title: Technical and economic feasibility of molten chloride salt thermal energy storage systems
  publication-title: Sol. Energy Mater. Sol. Cells
– ident: 10.1016/j.est.2025.116069_bb0005
– ident: 10.1016/j.est.2025.116069_bb0015
  doi: 10.1016/j.applthermaleng.2019.114775
– ident: 10.1016/j.est.2025.116069_bb0180
– volume: 30
  start-page: 1773
  issue: 4
  year: 2016
  ident: 10.1016/j.est.2025.116069_bb0185
  article-title: Welding residual stress analysis of 347H austenitic stainless steel boiler tubes using experimental and numerical approaches
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-016-0333-0
– ident: 10.1016/j.est.2025.116069_bb0140
– year: 2002
  ident: 10.1016/j.est.2025.116069_bb0195
– volume: 165
  start-page: 25
  year: 2021
  ident: 10.1016/j.est.2025.116069_bb0080
  article-title: A new method for optimizing the preheating characteristics of storage tanks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.11.004
– ident: 10.1016/j.est.2025.116069_bb0145
  doi: 10.1016/B978-008044046-0.50225-6
SSID ssj0001651196
Score 2.335926
Snippet Concentrating Solar Power (CSP) systems with molten salt thermal energy storage (TES) tanks are one of the most promising, renewable-based energy conversion...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 116069
SubjectTerms Concentrating solar power
Molten salt storage tank
SOLAR ENERGY
Sparger ring design
Startup operation conditions
Temperature gradients
Thermal energy storage
Title Impact of molten salt inflow on the temperature distribution in thermal energy storage tanks at startup for central receiver concentrating solar power plants
URI https://dx.doi.org/10.1016/j.est.2025.116069
https://www.osti.gov/servlets/purl/2546936
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier Freedom Collection
  issn: 2352-152X
  databaseCode: ACRLP
  dateStart: 20150601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001651196
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  issn: 2352-152X
  databaseCode: AIKHN
  dateStart: 20150601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001651196
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 2352-152X
  databaseCode: AKRWK
  dateStart: 20150601
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001651196
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXa7YUeEFAQpYDmwKlStJvE8SbHqqLatmovUGlvkb0Zo0JIIjYVv6b_tW8SR5QDHHqK8uEo8tgzb-LnN0p90pWJPZBIlGRsI41BE1ltbcSp0ZVDDNSDmM7VtVnd6It1tt5Rp9NeGKFVBt8_-vTBW4cr89Cb8-72dv4lAXZA9FkjiA-qb7tqL0G0Rwa2d3J-ubr-86vFyGLZWGYuSyJpM61vDkwvuF8kikkG9wE4X_wrQs1aTLpHwefshXoeUCOdjB_2Uu1w80rtP9ISPFD358N-R2o9_WxrIGHa2ronDKC6_U1tQ0B6JEJUQUWZKpHMDdWu8Jjch5OuiYfdgCSsSfgaAnj8sSXb4wL65a4joFwKlE5C17EQO2gjux-bQYK3-UZbyZepkwJs1NXCtHmtbs4-fz1dRaH2QrTBpOwj73FYVMjOFhZZTwovqB27RcyxybNlZZmTlL1eOm_Z5NYUNl3mztkK-MNan75Rs6Zt-K0i5zhOPBdSClAv2RdsskTnsc0Z6G3Bh-p46u-yGyU2yol79r2EcUoxTjka51DpySLlX-OkRAj4X7MjsZ40EW3cjZCI0EaKARSpefe0lx6pZ3I20h_fq1n_644_AKL07mMYgg9BPuhT
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3Bcig9oH6hUiidA6dK0W4Sx5scEQLt8rEXQNpbZG_GFZAmUTeIX8N_7UziqHBoDz1FSuIo8jhvnuPnNwBHqtChYyYSRAmZQPGgCYwyJqBYq8JyDlSdmc7VQs9u1fkyWW7AybAXRmSVHvt7TO_Q2p8Z-94cN3d34-uIuQNnnyUn8c71bRO2VMKYPIKt4_nFbPHnV4uWxbK-zFwSBdJmWN_slF4MvzxRjBKGD6bz2d8y1Kjmj-5F8jl7BzueNeJx_2LvYYOqD_D2hZfgR3ied_sdsXb4sy6ZCePalC3yACrrJ6wrZKaHYkTlXZSxEMtcX-2Kb5PrDNIlUrcbEEU1yViDTB4f1mhaPsH98tggs1z0kk7kriMRduBKdj9WnQVv9QPXMl_GRgqwYVOK0uYT3J6d3pzMAl97IVjxR9kGzvFhUvDsbGJ41hMzCipLdhJSqNNkWhiiKCanptYZ0qnRmYmnqbWmYP5hjIt3YVTVFX0GtJbCyFEmpQDVlFxGOolUGpqUmL1NaA--D_2dN73FRj5oz-5zDk4uwcn74OyBGiKSvxonOaeAfzXbl-hJE_HGXYmIiNtIMYAs1l_-76Hf4M3s5uoyv5wvLvZhW670UsgDGLW_Hukr05XWHvrh-Bs2IOs3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+molten+salt+inflow+on+the+temperature+distribution+in+thermal+energy+storage+tanks+at+startup+for+central+receiver+concentrating+solar+power+plants&rft.jtitle=Journal+of+energy+storage&rft.au=Torres-Madro%C3%B1ero%2C+Jos%C3%A9+L.&rft.au=Osorio%2C+Julian+D.&rft.au=Nieto-Londo%C3%B1o%2C+C%C3%A9sar&rft.au=Ordonez%2C+Juan+C.&rft.date=2025-05-01&rft.pub=Elsevier+Ltd&rft.issn=2352-152X&rft.volume=117&rft_id=info:doi/10.1016%2Fj.est.2025.116069&rft.externalDocID=S2352152X25007820
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon